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We consider the class of autoregressive processes with ARCH(1) errors
given by the stochastic difference equation

Xn = αXn−1 +
√
β+ λX2

n−1εn� n ∈ ��

where �εn�n∈� are i.i.d. random variables. Under general and tractable
assumptions we show the existence and uniqueness of a stationary dis-
tribution. We prove that the stationary distribution has a Pareto-like tail
with a well-specified tail index which depends on α� λ and the distribution
of the innovations �εn�n∈�. This paper generalizes results for the ARCH(1)
process (the case α = 0). The generalization requires a new method of proof
and we invoke a Tauberian theorem.

1. Introduction. Recently there has been considerable interest in non-
linear time series models [see, e.g., Priestley (1988), Tong (1990) and Taylor
(1995)]. Many of these models were introduced to allow the conditional vari-
ance of a time series model to depend on past information (conditional het-
eroscedasticity). It has turned out that such models fit very well to many
types of financial data. Early empirical work [see, e.g., Mandelbrot (1963),
Fama (1965)] has shown that large changes in equity returns and exchange
rates, with high sampling frequency, tend to be followed by large changes set-
tling down after some time to a more normal behavior. This observation leads
to models of the form

Xn = σnεn� n ∈ ��(1.1)

where the innovations �εn�n∈� are i.i.d. symmetric random variables with
mean zero, and the volatility σn describes the change of (conditional) variance.
The autoregressive conditionally heteroscedastic (ARCH) models are one of

the specifications of (1.1). In this case the conditional variance σ2n is a linear
function of the squared past observations. ARCH(p) models introduced by
Engle (1982) are defined by

σ2n = α0 +
p∑
j=1

αjX
2
n−j� α0 > 0� α1� � � � � αp−1 ≥ 0� αp > 0� n ∈ ��(1.2)

where p is the order of the ARCH process.
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In a series of papers, the ARCH model has been analyzed, generalized and
used to test for time-varying risk premia in the financial market. We refer,
for instance, to the survey article by Bollerslev, Chou and Kroner (1992). The
most famous generalization to so-called generalized ARCH (GARCH) processes
was proposed in Bollerslev (1986). The volatility σn is now a linear function of
Xn−1,Xn−2� � � � and σn−1� σn−2� � � �. ARCH and GARCHmodels are widely used
to model financial time series since they capture certain empirical observations
in financial data, namely the tendency for volatility clustering and the fact that
unconditional price and return distributions tend to have fatter tails than the
normal distribution.
The class of autoregressive (AR) models with ARCH errors introduced by

Weiss (1984) are another extension. These models are also called SETAR-
ARCH models (self-exciting autoregressive). They are defined by

Xn = f�Xn−1� � � � �Xn−k� + σnεn� n ≥ k�(1.3)

where f is again a linear function in its arguments and σn is given by (1.2).
This model combines the advantages of an AR model which targets more on
the conditional mean of Xn (given the past) and an ARCH model which con-
centrates on the conditional variance of Xn (given the past).
The class of models defined by (1.3) embodies various nonlinear models.

In this paper we focus on the AR(1) process with ARCH(1) errors, that is,
f�Xn−1� � � � �Xn−k� = αXn−1 for some α ∈ � and σn is given in (1.2) with
p = 1. This Markovian model is analytically tractable and may serve as a
prototype for the larger class of models (1.3).
The purpose of this article is to investigate the tail of the stationary distri-

bution of the AR(1) process with ARCH(1) errors �Xn�n∈�. The model has also
been considered by Diebolt and Guégan (1990) and Maercker (1997). For λ = 0
the process is an AR(1) process whose stationary distribution is determined
by the innovations �εn�n∈�, for εn normal it is a Gaussian process. In the
ARCH(1) case (the case when α = 0) the tail is known [see, e.g., Goldie (1991)
or Embrechts, Klüppelberg and Mikosch (1997), Section 8.4]. The result was
obtained by considering the square ARCH(1) process which leads to a stochas-
tic difference equation which fits in the setting of Kesten (1973) and Vervaat
(1979). This approach is, however, in general not possible or at least not obvi-
ous for α �= 0. Nevertheless for εn normal, provided a stationary distribution
exists, a characteristic function argument transforms the model such that the
results by Kesten (1973), Vervaat (1979) and Goldie (1991) may be applied.
We refer to Remark 6 for further details.
For the general case we present another technique for evaluating the tail of

the stationary distribution using the Drasin-Shea Tauberian theorem which
can be found for instance in Bingham, Goldie and Teugels (1987). In con-
trast to Kesten (1973) and Goldie (1991), this approach has the drawback
that it gives no information on the slowly varying function present in the
tail of the stationary distribution. However, on the other side, the method
also applies to processes which do not fit in the framework of Kesten (1973)
or Goldie (1991). Furthermore, the Tauberian approach does not depend on
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additional assumptions which are often very hard to check (e.g. the existence of
certain moments of the stationary distribution). See also the discussion in the
introduction of Section 4. Combining our method with results in Goldie (1991),
we finally specify the slowly varying function of the tail of the stationary distri-
bution of �Xn�n∈�. Note that Goldie’s results cannot be applied in the general
case without the Tauberian approach. The Tauberian approach guarantees
that the assumptions in Goldie (1991) are satisfied. The results in the present
paper can be applied to study the behavior of the extremes and of the sample
autocovariance and autocorrelation function of �Xn�n∈�; see Borkovec (2000)
and Borkovec (2001).
The organization of this paper is as follows. In Section 2 we present the

model and introduce the required assumptions on the innovations �εn�n∈�.
We distinguish between the so-called general conditions and the technical
conditions (D1)–(D3). They are assumed to hold throughout this paper if it
is not stated otherwise. In Section 3 we determine the parameter set of sta-
tionarity for our model and the tail of the stationary distribution. In Theorem
1 we summarize some probabilistic properties of �Xn�n∈�, in particular the
existence and uniqueness of a stationary distribution. Section 4 investigates
the tail of the stationary distribution. Theorem 3 is the main theorem in this
section. We show that the stationary distribution has a Pareto-like tail with a
well-specified tail index. For α = 0 our result coincides with the corresponding
result in Goldie (1991) whereas for α �= 0 the tail index is determined by the
autoregressive coefficient α and the ARCH(1) parameter λ. The proof of this
result will be an application of a modification of the Drasin-Shea Tauberian
theorem.

2. Assumptions on the model. We consider throughout this paper an
autoregressive model of order 1 with autoregressive conditionally
heteroscedastic errors of order 1 [AR(1) model with ARCH(1) errors] which
is defined by the stochastic difference equation

Xn = αXn−1 +
√
β+ λX2

n−1εn� n ∈ ��(2.1)

where �εn�n∈� are i.i.d. symmetric random variables, α ∈ �, β�λ > 0 and X0
is independent of �εn�n∈�.
Let ε be a generic random variable with the same distribution function

H as εn. In what follows, we assume without loss of generality α ≥ 0 (for a
justification see Remark 2 below) and that the following general conditions for
ε are in force:

ε has full support ��
ε is symmetric with continuous Lebesgue density p�
the second moment of ε exists�

(2.2)

Note that the process is evidently a homogeneous Markov chain with state
space � equipped with the Borel σ-algebra. The transition kernel density is
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given by

P�X1 ∈ dy 	X0 = x� = 1√
β+ λx2

p

(
y− αx√
β+ λx2

)
dy� x ∈ ��(2.3)

Under appropriate conditions on α and λ, Theorem 1 in Section 3 guarantees
the existence and uniqueness of a stationary distribution π of �Xn�n∈�. By
F we denote the distribution function of π and X is a random variable with
distribution function F. From the stochastic difference equation (2.1) it is
straightforward that X satisfies the fixpoint equation

X
d=αX+

√
β+ λX2ε�(2.4)

where ε is independent of X. In order to determine the tail of the stationary
distribution function F we need some additional technical assumptions on p
and 
H = 1−H, the density and the distribution tail of ε.
(D1) p�x� ≥ p�x′� for every 0 ≤ x < x′.
(D2) The lower and upper Matuszewska indices of 
H are equal; that is,

−∞ ≤ γ �= lim
ν→∞

log lim supx→∞ 
H�νx�/ 
H�x�
log ν

= lim
ν→∞

log lim inf x→∞ 
H�νx�/ 
H�x�
log ν

≤ 0�

(D3) If γ = −∞ then for all δ > 0 there exist constants q ∈ �0�1� and x0 > 0
such that for all x > x0 and t > xq,

p

(
x± αt√
λt2

)
≥ �1− δ�p

(
x± αt√
β+ λt2

)
�(2.5)

If γ > −∞ then for all δ > 0 there exist constants x0 > 0 and T > 0 such
that for all x > x0 and t > T the inequality (2.5) holds.

The definition of the lower and upper Matuszewska indices can be found,
for example, in Bingham, Goldie and Teugels [(1987), page 68]; for the above
representation we used Theorem 2.1.5 and Corollary 2.1.6. The case γ = −∞
corresponds to a tail which is exponentially decreasing. For γ ∈ �−∞�0� con-
dition (D2) is equivalent to the existence of constants 0 ≤ c ≤ C < ∞ such
that for all  > 1, uniformly in ν ∈ �1�  �,

c�1+ o�1��νγ ≤

H�νx�

H�x� ≤ C�1+ o�1��νγ� x→ ∞�(2.6)

In particular, a distribution with a regularly varying tail satisfies (D2); the
value γ is then the tail index. Due to the equality of the Matuszewska indices
and the monotonicity of p we easily obtain some asymptotic properties of 
H
and of p, respectively.
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Proposition 1. Suppose the general conditions (2.2) and (D1)–(D3) hold.
Then the following holds:

(a) limx→∞ xm 
H�x� = 0 and E�	ε	m� <∞ for all m < −γ.
(b) limx→∞ xm 
H�x� = ∞ and E�	ε	m� = ∞ for all m > −γ.
(c) limx→∞ xm+1p�x� = 0 for all m < −γ.
(d) If γ > −∞, there exist constants 0 < c ≤ C <∞ such that

c ≤ lim inf
x→∞

xp�x�

H�x� ≤ lim sup

x→∞
xp�x�

H�x� ≤ C�

Moreover, there exist constants 0 ≤ d ≤ D < ∞ such that for all  > 1,
uniformly in ν ∈ �1�  �,

d�1+ o�1��νγ−1 ≤ p�νx�
p�x� ≤ D�1+ o�1��νγ−1� x→ ∞�(2.7)

Furthermore, in this case �2�7� is equivalent to �2�6� or (D2).

Proof. Statements (a) and (b) are immediate consequences of Theorem
2.2.2 of Bingham, Goldie and Teugels (1987). (c) follows from (a) and the mono-
tonicity of p. Applying (2.6) and using again the monotonicity of p yields (d). ✷

The general conditions (2.2) and assumption (D1) are fairly general and can
be checked easily, whereas (D2) and in particular (D3) seem to be quite tech-
nical and intractable. Nevertheless, numerous densities satisfy these assump-
tions.

Example 1. We give two different classes of densities, which satisfy the
general conditions (2.2) and (D1)–(D3).

(a) pρ�θ�x� ∝ exp�− 	x	ρ
θ
�, x ∈ �, for parameters ρ� θ > 0.

Note that this family of densities includes the Laplace (double exponential)
density (ρ = 1) and the normal density with mean 0 (ρ = 2).
It is straightforward that the general conditions and (D1), (D2) with γ = −∞

hold. In order to show (D3), choose q ∈ �ρ/�ρ + 2��1�. Then for every x > 0
and t > xq,

pρ�θ

(
x±αt√
λt2

)
pρ�θ

(
x±αt√
β+λt2

) =
pρ�θ

(
x√
λt

± α√
λ

)
pρ�θ

((
x√
λt

± α√
λ

)(
1+ β

λt2

)−1/2)

= exp
(
−1
θ

∣∣∣ x√
λt

± α√
λ

∣∣∣ρ(1− ∣∣∣1+ β

λt2

∣∣∣−ρ/2))

≥ exp
(
− cρρβ

2θλ1+ρ/2
	x	ρ−ρq−2q − cρρβα

ρ

2θλ1+ρ/2
	x	−2q

)
�

where cρ = max�1�2ρ�. The r.h.s. is arbitrarily close to 1 for x sufficiently large
and therefore (D3) holds.
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(b)

pa�ρ� θ�x� ∝
(
1+ x2

θ

)−�ρ+1�/2(
1+ a sin

(
2π log

(
1+ x2

θ

)))
� x ∈ ��

for parameters ρ > 2, θ > 0 and a ∈ �0� ρ+1
ρ+1+4π �.

This family of densities includes, for example, Student’s distribution density
with parameter ρ (set a = 0 and θ = ρ).
One can easily see that the general conditions hold. (D1) is satisfied because

of the choice of a. Furthermore, for all  > 1, uniformly in ν ∈ �1�  �,
1− a
1+ a�1+ o�1��ν

−�ρ+1� ≤ p�νx�
p�x� ≤ 1+ a

1− a�1+ o�1��ν
−�ρ+1�� x→ ∞�

In particular, pa�ρ� θ is regularly varying if and only if a = 0. By Proposi-
tion 1(d), condition (D2) is satisfied with γ = −ρ. It remains to show (D3). Let
δ > 0 be arbitrary and choose T such that(

1+ β

λT2

)−�ρ+1�/2(
1− 2π aβ

�1− a�λT2
)
≥ 1− δ�(2.8)

Next note that for every x > 0, setting b�t� = 1+ β/�λt2�, t ≥ 0, we obtain∣∣∣∣1+ a sin�2π log�1+ y2b�T�/θ�1+ a sin�2π log�1+ y2/θ�� − 1
∣∣∣∣ ≤ 2π aβ

�1− a�λT2 �(2.9)

Using (2.8) and (2.9), we have for every t ≥ T, x > 0 and y = � x√
λt
± α√

λ
�/√b�T�,

pa�ρ� θ

(
x±αt√
λt2

)
pa�ρ� θ

(
x±αt√
β+λt2

) = pa�ρ� θ�y
√
b�t��

pa�ρ� θ�y�

≥ pa�ρ� θ�y
√
b�T��

pa�ρ� θ�y�

≥ b�T�−�ρ+1�/2 1+ a sin�2π log�1+ y2b�T�/θ��
1+ a sin�2π log�1+ y2/θ�

≥ b�T�−�ρ+1�/2
(
1− 2π aβ

�1− a�λT2
)

≥ 1− δ�

3. Existence and uniqueness of a stationary distribution. In this
section we summarize in Theorem 3 some properties of the process �Xn�n∈�. In
particular, the geometric ergodicity guarantees the existence and uniqueness
of a stationary distribution. For an introduction to Markov chain terminology
we refer to Tweedie (1976) or Meyn and Tweedie (1993).
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The next proposition follows easily from well-known properties of moment
generating functions [one can follow the proof of the case α = 0; see, e.g.,
Lemma 8.4.6 of Embrechts, Klüppelberg and Mikosch (1997)].

Proposition 2. Let ε be a random variable with probability density p
satisfying the general conditions �2�2�. Define hα�λ� �0�∞� → �0�∞� for α ∈ �
and λ > 0 by

hα�λ�u� �= E�	α+
√
λε	u�� u ≥ 0�(3.1)

(a) The function hα�λ�·� is strictly convex in �0�T�, where

T �= inf�u ≥ 0 	 E�	
√
λε	u� = ∞��

(b) If furthermore the parameters α and λ are chosen such that

h′
α� λ�0� = E�log 	α+

√
λε	� < 0�(3.2)

then there exists a unique solution κ = κ�α� λ� > 0 to the equation hα�λ�u� = 1.
Moreover, under h′

α� λ�0� < 0,

κ�α� λ�


>2� α2 + λE�ε2� < 1,
=2� α2 + λE�ε2� = 1,
<2� α2 + λE�ε2� > 1.

(3.3)

Remark 1. (a) By Jensen’s inequality α2+λE�ε2� < 1 implies h′
α� λ�0� < 0.

(b) Proposition 2 holds in particular for a standard normal random variable
ε. In this case T = ∞.
(c) In general, it is not possible to determine explicitly which parameters

α and λ satisfy (3.2). If α = 0 [i.e., in the ARCH(1)-case] and ε ∼ N�0�1�,
(3.2) is fulfilled if and only if λ ∈ �0�2eγ�, where γ is Euler’s constant [see,
e.g., Embrechts, Klüppelberg and Mikosch (1997), Section 8.4]. For α �= 0,
Tables 1 and 2 show numerical domains of α and λ for ε ∼ N�0�1�. See also
Kiefersbeck (1999) for numerical results in some nonnormal cases.
(d) Note that κ is a function of α and λ. Since ε is symmetric κ does not

depend on the sign of α. For ε ∼N�0�1�we can show for fixed λ� κ is decreasing
in 	α	. See also Table 3.

Table 1
Numerical domain of λ dependent on 	α	 such that h′

α�λ�0� < 0 in the case ε ∼N�0�1�

	�	 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ (0, 3.56] (0, 3.55] (0, 3.52] (0, 3.47] (0, 3.39] (0, 3.30] (0, 3.18] (0, 3.04]

	�	 0.8 0.9 1 1.1 1.2 1.25 1.27 1.27805

λ (0, 2.87] (0, 2.66] (0, 2.42] (0.17, 2.11] (0.38, 1.69] (0.58, 1.38] (0.75, 1.19] (0.94, 0.96]
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Table 2
Numerical supremum of 	α	 dependent on λ such that h′

α� λ�0� < 0 in the case ε ∼N�0�1�

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

	α	 1.05 1.11 1.16 1.20 1.23 1.25 1.26 1.27 1.28

� 1 1.1 1.2 1.5 2 2.5 3 3.5 3.56

	α	 1.28 1.27 1.27 1.23 1.13 0.97 0.72 0.24 0.04

Proof. Let ϕ�·	µ�σ2� denote the normal density with mean µ and variance
σ2. Then, by symmetry of ϕ,

∂hα�λ�u�
∂α

= 1
λ

∫ ∞

−∞
	y	u�y− α�ϕ�y	α� λ�dy

= 1
λ

( ∫ 0
−∞

�−y�u�y− α�ϕ�y	α� λ�dy+
∫ ∞

0
yu�y− α�ϕ�y	α� λ�dy

)

= u
∫ ∞

0
yu−1�ϕ�y	α� λ� − ϕ�y	 − α� λ��dy > 0� u ≥ 0�

where the last line follows by integration by parts with respect to y. We may
therefore conclude that, if α′ > α then hα�λ�u� < hα′� λ�u� for any λ�u. Assume
κ�α� ≤ κ�α′�. Then we have by Proposition 2(b) and Hölder’s inequality that

1 = hα�λ�κ�α�� < hα′� λ�κ�α�� ≤ hα′� λ�κ�α′��κ�α�/κ�α
′� = 1�

which is a contradiction. ✷

We are now ready to state the following theorem.

Theorem 1. Consider the process �Xn�n∈� in (2.1) with �εn�n∈� satisfying
the general conditions (2.2) and with parameters α and λ satisfying (3.2). Then

Table 3
Numerical solution of hα�λ�κ� = 1 for κ = κ�α� λ� dependent on α and λ in the case ε ∼N�0�1�∗

�

	�	 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0 2.5 3.0 3.5

0 12.85 6.09 3.82 2.67 1.99 1.54 1.07 0.61 0.33 0.15 0.01
0.2 11.00 5.49 3.52 2.51 1.89 1.46 1.03 0.59 0.32 0.13 0.01
0.4 8.12 4.28 2.87 2.10 1.61 1.26 0.90 0.51 0.27 0.10 —
0.6 5.41 3.03 2.12 1.60 1.25 0.99 0.71 0.39 0.19 0.05 —
0.8 3.00 1.85 1.37 1.07 0.85 0.68 0.48 0.25 0.09 — —
1.0 0.96 0.83 0.70 0.57 0.47 0.37 0.25 0.09 — — —
1.2 — 0.01 0.01 0.01 0.01 0.01 0.01 — — — —

∗For α = 0 a similar table can be found in de Haan et al. (1989).
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the following assertions hold:

(a) Let ν be the normalized Lebesgue-measure ν�·� �= λ�· ∩ �−M�M��/
λ��−M�M��. Then �Xn�n∈� is an aperiodic positive ν-recurrent Harris chain
with regeneration set �−M�M� for M large enough.
(b) �Xn�n∈� is geometric ergodic. In particular, �Xn�n∈� has a unique sta-

tionary distribution and satisfies the strong mixing condition with geometric
rate of convergence. The stationary distribution is continuous and symmetric.
(c) If α2+λE�ε2� < 1, then the stationary distribution of �Xn�n∈� has finite

second moment.

Remark 2. (a) Statements (a) and (b) are basically a collection of results of
Diebolt and Guégan (1990) and Maercker (1997). They assume α2+λE�ε2� < 1
and hence only cover the finite variance case. The model fits also into the more
general framework of “iterated random Lipschitz functions”; see Alsmeyer
(2000).
(b) When we study the stationary distribution of �Xn�n∈� we may w.l.o.g.

assume that α ≥ 0. For a justification, consider the process �X̃n�n∈� = ��−1�n
Xn�n∈� which satisfies to the stochastic difference equation

X̃n = −αX̃n−1 +
√
β+ λX̃2

n−1εn� n ∈ ��

where �εn�n∈� are the same random variables as in (2.1) and X̃0 = X0. If
α < 0, because of the symmetry of the stationary distribution, we may hence
study the new process �X̃n�n∈�.
(c) By statement (c), the assumption α2 + λE�ε2� < 1 is sufficient for the

existence of the second moment. We will see in Remarks 5(c) that it is also
necessary.

Proof of Theorem 1. Because of the strict positivity and continuity of
the transition density the process �Xn�n∈� is a ν-irreducible Feller chain. By
Feigin and Tweedie [(1985), page 3], this implies that every compact set of
the state space with positive Lebesgue measure is small and thus �−M�M�
is small for arbitrary M > 0. Finally, by Proposition 5.3 of Tweedie (1976),
�−M�M� is a status set for �Xn�n∈�.
(a) Because of Proposition 2, for α ∈ � and λ > 0 such that h′

α� λ�0� < 0
there exists a κ > 0 such that hα�λ�u� < 1 for every u ∈ �0� κ� and hα�λ�0� =
hα�λ�κ� = 1. Now choose η ∈ �0�min�κ�2�� and δ ∈ �0�1 − hα�λ�η�� arbitrary.
For any such η and δ there exists a constant C = C�η� δ� ∈ �0�1� such that

hα�λ�η� + δ ≤ 1− 2C�(3.4)

Define g�x� �= 1+ 	x	η ≥ 1 for every x ∈ �. For M large enough and 	x	 > M
we have by continuity of hα�λ in α,∣∣h

αx/
√
x2+β/λ �λ�η� − hα�λ�η�

∣∣ < δ(3.5)
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and

Cg�x� ≥ 1+ �hα�λ�η� ± δ��−1+O�	x	η−2���(3.6)

since η < 2, hα�λ�η� − δ is independent of x and g increases to ∞. From (2.3)
we obtain for x→ ∞,∫

�−∞�∞�
g�y�P�X1 ∈ dy 	X0 = x�

= 1+ �β+ λx2�η/2E
(∣∣∣∣ αx√

λx2 + β
+ ε

∣∣∣∣
η)

= 1+
(β
λ
+ x2

)η/2
h
αx/

√
x2+β/λ� λ�η�

= 1+ �1+O�x−2��	x	η h
αx/

√
x2+β/λ �λ�η�

= 1+O�	x	η−2�h
αx/

√
x2+β/λ� λ�η� + 	x	η h

αx/
√
x2+β/λ� λ�η�

= 1+ �−1+O�	x	η−2��h
αx/

√
x2+β/λ� λ�η� + g�x�hαx/√x2+β/λ� λ�η��

where the third line follows from Taylor expansion. Together with (3.4)–(3.6),
we obtain for every x ∈ � with 	x	 >M,∫

�−∞�∞�
g�y�P�X1 ∈ dy 	X0 = x� ≤Cg�x� + �1− 2C�g�x�

= �1−C�g�x�
(3.7)

Define

τ�−M�M� �= inf�n ≥ 1 	Xn ∈ �−M�M��
and let x ∈ � be arbitrary. Then we have

E�τ�−M�M� 	X0 = x� = E�1�X1∈�−M�M��E�τ�−M�M�	X1�	X0 = x�
+E�1�X1∈�−M�M�c�E�τ�−M�M�	X1�	X0 = x�

≤ 1+E�1�X1∈�−M�M�c�E�τ�−M�M�	X1�	X0 = x�

≤ 1+
∫
�−M�M�c

E�τ�−M�M�	X1 = y�P�X1 ∈ dy	X0 = x��

By (3.7), Theorem 3 of Tweedie (1983a) holds and we obtain for all x ∈ �,

E�τ�−M�M�	X0 = x� ≤ 1+
∫
�−M�M�c

g�y�
C

P�X1 ∈ dy	X0 = x�

≤ 1+ 1
C

+E(	αx+
√
λx2 + βε	η) <∞

(3.8)

and thus �−M�M� is Harris recurrent. Since the transition density of �Xn�n∈�
is strictly positive on �−M�M� we know from Asmussen [(1987), page 151],
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that there exists some constant C̃ ∈ �0�1� such that
P�X1 ∈ B 	X0 = x� ≥ C̃ ν�B�(3.9)

for every x ∈ �−M�M� and any Borel-measurable set B, that is, �Xn�n∈� is
a Harris chain with regeneration set �−M�M�. Finally, by Theorem 9.1 of
Tweedie (1976), (3.7) and the fact that �−M�M� is a status set, �Xn�n∈� is
positive Harris ν-recurrent.
(b) Note that

sup
x∈�−M�M�

∫
�
g�y�P�X1 ∈ dy	X0 = x�

= 1+ sup
x∈�−M�M�

E�	αx+
√
λx2 + βε	η� <∞�

(3.10)

Thus the geometric ergodicity follows from Theorem 4 of Tweedie (1983a) and
the same arguments as in the proof of statement (a) of this theorem. The
process is therefore strongly mixing with a geometric rate. The symmetry of
the stationary distribution follows from the ergodicity and the fact that the
processes �Xn�n∈� and �−Xn�n∈� have the same transition probabilities, hence
the same unique stationary distribution. Finally, because of the continuity of
the transition probabilities, the stationary distribution function is continuous
as well.
(c) Define now the small set

A �=
{
x ∈ � 	 x2 ≤ max

{
1�

βE�ε2�
�1− 2δ� − �α2 + λE�ε2��

}}
with δ > 0 such that �1− 2δ� − �α2 + λE�ε2�� > 0. Choose g�x� = 1+x2. Note
that for every x ∈ Ac,∫

�
g�y�P�X1 ∈ dy 	X0 = x� ≤ 1+ x2

(
α2 + λE�ε2� + βE�ε2�

x2

)

≤ 1+ x2 �1− 2δ�
= 1− x2δ+ x2�1− δ�
≤ 1− δ+ x2�1− δ� = g�x� �1− δ��

This together with (3.10) for η = 2 and A instead of �−M�M�, Theorem 3 of
Tweedie (1983b) holds and the second moment of the stationary distribution
is finite. ✷

Even if the building blocks �εn�n∈� have moments of all orders, that is,
γ = −∞, not all moments of the stationary distribution are finite.

Proposition 3. Suppose �Xn�n∈� is given by (2.1) with �εn�n∈� satisfying
the general conditions (2.2) and with parameters α and λ satisfying (3.2). Let
X be the stationary limit variable of �Xn�n∈�. Choose N > 0 such that

E
(	√λε	N)

> 2�(3.11)
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Then

E�	X	N� = ∞�

Proof. Assume that the Nth moment is finite. As a consequence of (2.4)
(recall that w.l.o.g. α ≥ 0),

E
(	X	N) = E

(∣∣∣αX+
√
β+ λX2ε

∣∣∣N)

= E

(
1�X<0�	X	N

∣∣∣∣α+
√
β

X2
+ λ�−ε�

∣∣∣∣
N)

+E
(
1�X>0�	X	N

∣∣∣∣α+
√
β

X2
+ λε

∣∣∣∣
N)

= E

(
	X	N

∣∣∣∣α+
√
β

X2
+ λε

∣∣∣∣
N)

≥ E
(	X	N)

E
(
1�ε>0�	

√
λε	N)

> E
(	X	N)

�

where we used in the third and fourth line thatX and ε are independent. The
last line is a consequence of (3.11) and the symmetry of ε. ✷

Remark 3. (a) Note thatN > 2 if α2+λE�ε2� < 1 since the second moment
exists by Theorem 1(c).
(b) Condition (3.11) can be replaced byE�1�ε>0�	α+

√
λε	N� > 1 for α ≥ 0 and

E�1�ε<0�	α +√
λε	N� > 1 for α < 0, respectively. These alternative conditions

may enable us to find a smaller N.

Because of Proposition 3 we know that the distribution ofX is heavy tailed
in the sense that not all moments exist. The following section considers the
precise asymptotic behavior of its tail.

4. The tail of the stationary distribution. Estimating the (heavy) tail
of a stationary distribution of a Markov process is in general a nontrivial
problem and few explicit results are known in the literature. There are basi-
cally two articles which refer to this topic and which are somewhat related
to our problem. Kesten (1973) investigates the tail of the limit distribution
of the solution of a linear difference equation, and Goldie (1991) proves and
extends Kesten’s results in the one-dimensional case by applying a renewal
type argument.
Unfortunately, both approaches are not directly applicable for the AR(1) pro-

cess with ARCH(1) errors, since �Xn�n∈� does not fit in their framework. Con-
sider instead the process �Yn�n∈� given by the stochastic difference equation

Yn =
∣∣∣αYn−1 +

√
β+ λY2n−1εn

∣∣∣� n ≥ 1�(4.1)
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where �εn�n∈� are the same i.i.d. random variables as in Theorem 1, the con-
stants are the same as for the process �Xn�n∈� andY0 equals 	X0	 a.s. It can be
seen easily that �Yn�n∈� d=�	Xn	�n∈� if X0 ∼ π. Hence �Yn�n∈� and �	Xn	�n∈�
have the same stationary distribution and P�X > x� = 1/2P�Y > x�� x ∈ �.
Setting M �= 	α+√

λε	 and κ as in Proposition 2, the conditions of Corollary
2.4 of Goldie (1991) onM are satisfied. Thus, under the additional assumption
that

E
(∣∣∣(∣∣∣αY+

√
β+ λY2ε

∣∣∣)κ − (
	α+

√
λε	Y�κ

∣∣∣) <∞�(4.2)

the tail of the stationary distribution of �Yn�n∈� is Pareto; that is,

P�Y > x� ∼ cx−κ� x→ ∞�(4.3)

where c is a well-specified nonnegative constant. Note that a sufficient condi-
tion for (4.2) is E�Yκ−1� <∞.
The above procedure using Goldie’s result seems to be at first sight very

simple. However, in spite of the strength and elegance of the results in Goldie
(1991), additional conditions such as (4.2) are hard to check. Since the knowl-
edge of the existence of moments is in some way equivalent to the knowledge
of the (unknown) tail distribution (or at least the tail index of the stationary
distribution), we consider directly the tail of the stationary distribution of the
process �Xn�n∈�. The tail is derived by applying a Tauberian theorem which,
as far as we know, is a new approach. This method may also be applied to
other processes given by random recurrence equations which do not fit in the
framework of Kesten (1973) or Goldie (1991), or which simply do not fulfill all
the conditions in the two articles mentioned. Note that our approach gives no
information on the slowly varying function present in the tail of the heavy-
tailed stationary distribution. In the case of the AR(1) process with ARCH(1)
errors we determine the tail index of the stationary distribution of �Xn�n∈�
with our new approach and draw then the conclusion that the slowly varying
function is a well-specified constant.
In order to present our method we need the notion of O-regular variation;

see Bingham, Goldie and Teugels (1987), Chapter 2, for relevant definitions
and results.

Proposition 4. Let 
F�x� �= P�X > x�� x ≥ 0, be the tail of the stationary
solution of the process �Xn�n∈� given by (2.1). Then 
F is O-regularly varying.
In particular, if 
H �= 1 −H denotes the tail of the distribution function of ε,
for every  ≥ 1,


F� x�

F�x� ≥ 
H

(
max

(
0�
 − α√
λ

))
for all x ≥ 0�(4.4)
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Proof. Let  ≥ 1 be arbitrary. Since X is symmetric and �	Xn	� and �Yn�
have the same law when X0 ∼ π, we have for every x ≥ 0,

P�X >  x�
P�X > x� = P�Y >  x�

P�Y > x�

≥ P�αY+
√
β+ λY2ε >  x� ε > 0�
P�Y > x�

≥ P�Y >  x/�α+√
λε�� ε > 0�

P�Y > x�

≥
∫ ∞

max�0�� −α�/√λ�
P�Y >  x/�α+√

λt��
P�Y > x� p�t�dt�

By monotonicity, the integrand is bounded from below by 1. Therefore, (4.4)
holds. Note that the r.h.s. of (4.4) does not depend on x. Letting x → ∞ and
applying Corollary 2.0.6 of Bingham, Goldie and Teugels (1987) shows that 
F
is O-regularly varying. ✷

Remark 4. Since 
F is O-regularly varying, its lower Matuszewska index
γ > −∞. Therefore, by Theorem 2.2.2 of Bingham, Goldie and Teugels (1987),
for every τ ∈ �−γ�∞� there exist C > 0 and x0 > 0 such that xτ 
F�x� ≥ C for
all x ≥ x0.

It turns out that the following modification of the Drasin-Shea theorem
[Bingham, Goldie and Teugels (1987), Theorem 5.2.3, page 273] is the key to
our result.

Theorem 2. Let k� �0�∞� → �0�∞� be an integrable function and let �a� b�
be the maximal open interval �where a < 0� such that

ǩ�z� =
∫
�0�∞�

t−z
k�t�
t
dt <∞ for z ∈ �a� b��

If a > −∞, assume limδ↓0 ǩ�a+δ� = ∞, if b <∞, assume limδ↓0 ǩ�b−δ� = ∞.
Let h� �0�∞� → �0�∞� be locally bounded. Assume h has bounded increase. If

lim
x→∞

∫
�0�∞� k�x/t�h�t�dt/t

h�x� = c > 0�(4.5)

then

c = ǩ�ρ� for some ρ ∈ �a� b� and h�x� ∼ xρl�x�� x→ ∞�
where l is some slowly varying function.

We will identify h with the tail 
F of the distribution of X. The following is
our main theorem.
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Theorem 3. Suppose �Xn�n∈� is given by �2�1� with �εn�n∈� satisfying
the general conditions �2�2� and �D1� − �D3� and with parameters α and λ
satisfying �3�2�. Let 
F�x� = P�X > x�� x ≥ 0, be the right tail of the stationary
distribution function. Then


F�x� ∼ c x−κ� x→ ∞�
where

c = 1
2κ

E
(∣∣∣α	X	 +

√
β+ λX2ε

∣∣∣κ − ∣∣∣�α+√
λε�	X	

∣∣∣κ)
E
(
	α+√

λε	κ ln 	α+√
λε	

)(4.6)

and κ is given as the unique positive solution to

E
(	α+

√
λε	κ) = 1�(4.7)

Remark 5. (a) For the ARCH(1) process (that is, the case α = 0) this result
is well known [see Goldie (1991) or Embrechts, Klüppelberg and Mikosch
(1997), Section 8.4).
(b) Let E�	α + √

λε	κ� = hα�λ�κ� be as in Lemma 2. Recall that for ε ∼
N�0�1� and fixed λ, the exponent κ is decreasing in 	α	. This means that the
distribution ofX gets heavier tails. In particular, our new model has for α �= 0
heavier tails than the ARCH(1) process (see also Table 3).
(c) Theorem 3 together with Lemma 2 implies that the second moment of

the stationary distribution exists if and only if α2 + λE�ε2� < 1.

The proof of Theorem 3 will be an application of Theorem 2. Proposition 5
presents an implicit formula for the right tail 
F = 1 − F of the distribution
of X. We shall need the formula to show that assumption (4.5) is fulfilled. In
the following all assumptions of Theorem 3 hold. Recall that w.l.o.g. α ≥ 0.

Proposition 5.

1 =

H�x/√β�


F�x� +
∫ ∞

0
f�x� t�dt+

∫ ∞

0
h�x� t�dt� x > 0�(4.8)

where 
H�x� = P�ε > x�� x > 0, and for every x > 0� t > 0,

f�x� t� � =
(
p

(
x− αt√
β+ λt2

)
+ p

(
x+ αt√
β+ λt2

))
xλt2

�β+ λt2�3/2

F�t�

F�x�

1
t
≥ 0�

h�x� t� � =
(
p

(
x− αt√
β+ λt2

)
− p

(
x+ αt√
β+ λt2

))
αβt

�β+ λt2�3/2

F�t�

F�x�

1
t
≥ 0�

Proof. By (2.4) and the symmetry of X, we have


F�x� =
∫ ∞

−∞
P�αX+

√
β+λX2ε>x 	X=t�dF�t�

= −
∫ ∞

0
P�−αt+

√
β+λt2ε>x�dF�−t�+

∫ ∞

0
P�αt+

√
β+λt2ε>x�dF�t�
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= −
∫ ∞

0
P�−αt+

√
β+λt2ε>x�d
F�t�+

∫ ∞

0
P�αt+

√
β+λt2ε>x�dF�t�

= −
∫ ∞

0

(

H
(

x+αt√
β+λt2

)
+ 
H

(
x−αt√
β+λt2

))
d
F�t��

Integration by parts [see, e.g., Theorem 18.4 in Billingsley (1995)] and again
symmetry yields


F�x� = 
H
( x√

β

)
−

∫ ∞

0

(
p

(
x+ αt√
β+ λt2

)
α�β+ λt2� − �x+ αt�λt

�β+ λt2�3/2

+p
(

x− αt√
β+ λt2

)−α�β+ λt2� − �x− αt�λt
�β+ λt2�3/2

)

F�t�dt

= 
H
( x√

β

)
+

∫ ∞

0

(
p

(
x− αt√
β+ λt2

)
+ p

(
x+ αt√
β+ λt2

))
xλt2

�β+ λt2�3/2

F�t�dt

t

+
∫ ∞

0

(
p

(
x− αt√
β+ λt2

)
− p

(
x+ αt√
β+ λt2

))
αβt

�β+ λt2�3/2

F�t�dt

t
�

Finally, h�x� t� ≥ 0 for every x > 0� t > 0 because of (D1) and the symmetry
of p. This finishes the proof. ✷

We investigate now (4.8). Using Proposition 3, Proposition 4 and Remark 4
we derive some technical results in the next three lemmas. These results will
be crucial in applying Theorem 2.

Lemma 1. For every a ≥ 0 and b > 0,

lim
x→∞


H��x− a�/b�

F�x� = 0�

Proof. Assume first that γ = −∞. Because of Proposition 1(a) and
Remark 4 the statement follows immediately.
Now consider the case where γ > −∞. LetN �= inf�n > 0�E�	ε	n� > 2� and

choose m ∈ �N�−γ�. This is possible because of Proposition 1(a). Similarly as
in Proposition 4 we derive that


F�x�

H��x− a�/b� = 1

2
P�	αY+

√
β+ λY2ε	 > x�


H��x− a�/b�

≥ 1
2

∫ ∞

0


H��x− α t�/
√
β+ λt2�


H��x− a�/b� dFY�t�

≥ 1
2

∫ ∞

max�2a/α� b/√λ�


H(�x− a�/√λt)

H��x− a�/b� dFY�t��
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Applying the lemma of Fatou and Proposition 2.2.1(a) of Bingham, Goldie and
Teugels (1987) yields

lim inf
x→∞


F�x�

H��x− a�/b� ≥ 1

2

∫ ∞

max�2a/α� b/√λ�
lim inf
x→∞


H��x− a�/√λt�

H��x− a�/b� dFY�t�

≥ const
∫ ∞

max�2a/α� b/√λ�
tm dFY�t�

= constE(	X	m1�	X	>max�2a/α� b/√λ�
)
�

Since m >N and E�	X	N� = ∞, the statement follows by Proposition 3. ✷

Lemma 2. For every T > 0,

lim
x→∞

∫ ∞

0
f�x� t�dt = lim

x→∞

∫ ∞

T
f�x� t�dt = 1�

Moreover, if the lower Matuszewska index γ = −∞, then for every q ∈ �0�1�,

lim
x→∞

∫ ∞

xq
f�x� t�dt = 1�

Proof. Note that

0 ≤ h�x� t� ≤ αβ

xλ
f�x� t� for every t ≥ 1 and x > 0�(4.9)

Thus, for every x > 0,

0 ≤
∫ ∞

1
h�x� t�dt ≤ αβ

xλ

∫ ∞

1
f�x� t�dt�(4.10)

Next choose T ≥ 0 arbitrary. By (D1), for every t ∈ �0�T� and x large enough,

0 ≤ max�f�x� t�� h�x� t�� ≤ max�2λT�αβ�
β3/2

p

(
x− αT√
β+ λT2

)
x


F�x� �

and therefore distinguishing again between γ = −∞ and γ > −∞ [in the first
case use Remark 4, otherwise Lemma 1 and Proposition 1(d)] we get

lim
x→∞f�x� t� = 0 and lim

x→∞h�x� t� = 0 for every t ∈ �0�T��

Thus, by the dominated convergence theorem,

lim
x→∞

∫ T
0
f�x� t�dt = 0 and lim

x→∞

∫ T
0
h�x� t�dt = 0�(4.11)

Combining the result in Lemma 1 with (4.10) and (4.11) the first statement
follows.
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Finally, by (D1), Remark 4 and Proposition 1(c), supposing that γ = −∞
and x large enough,∫ xq
T
f�x� t�dt ≤ 2p

(
x− αxq√
β+ λx2q

)
xq+1λ

�β+ λT2�3/2
1


F�x�x
q

≤ const�T�p
(

x1−q − α√
β/x2q + λ

)
�x1−q��2q+1+τ�/�1−q� → 0� x→ ∞�

This completes the proof. ✷

Lemma 3. Define for x > 0� t > 0,

g�x� t� �=
(
p

(
x− αt√
λt

)
+ p

(
x+ αt√
λt

))
xλt2

�λt2�3/2

F�t�

F�x�

1
t
�

then limx→∞
∫∞
0 g�x� t�dt = 1.

Proof. Note first that integration by parts and Lemma 1 yield for every
T > 0,

0 ≤ lim sup
x→∞

∫ T
0
g�x� t�dt

≤ lim sup
x→∞


F�T�
( 
H(�x− αT�/√λT)


F�x� +

H(�x+ αT�/√λT)


F�x�

)

+ lim sup
x→∞

∫ T
0

� 
H(�x− αt�/√λt)+ 
H(�x+ αt�/√λt�)

F�x� dF�t�

≤ 4 lim sup
x→∞


H��x− αT�/√λT�

F�x� = 0�

(4.12)

Furthermore, by the general conditions (2.2) and assumption (D1), for every
x > 0� t ≥ 0,

p

(
x± αt√
λ t

)
≤ p

(
x± αt√
β+ λt2

)
and hence with Lemma 2 and (4.12) we get

lim sup
x→∞

∫ ∞

0
g�x� t�dt = lim sup

x→∞

∫ ∞

T
g�x� t�dt

≤
(
β

λT2
+ 1

)3/2
lim sup
x→∞

∫ ∞

T
f�x� t�dt

=
(
β

λT2
+ 1

)3/2
�

Letting T→ ∞ we conclude that

lim sup
x→∞

∫ ∞

0
g�x� t�dt ≤ 1�
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It remains to show that the converse inequality holds for the limes inferior.
We restrict ourselves to γ = −∞ (for γ > −∞ replace in what follows the
lower integration limit xq with T). Choose δ > 0 arbitrary and let q be the
constant in (D3). By assumption (D3) and Lemma 2,

lim inf
x→∞

∫ ∞

0
g�x� t�dt ≥ lim inf

x→∞

∫ ∞

xq
g�x� t�dt

≥ �1− δ� lim inf
x→∞

∫ ∞

xq
f�x� t��β+ λt2�3/2

�λt2�3/2 dt

≥ �1− δ� lim inf
x→∞

∫ ∞

xq
f�x� t�dt

= 1− δ�
Since δ > 0 was arbitrary the statement follows. ✷

We are now ready to prove Theorem 3.

Proof of Theorem 3. The proof is an application of Theorem 2. Choose

k�x� = x√
λ

(
p

(
x− α√
λ

)
+ p

(
x+ α√
λ

))
� x > 0(4.13)

and

h�x� = 
F�x�� x > 0�(4.14)

One can readily see that k is nonnegative, h is nonnegative, locally bounded
and of bounded increase since it is nonincreasing. Note that for every z ∈
�−∞�∞�,

ǩ�z� =
∫ ∞

0
t−z

k�t�
t
dt

=
∫ ∞

0
t−z

1√
λ
p

(
t− α√
λ

)
dt+

∫ 0
−∞

�−t�−z 1√
λ
p

(
t− α√
λ

)
dt

= E

(
	α+

√
λε	−z

)
�

Let �a� b� be the maximal open interval such that
ǩ�z� <∞ for z ∈ �a� b��

Note that a = −T = − inf�u ≥ 0	hα�λ�u� = ∞� < 0 and b = 1 because of
Proposition 2 and the fact that for z ≥ 0,∫ ∞

1
t−z

k�t�
t
dt ≤

∫ ∞

1

1√
λ

(
p

(
t− α√
λ

)
+ p

(
t+ α√
λ

))
dt <∞

and ∫ 1
0
t−z

k�t�
t
dt ≤ const

∫ 1
0
t−z dt =

{
<∞� z < 1,
=∞� z ≥ 1.
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Furthermore, by the dominated and monotone convergence theorem, respec-
tively,

lim
δ↓0

ǩ�a+ δ� = lim
δ↓0

E
(
1�	α+√

λε	≤1�	α+
√
λε	−�a+δ�)

+ lim
δ↓0

E
(
1�	α+√

λε	>1�	α+
√
λε	−�a+δ�)

= E
(
1�	α+√

λε	≤1�	α+
√
λε	T)+E(

1�	α+√
λε	>1�	α+

√
λε	T)

= hα�λ�T� = ∞
and

lim
δ↓0

ǩ�b− δ� = lim
δ↓0

∫ ∞

0
t−�1−δ� 1√

λ

(
p

(
t− α√
λ

)
+ p

(
t+ α√
λ

))
dt

≥ const lim
δ↓0

∫ 1
0
t−�1+δ� dt = const lim

δ↓0
1
δ
= ∞�

Finally, by Lemma 3, we have

lim
x→∞

∫∞
0 k�x/t� 
F�t�dt/t


F�x� = lim
x→∞

∫ ∞

0
g�x� t�dt = 1

and hence condition (4.5) is fulfilled with c = 1. Therefore all assumptions of
Theorem 2 are satisfied and we conclude (setting κ = −ρ)


F�x� ∼ x−κl�x�� x→ ∞�(4.15)

where l is some slowly varying function and κ is determined by the equation

E�	α+
√
λε	κ� = 1 for some κ ∈ �−1�T��(4.16)

Since the tail of the stationary distribution function is decreasing, the solution
κ in (4.16) has to be strictly positive and hence by Theorem 2 there exists a
solution κ ∈ �0�T� in (4.16) which is unique because of Lemma 2. Finally, with
the proceeding described in the introduction of Section 4 it follows that the
slowly varying function l is the constant c given in Theorem 3.

Remark 6. The approach proposed in this paper for evaluating the tail
of the stationary distribution of �Xn�n∈� is quite lengthy and technical and
requires the unpleasant conditions (D2) and (D3). Unfortunately, as already
mentioned in the introduction of Section 4, there does not exist any obvious
simpler derivation for general ε. However, in the case ε ∼N�0�1�, the result
in Theorem 3 can be obtained much more easily using the special structure of
the characteristic function of the normal distribution.
Recall that the random variable X which has the stationary distribution

function is characterized by the fixpoint equation

X
d= αX+

√
β+ λX2ε�(4.17)



1240 M. BORKOVEC AND C. KLÜPPELBERG

Now note that for every t ∈ �,

E
(
eitX

) = E
(
eitαXE

(
eit

√
β+λX2ε	X

))
= e−βt

2/2E
(
eitαX−t2λX2/2)(4.18)

= E
(
eit

√
βN1

)
E
(
eit�αX+√

λXN2�)
where N1 and N2 are independent standard normal random variables, inde-
pendent of X. From (4.18) we obtain the fixpoint equation

X
d=
√
βN1 + �α+

√
λN2�X�

HenceX is limit variable of the ergodic process �X̃n�n∈� given by the stochastic
difference equation

X̃n =
√
βN1� n + �α+

√
λN2� n�X̃n−1�(4.19)

where �N1� n�N2� n�n∈� is an i.i.d. sequence of random variables with the same
distribution as �N1�N2�. The stationary distribution of the process �X̃n�n∈�
follows from Goldie [(1991), Theorem 4.1]; see also Embrechts, Klüppelberg
and Mikosch [(1997), Section 8.4].
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