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We propose a method for numerical approximation of backward stochas-
tic differential equations. Our method allows the final condition of the equa-
tion to be quite general and simple to implement. It relies on an approximation
of Brownian motion by simple random walk.

1. Introduction. In this paper we propose a new method of approximating
solutions of backward stochastic differential equations (BSDEs). Our method
allows the final condition of the equation to be quite general and it is simple to
implement. It relies on an approximation of Brownian motion by simple random
walk.

This type of equation appears in numerous problems in finance, in contingent
claim valuation when there are constraints on the hedging portfolios (see [8]).

Some numerical methods for approximating solutions of BSDEs have already
been developed. A four step algorithm developed by Ma, Protter and Yong to
solve a class of more general equations called forward–backward SDEs has been
proposed in [13]. A numerical scheme was developed based on this method in [7].
Bally [2] presents a random time scheme to approximate BSDEs. The convergence
result only needs regularity assumptions. However, his scheme requires a further
approximation to give an implementation. On the other hand Chevance [5] gives
a numerical method for solving BSDEs associated with a forward stochastic
differential equation (FSDE). His method requires strong regularity assumptions
for its implementation. Finally, a new result of Bally and Pagès allows for the
numerical treatment of BSDEs and reflected BSDEs [3].

We should note that there is another type of approximating solution to BSDEs,
via the discretization of filtration (see, e.g., [1, 6]). Although our method uses ideas
similar to those used in these results, in that we also approximate the Brownian
motion by discrete processes, the main feature of our result is that we do not
assume that the discretized filtrations “converge” to the original Brownian filtration
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in order to guarantee the convergence of the solutions. Such a relaxation obviously
reduces the complexity in constructing the approximating solutions.

Let � = C([0,1],Rd) and consider the canonical Wiener space (�,F ,P,Ft ),
in which Bt(ω)= ω(t) is a standard d-dimensional Brownian motion. We consider
the following BSDE:

Yt = ξ +
∫ 1

t
f (s, Ys) ds −

∫ 1

t
Zs dBs,(1)

where ξ is an F1-measurable square integrable random variable and f is Lipschitz
continuous in the space variable with Lipschitz constant L. The solution of (1)
is a pair of adapted processes (Y,Z) which satisfies the equation. Existence and
uniqueness for the solutions of such equations are proved in [14, 15], and further
results for the extension of uniqueness under more general assumptions for the
generator have been developed, for example, in [12] in the one-dimensional case.
We note that for technical reasons in this paper we only treat the BSDEs with
generator f independent of the component Z. Nevertheless, our result for f

independent of Z, combined with a simple Girsanov argument, yields a result that
can include a Z term in the drift in a linear way. We explain this in the remark at
the end of the article. We hope to be able to address the general case in our future
publications.

2. A numerical scheme for BSDEs. The numerical scheme we propose in
this paper is based upon a discretization of (1) and replacing B by a simple
random walk. To be more precise, let t(n)i = i/n, i = 0, . . . , n. For the sake of

simplicity we shall write ti instead of t
(n)
i when dependence on n is possible;

also, we shall consider only the one-dimensional case, although the generalization
to the d-dimensional case is rather clear. We let M(n) denote the approximating
binomial random walk, whose increments are 1/

√
n and −1/

√
n with probability

1/2. Further, we assume that the sequence {M(n)} is i.i.d. We note that, while most
of the results presented in this paper also hold for other approximations of B , we
work with M(n) mainly for simplicity.

In what follows (F n) denotes the natural filtration of M(n). In some of our
computations we shall use the linear interpolation associated with the discrete
process M(n), which will then become a continuous process and will still be
denoted as M(n) itself. Consequently, if F is a functional defined on �, then by
a slight abuse of notation we shall identify F(M

(n)
0 , . . . ,M

(n)
1 ) and F(M(n)) as

the same, although the latter means F is evaluated over the linear interpolation
of M(n), while in the former F is considered as a function on R

d(m+1).
Let us now consider the discrete version of the BSDE (1):

Ỹ
(n)
ti

= F(M(n))+ 1

n

n∑
j=i

f
(
tj , Ỹ

(n)
tj

) −
n−1∑
j=i

Z̃
(n)
tj

�M
(n)
tj+1

.(2)
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This equation has a unique solution (Ỹ (n), Z̃(n)) since the martingale M(n) has
the predictable representation property (see [4]). It can be checked that solving
this equation is equivalent to finding a solution to the following implicit iteration
problem:

Ỹ
(n)
ti

= E

{
Ỹ
(n)
ti+1

+ 1

n
f

(
ti , Ỹ

(n)
ti

) ∣∣F (n)
ti

}
,

which, due to the adaptedness condition, is equivalent to

Ỹ
(n)
ti

− 1

n
f

(
ti , Ỹ

(n)
ti

) = E
{
Ỹ
(n)
ti+1

∣∣F (n)
ti

}
.(3)

We point out, as we shall prove in Lemma 3.1, that one can in fact assume without
loss of generality that the generator f is bounded, and henceforth we denote its
bound by R. Furthermore, once Ỹ

(n)
ti+1

is determined, Ỹ (n)
ti

is solved via (3) by a
fixed point technique:

X0 = E
{
Ỹ
(n)
ti+1

∣∣F (n)
ti

}
,

Xk+1 = X0 + 1

n
f (ti,X

k).

It is standard to show that, if f is uniformly Lipschitz in the spatial variable x

with Lipschitz constant L, then the iterations of this procedure will converge to
the true solution of (3) at a geometric rate L/n. Therefore, in the case when n is
large enough, one iteration would already give us the error estimate: |Ỹ (n)

ti
−X1| ≤

LR/n2, producing a good approximate solution of (3). Consequently, we propose
the following explicit numerical scheme for the BSDE (1):

Ŷ
(n)
1 = F(M(n)), Ẑ

(n)
1 = 0,

X̂ti = E
{
Ŷ
(n)
ti+1

∣∣F (n)
ti

}
,

Ŷ
(n)
ti

= X̂ti + 1

n
f (ti, X̂ti ),

Ẑ
(n)
ti

= E

{[
Ŷ
(n)
ti+1

+ 1

n
f

(
ti , Ŷ

(n)
ti

) − Ŷ
(n)
ti

](
�M

(n)
ti+1

)−1 ∣∣F (n)
ti

}
.

Let us now analyze the error of this scheme. Clearly, the error produced by this
method is bounded by

|Ỹ (n)
ti

− Ŷ
(n)
ti

| ≤ ∣∣E{
Ỹ
(n)
ti+1

− Ŷ
(n)
ti+1

∣∣F (n)
ti

}∣∣
+ 1

n

∣∣f (
ti , Ỹ

(n)
ti

) − f
(
ti , Ŷ

(n)
ti

)∣∣ + 1

n

∣∣f (
ti , Ŷ

(n)
ti

) − f (ti , X̂ti )
∣∣,
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which yields

sup
ω

|Ỹ (n)
ti

− Ŷ
(n)
ti

| ≤ γ

(
sup
ω

|Ỹ (n)
ti+1

− Ŷ
(n)
ti+1

| + LR

n2

)
a.s.,

where γ = (1 −L/n)−1. Iterating this inequality one obtains

sup
ω

|Ỹ (n)
ti

− Ŷ
(n)
ti

| ≤ γ n−i sup
ω

|Ỹ (n)
1 − Ŷ

(n)
1 | + LRγ

n2

γ n−i − 1

γ − 1
.

For large n (2L ≤ n works) one obtains that ( 1
1−L/n

)n−i ≤ (1 + 2L
n
)n−i ≤ e2L.

Therefore we get

sup
ω

|Ỹ (n)
ti

− Ŷ
(n)
ti

| ≤ R(e2L − 1)

n
.

Using this bound we obtain the corresponding bound for Z̃(n) − Ẑ(n). In fact, we
have

Z̃
(n)
ti

− Ẑ
(n)
ti

=
[
Ỹ
(n)
ti+1

+ 1

n
f

(
ti , Ỹ

(n)
ti

) − Ỹ
(n)
ti

](
�M

(n)
ti+1

)−1

− E

{[
Ŷ
(n)
ti+1

+ 1

n
f

(
ti , Ŷ

(n)
ti

) − Ŷ
(n)
ti

](
�M

(n)
ti+1

)−1 ∣∣F (n)
ti

}
,

which by the adaptedness of Z̃(n) yields

Z̃
(n)
ti

− Ẑ
(n)
ti

= E

{[
Ỹ
(n)
ti+1

− Ŷ
(n)
ti+1

+ 1

n

(
f

(
ti , Ỹ

(n)
ti

) − f
(
ti , Ŷ

(n)
ti

)) + Ỹ
(n)
ti

− Ŷ
(n)
ti

]

× (
�M

(n)
ti+1

)−1 ∣∣F (n)
ti

}
.

Finally, one obtains

sup
ω

|Z̃(n)
ti

− Ẑ
(n)
ti

| ≤ R(e2L − 1)(2 +L/n)√
n

a.s.

This means that for the convergence of the numerical method we just need to
concentrate on the solution of (2).

We remark that the conditional expectations with respect to the discrete filtration
(F (n)) can be computed explicitly as follows. We assume � is an F (n)

tk+1
-measurable

random variable, and we take the 2k atoms corresponding to the trajectories of the
martingale M(n) in F (n)

tk
. Each atom in F n

tk
splits into two atoms of F n

tk+1
. Then

we have

E
(
�|F (n)

tk

)
(ω)= 1

2(a + b),
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where a, b are the values of � in the two atoms of F (n)
tk+1

coming from the

corresponding atom in F (n)
tk

containing ω.
Our main result is the following:

THEOREM 1. Assume that in the BSDE (1) the following conditions hold:

(i) ξ = F(B), where F : �→ R
d is a bounded Lipschitz function with respect

to the uniform topology on �; that is, there exists a constant κ such that for all
ω, ω′ ∈ � it holds that

|F(ω)− F(ω′)| ≤ κ sup
0≤t≤1

|ω(t)−ω′(t)|;

(ii) f : [0,1]×R
d → R

d is a continuous function and it is uniformly Lipschitz;
that is, there exists a constant L such that, for all x, y ∈ R

d ,

sup
0≤t≤1

|f (t, x)− f (t, y)| ≤ L|x − y|.

Let (Ỹ (n), Z̃(n)) be the solution of (2), and let

U
(n)
ti

=
i−1∑
j=0

Z̃
(n)
tj

�M
(n)
tj+1

= Ỹ (n) − F
(
M(n)

) − 1

n

i∑
j=1

f
(
tj , Ỹ

(n)
tj

)
.

Then the sequence (Ỹ (n),U(n)) converges weakly in the Skorohod topology to
(Y,

∫
Z dB), where (Y,Z) is the unique solution of (1).

3. Proof of the main result. We first show that under the assumptions of
Theorem 1 we can in fact assume without loss of generality that the function
f is bounded. To this end, notice that f is continuous, it is bounded on any
compact set [0,1] × [−A,A], A > 0. Thus it suffices to show that there exists
a constant A> 0 such that the solution of (1) satisfies |Yt | ≤ A, ∀t , a.s. Denoting
R0 = sups∈[0,1] |f (s,0)|, we have the following lemma.

LEMMA 3.1. Under the assumptions on F and f in Theorem 1, the solution Y

of (1) is bounded by (D +R0)e
L, where D is a bound for F .

PROOF. In the one-dimensional case this can be proved by the comparison
theorem. However, we shall provide an argument that does not involve any
comparison results; therefore it works for the general case.

For any A> 0 we consider the following BSDE:

XA
t = F(B)+

∫ 1

t
f

(
s,φA(X

A
s )

)
ds −

∫ 1

t
)s dBs,(4)

where φA is any bounded Lipschitz function with constant 1, such that φA(x)= x

for |x| ≤ A, and we shall determine the constant A later. Since f is continuous, it
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is bounded on [0,1] × [−2A,2A] and we let CA denote this bound. Note that XA

also solves the problem

XA
t = E

{
F(B)+

∫ 1

t
f

(
s,φA(X

A
s )

)
ds |Ft

}
,

we see that XA is bounded by D +CA and the following estimate holds:

|XA
t | ≤ D + E

{∫ 1

t

∣∣f (
s,φA(X

A
s )

)∣∣ds |Ft

}
≤ D +R0 +LE

{∫ 1

t
|XA

s |ds |Ft

}
.

Let hA(t) := |Xt |∞ denote the L∞(�)-norm of the random variable Xt . Then hA

is a deterministic, measurable function and satisfies the inequality

hA(t) ≤ D +R0 +L

∫ 1

t
hA(s) ds.(5)

Since hA(t) ≤ D +CA for all t , iterating (5) we derive that, for any N > 0,

hA(t) ≤ (D +R0)

N∑
k=0

Lk(1 − t)k

k! + (D +CA)
LN+1(1 − t)N+1

(N + 1)! .

Letting N → ∞ we obtain a generalized Gronwall inequality:

|XA
t | ≤ hA(t) ≤ (D +R0)e

L(1−t) ≤ (D +R0)e
L.

Note that the right-hand side of this inequality does not depend on A; therefore if
we choose A= (D +R0)e

L in (4), then XA actually solves the equation

XA
t = F(B)+

∫ 1

t
f

(
s,XA

s

)
ds −

∫ 1

t
)s dBs.

The uniqueness of the solution of the BSDE (1) then implies that (XA,)) ≡
(Y,Z), proving the lemma. �

The next two lemmas give some fine properties of the discretized solution
{Ỹ (n)}.

LEMMA 3.2. Let Ỹ (n) be the solution of (2). Then the jumps of Ỹ (n) converge
uniformly to zero. Moreover

sup
ω

∣∣Ỹ (n)
ti+1

− Ỹ
(n)
ti

∣∣ ≤ κe2L
√
n

+ R

n
.

PROOF. We use induction. Let us start with Ỹ
(n)
1 − Ỹ

(n)
tn−1

, which is given by

Ỹ
(n)
1 − Ỹ

(n)
tn−1

= F
(
M(n)

) − E
(
F

(
M(n)

) ∣∣F n
tn−1

) − 1

n
f

(
tn−1, Ỹ

(n)
tn−1

)
.
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Computing the conditional expectation and recalling our convention on the process
M(n) and its linear interpolation (see Section 2) we see that

Ỹ
(n)
1 − Ỹ

(n)
tn−1

= F
(
M

(n)
0 , . . . ,M

(n)
tn−1

,M
(n)
1

) − 1

2
F

(
M

(n)
0 , . . . ,M

(n)
tn−1

,M
(n)
tn−1

+ 1√
n

)

− 1

2
F

(
M

(n)
0 , . . . ,M

(n)
tn−1

,M
(n)
tn−1

− 1√
n

)
− 1

n
f

(
tn−1, Ỹ

(n)
tn−1

)
,

from which we deduce, using that F is Lipschitz, the upper bound

|Ỹ (n)
1 − Ỹ

(n)
tn−1

| ≤ κ√
n

+ R

n
.

On the other hand, since

Ỹ
(n)
tn−1

− 1

n
f

(
tn−1, Ỹ

(n)
tn−1

) = E
{
F

(
M(n)

) ∣∣F n
tn−1

}
,

we can let Gn−1(·) denote the inverse function of the mapping y �→ y −
1
n
f (tn−1, y), which exists if L < n. (Recall here that L is the Lipschitz constant

for f in the spatial variable y.) Observe that Gn−1 is a Lipschitz function with
Lipschitz constant γ = (1 −L/n)−1. Furthermore, it holds that

Ỹ
(n)
tn−1

= Gn−1

(
1

2
F

(
M

(n)
0 , . . . ,M

(n)
tn−1

,M
(n)
tn−1

+ 1√
n

)

+ 1

2
F

(
M

(n)
0 , . . . ,M

(n)
tn−1

,M
(n)
tn−1

− 1√
n

))
.

Clearly, the right-hand side above is a Lipschitz function of (M(n)
0 , . . . ,M

(n)
tn−1

) with

Lipschitz constant κγ . If we take Ỹ
(n)
tn−1

as the terminal value for a discrete BSDE
with generator f on {0, . . . , tn−1} we can apply the same argument as above to
deduce that

|Ỹ (n)
tn−1

− Ỹ
(n)
tn−2

| ≤ κγ√
n

+ R

n
,

and by an inductive argument

|Ỹ (n)
ti

− Ỹ
(n)
ti−1

| ≤ κγ n−i

√
n

+ R

n
≤ κe2L

√
n

+ R

n
,

completing the proof. �

LEMMA 3.3. The sequence Ỹ (n) is tight in the Skorohod topology.

PROOF. We use the criterium given in [11], Theorem 2.3, for locally square
integrable semimartingales. First notice that Ỹ (n) has the following decomposition:
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Ỹ (n) = U(n) + A(n), where A
(n)
ti

= Ỹ
(n)
0 + 1

n

∑i−1
j=0 f (tj , Ỹ

(n)
tj

) is a predictable

process with finite variation, and U
(n)
ti

= ∑i−1
j=0 Z̃

(n)
tj

�M
(n)
tj+1

is a locally square

integrable martingale. Define G(n) = [U(n),U(n)] + V (A(n)), where V (A(n)) is
the total variation of A(n). We have that G(n) is bounded by an increasing function
g that only depends on t . In fact V (A(n))≤ C where C is a constant not depending
on n. On the other hand [U(n),U(n)] = ∑

(�U(n))2 = ∑
(Z̃

(n)
ti

)2(M
(n)
ti+1

− M
(n)
ti

)2.

Since Ỹ (n) satisfies (2) we have

Ỹ
(n)
ti+1

− Ỹ
(n)
ti

= −1

n
f

(
ti , Ỹ

(n)
ti

) + Z̃
(n)
ti

�M
(n)
ti+1

.

Using Lemma 3.2 and the fact |�M(n)| = 1√
n

, we obtain

|Z̃(n)
ti

| ≤ κe2L + 2R√
n

and

[U(n),U(n)] ≤
(
κe2L + 2R√

n

)2

.

By choosing g equal to a constant, we have that G(n) satisfies conditions C1 and C2
of Theorem 2.3 given in [11] and the conclusions of this theorem imply that (Ỹ (n))

is relatively compact under the Skorohod topology. �

We point out that the sequence of predictable finite variation processes {Ỹ (n)
0 +

1
n

∑
f (tj , Ỹ

(n)
tj

)} is bounded in total variation, and therefore is relatively compact
under the Skorohod topology. From the previous proof we also know that the
sequence {U(n)} is relatively compact.

The following lemma is a standard result in the theory of BSDEs and will give
us the basic estimates for the proof of our main result. To simplify presentation let
us introduce some notation. For a process Y we denote the L2,∞-norm of Y as

‖Y‖L2,∞ :=
{
E sup

0≤t≤1
|Yt |2

}1/2
.

Further, we call the pair of functions F and f in (1) the generator of this BSDE;
and we denote the adapted solution of (1) by Y (F,f ) [or (Y (F,f ),Z(F,f )) if
necessary], when the generators are to be specified. We have the following lemma.

LEMMA 3.4. Let (G,g) and (F,f ) be continuous and bounded generators. If
Y (G,g) and Y (F,f ) are the corresponding solutions for the BSDEs. Then there
exists a constant C <∞ which depends only on the Lipschitz constant L of f such
that

‖Y (G,g)− Y (F,f )‖L2,∞ ≤ C
(|G(B)− F(B)|L2(�) + ‖f − g‖∞

)
.
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In particular if we have a sequence (Gk, gk) converging to (F,f ) in L2(�) ×
L∞([0,1] × R

d), then the corresponding solutions converge in the L2,∞-norm.

PROOF. For notational convenience we write Y = Y (F,f ) and Ȳ = Y (G,g).
Since Y − Ȳ satisfies the equation

Yt − Ȳt = E

(
F(B)−G(B)+

∫ 1

t
f (Ys)− g(Ȳs) ds

∣∣Ft

)
,(6)

we deduce that |Yt − Ȳt | ≤ Nt = E(|F(B)− G(B)| + ∫ 1
0 |f (Ys)− g(Ȳs)|ds |Ft ),

and therefore from Doob’s maximal inequality

E

(
sup

0≤t≤1
|Yt − Ȳt |2

)

≤ 12
(

E

(
|F(B)−G(B)|2 +L2

∫ 1

0
|Ys − Ȳs |2 ds

)
+ ‖f − g‖2∞

)
.

On the other hand using (6) we obtain

E(|Yt − Ȳt |2) ≤ 3
(

E

(
|F(B)−G(B)|2 +L2

∫ 1

t
|Ys − Ȳs |2 ds

)
+ ‖f − g‖2∞

)
,

which by Gronwall’s inequality gives

E(|Yt − Ȳt |2)≤ C1
(
E

(|F(B)−G(B)|2) + ‖f − g‖2∞
)
,

for some finite constant C1 which depends only on L, and the result follows. �

We note that if in the previous result the sequence Y (Gk,gk) is uniformly
bounded by A, then we can replace ‖f − g‖∞ by sup|x|≤A |f (x) − g(x)|. Using
that M(n) converges weakly to a Brownian motion we obtain the following result,
whose proof is in the same spirit as the previous lemma.

LEMMA 3.5. Let (G,g) and (F,f ) be continuous and bounded generators.
Consider Ỹ (n)(G,g) the solution of the discrete BSDE (2) associated with (G,g)

and similarly for Ỹ (n)(F,f ). Then there exists a constant C < ∞ which depends
only on the Lipschitz constant L of f such that

lim sup
n→∞

‖Ỹ (n)(G,g)− Ỹ (n)(F,f )‖L2,∞ ≤ C
(|G(B)− F(B)|L2(�) + ‖f − g‖∞

)
.

In particular if we have a sequence (Gk, gk) converging to (F,f ), then

lim
k→∞ lim sup

n→∞
‖Ỹ (n)(Gk, gk)− Ỹ (n)(F,f )‖L2,∞ = 0.



NUMERICS FOR BACKWARD EQUATIONS 311

Our next step is to prove that our numerical method converges when the terminal
functional F is of discrete type; that is, it depends only on a finite number of
points of a continuous path. We also assume that (F,f ) are in C∞

0 . For the sake of
simplicity we assume that F depends only on two variables, leaving the obvious
generalization for the reader.

We assume now the process Y satisfies the following backward stochastic
differential equation:

Yt = F(Bτ0,B1)+
∫ 1

t
f (Ys) ds +

∫ 1

t
Zs dBs,(7)

where τ0 ∈ (0,1). Using Itô’s formula the process Y is obtained by solving the
following system of partial differential equations:

∂u

∂t
(t, x, y)+ 1

2

∂2u

∂y2 (t, x, y) = −f
(
u(t, x, y)

)
, t ∈ [τ0,1],

u(1, x, y)= F(x, y),
(8)

∂v

∂t
(t, z)+ 1

2

∂2v

∂z2 (t, z) = −f
(
v(t, z)

)
, t ∈ [0, τ0],

v(τ0, z)= u(τ0, z, z).

In fact the solution is given by

Yt =
{
u(t,Bτ0,Bt ), t ∈ [τ0,1],
v(t,Bt ), t ∈ [0, τ0].(9)

In the previous system we can assume that u is defined on the whole interval [0,1].
To compute a discretization of u, we consider (xi, yj ) such that xi = iδ,

yj = jδ, where δ = δ(n)= 1/
√
n. We also write �t = 1/n. We fix xi and consider

the following difference equation associated with the first part of (8) which comes
from a Taylor expansion of u(t +�t,xi , yj + δ)+ u(t +�t,xi, yj − δ) [the idea
is that U(n)(k, i, j) ≈ u(k�t, iδ, jδ)]. We write k0 = [τ0n],

1
2

(
U(n)(k + 1, i, j + 1)+U(n)(k + 1, i, j − 1)

)
=U(n)(k, i, j)− f

(
U(n)(k, i, j)

)
�t,(10)

U(n)(n, i, j) = F(xi, yj ).

Using the Lipschitz condition on f one proves that the previous difference
equation has a unique solution, for k = k0, . . . , n − 1, i, j ∈ Z. With this solution
we approximate the second part of (8) by solving

1
2

(
V (n)(k + 1, j + 1)+ V (n)(k + 1, j − 1)

)
= V (n)(k, j)− f

(
V (n)(k, j)

)
�t,(11)

V (n)(k0, j) =U(n)(k0, j, j),

where k = 0, . . . , k0 − 1 and j ∈ Z.
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Using the results of [10], Chapter V, pages 353–381, we know that if (F,f )

is C4
0 then the solution of (8) is regular in (t, x, y) and it has bounded derivatives

of order 2 in t and order 4 in (x, y). Let C > 0 be the common bound for these
derivatives. Using this fact and a Taylor expansion for u on the (t, y) variables
one obtains an upper bound for θ(n)(k) = supi,j |u(k�t, xi, yj ) − U(n)(k, i, j)|
for k = k0, . . . , n. In fact if γ = 1/(1 −L�t), we get

θ(n)(k) ≤ γ

[
θ(n)(k + 1)+ 4C

n3/2

]
,

which yields the inequality

θ(n)(k)≤ γ n−kθ(n)(n)+ 4C

n3/2

n−k∑
p=1

γ p = γ n−kθ(n)(n)+ 4C

n3/2γ
γ n−k − 1

γ − 1
.

From �t = 1/n one obtains, as before, for large n that ( 1
1−L/n

)n−k ≤
(1 + 2L/n)n−k ≤ e2L and therefore

max
k0≤k≤n

θ(n)(k)≤ e2Lθ(n)(n)+ 4C(e2L − 1)

L
√
n

.

Since θ(n)(n)= 0 we get maxk0≤k≤n θ
(n)(k) ≤ 4C(e2L−1)

L
√
n

.
For the other terms we proceed in the same way. Consider

φ(n)(k)= sup
i,j

|v(k�t, yj )− V (n)(k, j)|,

for 0 ≤ k ≤ k0. Then we have φ(n)(k0) ≤ C(τ0 − k0/n) + θ(n)(k0) ≤
C(1 + 4(e2L − 1)/L)/

√
n and, for 0 ≤ k ≤ k0 − 1,

φ(n)(k) ≤ γ

[
φ(n)(k + 1)+ 4C

n3/2

]
,

which yields the upper bound

max
0≤k≤k0

φ(n)(k) ≤ e2Lφ(n)(k0)+ 4C(e2L − 1)

L
√
n

≤
(
e2L + 4e2Le

2L − 1

L
+ 4

e2L − 1

L

)
C√
n
.

Therefore, using a suitable constant A, we obtain the following estimate:

sup
i,j∈Z

{
sup

k0≤k≤n

|u(k�t, xi, yj )−U(n)(k, i, j)|,
(12)

sup
0≤k≤k0

|v(k�t, yj )− V (n)(k, j)|
}

≤ A√
n
.
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With this estimate in hand we can prove that Ỹ (n) converges to Y . Using
Skorohod’s embedding theorem we can assume that M(n),B are defined in the
same space and M(n) converges a.s. uniformly on [0,1] to B . On the other hand it
is not hard to see that the unique solution of

Ỹ
(n)
tk

= F
(
M

(n)
tk0

,M
(n)
1

) +
n−1∑
p=k

f
(
Ỹ
(n)
tp

)
�t +

n∑
p=k

Z
(n)
tp

(
M

(n)
tp+1

−M
(n)
tp

)
(13)

is given by

Ỹ
(n)
tk

=


U(n)

(
tk,M

(n)
tk0

,M
(n)
tk

)
, tk ∈ [tk0 ,1],

V (n)
(
tk,M

(n)
tk

)
, tk ∈ [0, tk0].

Finally, from (12) one obtains that Ỹ (n) converges a.s. uniformly on compact sets
to the continuous process (9), which is exactly the solution of (7). This means that
Theorem 1 is proven when (F,f ) is C∞

b , and F depends on a finite number of
coordinates.

Now, we are ready to complete the proof of Theorem 1 in the general case.
First, we take a convergent subsequence of {Ỹ (n)}, which by simplicity we
denote by {Ỹ (n)} itself. By Skorohod’s embedding theorem we can assume that
all are defined on the same space and moreover they converge a.s. uniformly
on [0,1] to a continuous process X. We consider the approximation Fm

which corresponds to the linear interpolation at t0, . . . , tm = 1. The processes
Ỹ (n,m) = Ỹ (n)(Fm,f ), Ỹ

(n) = Ỹ (n)(F,f ),Y (Fm,f ) are uniformly bounded by
some constant A and therefore we can approximate (Fm,f ) with a sequence of
C∞

0 -functions ((Fm,p, fp))p , such that

lim
p→∞ E

(|Fm,p(Bt0, . . . ,Btm)− Fm(Bt0, . . . ,Btm)|2
) = 0

and

lim
p→∞‖fp − f ‖∞ = 0.

Actually we just need limp→∞ sup|x|≤A |fp − f | = 0, for an appropriate con-

stant A. We write Ỹ (n,m,p) = Ỹ (n)(Fm,p, fp) and Y (m,p) = Y (Fm,p, fp). Using
the triangle inequality we obtain

‖Y −X‖ ≤ ‖Y − Y (m)‖ + ‖Y (m) − Y (m,p)‖ + ‖Y (m,p) − Ỹ (n,m,p)‖
(14)

+ ‖Ỹ (n,m,p) − Ỹ (n,m)‖ + ‖Ỹ (n,m) − Ỹ (n)‖ + ‖Ỹ (n) −X‖.
Taking limits first in n, then in p and finally in m we see that the right-hand side
of (14) converges to 0. In fact, the first and the second terms converge to zero
due to Lemma 3.4. The fourth and fifth ones converge to zero by Lemma 3.5.
The last one tends to zero thanks to the a.s. uniform convergence of Ỹ (n) to X
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plus the dominated convergence theorem. Finally, the third term converges to 0
because (Fm,p, fp) is a smooth function, and Fm,p depends on a finite number of
coordinates. Therefore the only limit point for the sequence Ỹ (n) is exactly Y , the
solution of (1), proving the result.

REMARK. We note that our results in this paper can easily be used to treat a
slightly more general case, where there is a term Z in the drift of the BSDE. Indeed,
suppose that (Hs)s>0 is a predictable process in L2 for dP dt . Also suppose it is
known to us. Then we can numerically solve the BSDE

Yt = ξ +
∫ 1

t

(
f (s,Ys)+HsZs

)
ds −

∫ 1

t
Zs dBs(15)

by first solving

Yt = ξ +
∫ 1

t
f (s, Ys) ds −

∫ 1

t
Zs dBs.(16)

We do this as follows. Given equation (15) on (�,F ,P,Ft , P ), we form the
equation

Mt = 1 +
∫ 1

0
MsHs dBs(17)

and then set β = Bt − ∫ t
0 Hs ds, which is a Brownian motion under the new

probability measure Q defined by dQ = MT dP . We then solve (16) under Q

with β replacing B . The solution Y of (16) is then also a solution of (15) under P
and using the original Brownian motion B . Last, we note that equations of the
type (15) are of interest in financial asset pricing theory; see, for example, [9],
Section 1.

Summary. We summarize here the proposed algorithm to solve the BSDE

Yt = F(B)+
∫ 1

t
f (s, Ys) ds −

∫ 1

t
Zs dBs,

by means of a random walk appoximation M(n), in the following scheme:

Ŷ
(n)
1 = F(M(n)), Ẑ

(n)
1 = 0,

X̂ti = E
{
Ŷ
(n)
ti+1

∣∣F (n)
ti

}
,

Ŷ
(n)
ti

= X̂ti + 1

n
f (ti, X̂ti ),

Ẑ
(n)
ti

= E

{[
Ŷ
(n)
ti+1

+ 1

n
f

(
ti , Ŷ

(n)
ti

) − Ŷ
(n)
ti

](
�M

(n)
ti+1

)−1 ∣∣F (n)
ti

}
,

where the conditional expectations with respect to the discrete σ -field F (n)
ti

are
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computed using a tree structure. For example we obtain

X̂tn−1 = 1

2

{
F

(
M

(n)
tn−1

+ 1√
n

)
+ F

(
M

(n)
tn−1

− 1√
n

)}
.
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