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SAMPLE PATH LARGE DEVIATIONS AND
CONVERGENCE PARAMETERS
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Université de Cergy-Pontoise

In this paper we prove the local sample path large deviation estimates
for a general class of Markov chains with discontinuous statistics. The
local rate function is represented in terms of the convergence parameter of
associated local transform matrices. Our method is illustrated by the case
of perturbated random walks in �d.

1. Introduction. This paper is devoted to the representation of the lo-
cal sample path large deviation rate function for Markov processes with a
discontinuous statistical behavior.

For the moment, there are few general results in this domain. Dupuis and
Ellis [12] established the sample path large deviation principle for lattice-
based jump Markov processes describing queueing systems. They give a quite
general approach, that can be used to prove the sample path large deviation
principle for a large class of Markov processes on �d having constant or smooth
statistical behavior on the regions separated by an arbitrary number of inter-
secting hyperplanes across which the statistical behavior can change discon-
tinuously. In order to obtain the local large deviation estimates, Dupuis and
Ellis described the local large deviation probabilities in terms of the minimal
cost functions of associated stochastic optimal control problems, and studied
the limits of these probabilities by using a sub-additivity-type argument. Such
a method leads to a rather implicit description of the rate function.

In [8], Dupuis, Ellis and Weiss proved an explicit general upper large de-
viation bound. In this paper, the authors conjectured that their upper bound
is tight, i.e the lower large deviation bound should be satisfied with the same
rate function under some general conditions. The corresponding general lower
bound has not been proved. It is known that this conjecture is wrong in general
(see Alanyali and Hajek [1] or Blinovskii and Dobrushin [3] for example).

The sample path large deviation principle was proved and an explicit rep-
resentation of the rate function were obtained in [1, 3, 10, 15, 21] for processes
whose statistical behavior can be discontinuous across one �d−1�-dimensional
hyperplane, or more generally across a smooth �d − 1�-dimensional interface
in �d.

The rate function is much more difficult to evaluate when the discontinuity
in the transition mechanism of the process occurs across an arbitrary number
of intersecting hyperplanes. This is the case for the Markov processes describ-
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ing queueing networks for example. Several techniques have been developed
to resolve this problem in particular cases. For Markov processes describ-
ing tandem queues, the contraction principle can be applied (see [7, 23]). For
the Markov processes describing Jackson networks, different approaches have
been proposed. Dupuis, Ishii and Soner [9] used the method of viscosity solu-
tions of Hamilton-Jacobi equations. In Ignatiouk [14], a closed form expression
for the rate function is obtained by using the classical method of exponential
change of measure and the explicit representation of the related fluid lim-
its. Atar and Dupuis [2] evaluated the rate function for a more general class
of networks for which the associated Skorohod problem has some regularity
properties. In [5], Delcoigne and de La Fortelle obtained an explicit represen-
tation of the rate function for Polling Systems. All these methods use some
special properties of the processes under study, and therefore do not seem to
be generalizable.

Before describing our results, we recall the definition of the sample path
large deviation principle and the main points of Dupuis and Ellis’
approach [12].

For τ > 0, the sequence of Markov processes Zn�t�, t ∈ �0� τ� on �d is said to
satisfy the sample path large deviation principle with the good rate function
Iτ�·� � � ��0� τ���d� → �+ iff the following assertions hold:

(i) for any c > 0 the level set �ϕ � Iτ�ϕ� ≤ c
 is a compact subset of
� ��0� τ���d�;

(ii) for every open subset � of � ��0� τ���d�,

lim inf
n→∞

1
n
log��Zn�·� ∈ � � ≥ − inf

ϕ∈�
Iτ�ϕ��

(iii) for every closed subset F of � ��0� τ���d�,

lim sup
n→∞

1
n
log��Zn�·� ∈ F� ≤ − inf

ϕ∈F
Iτ�ϕ��

� ��0� τ���d� denotes the space of all functions from �0� τ� to �d that are con-
tinuous from the right and have the limits from the left. This space is endowed
with Skorohod topology.

For a Markov process Z�t� describing a queueing system, Zn�t� is usually
a renormalized process defined by

Zn�t� = Z�nt�/n
given that Zn�0� = zn where zn → z as n → ∞ for some z ∈ �d+. The
statistical behavior of such a model is discontinuous at the boundary set
�z � zi = 0� for some 1 ≤ i ≤ d
.

The first step of Dupuis and Ellis’ approach [12] consists in proving the lo-
cal large deviation estimates for tubes centered at linear paths ϕ�t� = z+ vt,
t ∈ �0� τ�, z� v ∈ �d with τ > 0 small enough. To perform this step, Dupuis and
Ellis described the local large deviation behavior of the process in a neighbor-
hood of z ∈ �d in terms of the associated local process

(
X�t��Y�t�). This is a
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Markov process on �N ×E with N ≤ d and E ⊆ �d−N depending on z. The
transition probabilities of this Markov process are invariant with respect to
the translations on the first coordinate and hence, following usual terminology
(see Ney and Nummelin [17] for example) this is a Markov-additive process
with additive partX�t� on �N and with Markovian partY�t� onE (the Marko-
vian partY�t� is a Markov process onE). For these Markov-additive processes,
Dupuis and Ellis proved the lower large deviation estimate

lim
δ→0

lim inf
n→∞

1
n
log��0�0�

(
sup
t∈�0�nτ�

��X�t� − vt� + �Y�t��� ≤ δn
)

≥ −τL�z� v�
(1.1)

and the upper large deviation estimate

lim
δ→0

lim sup
n→∞

1
n
log��0�0�

(
sup
t∈�0�nτ�

��X�t� − vt� + �Y�t��� ≤ δn
)

≤ −τL�z� v�
(1.2)

with the same local rate function τL�z� v�, where � · � denotes the Euclidean
norm, and ��x�y� is the distribution of the Markov process �X�t��Y�t�� starting
at the point �x�y�.

Under the assumptions of [12], the above estimates imply the local large
deviation estimates for tubes centered at linear paths z+vt, t ∈ �0� τ� with the
local rate function τL�z� v� for the original Markov processes (see the proof of
Proposition 3.7 and Proposition 5.1 in [12]). Using the last estimates together
with the Markov property of the process, Dupuis and Ellis deduced the local
large deviation estimates for tubes centered at piecewise linear, continuous
paths ϕ � �0� τ� → �d with the local rate function

Ĩτ�ϕ� =
∫ τ
0
L�ϕ�t�� ϕ̇�t��dt�

This is the second step of the proof. The third step completes the proof of the
full large deviation principle by using an approximation argument. The rate
function Iτ�·� of the full large deviation principle is the lower semi-continuous
regularization of Ĩτ�·�.

To identify the rate function of the full sample path large deviation princi-
ple, it is sufficient therefore, to identify the function L�z� ·� satisfying inequal-
ities (1.1) and (1.2) for every local Markov-additive process.

In the present paper, we show that the function L�z� v� can be described in
terms of the convergence parameters of associated transform matrices. This
gives a good representation of the rate function because the properties of the
convergence parameter are well known. The description of the convergence
parameter in terms of ρ-superharmonic functions and its approximation by
Perron-Frobenius eigenvalues allow to evaluate the rate function in many par-
ticular cases. In a different context, such a representation of the rate function
has been obtained for the large deviations of additive functionals of Markov
chains(see Ney and de Acosta [4] and Ney and Nummelin [17, 18]).
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In order to represent the function L�z� v� in terms of the convergence pa-
rameters, we propose an alternative proof of the local large deviation esti-
mates (1.1) and (1.2). In this paper we consider discrete time Markov-additive
processes �X�t��Y�t�� under quite general assumptions. For Markov processes
with continuous time, our results can be extended in a straightforward way.

To prove of the lower estimate (1.1), we use a truncation argument and
an approximation of the convergence parameter by Perron-Frobenius eigen-
values. The upper estimate (1.2) is proved via the method of the change of
measure associated with ρ-superharmonic functions.

Our results show that to evaluate the function L�z� v�, one has to identify
the infimum over all λ for which the corresponding local transform matrix has
a positive eλ-superharmonic function. In some particular cases, it is sufficient
to consider exponential eλ-superharmonic functions. When this is the case, the
general upper large deviation bound of Dupuis Ellis and Weiss [8] is tight.

Two examples illustrate our results. The first one is the case when there is
one discontinuity along an hyperplane of codimension one. We consider here a
reflected random walk on �N×�+. The explicit expression of the rate function
for such a random walk was obtained in [15, 21]. We show how this result can
be proved with our approach (for this example, it is sufficient to consider the
exponential eλ-superharmonic functions).

The second example concerns the local perturbation of a homogeneous ran-
dom walk on �d. To identify the rate function in this case, the existing methods
can not be applied. With our approach the rate function is easily evaluated.
For this example, the general large deviation upper bound of Dupuis, Ellis
and Weiss [8] is not tight.

2. The main results. Let E be an arbitrary countable set equipped with
an integer-valued metric dist�·� ·�, and let �X�t��Y�t�� be a discrete time
Markov chain on �N × E with transition probabilities being invariant with
respect to the translations on x ∈ �N:

p��x�y���x′�y′��=p��0�y���x′−x�y′�� for all x�x′ ∈�N and y�y′ ∈E�
A Markov process �X�t��Y�t�� satisfying the above condition is usually called
a Markov-additive process, X�t� is its additive part, Y�t� is a Markovian part
(see Ney and Nummelin [17] for example). The Markovian part Y�t� is a
Markov chain on E with transition probabilities

p�y�y′� = ∑
x∈�N

p ��0� y�� �x�y′�� � y� y′ ∈ E�

The matrix � �α� = �� �α�y�y′�� y�y′ ∈ E� with
� �α�y�y′� = Ɛ�0�y�

(
exp ��α�X�1��
��Y�1�=y′


)
� y� y′ ∈ E�α ∈ �N�

is usually called a transform matrix of the Markov-additive process
�X�t��Y�t��. (�·� ·� denotes the usual scalar product in �N.)

Assumption 1. We will assume that�
(i) the Markov chain �Y�t�� is irreducible�
(ii) the coefficients of the transform matrix � �α� are finite for all α ∈ �N.
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Under the above assumption, the transform matrix � �α� is irreducible and
its convergence parameter ρ�α� is defined as follows.

Definition 1. The convergence parameter ρ�α� of � �α� is the radius of
convergence of the power series

∞∑
n=1

� �n��α�y�y′�ρn�

where � n�α� = (
� �n��α�y�y′�� y�y′ ∈ E), n ≥ 0, is the nth iterate of the

matrix � �α�:
� �n��α�y�y′� = Ɛ�0�y�

(
exp ��α�X�n��
��Y�n�=y′


)
� y� y′ ∈ E�

This definition does not depend on the choice of y�y′ ∈ E (see Seneta [20], for
example).

Assumption 2. We will suppose moreover, that there exist y0 ∈ E and a
strictly positive function γ�α� ρ� defined for all α ∈ �N and 0 < ρ < ρ�α� such
that for every y ∈ E,

∞∑
n=1

� �n��α�y�y0�ρn ≥ �γ�α� ρ��dist�y�y0� �

The last assumption is not very restrictive. For example, the inequality

� �n��α�y�y0� ≥ p�n� ��0� y�� �0� y0��
being verified for all α ∈ �N, y�y0 ∈ E and n ≥ 0, the above assumption holds
if for every y ∈ E there exists n ≥ 1 such that n ≤ Cdist�y�y0� and

p�n� ��0� y�� �0� y0�� ≥ γn

with some constants C > 0 and γ > 0 not depending on y ∈ E. This condition
is always satisfied when the communication condition of Dupuis and Ellis [12,
11] holds.

Definition 2. Define the function λ�α�, α ∈ �N, by setting λ�α�=−log ρ�α�
and let λ∗�·� be the convex conjugate of the function λ�·�:

λ∗�v� = sup
α∈�N

��α� v� − λ�α�
 �

The main result of our paper is the following theorem.

Theorem 1. Under Assumption 1� the lower large deviation estimate

lim
δ→0

limsup
n→∞

1
n
log�

(
sup

t∈��0�nτ��
��X�t�−vt�+dist�Y�t��y0��<δn

)

≥−τλ∗�v�
(2.1)
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holds for all v ∈ �N, where ��0� nτ�� = �0� nτ� ∩ �. Suppose moreover that
Assumption 2 is verified, then the upper large deviation estimate

lim
δ→0

liminf
n→∞

1
n
log�

(
sup

t∈��0�nτ��
��X�t�−vt�+dist�Y�t��y0��<δn

)

≤−τλ∗�v�
(2.2)

holds also for all v ∈ �N.

To prove this theorem, we use the following fundamental properties of con-
vergence parameter (see Seneta [20] for example):

(a) λ�α� = − log ρ�α� is the infimum over all λ for which there exists a
non-negative function fλ on E such that fλ �≡ 0 and

� �α�fλ ≤ eλfλ�
For λ > − log ρ�α�, the above inequality holds with

fλ�y� =
∞∑
t=0

� �t��α�y�y0�e−λt� y ∈ E�

where y0 ∈ E is fixed. A function fλ satisfying this inequality, is usually called
a eλ-superharmonic function relative to � �α�.

(b) If the set E is finite, ρ−1�α� is the Perron-Frobenius (i.e., maximal real)
eigenvalue of the matrix � �α�; otherwise, ρ−1�α� is the supremum of the
Perron-Frobenius eigenvalues of the finite irreducible truncations of � �α�.

To prove the upper estimate (2.2), we use the change of measure associated
with the eλ-superharmonic functions fλ. The traditional exponential change
of measure is ineffective because of our general framework.

The proof of the lower estimate (2.1) uses the second property (b). When
the set E is finite and N = 1, the lower estimate (2.1) is a consequence of a
result by Mogulskii [16]. We extend it to the case of sub-stochastic Markov-
additive processes on �N ×K for finite subsets K ⊂ E. Using this extension
for finite irreducible truncations of the Markov chain �Y�t�� we obtain the
lower estimate (2.1) for all v ∈ �N which belongs to the relative interior of the
set �v � λ∗�v� < +∞
. To extend this estimate for an arbitrary v ∈ �N, we use
the upper semi-continuity of the left hand side in (2.1) with respect to v.

Section 3 is devoted to the properties of the convergence parameter and the
function λ�·�. Theorem 1 is proved in Section 4. In Section 5, we consider the
case when E ⊂ �k and we give a general rough upper estimate λ̂�·� for λ�·�.
This upper estimate corresponds to the general upper large deviation bound
proved by Dupuis et al. in [8].

In Section 6, we apply Theorem 1 to identify the sample path large deviation
rate function for a random walk on �N × �+. The dynamic of this process is
discontinuous at the boundary set ��x�y� ∈ �N × �+ � y = 0
. The explicit
expression of the rate function for this random walk was obtained in [15] by
using a careful analysis of the related fluid limits. We give another very simple
proof of this result by showing that in this case, the rough upper estimate λ̂�·�
is tight, i.e the identity λ�·� = λ̂�·� holds.
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In Section 7, we use Theorem 1 to evaluate the sample path large deviation
rate function for a finite perturbation of a homogeneous random walk on �k.
Here, the discontinuity occurs only in a neighborhood of 0 ∈ �k. The results of
this section show that the general large deviation bound [8] is sensitive to local
perturbations: while this upper bound is clearly tight for homogeneous random
walk on �k, this is not necessarily true after a slight local perturbation.

3. The properties of the convergence parameter. In this section we
recall some properties of the convergence parameters and we deduce from
them the properties of the function λ�·�.

We begin with the definition of the convergence parameter ρ�α�.
Recall that the Markov chain �Y�t�� is irreducible by assumption. This

implies that the transform matrix � �α� is also irreducible: for every y�y′ ∈ E
there exists t ∈ � such that � �t��α�y�y′� > 0. In this case, the power series∑

k≥0
� �k��α�y�y′�zk(3.1)

either converge or diverge simultaneously for all y�y′ ∈ E (see Theorem 6.1
in Seneta [20] for example). The common convergence radius ρ�α� of the the
power series (3.1) is usually called a convergence parameter of the matrix
� �α�.

The value λ�α� = − log ρ�α� can be defined by setting

λ�α� = lim sup
t→∞

1
t
log� �t��α�y�y′��(3.2)

The limit at the right hand side of the above relation does not depend on
y�y′ ∈ E.

There is another characterization of the function λ�α� = − log ρ�α� in terms
of ρ-superharmonic functions and ρ-superharmonic measures relative to� �α�.

A function f � E→ � is called a ρ-superharmonic function relative to � �α�
if

� �α�f�y� ≤ ρf�y� ∀y ∈ E�(3.3)

Similarly, a measure ν on E is called a ρ-superharmonic measure relative to
� �α� if

ν� �α��y� ≤ ρν�y� ∀y ∈ E�
Given λ ∈ � denote by Crλ�α� the set of all non-negative eλ-superharmonic
functions relative to � �α� and let Clλ�α� be the set of all non-negative eλ-
superharmonic measures relative to � �α�.

Proposition 1.

λ�α� = inf
{
λ � Clλ�α� �= �0


}
= inf �λ � Crλ�α� �= �0

 �

Proof. The first identity follows from parts (c) and (d) of Theorem 6.3 in
the book of Seneta [20], and the second identity can be proved similarly.
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In particular, for λ > λ�α�, the function

f�y� =
∞∑
n=0

� �n��α�y�y0�e−λn� y ∈ E�

is a non-negative eλ-superharmonic function relative to � �α� for every y0 ∈ E.
We will use this property to prove the upper estimate (2.2) and also to evaluate
the function λ�α� in Sections 6 and 7.

Another possible characterization of the function λ�α� = − log ρ�α� can be
given by using the Perron-Frobenius eigenvalues of finite irreducible trunca-
tions of the matrix � �α�.

When the set E is finite, the relation (3.2) together with Perron-Frobenius
theorem implies that ρ−1�α� = expλ�α� is the Perron-Frobenius (i.e., maximal
real) eigenvalue of the matrix � �α�. When the set E is infinite, the value
ρ−1�α� = expλ�α� can be approximated by the Perron-Frobenius eigenvalues
as follows.

Denote by 	 the collection of the all finite subsets K of E for which the
restriction of the Markov chain �Y�t�� on K is irreducible. For K ∈ 	 , the
matrix

�K�α� = �� �α�y�y′�� y� y′ ∈K�
is irreducible for all α ∈ �N. Denote by ρK�α� its convergence parameter
(ρ−1K �α� is the Perron-Frobenius eigenvalue of �K�α�) and let λK�α� =
− log ρK�α�.

Proposition 2. The collection of the functions �λK�·��K ∈ 	 
 is increas-
ing with respect to K and for every α ∈ �N,

λ�α� = sup
K∈	

λK�α��(3.4)

Proof. Under some additional assumptions on the transform matrix
� �α�, this proposition is a consequence of Theorem 6.3 from the book of
Seneta [20]. In general case, the same arguments as in [20] show that the
collection of the functions �λK�·��K ∈ 	 
 is increasing with respect toK and
the identity (3.4) can be verified by the following way.

For K ∈ 	 , Perron-Frobenius theorem proves that

λK�α� = lim sup
n→∞

1
n
log� �n�

K �α�y�y′� ∀y�y′ ∈K(3.5)

where

�
�t�
K �α�y�y′� = Ɛ�0�y�

(
exp ��α�X�t��
��Y�t�=y′ and Y�s�∈K ∀s≤t


)
�

Using the identity (3.5) for y = y′ ∈K together with the inequality

�
�nt�
K �α�y�y� ≥

(
�

�t�
K �α�y�y�

)n
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we obtain

λK�α� ≥ lim sup
n→∞

1
nt

log� �tn�
K �α�y�y� ≥ 1

t
log� �t�

K �α�y�y�(3.6)

for all t ≥ 0. Consider now an increasing sequence �Kn� of finite subsets of
E such that y ∈ K0, Kn ∈ 	 for all n and ∪nKn = E. Then by monotone
convergence theorem, � �t�

Kn
�α�y�y� → � �t��α�y�y� as n→ ∞ for every t ≥ 0.

This proves that for every t ≥ 0,

sup
K∈	

�
�t�
K �α�y�y� = � �t��α�y�y�

and hence, the last inequality in (3.6) implies that

sup
K∈	

λK�α� ≥
1
t
log� �t��α�y�y��

Comparison of the above relation with (3.2) yields that supK∈	 λK�α� ≥ λ�α�.
Recall now that λ�α� ≥ λK�α� for every K ∈ 	 and hence, relation (3.4) is
verified.

Notice finally that the above sequence �Kn� exists because the Markov
chain �Y�t�� is irreducible. Indeed, consider the transition probabilities of the
Markov chain �Y�t��

p�y�y′� = ∑
x∈�N

p ��0� y�� �x�y′�� � y� y′ ∈ E�

Given y0� y ∈ E, let us choose a sequence of points V�y� = �y0� � � � � ym
 with
ym+1 = y0 such that p�yl� yl+1� > 0 for every l = 0� � � � �m and yl = y for
some 1 ≤ l ≤ m. Now, let �K′

n� be an arbitrary increasing sequence of finite
subsets of E such that ∪nK′

n = E. Then the sequence of sets

Kn =
⋃
y∈K′

n

V�y�� n ≥ 0�

is also increasing, ∪nKn = E and by construction, the matrix �p�y�y′��
y�y′ ∈Kn� is irreducible, that is, Kn ∈ 	 for every n ≥ 0. ✷

Before formulating the next property of the function λ�·� we recall some
properties of the functions λK�α�.

Lemma 1. For every K ∈ 	 , the function λK�·� is convex and infinitely
differentiable on �N.

Proof. Indeed, let K ∈ 	 . Then the matrix �K�α� is irreducible and
hence, by Perron-Frobenius theorem, its maximal real eigenvalue ρ−1K �α� is
finite and strictly positive for all α ∈ �N. This implies that the function
λK�·� = − log ρK�α� is finite everywhere on �N. Furthermore, the function
α→ �

�t�
K �α�y�y′� being convex for every t ∈ �, the function λ�·� is also convex

as a limit of convex functions (3.5). Finally, the Perron-Frobenius eigenvalue
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ρ−1K �α� of the matrix �K�α� is a simple root of its characteristic equation for
all α ∈ �N, and under Assumption 1, the coefficients of the matrix �K�α� are
analytic with respect to α everywhere on 
N. Using therefore, the implicit
function theorem for analytic functions we conclude that the function ρK�·� is
infinitely differentiable on �N. Since ρK�·� is strictly positive, this proves that
the function λK�·� = log ρK�·� is also infinitely differentiable on �N. ✷

Lemma 1 and Proposition 2 imply the following statement.

Lemma 2. The function λ�·� is a closed convex proper function on �N.

Proof. Indeed, λ�·� convex and closed on �N as a supremum of closed
convex functions λK�·�, K ∈ 	 . To show that it is proper it is sufficient to
notice that λ�·� �≡ +∞ because λ�0� ≤ 0, and λ�α� ≥ λK�α� > −∞ for all
α ∈ �N. ✷

Consider now the convex conjugates of the functions λ�·� and λK�·�:
λ∗�v� = sup

α∈�N
��α� v� − λ�α�
 and λ∗K�v� = sup

α∈�N
��α� v� − λK�α�
 �

The following lemma relates the functions λ∗K�·� and λ∗�·�.

Lemma 3. For every v ∈ �N which belongs to the relative interior
ri�domλ∗� of the set domλ∗ = {

v ∈ �N � λ∗�v� < +∞}
,

λ∗�v� = inf
K∈	

λ∗K�v��

Proof. We begin our proof by showing that the function λ�v� =
infK∈	 λ

∗
K�v� is convex and proper.

The collection of the functions λK�·� being increasing with respect to K,
the collection of the functions λ∗K�·� is decreasing with respect to K. Consider
an increasing sequence of finite subsets Kn of E such that ∪nKn = E and
Kn ∈ 	 for all n (the existence of such a sequence was verified in the proof
of Proposition 2). Then

λ�·� = lim
n→∞λ

∗
Kn

�·�

and hence the function λ�·� is convex as a limit of convex functions.
The function λ�·� is proper because λ∗�·� ≤ λ�·� ≤ λ∗K�·� for anyK ∈ 	 , and

the functions λ∗�·� and λ∗K�·� are proper.
Notice now that the convex conjugate of the function λ�·� is identical to λ�·�.

Indeed,

�λ�∗�α� = sup
v∈�N

sup
K∈	

��α� v� − λ∗K�v�

= sup
K∈	

sup
v∈�N

��α� v� − λ∗K�v�
 = sup
K∈	

λ∗∗K�α� = sup
K∈	

λK�α�
(3.7)
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for all α ∈ �N. The last identity of (3.7) is verified because for everyK ∈ 	 , the
function λK�·� is convex and finite everywhere on �N (see Theorem 12.2 and
Corollary 7.4.2 in the book of Rockafellar [19]). Using relation (3.7) together
with Proposition 2 we obtain the identity

�λ�∗�·� = λ�·��
The function λ�·� being convex and proper, the last identity implies that λ∗�·� =
�λ�∗∗�·� = cl�λ��·� (see again Theorem 12.2 in [19]) and hence, using Theo-
rem 7.4 from the book of Rockafellar [19] we conclude that λ∗�v� = λ�v� for
every v ∈ ri�domλ∗�. ✷

4. Proof of the large deviation estimates. In this section we prove
Theorem 1. Throughout this section, we will assume thatX�0� = 0 andY�0� =
y0 ∈ E are given.

4.1. Upper large deviation estimate.

Proposition 3. Under Assumption 1 and Assumption 2� the upper large
deviation estimate

lim
δ→0

lim sup
n→∞

1
n
log�

(
sup
t∈�0�nτ�

��X�t� − vt� + dist�Y�t�� y0�� < δn
)

≤ −τλ∗�v�
(4.1)

is verified for all v ∈ �N.

Proof. Given δ > 0, n ∈ � and v ∈ �N, denote

Anδ�v� =
{

sup
t∈�0�nτ�

��X�t� − vt� + dist�Y�t�� y0�� < δn�
}
�

To prove this proposition we will show that for every α ∈ �N such that λ�α� <
+∞, and for every λ > λ�α�,

lim
δ→0

lim sup
n→∞

1
n
log� �Anδ�v�� ≤ −τ ��α� v� − λ�(4.2)

from which the upper bound (4.1) will follow.
Let α ∈ �N and λ > λ�α�. Define the function f � E→ �+ by setting

f�y� =
∞∑
k=0

� �k��α�y�y0�e−λk� y ∈ E�

According to the definition of λ�α�, the above series converge and moreover,
for all y ∈ E, f�y� > 0 because the Markov chain �Y�t�� is irreducible.

Consider a new Markov chain on �N × E with initial state �0� y0� and
transition probabilities

p̃ ��x�y�� �x′� y′�� = p ��x�y�� �x′� y′�� e�α�x′−x� f�y′�
f�y�Ry�α�
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where

Ry�α� =
∑
x′�y′

p ��x�y�� �x′� y′�� e�α�x′−x�f�y
′�

f�y�

= 1
f�y�

∑
y′

� �α�y�y′�f�y′��

Let �̃ be the distribution of this new Markov chain and let Ɛ̃ denote an ex-
pectation with respect to �̃. Then the standard arguments of the change of
measure give the following relation:

� �Anδ�v�� = Ɛ̃

(
�Anδ�v�

f�y0�
f�Y��nτ���

× exp

{
−�α�X��nτ��� +

�nτ�−1∑
t=0

logRY�t��α�
})
�

(4.3)

One can easily verify that the function f satisfies the inequality

� �α�f ≤ eλf
and consequently, Ry�α� ≤ expλ for all y ∈ E. Using this inequality in the
right hand side of (4.3) we get

� �Anδ�v�� ≤ Ɛ̃

(
�Anδ�v�

f�y0�
f�Y��nτ��� exp �−�α�X��nτ��� + �nτ�λ


)
�(4.4)

Furthermore, because of Assumption 2 there exist γ = γ�α� λ� > 0 such that
f�y� ≥ γdist�y�y0� for all y ∈ E and hence, inequality (4.4) yields the following
relation:

��Anδ�v�� ≤ f�y0� Ɛ̃��Anδ�v� exp�−�α�X��nτ���
+ � log γ� dist�Y��nτ��� y0� + �nτ�λ
��

(4.5)

Since on Anδ�v�,
−�α�X��nτ��� = −nτ�α� v� + �α�nτv−X��nτ��� ≤ −nτ�α� v� + �α�δn�

and dist�Y��nτ��� y0� ≤ δn, inequality (4.5) implies that
log� �Anδ�v�� ≤ −nτ ��α� v� − λ� + log f�y0� + ��α� + � log γ�� δn�

The last relation proves (4.2).
Using the upper estimate (4.2) we obtain

lim
δ→0

lim sup
n→∞

1
n
log� �Anδ�v�� ≤ −τ ��α� v� − λ�α��

for all α ∈ dom�λ� = {
α ∈ �N � λ�α� < +∞}

, and consequently,

lim
δ→0

lim sup
n→∞

1
n
log� �Anδ�v�� ≤ −τ sup

α∈domλ
��α� v� − λ�α�� �
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But it is known that

λ∗�v� = sup
α∈domλ

��α� v� − λ�α�� ∀ v ∈ �N

(see [19] Corollary 12.2.2 of Theorem 12.2) and hence, the last inequality
proves the upper estimate (4.1). ✷

4.2. Lower large deviation estimate. To prove the lower estimate (2.1) we
will use the following proposition.

Proposition 4. LetK be a finite subset ofE,X�0� = 0 andY�0� = y0 ∈K.
Suppose that the restriction of the Markov chain �Y�t�� onK is irreducible, let
expλK�α� be the Perron-Frobenius eigenvalue of the matrix

�K�α� = �� �α�y�y′�� y�y′ ∈K� � α ∈ �N�(4.6)

and let �K be the first exit time of the process �Y�t�� from the set K. Then for
all τ > 0 and v ∈ �N, the following inequality holds

lim
δ→0

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��

∣∣X�t� − vt∣∣ < δn and �K > �nτ�
)

≥ −τλ∗K�v��
(4.7)

where λ∗K�·� is the convex conjugate of the function λK�·�.

This is an extension of the theorem due to Mogulskii [16] to the sub-
stochastic Markov-additive process. It can be proved by using the same method
as in [16] where instead of Theorem 1 from [16] one has to apply an extension
of Theorem 3.1.2 from Dembo and Zeitouni [6] to random functions and to
sub-stochastic processes. In Appendix A we propose another straightforward
proof of this proposition which uses the martingale method.

Proposition 5. Under Assumption 1� the lower large deviation estimate

lim
δ→0

liminf
n→∞

1
n
log�

(
sup
t∈�0�nτ�

��X�t�−vt�+dist�Y�t��y0��<δn
)
≥−τλ∗�v�(4.8)

holds for all v ∈ �N.

Proof. Notice that for any finite subset K of E such that y0 ∈K and for
all n large enough,

�

(
sup

t∈��0�nτ��
��X�t� − vt� + d �Y�t�� y0�� < 2δn

)

≥ �

(
sup

t∈��0�nτ��

∣∣X�t� − vt∣∣ < δn and �K > �nτ�
)
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and consequently,

lim
δ→0

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��

(∣∣X�t� − vt∣∣+ d �Y�t�� y0�) < δn
)

≥ lim
δ→0

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��

∣∣X�t� − vt∣∣ < δn and �K > �nτ�
)
�

If the restriction of the Markov chain �Y�t�� on K is irreducible, the last
inequality together with Proposition 4 implies that

lim
δ→0

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��

(∣∣X�t� − vt∣∣+ d �Y�t�� y0�) < δn
)
≥ −τλ∗K�v��

Consider now collection	 of all finite subsetsK ofE for which the restriction
of the Markov chain �Y�t�� on K is irreducible. Using the last inequality we
obtain

lim
δ→0

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��

(∣∣X�t� − vt∣∣+ d �Y�t�� y0�) < δn
)

≥ −τ inf
K∈	

λ∗K�v��
(4.9)

By Lemma 2, λ∗�v� = infK∈	 λ
∗
K�v� for all v ∈ �N which belongs to the relative

interior ri�domλ∗� of the set domλ∗ = {
v ∈ �N � λ∗�v� < +∞}

� and hence,
inequality (4.9) proves the lower bound (4.8) for v ∈ ri�domλ∗�.

To extend this result for an arbitrary v ∈ �N we will use the upper semi-
continuity of the function

w�v� = lim
δ→0

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��

(∣∣X�t� − vt∣∣+ d �Y�t�� y0�) < δn
)
�

Let us verify that this function is upper semi-continuous. Indeed, for δ′ < δ/2
and for v� v′ ∈ �N such that �v− v′� < δ/�2τ�, the inequality

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��
��X�t� − v′t� + d �Y�t�� y0�� < δ′n

)

≤ lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��
��X�t� − vt� + d �Y�t�� y0�� < δn

)

holds. Letting first δ′ → 0 in the left hand side and then letting δ→ 0 in the
right hand side we obtain

lim sup
v′→v

w�v′� ≤ w�v��

and since v ∈ �N is arbitrary, we conclude that the function w�·� is upper
semi-continuous.

Now, we are ready to extend inequality (4.8) for an arbitrary v ∈ �N.
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When λ∗�v� = +∞, the lower bound (4.8) is trivial and hence, it is sufficient
to consider the case where v ∈ domλ∗\ri�domλ∗�. But in this case, there exists
a sequence of points vk ∈ ri�domλ∗� such that vk → v and λ∗�vk� → λ∗�v� as
k→ +∞, because λ∗�·� is a closed proper convex function on �N. Indeed, the
set ri�domλ∗� is nonempty by Theorem 6.2 in [19]. Choosing x0 ∈ ri�domλ∗�
and letting vk = v0/k + �1 − 1/k�v for k ≥ 1, we get vk ∈ ri�domλ∗� for all
k ≥ 1, by Theorem 6.1 in [19] and λ∗�vk� → λ∗�v� as k→+∞ by Theorem 7.5
in [19].

Using the lower bound (4.8) for vk ∈ ri�domλ∗�, we obtain
w�vk� ≥ −τλ∗�vk� ∀k ≥ 1�

and using then the upper semi-continuity of the function w�·� we conclude
that

w�v� ≥ lim sup
n→∞

w�vn� ≥ lim sup
n→∞

λ∗�vn��

Since λ∗�vk� → λ∗�v� as k→+∞, the last inequality implies the lower bound
(4.8) for v ∈ domλ∗ \ ri�domλ∗� and therefore, Proposition 5 is proved.

This proposition completes the proof of Theorem 1. ✷

5. A rough upper estimate for �(·). It is clear that there is no an explicit
expression of the function λ�·� in general. In this section we consider the case
when E ⊂ �k and we give a rough upper estimate for λ�·�. This rough upper
estimate is closely related to the general upper large deviation bound proved
by Dupuis et al. in [8].

Suppose that E ⊆ �k and let for each y ∈ E, the function
Ry�α�β� = log Ɛ�0�y� �exp��α�X�1�� + �β�Y�1� − y�
�

be finite everywhere on �N×�k. Then according to the definition of the trans-
form matrix � �α�, we have

Ry�α�β� =
∑
y′∈E

� �α�y�y′�e�β�y′−y� ∀ y ∈ E�

The above relation shows that the exponential function f�y� = e�β�y�, y ∈ E,
satisfies the inequality

� �α�f ≤ eλf
with λ = supy∈ E logRy�α�β� and hence, using Proposition 1 we get the fol-
lowing rough upper estimate for λ�α�.

Proposition 6. For every α ∈ �N,

λ�α� ≤ inf
β∈�k

sup
y∈Ɛ

logRy�α�β��(5.1)
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Given α ∈ �N, we will denote

λ̂�α� = inf
β∈�k

sup
y∈Ɛ

logRy�α�β��

The convex conjugate of the function λ̂�·� satisfies the following relation

λ̂∗�v� = sup
α∈�N�β∈�k

{
�α� v� − sup

y∈E
logRy�α�β�

}
=
(
sup
y∈E

logRy

)∗
�v�0�

where �supy logRy�∗ denotes the convex conjugate of the function supy logRy.
Theorem 16.5 from [19] shows that the convex conjugate of the function
supy logRy is the closure of the convex hull of the collection of functions
��logRy�∗�y ∈ E
, and therefore, the last relation implies that

λ̂∗�v� = cl

(
inf

{∑
y

θy�logRy�∗�vy� uy�
})
�

where the infimum is taken over all representation of �v�0� ∈ �N × �k as
a convex combination of elements �vy� uy� ∈ �N × �k such that only finitely
many coefficients θy are nonzero. The closure operation can be omitted from
the right hand side of the above identity if the collection �Ry� y ∈ E
 contain
finitely many different functions.

Observe now that λ∗�·� ≥ λ̂∗�·� because λ�·� ≤ λ̂�·� and hence, using Theo-
rem 1 we get the following rough upper large deviation estimate.

Proposition 7. Under Assumption 1 and Assumption 2,

lim
δ→0

lim sup
n→∞

1
n
log��0�0�

(
sup
t∈�0�nτ�

��X�t� − vt� + �Y�t��� ≤ δn
)
≤ −τλ̂∗�v�(5.2)

Notice moreover, that the identity λ∗�·� = λ̂∗�·� holds if and only if λ�·� is
the closure of the convex hull of the function λ̂�·� because the function λ�·� is
convex, proper and closed. Hence, using again Theorem 1 we get the following
statement.

Proposition 8. Under Assumption 1 and Assumption 2� the upper esti-
mate �5�2� is tight, that is,

lim
δ→0

lim inf
n→∞

1
n
log��0�0�

(
sup
t∈�0�nτ�

��X�t� − vt� + �Y�t��� ≤ δn
)
≥ −τλ̂∗�v�(5.3)

if and only if the upper bound (5.1) is tight, that is, the identity
λ�·� = cl�conv λ̂��·� holds.

The estimate (5.2) corresponds to the upper large deviation bound proved by
Dupuis et al. in [8]. The well known classical example where the identity (5.3)
is verified and λ�·� = λ̂�·�, is a homogeneous random walk on �N×�k (see the
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example considered below). Another nontrivial example will be considered in
the section 6.

Example [A homogeneous random walk on �N × �k]. Let E = �k, and let
the transition probabilities p ��x�y�� �x+ x′� y+ y′�� of our Markov chain
�X�t��Y�t�� do not depend on �x�y� for all �x�y�� �x′� y′� ∈ �N × �k. Sup-
pose that this Markov chain is irreducible on �N × �k and let the function

R�α�β� = ∑
y∈�k

� �α�0� y�e�β�y� = ∑
�x�y�∈�N×�k

p ��0�0�� �x�y�� e�α�x�+�β�y�

be finite for all α ∈ �N and β ∈ �k.
In this case, the function λ̂�α� = infβ∈�k logR�α�β� is finite and convex ev-

erywhere on �N which implies that cl�conv λ̂��·� = λ̂�·�. The convex conjugate
of λ̂�·� is λ̂∗�v� = �logR�∗ �v�0�, and the sample path large deviation principle
for homogeneous random walk implies that for every v ∈ �N,

lim
δ→0

liminf
n→∞

1
n
log��0�0�

(
sup
t∈�0�nτ�

��X�t�−vt�+�Y�t���≤δn
)
≥−τ�logR�∗�v�0�

and

lim
δ→0

limsup
n→∞

1
n
log��0�0�

(
sup
t∈�0�nτ�

��X�t�−vt�+�Y�t���≤δn
)
≤−τ�logR�∗�v�0��

Hence, for this example, the upper bound (5.2) is tight and using Proposition 8
it follows that

λ�α� = inf
β∈�k

logR�α�β� ∀α ∈ �N�(5.4)

The last relation can be easily proved in a straightforward way as follows.
Indeed, in this case, we have � �α�y�y′� = � �α�0� y′ −y� for all y�y′ ∈ �k,

and Ry�α�β� = R�α�β� for all y ∈ �k and β ∈ �k, which implies that the
matrix (

R−1�α�β�� �α�y�y′� exp��β�y′ − y�
� y�y′ ∈ �k
)

is stochastic and for any β ∈ �k, and the transition probabilities

p̃�y�y′� = R−1�α�β�� �α�y�y′� exp��β�y′ − y�
� y� y′ ∈ �k�(5.5)

satisfy

p̃�y�y′� = p̃�0� y′ − y� ∀ y�y′ ∈ �k�

Given α ∈ �N, let β0�α� achieve the minimum of the function β→ R�α�β� in
�k (notice that β0�α� exists because this function has the compact level sets
by Lemma 8). Consider a homogeneous random walk �S�t�� on �k having the
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transition probabilities (5.5) with β = β0�α�. This random walk has the mean
zero because

Ɛ �S�t+ 1� −S�t�� = ∑
y∈�k

p̃�0� y�y = ∇βR�α�β�
∣∣
β=β0�α�=0 = 0

where ∇βR�α�β� denotes the gradient of the function β→ R�α�β� for given
α. Moreover, the second moments if this random walk are finite because for
each β ∈ �k,

Ɛ �exp ��β�S�t+ 1� −S�t��
� = R−1 �α�β0�α��
∑
y∈�k

� �α�0� y�e�β+β0�α��y�

= R−1 �α�β0�α��R �α�β0�α� + β� < +∞�
This implies that the t-time transition probabilities of �S�t�� satisfy

1
t
log p̃�t��y�y� → 0 as t→∞

for all y ∈ �k (see [22]) and consequently,

λ�α� = lim sup
t→∞

1
t
log� �t��α�y�y� = logR�α�β0�α�� + lim sup

t→∞
1
t
log p̃�t��y�y�

= logR�α�β0�α��
as required.

6. Reflected random walks in �N ×�+. In this section we show how
Theorem 1 can be used to identify the sample path large deviation rate func-
tion for a random walk on �N × �+. The results of this section are known
(see [15, 21]).

Consider a Markov chain �X�t��Y�t�� on �N×�+ with transition probabil-
ities p��x�y�� �x′� y′��. Suppose that for every pair �x�y�� �x′� y′� ∈ �N × �+,

p��x�y�� �x′� y′�� =
{
µ�x′ − x�y′ − y�� if y �= 0�
µ0�x′ − x�y′ − y�� if y = 0�

where µ and µ0 are two different probability measures on �N × � such that
for any x ∈ �N, µ�x�y� = 0 if y < −1, and µ0�x�y� = 0 if y < 0.

We will assume that the Markov chain �X�t��Y�t�� is irreducible on �N×�+
as well as the homogeneous random walk on �N+1 with transition probabilities

ph��x�y�� �x′� y′�� = µ�x′ − x�y′ − y��(6.1)

We will suppose moreover, that there exists a constant C > 0 such that for
every x ∈ �k, µ�x�y� = 0 and µ0�x�y� = 0 whenever �x� + �y� > C.

Define for �x�y� ∈�N×�+ and t∈ �0� τ�, the renormalized processZn�t� x� y�
by setting

Zn�t� x� y� =
1
n
�X��nt���Y��nt��� � t ∈ �0�T�
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given that X�0� = �nx� and Y�0� = �ny�.
Under the above assumptions, the sequence of processes Zn�t� x� y� satisfy

the sample path large deviation principle (see [15, 21]) with the good rate
function

Ix�y�τ�ϕ� =



∫ T
0
L�ϕ�t�� ϕ̇�t��dt� if ϕ is absolutely continuous

and ϕ�0� = �x�y��
+∞� otherwise.

(6.2)

For �x�y� ∈ �N ×�+ with y > 0, the function �v�u� → L��x�y�� �v�u�� is the
convex conjugate of the function �α�β� → logR�α�β�:

L��x�y���v�u��=�logR�∗�v�u�= sup
α∈�N�β∈�

��α�v�+βu−logR�α�β�
�(6.3)

where

R�α�β� = ∑
x∈�N� y∈�

µ�x�y� exp��α� x� + βy
�

For y = 0, the function v → L��x�0�� �v�0�� is the convex conjugate of the
function

α→ inf
β∈�

max�logR0�α�β�� logR�α�β�


where

R0�α�β� =
∑

x∈�N� y∈�
µ0�x�y� exp��α� x� + βy
�

or equivalently (see Section 5),

L��x�0�� �v�0�� = inf �θ1�logR�∗�v1� u1� + θ2�logR0�∗�v2� u2�
(6.4)

where the infimum is taken over all representations of �v�0� as a convex
combinations of the elements �v1� u1� and �v2� u2� in �N × �.

The rate function I�·� is completely determined by the equalities (6.3) and
(6.4) because for any absolutely continuous path

ϕ = �ϕ1� ϕ2� � �0�T� → �N × �+

with ϕ1 � �0�T� → �N and ϕ2 � �0�T� → �+, the Lebesgue measure of the set

�t ∈ �0�T� � ϕ2�t� = 0 and ϕ̇2�t� �= 0

is zero. Indeed, when ϕ2�t� = 0, the inequality ϕ2�s� ≥ ϕ2�t� holds for all
s ∈ �0�T� and hence, ϕ̇2�t� must be zero if ϕ̇2�t� exists and t ∈ �0�T�.

The proof of the identity (6.3) is simple because for y > 0, the local large
deviation behavior of the renormalized process in a neighborhood of �x�y� do
not depend on the boundary conditions.

For y = 0, the influence of the boundary occurs and the proof of the iden-
tity (6.4) is more difficult. In this section, we show how this identity can be
obtained by using Theorem 1.
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To apply Theorem 1, we notice that �X�t��Y�t�� is a Markov-additive pro-
cess with an additive partX�t� on �N and with a Markovian part Y�t� on �+.
The transform matrix � �α� of this Markov-additive process is defined by

� �α�y�y′� = Ɛ�0�y�
(
e�α�X�1����Y�1�=y′


)
� y� y′ ∈ �+�

Let ρ�α� be the convergence parameter of � �α� and let λ�α� = − log ρ�α�.
Recall that the function L��x�0�� �v�0�� is defined by the limits

lim
τ→0

lim
δ→0

liminf
n→∞

1
nτ

log���nx��0�

(
sup

t∈��0�nτ��
��X�t�−vt−nx�+�Y�t���<δn

)

= lim
τ→0

lim
δ→0

limsup
n→∞

1
nτ

log���nx��0�

(
sup

t∈��0�nτ��
��X�t�−vt−nx�+�Y�t���<δn

)
�

It is clear that L ��x�0�� �v�0�� = L ��0�0�� �v�0�� for all x� v ∈ �N, because the
transition probabilities of the Markov chain �X�t��Y�t�� are invariant with
respect to the translations on x ∈ �N. Using Theorem 1 we get therefore

L ��x�0�� �v�0�� = λ∗�v� ∀x� v ∈ �N�(6.5)

where λ∗�·� is the convex conjugate of the function λ�·�. Hence, to get the
identity (6.4), it is sufficient to prove the following proposition.

Proposition 9. For every α ∈ �N,

λ�α� = inf
β∈�

max �logR�α�β�� logR0�α�β�
 �(6.6)

Before proving Proposition 9, let us rewrite the right hand side of (6.6) in
a more explicit form. For this, let us first notice that the function �α�β� →
R�α�β� is strictly convex everywhere on �N and it has the compact level sets,
because the infinite matrix(

µ�x′ − x�y′ − y�� �x�y�� �x′� y′� ∈ �N+1)
is irreducible by assumption (see Lemma 8 in Appendix B for more details).
This implies that for any α ∈ �N, there exists a unique β0�α� ∈ � which
achieves the minimum of the function β→ R�α�β� in �, and it is clear that
the right hand side of (6.6) is equal to logR�α�β0�α�� whenever R�α�β0�α�� ≥
R0�α�β0�α��.

Suppose now that R�α�β0�α�� < R0�α�β0�α�� and notice that for the given
α ∈ �N:

(i) the function β → R�α�β� is strictly decreasing on the interval
�−∞� β0�α�� because the function �α�β� → R�α�β� is strictly convex;

(ii) R�α�β� → +∞ as β→−∞, because the function �α�β� → R�α�β� has
the compact level sets;

(iii) the function β → R0�α�β� is strictly decreasing on � because
µ0�x�y� > 0 for some x and y > 0, and µ0�x�y� = 0 for all x if y < 0.
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This proves that there exists a unique β1�α� < β0�α� such that

R�α�β1�α�� = R0�α�β1�α��
and it is clear that in this case, the right hand side of (6.6) is equal to
logR�α�β1�α��.

We conclude therefore, that Proposition 9 is equivalent to the following one.

Proposition 10. Given α ∈ �N, let β0�α� achieve the minimum of the
function β→ R�α�β� in �.

1. If R�α�β0�α�� ≥ R0�α�β0�α��, then λ�α� = logR�α�β0�α��.
2. Otherwise, for given α, the equation R�α�β� = R0�α�β� has a unique solu-

tion β1�α� in the interval �−∞� β0�α�� and λ�α� = logR�α�β1�α��.

We are ready now to prove this proposition.

Proof. The upper bound

λ�α� ≤ inf
β∈�

max �logR�α�β�� logR0�α�β�
(6.7)

immediately follows from estimate (5.1).
To prove the lower bound

λ�α� ≥ inf
β∈�

max �logR�α�β�� logR0�α�β�
(6.8)

let us first verify that

λ�α� ≥ logR�α�β0�α���(6.9)

Indeed, consider a homogeneous random walk �Xh�t��Yh�t�� on �N × � with
transition probabilities (6.1). Let ρh�α� be the convergence parameter of the
matrix �h�α� = ��h�α�y�y′�� y�y′ ∈ �+� where

�h�α�y�y′� = Ɛ�0�y�
(
exp��α�Xh�1��
��Yh�1�=y′


)
�

and let λh�α� = − log ρh�α�. The example considered in the previous section
shows that

λh�α� = logR�α�β0�α��
and hence, to prove inequality (6.9) it is sufficient to show that λ�α� ≥ λh�α�.
For this, we will use Proposition 2.

Proposition 2 implies that

λ�α� = sup
K⊂�+

λK�α��(6.10)

The supremum is taken here over all finite subsets K of �+ and for every K,
expλK�α� the maximal real eigenvalue of the matrix

�K�α� = �� �α�y�y′�� y�y′ ∈K� �
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Similarly,

λh�α� = sup
K⊂�

λh�K�α�(6.11)

where the supremum is taken over all finite subsets K of � and for every K,
expλh�K�α� the maximal real eigenvalue of the matrix

�h�K�α� = ��h�α�y�y′�� y�y′ ∈K� �
Since for any finite subsetK of � there exists y ∈ �+ such that 0 �∈K+y ⊂ �+
and the matrices �h�K�α� and �h�K+y�α� are identical, the relation (6.11) can
be rewritten as follows:

λh�α� = sup
K⊂�+� 0�∈K

λh�K�α��

Furthermore, for any finite subset K of �+ such that 0 �∈ K, the matrices
�K�α� and�h�K�α� are also identical and hence, comparison of the last relation
with (6.10) proves that λ�α� ≥ λh�α�. Inequality (6.9) is therefore verified.

Relation (6.9) proves the lower bound (6.8) when R�α�β0�α�� ≥R0�α�β0�α��.
Suppose now that R�α�β0�α�� < R0�α�β0�α�� and let β1�α� be a unique

solution of the equation R�α�β� = R0�α�β� in the interval �0� β0�α��. To com-
plete the proof of our proposition we have to show that, in this case,

λ�α� = R�α�β1�α���(6.12)

Consider the matrix �p̃�y�y′��y�y′ ∈ �+� with

p̃�y�y′� = R−1�α�β1�α��eβ1�α��y
′−y�� �α�y�y′�� y� y′ ∈ �+�

This matrix is stochastic because for every y ∈ �+,∑
y′∈�+

p̃�y�y′�=R−1�α�β1�α��Ɛ�0�y� �exp��α�X�1��+β1�α��Y�1�−y�
�=1�

and the Markov chain
(
Ỹ�t�

)
on �+ with transition probabilities p̃�y�y′� sat-

isfies the following relation

Ɛy
(
Ỹ�1�

)
− y = ∑

y′∈�
�y′ − y�p̃�y�y′� = ∇βR�α�β��β=β1�α� < 0

for all y ∈ �+ such that y �= 0. Using therefore, the general criteria of ergodic-
ity for countable Markov chains due to Foster (see [13] for example) with the
test function f�y� = y, y ∈ �+, we conclude that the Markov chain

(
Ỹ�t�

)
is ergodic. This proves that the t-time transition probabilities of this Markov
chain satisfy

lim
t→∞

1
t
log p̃�t��y�y′� = 0
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for all y�y′ ∈ �+. Using the last relation together with the definition of p̃�y�y′�
we get

λ�α� = lim sup
t→∞

1
t
log� �t��α�y�y� = logR�α�β1�α�� + lim

t→∞
1
t
log p̃�t��y�y′�

= logR�α�β1�α��
and hence the identity (6.12) holds. ✷

7. Finite perturbations of random walks in �k. In this section we
apply Theorem 1 to identify the local rate function for a random walk �Y�t��
on �k with transition probabilities p�x� x + y� which do not depend on x for
all but finitely many x ∈ �k. Such a random walk can be considered as a local
perturbation of a homogeneous random walk on �k.

7.1. General statements. Consider a Markov process �Y�t�� on �k with
transition probabilities p�x�y� such that for all x�y ∈ �k,

p�x�y� = p�y− x� if x �∈ A�(7.1)

where A is a finite subset of �k. We will assume that the Markov chain �Y�t��
is irreducible as well as a homogeneous random walk �S�t�� on �k with tran-
sition probabilities

ph�x�y� = p�y− x�� x� y ∈ �k�

We will suppose moreover, that there exists a constant C > 0 such that for
every x ∈ �k, p�x� x+ y� = 0 whenever �y� > C.

The same arguments as in [12] show that the sequence of processes

Zn�t� x� =
Y��nt��
n

� t ∈ �0� τ�

with Y�0� = �nx�, satisfies the sample path large deviation principle with a
good rate function Iτ�x�·� which is the lower semi-continuous regularization of
the local rate function

Ĩτ�x�ϕ� =
{∫ τ

0
L�ϕ�t�� ϕ̇�t��dt� if ϕ�0� = x�

+∞� otherwise�

defined on the set of piece-wise linear functions ϕ�·� � �0� τ� → �k. The function
L�·� ·� is defined by the following limits:

L�x� v� = − lim
τ→0

lim
δ→0

lim sup
n→∞

1
τn

log��nx�

(
sup

t∈��0�nτ��
�Y�t� − vt− nx� < δn

)

= − lim
τ→0

lim
δ→0

lim inf
n→∞

1
τn

log��nx�

(
sup

t∈��0�nτ��
�Y�t� − vt− nx� < δn

)
�
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When x �= 0, the above limits do not depend on the transition probabilities
p�y�y′� for y ∈ A. Using therefore the sample path large deviation bounds
for homogeneous random walk, we conclude that for x �= 0,

L�x� v� = sup
α∈�k

��α� v� − logR�α�� �

where

R�α� = ∑
y∈�k

p�y�e�α�y��

For x = 0, Theorem 1 yields that

L�0�0� = − lim sup
n→∞

1
n
logp�n��0�0�

where p�n��0�0� is a transition probability of the Markov chain �Y�t�� to go
from 0 to 0 in time n, or equivalently,

L�0�0� = −λ0
where e−λ0 is a convergence parameter of the transition matrix �p�x�y��
x�y ∈ �k�.

Remark. Notice moreover, that for any absolutely continuous function ϕ =
�ϕ1� � � � � ϕk� � �0� τ� → �k the set

D = �t � ϕ�t� = 0 and there exists ϕ̇�t� �= 0

is at most countable. Indeed, consider for j = 1� � � � � k, the set

Dj =
{
t � ϕj�t� = 0 and there exists ϕ̇j�t� �= 0

}
�

It is clear that D = ∪kj=1Dj and hence, it is sufficient to show that the set Dj

is at most countable for all j = 1� � � � � k. Observe furthermore, that for each
t ∈ Dj there exists ε�t� > 0 such that ϕj�s� �= 0 for all t < s < t + ε�t�. This
implies in particular that the intervals �t� t+ ε�t��� t ∈ Dj do not contain the
points from Dj and consequently, they are disjoint. But it is known that a
collection of disjoint open intervals is at most countable and hence, the set Dj

is also at most countable as required.

In view of the above remark, the rate function I�ϕ� does not depend on the
values L�0� v� for v �= 0 an thus, to identify the rate function I�ϕ� we have to
identify only the value λ0.

Remark that the general upper large deviation bound of Dupuis Ellis and
Weiss is tight in this case if and only if

λ0 = inf
α∈�k

max
x

logRx�α�(7.2)

where

Rx�α� =
∑
y∈�k

p�x�y�e�α�y��
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We will see that the identity (7.2) can be wrong even for a slight perturbation
of a homogeneous random walk [see, e.g., part (c) in Corollary 1 below].

To identify the value λ0, we need to introduce some definitions.
Given x ∈ �k and y ∈ A, let Q�n��x�y� be the probability for the Markov

chain �Y�t�� to go from x to y in time n without visiting the set A in a mean-
time. Denote by Q�z�x�y� the generating function of the sequence Q�n��x�y�:

Q�z�x�y� = ∑
n≥1
Q�n��x�y�zn�(7.3)

It is clear that for z ∈ �+, the matrix

�Q�z�x�y�� x�y ∈ A�(7.4)

is positive and irreducible because the Markov chain �Y�t�� is irreducible. Let
8�z� be Perron-Frobenius eigenvalue of this matrix. We say that 8�z� = +∞
if at least one of the series (7.3) diverges.

Furthermore, let α0 achieve the minimum of the function R�α� in �k and
let 80 = 8�R−1�α0��.

Remark. The infinite matrix
(
p�y− x�� x�y ∈ �k

)
being irreducible by as-

sumption, the functionR�·� is strictly convex and the level sets of that are com-
pact (see Lemma 8 in Appendix B). This implies that there exists a unique
point α0 which achieves the minimum of the function R�·� in �k. It is clear
moreover, that R�α0� > 0 because R�α� > 0 for all α, and R�α0� ≤ 1 because
R�0� = 1.

We begin the analysis of λ0 with the following theorem.

Theorem 2. If 80 ≤ 1 then λ0 = logR�α0�. Otherwise, the equation 8�z� =
1 has a unique solution z0 in the open interval �1�R−1�α0�� and λ0 = − log z0.

It is useful to notice that 80 ≤ 1 if R�α0� = 1 because for z = 1, the matrix
(7.4) is sub-stochastic. This implies that R�α0� < 1 and the open interval
�1�R−1�α0�� is nonempty whenever 80 > 1.

The proof of this theorem will be given at the end of the section.
The value 80 is crucial for identification of λ0. To get more information

about 80, let us consider a new Markov chain
(
Ỹ�t�

)
on �k with transition

probabilities

p̃�x�y� = p�x�y� exp ��α0� y− x� − logRx�α0�
 �(7.5)

where

Rx�α� =
∑
y∈�k

p�x�y�e�α�y��
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Denote by Q̃�n��x�y� the probability that this new Markov chain goes from x
to y in time n without visiting the set A in the meantime and let

Q̃�x�y� = ∑
n≥1
Q̃�n��x�y��(7.6)

The following proposition expresses the value 80 in terms of the new Markov
chain �Ỹ�t�� and gives the lower and upper bounds for that.

Proposition 11.

1. 80 is the Perron-Frobenius eigenvalue of the matrix(
Rx�α0�R−1�α0�Q̃�x�y�� x�y ∈ A

)
�(7.7)

2. for k ≤ 2, the value 80 satisfies the inequalities

min
x∈A

Rx�α0�R−1�α0� ≤ 80 ≤ max
x∈A

Rx�α0�R−1�α0��

where equality in either side implies equality throughout;
3. and for k ≥ 3,

80 < max
x∈A

Rx�α0�R−1�α0��

Proof. Indeed, using the definition of the transition probabilities (7.5) we
get

Q�n��x�y� = e−�α0�y−x�Rx�α0�R�n−1��α0�Q̃�n��x�y� ∀n ∈ �

for all x�y ∈ A, which implies that

Q
(
R−1�α0��x�y

) = e�α0�x−y�Rx�α0�
R�α0�

Q̃�x�y� ∀x�y ∈ A�

and consequently, 80 is the Perron-Frobenius eigenvalue of the matrix(
e�α0�x−y�Rx�α0�R−1�α0�Q̃�x�y�� x�y ∈ A

)
�

But the above matrix has the same eigenvalues as the matrix (7.7) and hence,
the first statement of Proposition 11 is verified.

Using now Theorem 1.5 (Corollary 1) from the book by Seneta [20] we
conclude that

min
x∈A

Rx�α0�R−1�α0�
∑
y∈A

Q̃�x�y� ≤ 80 ≤ max
x∈A

Rx�α0�R−1�α0�
∑
y∈A

Q̃�x�y��

where equality in either side implies equality throughout. When the matrix(
Q̃�x�y�� x�y ∈ A

)
is stochastic, the above relation can be rewritten as follows:

min
x∈A

Rx�α0�R−1�α0� ≤ 80 ≤ max
x∈A

Rx�α0�R−1�α0��
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Otherwise, we get

80 < max
x∈A

Rx�α0�R−1�α0��

Thus, to complete the proof of Proposition 11 it is sufficient to show that the
matrix �Q̃�x�y�� x�y ∈ A� is stochastic if and only if d ≤ 2.

The matrix �Q̃�x�y�� x�y ∈ A� is stochastic if and only if the new Markov
chain �Ỹ�t�� is recurrent and it is clear that this Markov chain is recurrent if
and only if the homogeneous random walk S̃�t� on �k with transition proba-
bilities

p̃�x�y� = p̃�y− x� = p�y− x�e�α0�y−x�R−1�α0�
is recurrent. Since α0 achieves the minimum of the function R�·�,∑

y∈�k
yp̃�y� = ∇R�α��α=α0 = 0�

which proves that the homogeneous random walk S̃�t� is recurrent if k ≤ 2,
and it is transient whenever k ≥ 3 (see [22]). Proposition 11 is therefore
verified. ✷

Before we prove Theorem 2 let us rewrite the equation 8�z� = 1 in a more
explicit form for the case where the set A consists of a single point 0.

7.2. Single point perturbation. Suppose that A = �0
. In this case we
have, obviously,

8�z� = Q�z�0�0� = ∑
n≥1
Q�n��0�0�zn(7.8)

where Q�n��0�0� is the probability that the first return to 0 of the Markov
chain �Y�t�� starting from 0 occurs at time n.

To rewrite the equation 8�z� = 1 in a more explicit form let us consider a
homogeneous random walk S�t� on �k with transition probabilities

ph�x�y� = p�y− x�� x ∈ �k�

Let p�n�
h �x�y�, x�y ∈ �k be the n-time transition probabilities of this random

walk, denote by Q�n�
h �x�0� the probability that the above random walk goes

from x to 0 without visiting the point 0 in the meantime, and let

Qh�z�x�0� =
∑
n≥1
Q

�n�
h �x�0�zn�

Then for any n > 1,

Q�n��0�0� = ∑
x �=0
p�0� x�Q�n−1�

h �x�0�
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because for x �= 0, the probability to go from x to 0 without visiting the
point 0 in the meantime for the Markov chain �Y�t�� is the same as for the
homogeneous random walk S�t�. Using the last relation we get

Q�z�0�0� = p�0�0� + z∑
x �=0
p�0� x�Qh�z�x�0��(7.9)

Moreover, the example in Section 5 shows that

lim sup
n→∞

1
n
logp�n�

h �x�y� = logR�α0�

which implies that for 0 < z < R−1�α0�, the series

Gh�z�x�y� =
∑
n≥0
p
�n�
h �x�y�zn

converge. Using therefore the identity Qh�z�x�0� = Gh�z�x�0�/Gh�z�0�0� to-
gether with (7.8) and (7.9) we conclude that for 0 < z < R−1�α0�, the equation
8�z� = 1 is verified if and only if∑

x∈�k
zp�0� x�Gh�z�x�0� = Gh�z�0�0��(7.10)

Let us rewrite the above equality in term of the generating function

:�z�w� = ∑
y∈�k

∑
n≥0
znwyp

�n�
h �0� y��

where for w = �w1� � � � �wd� ∈ 
k and y = �y1� � � � � yd� ∈ �k we denote

wy = wy11 · · ·wydd �
Given w = �w1� � � � �wd� ∈ 
k , let log �w� denote the point �log �w1�� � � � �
log �wd�� in �k and let

;z =
{
w ∈ 
k � zR�log �w�� < 1

}
and Ck =

{
w ∈ 
k � log �w� = α0

}
�

Notice that for any 0 < z < R−1�α0�, the set ;z is open, nonempty and Ck ⊂
;z. Moreover, the function :�z�w� is analytic with respect to w in ;z and

:�z�w� = ∑
y∈�k

wyGh�z�0� y� =
∑
n≥0

�zψ�w��n = �1− zψ�w��−1

where

ψ�w� = ∑
y∈�k

p�y�wy� w ∈ 
k�

Using Cauchy’s formulae we get

Gh�z�y�0� = Gh�z�0�−y� = �2πi�−d
∫
Ck

dw

w−y+1�1− zψ�w�� � y ∈ �k�
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and therefore, the equation (7.10) can be rewritten as follows:∫
Ck

1− zψ0�w�
w�1− zψ�w��dw = 0(7.11)

where

ψ0�w� =
∑
y∈�k

p�0� y�wy�

Thus, for the case when A = �0
, Theorem 2 and Proposition 11 imply the
following statement.

Corollary 1. Suppose that the set A consists of a single point 0 and let
Q̃ be the probability that the Markov chain on �k with transition probabilities
�7�5� returns to 0 starting from 0. Then:

(a) Q̃ = 1 if k ≤ 2, and Q̃ < 1 if k > 2;
(b) when R0�α0�Q̃ > R�α0�, equation �7�11� has a unique solution z0 in the

open interval
(
1�R−1�α0�

)
;

(c) λ0 = logR�α0� if R0�α0�Q̃ ≤ R�α0�, and λ0 = − log z0 otherwise.

For k = 1, equation (7.11) can be rewritten explicitly by using the residue
method.

Example. Let �Y�t�� be the Markov chain on � with transition probabili-
ties p�x�y�� x� y ∈ � such that for all x �= 0,

p�x�y� =


p� if y = x+ 1�
q� if y = x− 1�
0� otherwise�

where 0 < p < 1 and p+ q = 1. As above, we suppose that the Markov chain
�Y�t�� is irreducible and the function

R0�α� =
∑
y∈�
p�0� y�eαy

is finite everywhere on �.
In this particular case, R�α� = peα+qe−α and it is clear that α0 = log

√
q/p

and R�α0� =
√
4pq. The functions ψ�·� and ψ0�·� are given here by

ψ�w� = pw+ qw−1 and ψ0�w� =
∑
y∈�
p�0� y�wy�

and C1 = �w ∈ 
 � �w� = √
q/p
.

Suppose that 0 < z < 1/
√
4pq and let us rewrite the integral∫
C1

1− zψ0�w�
w�1− zψ�w��dw
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explicitly by using the residue method. The equation w�1 − zψ�w�� = 0 has
two simple zeros

w1�z� =
1−

√
1− 4pqz2

2pz
and w2�z� =

1+
√
1− 4pqz2

2pz
�

It is clear that w1�z� and w2�z� are real and 0 < w1�z� <
√
q/p < w2�z�

whenever z is real and 0 < z <
√
4pq� The Residue Theorem applied for the

disk ��w� ≤ √
q/p
 yields that, for m ≥ 0,

�2πi�−1
∫
C1

wm

w�1−zψ�w��dw=Resw1

(
wm

w�1−zψ�w��
)
= wm1 �z�
pz�w2�z�−w1�z��

�

Form < 0, the residue at infinity of the function wm−1/�1− zψ�w�� is zero and
hence, the Residue Theorem applied for the outside of the disk ��w� ≤ √

q/p

gives

�2πi�−1
∫
C1

wm

w�1−zψ�w��dw=−Resw2

(
wm

w�1−zψ�w��
)
= wm2 �z�
pz�w2�z�−w1�z��

�

We conclude that∫
C1

1− zψ0�w�
w�1− zψ�w��dw

= 1
pz�w2�z� −w1�z��

{
1− z ∑

m<0

p�0�m�wm2 �z� − z
∑
m≥0

p�0�m�wm1 �z�
}

and hence, for this particular case, Corollary 1 proves that λ0 = log
√
4pq if∑

y∈�
p�0� y�

(√
q/p

)y
>
√
4pq

and otherwise, the equation

z
∑
m<0

p�0�m�wm2 �z� + z
∑
m≥0

p�0�m�wm1 �z� = 1

has a unique solution z0 in the open interval �1�1/√4pq� and λ0 = log z0.

7.3. Proof of Theorem 2� We start the proof of Theorem 2 with the following
lemma.

Lemma 4. λ0 ≥ logR�α0��

The proof of this lemma is quite similar to the proof of inequality (6.9) in the
section 6.

The following lemma completes the proof of the first part of Theorem 2.

Lemma 5. Suppose that 80 ≤ 1, then λ0 = logR�α0�.
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Proof. In view of Lemma 4 it is sufficient to verify that λ0 ≤ logR�α0�. To
prove the last inequality it is sufficient to show (see Proposition 1) that there
exists a non-zero positive function g � �k → �+ such that for any x ∈ �k,

Pg �x� = ∑
y∈�k

p�x�y�g�y� ≤ R�α0�g�x��(7.12)

Let �f�y��y∈A be a strictly positive eigenvector of the matrix (7.4) with z =
R−1�α0�, corresponding to 80 = 8�R−1�α0�� (this eigenvector exists by the
Perron-Frobenius theorem). Define

g�x� =


f�x�� if x ∈ A�∑
y∈A

Q
(
R−1�α0��x�y

)
f�y�� if x �∈ A�(7.13)

Then

Pg �x� = ∑
y∈A

p�x�y�f�y� + ∑
y �∈A�y′∈A

p�x�y�Q (
R−1�α0��y�y′

)
f�y′�

= Rx�α0�
∑
y∈A

Q
(
R−1�α0��x�y

)
f�y�

which implies that

Pg�x� =
{
R�α0� g�x�� if x �∈ A�
R�α0� 80 g�x�� if x ∈ A�

and hence relation (7.12) is verified whenever 80 ≤ 1. Lemma 5 is proved. ✷

The first part of Theorem 2 is proved. To prove the second part we will use
the following lemma.

Lemma 6. Let 8�z0� = 1 for some z0 ∈ �1�R−1�α0��, then λ0 = − log z0�

Proof. The proof of the upper bound

λ0 ≤ − log z0(7.14)

is quite similar to that of Lemma 5. Instead of the function (7.13), one has to
consider here the function

g�x� =


f�x�� if x ∈ A�∑
y∈A

Q�z0�x�y�f�y�� if x �∈ A�

where f = �f�y��y∈A is a strictly positive right eigenvector of the matrix

�Q�z0�x�y��x�y∈A(7.15)

corresponding to 8�z0� = 1. For this function, a straightforward calculation
gives Pg = g/z0 and using therefore Proposition 1 we get the upper bound
(7.14).
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To prove the lower bound

λ0 ≥ − log z0(7.16)

it is sufficient to show that the series

G�z0�x�y� =
∞∑
n=0
p�n��x�y�zn0

diverge for some x�y ∈ �k. For this, we shall use the following relation

p�n��x�y� =
n∑
k=1

∑
y′∈A

Q�k��x�y′�p�n−k��y′� y�

which is verified for all n≥ 1 and x�y∈A. For generating functionsG�z0�x�y�,
x�y ∈ A, the above relation gives

G�z�x�y� = 1+ ∑
y′∈A

Q�z�x�y′�G�z�y′� y��(7.17)

Let π = �π�x�� x ∈ A� be a strictly positive left eigenvector of the matrix (7.15)
corresponding to 8�z0� = 1. Then the relation (7.17) implies∑

x∈A
π�x�G�z0�x�y� = 1+ ∑

y′∈A
π�x�G�z0�y′� y�

which proves that ∑
x∈A

π�x�G�z0�x�y� = +∞�

and hence, there exists x ∈ A such that

G�z0�x�y� = +∞�(7.18)

The lower bound (7.16) is therefore verified, and Lemma 6 is proved. ✷

To complete the proof of Theorem 2 it is sufficient now to prove the following
lemma.

Lemma 7. Let 80 > 1, then there exists a unique 1 < z0 < R−1�α0� such
that 8�z0� = 1.

Proof. Notice first that:

(i) the matrix (7.4) is irreducible for all z ∈ �0�R−1�α0��, and
(ii) for any x�y ∈ A, the generating function z → Q�z�x�y� is strictly

increasing on the interval �0�R−1�α0�� whenever Q�z�x�y� �≡ 0.

Using Perron-Frobenius theorem for irreducible matrices (see [20]) we con-
clude therefore, that the function 8�z� is strictly increasing on the interval
�0�R−1�α0��.

Furthermore, for z = 1 the matrix (7.4) is sub-stochastic and hence 8�1� ≤ 1.
But by assumption 8�R−1�α0�� = 80 > 1 and the function 8�z� is continuous
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on the interval �1�R−1�α0�� because the coefficients of the matrix (7.3) are
continuous. This proves that there exists a unique 1 ≤ z0 < R−1�α0� for which
8�z0� = 1.

Suppose finally that z0 = 1, that is 8�1� = 1. Then the relation (7.18) shows
that our Markov chain �Y�t�� must be recurrent. It is clear that the Markov
chain �Y�t�� is recurrent if and only if the homogeneous random walk S�t�
with transition probabilities ph�x�y� = p�y − x�, x�y ∈ �k is recurrent. But
it is known that the above homogeneous random walk is recurrent if and only
if d ≤ 2 and

∇R�α��α=0 =
∑
y∈�k

yp�y� = 0

which implies that α0 = 0, R�α0� = 1 and 80 = 8�1� = 1. We conclude
therefore, that z0 > 1 whenever 80 > 1. Lemma 7 is proved. ✷

APPENDIX A

This section is devoted to the proof of Proposition 4. We will prove this
proposition in two steps. The first one consists in proving the relation (4.7) for
v ∈ �d which belongs to the relative interior ri�domλ∗K� of the set

domλ∗K =
{
v ∈ �d � λ∗K�v� < +∞

}
�

and the second one extends this result for an arbitrary v ∈ �d by using the
upper semi-continuity of the function

wK�v� = lim
δ→0

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��
�X�t� − vt� < δn and �K > �nτ�

)
�

Suppose that v ∈ ri �domλ∗K�. The function λK�·� is convex and differen-
tiable on �d (see Lemma 1) and hence, by Corollary 26.4.1 from the book of
Rockafellar [19], there is αv ∈ �d such that

λ∗K�v� = �αv� v� − λK�αv��(A.1)

Consider the matrix (4.6) with α = αv and let �f�y��y ∈K� be the strictly
positive right eigenvector of this matrix associated with its Perron-Frobenius
eigenvalue expλK�αv�. Then the matrix �p̃ ��x�y�� �x′� y′�� � �x�y�� �x′� y′�
∈ �N ×K� with

p̃��x�y���x′�y′��=p��x�y���x′�y′��f�y
′�

f�y� exp��αv�x
′−x�−λK�αv��(A.2)

is stochastic because for each �x�y� ∈ �N ×K,

∑
x′∈�N�y′∈K

p ��x�y�� �x′� y′�� = exp �−λK�αv��
1

f�y� ×
∑
y′∈K

� �αv�y�y′�f�y′� = 1�
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and we can consider a new Markov chain on �N ×K starting from �0� y0�,
with transition probabilities (A.2). Let �̃ denote the distribution of this new
Markov chain. To prove inequality (4.7) we will show that

lim
δ→0

lim inf
n→∞

1
n
log��0�y0�

(
sup

t∈��0�nτ��

∣∣X�t� − vt∣∣ < δn and �K > �nτ�
)

≥ −τλ∗K�v� + lim
δ→0

lim inf
n→∞

1
n
log �̃

(
sup

t∈��0�nτ��

∣∣X�t� − vt∣∣ < δn
)
�

(A.3)

and we will prove then that

�̃

(
sup

t∈��0�nτ��

∣∣X�t� − vt∣∣ < δn
)
→ 1 as n→∞�(A.4)

from which inequality (4.7) will follow.
We begin with the proof of relation (A.3). Given n ∈ �, δ > 0 and v ∈ �N,

denote

Anδ�v� =
{

sup
t∈��0�nτ��

∣∣X�t� − vt∣∣ < δn
}
�

Since �K = +∞ almost surely with respect to the new probability measure �̃,
the standard arguments of the change of measures give

�

(
sup

t∈��0�nτ��
�X�t� − vt� < δn and �K > �nτ�

)
= Ɛ̃

(
�Anδ�v�M

−1�t�) �(A.5)

where Ɛ̃ is the expectation with respect to �̃ and

M�t� = exp ��αv�X�t�� − λK�αv�t
f�Y�t��f−1�y0�� t ∈ ��

Since on the event Anδ�v�, the inequality
∣∣X��nτ�� − nτv∣∣ < δn holds, identity

(A.5) implies that

log�

(
sup

t∈��0�nτ��

∣∣X�t� − vt∣∣ < δn and �K > �nτ�
)

≥ −nτ�αv� v� + �nτ�λK�αv� + δn�αv� + log f�y0�
−max

y∈K
log f�y� + log �̃ �Anδ�v��

and hence, using (A.1), we obtain inequality (A.3).
Let us prove now (A.4). For this we will use a martingale technique.
Given α ∈ �d, consider

M�α� t� = ���K>t
 exp ��α�X�t�� − λK�α�t
fα�Y�t��f−1α �y0�� t ∈ ��

where fα = �fα�y�� y ∈K� is a strictly positive right eigenvector of the matrix
�K�α� associated with its Perron-Frobenius eigenvalue expλK�α�. The vector
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fα is unique to constant multiples because the matrix �K�α� is irreducible by
assumption, and it is convenient to choose fα so that for given f = fαv ,

fα�y� ≥ f�y� for all y ∈K�(A.6)

Straightforward calculation shows that for Y�0� = y0 ∈ K, �M�α� t�� is a
martingale with Ɛ �M�α� t�� ≡ 1. Since M�αv� t� ≡ M�t����K>t
, we conclude
that for Y�0� = y0 ∈K,

M�α� t�M−1�αv� t� = exp ��α− αv�X�t�� − �λK�α� − λK�αv�� t

×f�y0�f−1α �y0�fα�Y�t��f−1�Y�t��

(A.7)

is a martingale relative to the new probability measure �̃ with

Ɛ̃
(
M�α� t�M−1�αv� t�

) ≡ 1�

The left hand side of (A.7) is defined and equality (A.7) holds almost surely
with respect to the new probability measure �̃ because �K = +∞ almost
surely with respect to �̃.

Using (A.1) one can rewrite the right hand side of (A.7) as follows:

exp ��α− αv�X�t� − vt� − �λK�α� − �α� v� + λ∗K�v�� t

×f�y0�f−1α �y0�fα�Y�t��f−1�Y�t��

where by Fenchel inequality, λK�α� − �α� v� + λ∗K�v� ≥ 0 for any α ∈ �N. This
proves that

B�t� =M�α� t�M−1�αv� t� × exp ��λK�α� − �α� v� + λ∗K�v�� t
 × fα�y0�f−1�y0�
= exp ��α− αv�X�t� − vt�
 × fα�Y�t��f−1�Y�t�����K>t


is a sub-martingale relative to the new probability measure �̃ with

Ɛ̃ �B�t�� = fα�y0�f−1�y0� exp ��λK�α� − �α� v� + λ∗K�v�� t
 �
Using now relation (A.6) together with the sub-martingale inequality we ob-
tain that for any γ > 0,

�̃

(
sup

t∈��0�nτ��
�α− αv�X�t� − vt� ≥ γ

)

≤ �̃�0�y0�

(
sup

t∈��0�nτ��
B�t� ≥ eγ

)

≤ fα�y0�f−1�y0� exp �−γ + �λK�α� − �α� v� + λ∗K�v�� �nτ�
 �

(A.8)

Consider α = αv + θε, where θ > 0 and ε ∈ �N is a unit vector, and let

C = max
α��α−αv�≤1

〈
ε�
∂2

∂α2
λK�α�ε

〉

where ∂2λK�α�/∂α2 denotes Hessian matrix of λK�·�. Then
0 ≤ λK�α� − �α� v� + λ∗K�v� = λK�αv + θε� − θ�ε� v� − λK�αv� ≤ θ2C
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and letting γ = �Cτ + 1�θ2n in (A.8) we obtain

�̃

(
sup

t∈��0�nτ��
�ε�X�t� − vt� ≥ θ�Cτ + 1�n

)
≤ fα�y0�f−1�y0� exp�−θ2n
�

Finally, the unit vector ε being arbitrary, the last inequality yields

�

(
sup

t∈��0�nτ��
�X�t� − vt� ≥ 2Nθ�Cτ + 1�n

)
≤ 2Nmax

ε
fαv+θεf

−1�y0� exp
{−θ2n}

and letting δ = 2Nθ�Cτ + 1� we get (A.4).
Relation (A.3) together with (A.4) implies (4.7) and therefore, our lemma is

proved for v ∈ ri �domλ∗K�.
To extend this result for an arbitrary v ∈ �N let us first verify that the

function wk�·� is upper semi-continuous. Indeed, for δ′ < δ/2 and �v − v′� <
δ/�2τ�,

lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��
�X�t� − v′t� < δ′n and �K > �nτ�

)

≤ lim inf
n→∞

1
n
log�

(
sup

t∈��0�nτ��
�X�t� − vt� < δn and �K > �nτ�

)
�

Letting first δ′ → 0 in the left hand side of the above relation and then letting
δ→ 0 in the right hand side we obtain

lim sup
v′→v

wK�v′� ≤ wK�v��

Since v ∈ �N is arbitrary, we conclude that the function w�·� is upper semi-
continuous.

We are ready now to extend the inequality (4.7) for an arbitrary v ∈ �N.
When v �∈ domλ∗K, that is, λ

∗
K�v� = +∞, this inequality is trivial. Suppose that

v ∈ domλ∗K \ ri�domλ∗K�. In this case, there exists a sequence vk ∈ ri�domλ∗�
such that vk → v and λ∗K�vk� → λ∗K�v� as k → ∞ because λ∗K�·� is closed
proper convex function on �N. Indeed, the set ri�domλ∗K� is nonempty by
Theorem 6.2 in [19], choosing x0 ∈ ri�domλ∗K� and letting vk = v0/k+�1−1/k�v
for k ≥ 1, we obtain vk ∈ ri�domλ∗� by Theorem 6.1 in [19] and λ∗�vk� → λ∗�v�
as k → +∞ by Theorem 7.5 in [19]. Using finally the upper semi-continuity
of the function wK�·� we get

wK�v� ≥ lim sup
n→∞

wK�vn� ≥ −τ lim
n→∞λ

∗
K�vn� = −τλ∗K�v��

and hence, for v ∈ domλ∗K \ ri�domλ∗K�, inequality (4.7) is also verified.
Proposition 4 is proved. ✷
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APPENDIX B

Lemma 8. Let a�x� ≥ 0 for all x ∈ �N� and let the function

H�α� = ∑
x∈�N

a�x�e�α�x�

be finite for all α ∈ �N� If the infinite matrix
(
a�x− x′��x� x′ ∈ �N

)
is irre-

ducible, the function H�·� is strictly convex everywhere on �N and the level
sets of this function are compact.

Proof. Since the infinite matrix �a�x− x′��x� x′ ∈ �N� is irreducible, the
set �x ∈ �k � a�x� > 0
 contain the basis of the linear space �k. This im-
plies that for every v ∈ �k, there exists x ∈ �k such that a�x��v� x� �= 0 and
consequently,

�v� ∂2αH�α�v� =
N∑

i�j=1

∂2

∂αi∂αj
H�α�vivj =

∑
x∈�N

a�x�e�α�x��v� x�2 > 0(B.1)

for all α� v ∈ �K. This proves that the function H�·� is strictly convex.
Furthermore, the function H�·� being a finite convex function on �k, is

continuous on �k and hence, to prove that the level sets of this function are
compact, it is sufficient to show that they are bounded.

Let us verify that the level sets of the function H�·� are bounded. Since
the infinite matrix �a�x− x′��x� x′ ∈ �N� is irreducible, for any x ∈ �N, there
exists n ∈ � and there exists a sequence x0� � � � � xn ∈ �k such that a�xk� > 0
for all k = 1� � � � � n and x = x0 + · · · + xn. This implies that

�α� z� −H�α� ≤
n∑
k=1

��α� xk� − a�xk�e�α�xk��

≤
n∑
k=1

sup
t∈�

�t− a�xk�et� ≤
n∑
k=1

�− log a�xk� − 1��

Consider now the convex conjugateH∗�·� of the functionH�·�. The last relation
shows that H∗�x� < +∞ for all x ∈ �K and consequently, H∗�v� < +∞ for all
v ∈ �k because the function H∗�·� is convex. Using now Fenchel’s inequality

�α� v� ≤H�α� +H∗�v�� α� v ∈ �N�

we get

sup
v∈�N��v�≤1

�α� v� ≤ c+ sup
v∈�N��v�≤1

H∗�v�

for all α ∈ �N such that H�α� ≤ c. The function H∗�·� being finite and convex
on �k, is continuous on �k. This proves that the right hand side of the above
inequality is finite and hence, the set �α ∈ �N �H�α� ≤ c
 is bounded for any
c ∈ �+. Lemma 8 is proved. ✷
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