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COUNTING INTERVALS IN THE PACKING PROCESS

By Yuliy Baryshnikov and Alexander Gnedin

Universite de Versailles and University of Göttingen

We consider a sequential interval packing process similar to Rényi’s
“car parking problem” but with a generator of random intervals which
allows for arbitrarily small lengths. Embedding the process in continuous
time, we view it as a self-similar interval splitting process. We determine
the asymptotical behavior of the quantities such as the number of intervals
packed to some instant and obtain convergence results in the context of the
more general splitting model.

1. Introduction. Sequential interval packing problems extending the
celebrated Rényi “car-parking problem” [13] have a wide range of applica-
tions which include models of liquid structure in physics, absorption models
in chemistry and construction of error-correcting codes in information theory,
to mention a few. Many references to the early literature are found in the sur-
vey [14]. Recently, new interest in this class of problems arose in connection
with modeling of communication networks (cf. [3], [4], [5]). We continue this
line of research by extending the analysis of the counting problem initiated
in [5].
Let I1� I2� � � � be independent copies of a random interval I ⊂ �0�1�. The

sequential packing process is defined as follows. The first interval I1 is always
packed, that is, fixed at its position. The interval I2 is packed if it does not
overlap I1. Similarly, each subsequent Ij, j > 2, is packed if it does not overlap
any of the intervals packed so far.
The process comes eventually to an absorbing state, if the size of I cannot

be arbitrarily small, as in Rényi’s problem, and much of the literature on the
subject is devoted to characterization of the terminal state. In sharp contrast
to this, the process can proceed unlimitedly if I fits in any fixed gap with
positive probability, in which case it is natural to ask about the number of
packed intervals after n packing attempts. Coffman, Mallows and Poonen [5]
raised this question under the assumption that I has the uniform distribution
(that is to say, I is the span between two points drawn uniformly at random
from �0�1�). They proved that for large n,

the expected number of packed intervals ∼ cn�√17−3�/4(1)

and gave an exact formula for the constant c = 1�84 � � � . In the same paper
they asked about the asymptotic behavior of the variance of the number of
packed intervals and about the distribution of the sample size needed to pack
a given number of intervals.
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A generalization of the uniform distribution for random intervals is the
family of distributions given by

P�I ⊂ �x�1− y�� = �1− x− y�α� �x�y� ∈ �(2)

where α > 1 and  = ��x�y�� x ≥ 0, y ≥ 0, x + y ≤ 1�. For α = 2�3� � � � � I
can be seen as the span of α random points chosen from the uniform distri-
bution on the unit interval. In the present paper we find asymptotics for all
moments of the number of packed intervals and related quantities for dis-
tributions (2). We adopt here the approach which was mentioned in [5] but
not exploited in that paper: embed the packing process in continuous time
and convert it, via Poissonization, into a version of the generalized Brennan–
Durrett interval splitting process [1]. The key benefit of this device is that
it brings exact independence into the problem where otherwise only a kind
of asymptotic independence is present. Technically, the analysis is consider-
ably simplified because each quantity like the mean number of packed inter-
vals satisfies a single integral-differential equation rather than a system of
difference-integral equations for each n. We show that the basic quantities are
functions of hypergeometric type with powerlike growth at infinity.
The generalized interval-splitting process considered here differs radically

from the original Brennan–Durrett model [1, 2] in that the sum of the pieces
which undergo further subdivision is less than the whole. A distinguished
feature appearing in the new model is that the number of parts normalized
by its mean has a nontrivial weak limit which we identify with a fixed point
of the “smoothing transformation” [6].
The packing–splitting model can be viewed as a continuous time version of

a recursive construction of random fractals, as studied in [10]. From this view-
point, the exponent in (1) should be interpreted as β∗/αwhere β∗ = �√17−3�/2
is the Hausdorff dimension of the random Cantor set obtained by cutting out
all packed intervals, while α = 2 is the rate parameter of the waiting time
between splits.

2. Self-similar packing process. Suppose that random intervals
I1� I2� � � � arrive by a unit rate Poisson stream which is independent of the
Ij’s. Let the Ij’s be independent replicas of a random interval I with proba-
bility law (2). We are interested in the configuration of packed intervals after
the time t is elapsed.
Tractability of distributions (2) stems from their scale invariance properties.

First, the probability that I fits in a fixed gap �x�1−y� depends solely on the
size of the gap and not on its location. Second, for the affine order-preserving
transformation φx�y which maps �x�1 − y� onto �0�1�, the conditional distri-
bution of φx�y�I� given that I ⊂ �x�1 − y� coincides with the unconditional
distribution of I. The invariance taken together with the total independence
property of the extended Poisson process on �0�∞�× yields a self-similarity
of the packing process, which is best understood via the evolution of gaps
between packed intervals. The packing process within each gap is a scaled
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stochastic copy of the whole process, with scaling factors depending only on
the size of the gap.
It is convenient to enumerate the gaps by finite dyadic sequences, denoting

a generic sequence by ∗. Writing I = �X�1−Y� we identify a random interval
with a point �X�Y� ∈ , and let �X∗�Y∗�’s be independent copies of �X�Y�.
Initially there is only one gap �0�1� of size S0 = 1. After a mean one expo-

nential time an interval is packed and two new gaps of sizes S00 = X0S0 and
S01 = Y0S0 are created. Now, those incoming intervals which do not fit in any
of the two gaps cannot alter the configuration of packed intervals, while the
substreams of intervals fitting in the gaps are Poisson and independent. The
process iterates: after a gap of size S∗ is created it waits a random mean S−α

∗
exponential time and then splits into three pieces of sizes

S∗0 = X∗S∗� �1−X∗ −Y∗�S∗ and S∗1 = Y∗S∗�

where the first and the third pieces are the newly created gaps and the second
piece is the packed interval. Given the gap size, the waiting time for a gap to
split is independent of the past of the process, splitting proportions and the
evolution of the other coexising gaps.

3. Generalized interval splitting model. Essential in the above repre-
sentation of the packing process is only the description of the random splitting
mechanism.
More generally, we consider the Markovian splitting of �0�1� with a rate

parameter α governing the exponential waiting times and a probability dis-
tribution F on  determining the random proportions X�1 − X − Y and Y.
We will still speak of “packed intervals” and “gaps” to make a clear differ-
ence between divisible and indivisible pieces, although for the general F the
splitting process cannot be induced by a Poisson stream of i.i.d. intervals.
We are interested in the functionals which depend only on gap sizes and

are insensible to the arrangement of gaps within �0�1�; thus we do not loose
generality by assuming that X and Y are exchangeable. In particular, X and
Y have the same distribution which we denote G. We will assume throughout
the paper that G is absolutely continuous.
We will view the moments of X as particular values of the function

g�s� =
∫ 1
0
xs dG�x��

defined in the fundamental half-plane, to the right from the convergence
abscissa σ� −∞ ≤ σ ≤ 0� where the integral converges absolutely. If σ > −∞
and the integral converges for s = σ then the fundamental half-plane includes
the vertical line Re s = σ and is therefore closed. Otherwise the fundamental
half-plane is open. In any case, g is analytical in the interior of the funda-
mental half-plane.

Remark. In loose terms, σ is responsible for the “flatness” of G near 0. For
example, for G�x� = xaL�x�, a > 0 and L slowly varying we have σ = −a and
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the fundamental half-plane is open. On the other hand, for G�x� = −�log x�−1
we have σ = 0 and the fundamental half-plane is closed. The function g is
rational with poles at xα when G is a linear combination of terms xα with
coefficients being polynomials in log x.

The asymptotic analysis to follow involves the roots of the equation

2g�s� = 1�(3)

Because g is strictly decreasing on the intersection of the real axis and the
fundamental half-plane, and because g�0� = 1 and g�1� ≤ 1/2, there is a
unique solution β∗ ∈�0�1� which we call the main root. The main root is the
only real solution to the right from σ and it is simple because

g′�β∗� =
∫ 1
0
xβ∗

log xdG�x� < 0�(4)

The Brennan–Durrett interval splitting model appears as a special case
when X + Y = 1 with probability 1, and a gap of size S∗ breaks effectively
into two pieces of sizes X∗S∗ and Y∗S∗� A characteristic feature of this case
is that β∗ = 1.

4. Basic recursion. We fix now the ingredients α and F and proceed
with the generalized interval splitting model.
For β in the fundamental half-plane, define L�t� β� as the sum of the βth

powers of the sizes of all gaps present at instant t. Thus L�t�0� is the number
of gaps and L�t�1� is the total gap length. Denote by T the waiting time for
the first split. Because future splitting of any of the two gaps appearing at T
reproduces the whole process we have

L�t� β� d=
{
1� for t < T,
XβL0�Xα�t−T�� +YβL1�Yα�t−T��� for t ≥ T,(5)

where L0 and L1 have the same probability law as L� T is mean one expo-
nential, �X�Y� follow the splitting law F and L0�L1�T� �X�Y� are mutually
independent.
By our choice of β the expectation l�t� β� = EL�t� β� is finite and, averaging

in (5), we derive an integral equation

l�t� β� = e−t + 2
∫ t

0
e−s

∫ 1
0
l��t− s�xα�β�xβ dG�x�ds�(6)

where the symmetry betweenX and Y reflects in the factor 2. Differentiating
in t we get

l′�t� β� = −l�t� β� + 2
∫ 1
0
l�xαt� β�xβ dG�x��(7)

l�0� β� = 1�(8)

Repeated differentiation shows that l�t� β� is infinitely smooth.
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Theorem 1. The initial value problem (7), (8) has a unique C∞ solution.
The solution is given by the power series

l�t� β� =
∞∑
k=0

�−t�k
k!

k−1∏
j=0

�1− 2g�αj+ β���(9)

which converges absolutely for all t.

Proof. The convergence claim follows by noting that the product in (9)
varies slowly with k (see Lemma 3 below); thus the series defines an entire
function. Substituting into (7) we see that (9) is indeed a solution. The unique-
ness is justified by the contraction principle; see [8] for details. ✷

The uniqueness implies that the derivatives satisfy

l�k��t� β� = l�k��0� β�l�t� kβ+ α��
It follows that for real β the l�t� β�’s are strictly monotone in t, except for
l�t� β∗� ≡ 1�
Call β singular if αK+ β is a solution to (3) for some nonnegative integer

K. For such a β, l�t� β� is a polynomial of degree K and we have for t → ∞,

l�t� β� = �K!�−1
(

K−1∏
j=0

�1− 2g�αj+ β��
)
tK +O�tK−1��(10)

In particular, the series terminates if �β∗ − β�/α is a nonnegative integer;
in which case the nonzero coefficients of the series are positive. For other real
values of β the series starts alternating from some term and the situation is
more complicated. If c�β�t�β∗−β�/α is plugged into (7) the leading terms cancel,
leading to the guess that this is the correct asymptotics, although this heuris-
tics itself gives no hint of the value of the coefficient. Deriving the asymptotics
requires a more sophisticated treatment, which we give in the next section.

5. Asymptotics of the expectations. Assume first that β is not singular.
Write

γ�k�β� =
k−1∏
j=0

�1− 2g�αj+ β��

for the coefficient of the series at �−t�k/k!. Our plan is to extend γ to a function
of the complex variable s and to derive a Mellin–Barnes integral representa-
tion for the series. This technique is classical and can be found in many books
(see, e.g., [11]).
Obviously, g has a ridge at the real axis,

�g�s�� ≤ g�Re s�(11)

and therefore goes to zero as Re s → ∞�
Mimicking the proof of the Riemann–Lebesgue theorem (see [15], page 11),

we obtain a more delicate property.
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Lemma 2. For G absolutely continuous, g�s� tends to 0 as s varies in any
closed sub-half-plane of the fundamental half-plane so that �Im s� → ∞� The
convergence is uniform in Re s.

A consequence of the lemma is that (3) has finitely many roots in any closed
sub-half-plane of the fundamental half-plane. By (11) all roots lie to the left
from β∗� Also, there are no further roots on the line Re s = β∗ because other-
wise G would have a purely atomic component.
For β in the fundamental half-plane, set

�β = ��s− β�/α− j� s > σ� 2g�s� = 1� j = 0�1� � � ��
and for s such that Re s > �σ − β�/α, s /∈ �β, consider the product

γ�s� β� =
∞∏
j=0

1− 2g�αj+ β�
1− 2g�αj+ β+ αs� �(12)

Passing to logarithms we see that the product converges, hence γ�s� β� is a
meromorphic function with poles in �β� The rightmost pole is �β∗ −β�/α and
it is simple.
The identity

γ�s� β� = γ�s+ β/α�0�
γ�β/α�0�

shows that all the γ’s are essentially versions of a single function.
It is easily seen from the definition (12) that the function γ satisfies a func-

tional equation analogous to the well-known equation for the gamma function,

γ�s+ 1� β� = �1− 2g�αs+ β��γ�s� β��(13)

But the behavior of γ at infinity is very different from the asymptotics of the
gamma function.

Lemma 3. The function γ�s� β� is bounded in any closed sub-half-plane of
the fundamental half-plane, outside a sufficiently large circle enclosing �β.
Besides that, as �s� → ∞,

�γ�s� β�� > const e−ε�s�

for arbitrary ε > 0�

Proof. LetN be a positive integer larger than �β∗−Reβ�/α� For Re s > N
we have

�2g�αs+ β+ αj�� ≤ 2g�αRe s+ Reβ+ αj� < 2g�αN+ Reβ+ αj��
and this is less than 1, hence �γ�s� β�� < γ�N�β�� To bound the function for s
on the left from N use (13) and Lemma 2.
To estimate γ in the vertical direction we decompose γ into two products

with indices j < J and j ≥ J� Away from the poles, the absolute value of the



COUNTING INTERVALS 869

first product is bounded from below by Lemma 2. To estimate the absolute
value of the second product we use first the uniform estimate (11). Then∣∣∣∣log

( ∞∏
j=J

1− 2g�αj+ β�
1− 2g�αj+ β+ αs�

)∣∣∣∣ ≤ C
∞∑

j=J

�g�αj+ β� − g�αj+ β+ αs��

for some constant C. Using, further, the obvious estimate �1− xαs� ≤ α�s��1−
x� ≤ α�s��1 − xα� (valid for 0 < x ≤ 1) and telescoping the resulting sum, we
arrive at

α�s�Cg�β+J�
as an upper bound for the absolute value of the second product. Taking J
large enough we see that the integral grows slower than ε�s�� ✷

Following the well-known arguments (see [11], pages 300 and 301) we
obtain an integral representation of the power series

l�t� β� = 1
2πi

i∞∫
−i∞

+�−s�γ�s� β�ts ds�

where the integration contour goes along the imaginary axis and is indented
so that the integers 0�1�2� � � � [which are the poles of +�−s�] lie on one side and
the poles �β on the other side from the contour. Such a contour exists because
�β contains no nonnegative integers. The integral converges absolutely for all
complex t in the sector �Arg t� < π/2 as it follows from the asymptotics of the
gamma function and the first part of Lemma 3. The equality follows from the
residue theorem by taking a large segment of the imaginary axis and closing
it by a rectangular contour lying on the right.
Pulling the rectangular contour to the left across the poles of γ gives an

asymptotic expansion for large t,

l�t� β� � ∑
sα∈�β

+�−sα�tsα Re sα γ�·� β��

Evaluating the leading term yields the conjectured result.

Theorem 4. For all β in the fundamental half-plane and t → ∞,
l�t� β� = c�β�t�β∗−β�/α +O

(
t�β

∗−β�/α−min�1�θ/α�)�(14)

where θ is the width of the strip left from β∗ which is free from the roots of (3)
and lies within the fundamental half-plane, and

c�β� = +

(
β− β∗

α

)
1− 2g�β�
−2αg′�β∗�

∞∏
j=1

1− 2g�αj+ β�
1− 2g�αj+ β∗� �(15)
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Note that there is no restriction on β in the formulation of the theorem.
For β singular a possible pole of the gamma function is always annihilated by
a zero factor in (15), so that the formula becomes (10).
We emphasize that the most important value, β = 0, is always covered by

the theorem, including the boundary case σ = 0�

Remark. The series l�t� β� generalize certain generalized hypergeometric
functions of the type pFp� These are indeed generalized hypergeometric func-
tions in the case when g is extendible to a rational function on the whole
plane, with p being the degree of the denominator. In the latter case the infi-
nite products can be evaluated in terms of the gamma function or we can
adopt the classical hypergeometric asymptotics. We refer the reader to [12]
for a transparent exposition of the hypergeometrical asymptotics and integral
representations).

6. Higher moments and the limiting distribution of the number of
gaps. In this section we use the notation

lk�t� = ELk�t�0�
for the kth moment of the number of gaps [thus l�t�0� = l1�t�]. Setting β = 0
and averaging the kth powers on both sides of (5) we derive

l′k�t� = −lk�t� + 2
∫ 1
0
lk�xαt�dG�x� + hk�t��

lk�0� = 1�
(16)

where the inhomogeneous term involves the joint distribution of �X�Y�,

hk�t� =
k−1∑
j=1

(
k

j

) ∫

lj�txα�lk−j�tyα�dF�x�y��

We use the notation

f�λ�µ� =
∫

xλyµ dF�x�y�

for joint moments of �X�Y�.

Theorem 5. For k ≥ 1 and t → ∞,
lk�t� ∼ ckt

kβ∗/α�

where c1 = c�0� is as in (15) and, recursively,

ck =
k−1∑
j=1

cjck−j

(
k

j

)
f�jβ∗� �k− j�β∗�
1− 2g�kβ∗� � k = 2�3� � � � �(17)
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Proof. The proof is by induction on k and exploits efficiently the observa-
tion that tβ

∗/α satisfies the integral equation

−l�t� + 2
∫ 1
0
l�xαt�dG�x� = 0�

Theorem 4 states that the asymptotics holds for k = 1. Suppose the state-
ment is valid for j < k, then the inhomogeneous term satisfies

hk�t� ∼
(

k−1∑
j=1

cjck−j

(
k

j

)
f�jβ∗� �k− j�β∗�

)
tkβ

∗/α�(18)

and let b denote the coefficient in this formula. Introduce a comparison func-
tion

u�t� = �ck + δ�tkβ∗/α + atβ
∗/α + 2�

where δ and a are some positive constants. We claim that for a sufficiently
large, lk�t� ≤ u�t� for all t ≥ 0� Suppose not, then for any fixed a from u�0� >
lk�0� follows that there is a minimal τ where lk becomes larger than u. Observe
that τ → ∞ as a → ∞� By the definition of τ we have u�τ� = lk�τ� and
u�t� > lk�t� for t < τ; thus using (16) and (18) we get for a → ∞,

l′k�τ� = −lk�τ� + 2
∫ 1
0
lk�τxα�dG�x� + hk�τ�

< −u�τ� + 2
∫ 1
0
u�τxα�dG�x� + hk�τ�

= −�ck + δ�τkβ∗/α − aτβ
∗/α�1− 2g�β∗��

+ 2�ck + δ�τkβ∗/αg�kβ∗� + 2+ hk�t�
∼ τkβ

∗/α(−�ck + δ��1− 2g�kβ∗�� + b
)

= −τkβ
∗/αδ�1− 2g�kβ∗�� → −∞�

because 1 − 2g�kβ∗� > 0 for k > 1. But this is a contradiction because
u′�τ� > 0 and lk cannot become larger than u with negative derivative (or
simply because lk�t� is increasing). From u�t� > lk�t� by selecting δ arbitrar-
ily small we obtain for t → ∞,

lim sup
lk�t�
tkβ∗/α ≤ ck�

To get the lower bound we take another comparison function,

v�t� = �ck − δ�tkβ∗/α − atβ
∗/α

and show that lk�t� > v�t� provided a is sufficiently large. Indeed, assum-
ing the contrary and considering the first intersection point τ we have again
τ → ∞ as a → ∞. Arguing as in the proof of the upper bound we have

l′k�τ� > const τkβ
∗/α�
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On the other hand,

v′�τ� < const τkβ
∗/α−1

which is definitely smaller than the derivative of lk for τ sufficiently large: a
contradiction. Letting δ → 0 we see that

lim inf
lk�t�
tkβ∗/α ≥ ck�

Putting the two sides together proves the induction step, whence the result. ✷

We are now in a position to show that the normalized number of gaps has
a weak limit.

Theorem 6. There exists a weak limit

L�t�0�
l�t�0�

d→ Z� t → ∞�

where the random variable Z ≥ 0 is a unique solution of the distributional
equation,

Z
d= Xβ∗

Z0 +Yβ∗
Z1�(19)

with EZ = 1� Here, Z0 and Z1 have the same distribution as Z, �X�Y� has
distribution F and Z0�Z1� �X�Y� are independent.

Proof. Equation (19) defines Z as a fixed point of Durrett–Liggett’s
“smoothing transformation.” Because the derivative (4) is strictly negative,
Theorem (5.1) from [6] implies the existence and uniqueness of the solution,
while finiteness of all moments of Z is a consequence of Theorem (5.3) from
that paper. Setting zk = EZk we have z1 = 1 and manipulating with (19) we
conclude that the zk’s satisfy the recursion (17); therefore zk = ck/c

k
1 � It is not

hard to check that zk < k!�1−2g�2β∗��−k� and applying Carleman’s condition
we see that the distribution of Z is uniquely determined by the moments zk.
Finally, by Theorem 4 we have

lk�t�
lk1�t�

→ ck

ck1
= zk

and the weak convergence follows from the convergence of moments. ✷

Remark. Similar arguments show the weak convergence L�t� β�/
l�t� β� →d Z for any real β between the convergence abscissa σ and β∗. In
the critical case, L�t� β∗� is a martingale and converges with probability 1 to
the total mass of the Hausdorff measure of the Cantor set mentioned in the
Introduction; see [10] for details.
In the case X + Y ≡ 1 studied by Brennan and Durrett we have β∗ = 1,

ck = ck1� zk = 1; thus VarL�t�0� = o�t2β∗/α� and the limit of L�t�0�/l�t�0�
is the degenerate variable Z ≡ 1. Brennan and Durrett [1] derived a better
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estimate for the variance and concluded that the convergence to 1 holds with
probability 1.

7. Limiting empirical law for gap lengths. We have seen that the
mean total gap size is of the order t�β

∗−1�/α while the mean number of gaps
grows like tβ/α. This suggests that the size of a typical gap must be of the order
t−1/α� We will justify the guess in the form of a limiting empirical distribution
for the normalized gap sizes.
Following the suggestion, define for x ≥ 0,

Ht�x� =
expected number of gaps with lengths ≤ xt−1/α

expected total number of gaps
�

Clearly, Ht is a distribution function with the moments∫ ∞

0
xβHt�x� =

tβ/αl�t� β�
l�t�0� �

Multiplying the right-hand side by t−β∗/α and letting t → ∞ we derive from
Theorem 4 that these integrals converge, whence Ht has a limit.

Theorem 7. There exists a distribution function H such that for x ≥ 0,

H�x� = lim
t→∞

Ht�x��

The limit is uniquely characterized by the formula

∞∫
0

xβ dH�x� = +
(�β− β∗�/α)
+
(−β∗/α

) 1
γ�β/α�0�(20)

which holds for all β in the fundamental half-plane.

For β = kα; k = 0�1� � � �, the infinite product (12) telescopes and we get

∫ ∞

0
xkα dH�x� = +�k− β∗/α�

+�−β∗/α�
k−1∏
j=1

1
1− 2g�αj� �

These moments grow slower than k!2k� thus the Carleman’s criterion guaran-
tees that they determine H unambiguously.
The limiting distribution is absolutely continuous for x > 0 and its density

can be recovered as the inverse Mellin integral,

H′�x� = 1
2πi

∫ ν+i∞

ν−i∞

+
(�s− β∗�/α)
+
(−β∗/α

) x−s−1

γ
(
s/α�0

) ds�
where ν is an arbitrary positive constant. The Stirling formula for the gamma
function and the second part of Lemma 3 imply that the integral converges
absolutely for x > 0; therefore H indeed has a density.
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Remark. The function H�x� behaves near zero like G�x� and is of the
order of x−σ � If g admits a meromorphic continuation to the left from σ , an
asymptotic expansion ofH is determined from the spacing of poles of g (see [7],
Theorem 7.8). Explicitly,

1
γ
(
s/α�0

) =
∞∏
j=0

1− 2g�αj+ s�
1− 2g�αj� �

which shows that singularities in (20) come with those of 1− 2g�s��

8. Packed intervals and gaps. The reader might have been surprised
to learn things about gaps while the title of the paper suggests that the packed
intervals must be our primary topic. To remedy the situation we shall reduce
the “interval counting” to the “gap counting.”
The number of packed intervals is equal to the number of gaps minus 1. The

total area covered by the packed intervals is 1 minus the total area covered
by the gaps. Taking the squared sums breaks the direct connection, but there
is still a simple relation between the expectations. Surprisingly enough, this
applies to almost all β.
LetM�t� β� be the sum of the βth powers of the lengths of packed intervals

present at instant t, m�t� β� = EM�t� β�. Clearly,
M�t�0� = L�t�0� − 1� M�t�1� = 1−L�t�1��

Theorem 8. If β is not a root of (3) and Reβ > σ , then

m�t� β� = a�β��l�t� β� − 1��
where

a�β� =
∫
�1− x− y�β dF�x�y�

−1+ 2g�β� �

Proof. An argument similar to that which led us to (7) shows thatm�t� β�
is a solution to

m′�t� β� = −m�t� β� + 2
∫ 1
0
m�txα�xβ dG�x� +

∫

�1− x− y�β dF�x�y��

m�0� β� = 0�

Substitutionm�t� β� = a�β��l�t� β�−1� converts this equation into (6) and the
statement follows by uniqueness of the solutions. ✷

9. Packing time. What is the limiting distribution of the time needed to
pack a large numberN of intervals?; that is, how long should we wait untilN
splits occur? This question was posed in the last section of [5]. We can prove
here that a limiting distribution distribution does exist.
Let TN be the time of the Nth split. Thus T1 is mean one exponential,

but already the law of T2 must involve the joint distribution of splitting
proportions.
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Since each split adds one gap and one interval we have

P�TN ≤ t� = P�L�t�0� > N+ 1��
Inverting this relation and applying Theorem 6 yields the following.

Theorem 9. There exists a weak limit, as N → ∞,
TN(

N/c�0�)α/β∗
d→ Z−α/β∗

�

Remark. In the Brennan–Durrett case the limit is degenerate and the
convergence holds with probability 1.

10. Packing problem with distributions (2). We return to the original
problem and consider the packing problem with α > 1 and

dF�x�y� = α�α− 1��1− x− y�α−2 dxdy�

As a splitting model, this problem has a special feature that α enters both the
waiting time distribution and the splitting distribution. The marginal distri-
bution of a splitting proportion is

dG�x� = α�1− x�α−1 dx
and the integral

g�s� = αB�s+ 1� α� = +�α+ 1�+�s+ 1�
+�α+ s+ 1�

has the convergence abscissa at σ = −1. The function g is meromorphic on
the whole plane, with finitely or infinitely many poles at negative integers.
The main root is a single positive solution to

1− 2αB�β∗ + 1� α� = 0(21)

An easy computation yields the joint moments

f�λ�µ� = +�α+ 1�+�λ+ 1�+�µ+ 1�
+�α+ λ+ µ+ 1� �

Remark. Upon a change of variable the integral term in (7) becomes∫ 1
0
l�ty�β�y�β+1−α�/α�1− y1/α�α−1 dy�

where we recognize an integral of Erdélyi–Kober type appearing in the frac-
tional calculus [9]. The solutions are generalized hypergeometric functions of
type αFα for α = 2�3� � � � . For noninteger values of α the l�t� β�’s are entire
functions which seem not to have been considered before.
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We specialize now in the case α = 2�3� � � � � Then (21) becomes a polynomial
equation

�β+ 1��β+ 2� · · · �β+ α� − 2α! = 0

which has α roots β∗� β2� � � � � βα, of which β∗ is the rightmost one. Since g
is rational we can write 1 − 2g�s� as a ratio of two polynomials which we
decompose into a product of monomials. The resulting series in the usual
hypergeometric form is

l�t� β� =
∞∑
k=0

�−t�k
k!

k−1∏
j=0

(
j+ �β− β∗�/α)(j+ �β− β2�/α

) · · · (j+ �β− βα�/α
)

(
j+ �β+ 1�/α)(j+ �β+ 2�/α) · · · (j+ �β+ α�/α)�

Theorem 4 applies and evaluating the infinite product in terms of the
gamma function (as in [16]) we get

c�β� =
∏α

j=2 +
(�β∗ − βj�/α

)∏α
j=1 +

(�β+ j�/α)∏α
j=2 +

((
β− βj�/α

)∏α
j=1 +

(�β∗ + j�/α)�(22)

a result which could be read off from the classical asymptotics (see [11, 12]).
The limiting empirical distribution of gap sizes has density

H′�x� = 1
2πi

∏α
j=2 +

(−βj/α
)

∏α
j=1 +

(
j/α

) ∫ i∞

−i∞

∏α
j=1 +

(�s+ j�/α)∏α
j=2 +

(�s− βj�/α
)x−s−1 ds�

The integral represents Meijer’s G-function of type G
α�0
α−1� α (see [12], page 32)

and converges absolutely in the sector �Arg x� < π/�2α�� The density H′�x�,
x ≥ 0� has an exponential decay at infinity and a positive value at x = 0.
The variance of the number of gaps satisfies

VarL�t�0� ∼ �c2 − c21�t2β
∗/α�

where c1 = c�0� is given by (22) and

c2 = 2c21
+�α+ 1�+�β∗ + 1�+�β∗ + 1�

+�α+ 2β∗ + 1� − 2+�α+ 1�+�2β∗ + 1� �(23)

Example. We get an additional insight into the problem studied in [5].
In this case α = 2 and the main root is β∗ = �√17 − 3�/2. The second root
β2 = �−√

17− 3�/2 lies to the left from the convergence abscissa at σ = −1.
The (smooth version of) density H′ has a positive value at x = 0. Coffman,

Mallows and Poonen demonstrated an integral representation forH′ different
from that given here and expressed the density via a Whittaker function. [It
should be noted that the x−1/2 factor in their equation (4.2) gets absorbed by
a singularity of the Whittaker function, thus confirming the behavior ofH′ at
zero.]
The coefficient c�0� appeared as formula (3.7) in [5], which is in full accord

with our (22). [Note: their ck’s correspond to the c�β�’s in our notation and
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our ck’s have a different meaning.] Now we can do the next step and apply
Theorem 6 and (23) to compute the asymptotics of the variance,

VarL�t�0� ∼ �c2 − c21�t�
√
17−3�/2�

where the numeric values are c2 ≈ 3�849820 and c2 − c21 ≈ 0�464725.
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