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We introduce backoff processes, an idealized stochastic model of brows-
ing on the World Wide Web, which incorporates both hyperlink traversals
and use of the “back button.” With some probability the next state is
generated by a distribution over out-edges from the current state, as in
a traditional Markov chain. With the remaining probability, however, the
next state is generated by clicking on the back button and returning to
the state from which the current state was entered by a “forward step.”
Repeated clicks on the back button require access to increasingly distant
history.

We show that this process has fascinating similarities to and differences
fromMarkov chains. In particular, we prove that, like Markov chains, back-
off processes always have a limit distribution, and we give algorithms to
compute this distribution. Unlike Markov chains, the limit distribution
may depend on the start state.

1. Introduction. Consider a modification of a Markov chain in which
at each step, with some probability, we undo the last forward transition of
the chain. For intuition, the reader may wish to think of a user using a
browser on the World Wide Web, following a Markov chain on the pages of
the Web and occasionally hitting the “back button.” We model such phenom-
ena by discrete-time stochastic processes of the following form: we are given
a Markov chain M on a set V = �1�2� � � � � n� of states, together with an n-
dimensional vector � of backoff probabilities. The process evolves as follows:
at each time step t = 0�1�2� � � � � the process is in a state Xt ∈ V, and in addi-
tion has a history Ht, which is a stack whose items are states from V. Let
top�H� denote the top of the stack H. At time t = 0 the process starts at some
state X0 ∈ V, with the history H0 containing only the single element X0. At
each subsequent step the process makes either a forward step or a backward
step, by the following rules: (1) if Ht consists of the singleton X0 it makes
a forward step; (2) otherwise, with probability αtop�Ht� it makes a backward
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step, and with probability 1− αtop�Ht� it makes a forward step. The forward
and backward steps at time t are as follows:

1. In a forward step, Xt is distributed according to the successor state of
Xt−1 under M; the state Xt is then pushed onto the history stack Ht−1 to
create Ht.

2. In a backward step, the process pops top�Ht−1� from Ht−1 to create Ht; it
then moves to top�Ht� [i.e., the new state Xt equals top�Ht�].
Note that the conditionXt = top�Ht� holds for all t, independent of whether

the step is a forward step or a backward step.
Under what conditions do such processes have limit distributions, and how

do such processes differ from traditional Markov chains? We focus in this paper
on the time-averaged limit distribution, usually called the “Cesaro limit distri-
bution.” The Cesaro limit of a sequence a0� a1� � � � is limt→∞�1/t�

∑t−1
τ=0 aτ, if the

limit exists. For example, the sequence 0�1�0�1� � � � has Cesaro limit 1/2. The
Cesaro limit distribution at state i is limt→∞�1/t�

∑t−1
τ=0 Pr
Xτ = i�, if the limit

exists. By contrast, the stationary distribution at state i is limt→∞ Pr
Xt = i�,
if the limit exists. Of course, a stationary distribution is always a Cesaro limit
distribution. Intuitively, the stationary distribution gives the limiting fraction
of time spent in each state, whereas the Cesaro limit distribution gives the
average fraction of time spent in each state. We shall sometimes refer simply
to either a stationary distribution or a Cesaro limit distribution as a limit
distribution.

Motivation. Our work is broadly motivated by user modeling for scenarios
in which a user with an “undo” capability performs a sequence of actions.
A simple concrete setting is that of browsing on the World Wide Web. We
view the pages of the Web as states in a Markov chain, with the transition
probabilities denoting the distribution over new pages to which the user can
move forward, and the backoff vector denoting for each state the probability
that a user enters the state and elects to click the browser’s back button rather
than continuing to browse forward from that state.

A number of research projects [1, 10, 13] have designed and implemented
Web intermediaries and learning agents that build simple user models and
used them to personalize the user experience. On the commercial side, user
models are exploited to target advertising better on the Web based on a user’s
browsing patterns; see [3] and references therein for theoretical results on
these and related problems. Understanding more sophisticated models such
as ours is interesting in its own right, but could also lead to better user
modeling.

Overview of results. For the remainder of this paper we assume a finite
number of states. For simplicity, we assume also that the underlying Markov
chain is irreducible (i.e., it is possible, with positive probability, to eventually
reach each state from every other state) and aperiodic. In particular, M has
a stationary distribution and not just a Cesaro limit distribution. Since some
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backoff probability αi may equal 1, these assumptions do not guarantee that
the backoff process is irreducible (or aperiodic). We are mainly interested in the
situation where the backoff process is irreducible. We would like to make the
simplifying assumptions that no αi equals 1 and that the backoff process is
irreducible, but we cannot, since later we are forced to deal with cases where
these assumptions do not hold.

We now give the reader a preview of some interesting and arguably unex-
pected phenomena that emerge in such “back-button” random walks. Our pri-
mary focus is on the Cesaro limit distribution.

Intuitively, if the history stack Ht grows unboundedly with time, then the
process “forgets” the start state X0 (as happens in a traditional Markov pro-
cess, where � is identically zero). On the other hand, if the elements of � are
all very close to 1, the reader may envision the process repeatedly “falling
back” to the start state X0, so that Ht does not tend to grow unboundedly.
What happens between these extremes?

One of our main results is that there is always a Cesaro limit distribution,
although there may not be a stationary distribution, even if the backoff pro-
cess is aperiodic. Consider first the case when all entries of � are equal, so
that there is a single backoff probability α that is independent of the state.
In this case we give a remarkably simple characterization of the limit distri-
bution provided α < 1/2; the history grows unboundedly with time, and the
limit distribution of the process converges to that of the underlying Markov
chain M.

On the other hand, if α > 1/2 then the process returns to the start state
X0 infinitely often, the expected history length is finite, and the limit distri-
bution differs in general from that of M and depends on the start state X0.
Thus, unlike ergodic Markov chains, the limit distribution depends on the start
state.

More generally, consider starting the backoff process in a probability distri-
bution over the states of M; then the limit distribution depends on this initial
distribution. As the initial distribution varies over the unit simplex, the set of
limit distributions forms a simplex. As α converges to 1/2 from above, these
simplices converge to a single point, which is the limit distribution of the
underlying Markov chain.

The transition case α = 1/2 is fascinating: the process returns to the start
state infinitely often, but the history grows with time and the distribution
of the process reaches the stationary distribution of M. These results are
described in Section 3.

We have distinguished three cases: α < 1/2, α = 1/2 and α > 1/2. In
Section 4, we show that these three cases can be generalized to backoff prob-
abilities that vary from state to state. The generalization depends on whether
a certain infinite Markov process (whose states correspond to possible histo-
ries) is transient, null or ergodic, respectively (see Section 4 for definitions).
It is intuitively clear in the constant α case, for example, that when α < 1/2,
the history will grow unboundedly. But what happens when some states have
backoff probabilities greater than 1/2 and others have backoff probabilities
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less than 1/2? When does the history grow, and how does the limit distribution
depend onM and �? Even when all the backoff probabilities are less than 1/2,
why should there be a limit distribution?

We resolve these questions by showing that there exists a potential func-
tion of the history that is expected to grow in the transient case (where the
history grows unboundedly), is expected to shrink in the ergodic case (where
the expected size of the history stack remains bounded) and is expected to
remain constant if the process is null. The potential function is a bounded
difference martingale, which allows us to use martingale tail inequalities to
prove these equivalences. Somewhat surprisingly, we can use this relatively
simple characterization of the backoff process to obtain an efficient algorithm
to decide, givenM and α, whether or not the given process is transient, null or
ergodic. We show that in all cases the process attains a Cesaro limit distribu-
tion (though the proofs are quite different for the different cases). We also give
algorithms to compute the limit probabilities. If the process is either ergodic
or null then the limit probabilities are computed exactly by solving certain
systems of linear inequalities. However, if the process is transient, then the
limit probabilities need not be rational numbers, even if all entries ofM and �
are rational. We show that in this case, the limit probabilities can be obtained
by solving a linear system, where the entries of the linear system are them-
selves the solution to a semidefinite program. This gives us an algorithm to
approximate the limit probability vector.

In Section 2, we establish various definitions and notation. In Section 3, we
consider the case where the backoff probabilities are constant (i.e., uniform).
In Section 4, we consider the general case, where the backoff probabilities
can vary. In Section 4.1, we show how it is possible to classify, in polynomial
time, the behavior of each irreducible backoff process as transient or ergodic or
null. In Section 4.2, we prove that each backoff process always has a Cesaro
limit distribution. In Section 4.3, we show how the limit distribution may
be computed. In Section 5, we show how it is possible to extend our results
to a situation where the backoff probabilities are determined by the edges
(i.e., for each forward step from state j to state k, there is a probability of
revocation that depends on both j and k, rather than depending only on k).
In Section 6, we give our conclusions. We also have an Appendix, in which
we give some background material, namely, the Perron–Frobenius theorem,
Azuma’s inequality for martingales, submartingales and supermartingales,
the renewal theorem and the law of large numbers. Also in the Appendix, we
complete the proof of one of our theorems.

2. Definitions and notation. We use �M��� i� to denote the backoff
process on an underlying Markov chain M, with backoff vector �, starting
from state i. This process is an (infinite) Markov chain on the space of all
histories. Formally, a history stack (which we may refer to simply as a his-
tory) σ̄ is a sequence σ0� σ1� � � � � σ�� of states of V, for � ≥ 0. For a history
σ̄ = σ0� σ1� � � � � σ��, its length, denoted ��σ̄�, is � (we do not count the start
state σ0 in the length, since it is special). If ��σ̄� = 0, then we say that σ̄ is an
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initial history. For a history σ̄ = σ0� σ1� � � � � σ��, its top, denoted top�σ̄�, is σ�.
We also associate the standard stack operations pop and push with histories.
For a history σ̄ = σ0� σ1� � � � � σ��, we have pop�σ̄� = σ0� σ1� � � � � σ�−1�, and
for state j ∈ �1� � � � � n�, we have push�σ̄� j� = σ0� σ1� � � � � σ�� j�. We let �
denote the space of all finite attainable histories.

For a Markov chain M, backoff vector �, and history σ̄ with top�σ̄� = j,
define the successor (or next state) succ�σ̄� to take on values from � with the
following distribution:

succ�σ̄� =


pop�σ̄� with probability αj� if ��σ̄� ≥ 1,
push�σ̄� k� with probability �1− αj�Mjk� if ��σ̄� ≥ 1,
push�σ̄� k� with probability Mjk� if ��σ̄� = 0.

For a Markov chain M, backoff vector � and state i ∈ �1� � � � � n�, the
�M��� i�-Markov chain is the sequence H0�H1�H2� � � �� taking values from
the set � of histories, with H0 = i� and Ht+1 distributed as succ�Ht�. We
refer to the sequence X0�X1�X2� � � ��, with Xt = top�Ht� as the �M��� i�-
backoff process. Several properties of the �M��� i�-backoff process are actually
independent of the start state i, and to stress this aspect we will sometimes
simply use the term “�M���-backoff process.”

Note that the �M��� i�-backoff process does not completely give the
�M��� i�-Markov chain, because it does not specify whether each step results
from a “forward” or “backward” operation. To complete the correspondence we
define an auxiliary sequence: let S1� � � � � St� � � � be the sequence with St tak-
ing on values from the set �F�B�, with St = F if ��Ht� = ��Ht−1� + 1 and
St = B if ��Ht� = ��Ht−1� − 1. (Intuitively, F stands for “forward” and B for
“backward.”) Notice that sequence X0� � � � �Xt� � � � together with the sequence
S1� � � � � St� � � � does completely specify the sequence H0� � � � �Ht� � � � .

We study the distribution of the statesXt as the backoff process evolves over
time. We shall show that there is always a Cesaro limit distribution (although
there is not necessarily a stationary distribution, even if the backoff process is
aperiodic). We shall also study the question of efficiently computing the Cesaro
limit distribution.

3. Constant backoff probability. The case in which the backoff proba-
bility takes the same value α for every state has a very clean characterization,
and it will give us insight into some of the arguments to come. In this case,
we refer to the �M��� i�-backoff process as the �M�α� i�-backoff process.

We fix a specific �M�α� i�-backoff process throughout this section. Suppose
we generate a sequenceX0�X1� � � � �Xt� � � � of steps together with an auxiliary
sequence S1� � � � � St� � � � . To begin with, we wish to view this sequence of steps
as being “equivalent” (in a sense) to one in which only forward steps are taken.
In this way, we can relate the behavior of the �M�α� i�-backoff process to that
of the underlying (finite) Markov process M beginning in state i, which we
understand much more accurately. We write qt�j� to denote the probability
that M, starting in state i, is in state j after t steps.
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When the backoff probability takes the same value α for every state, we
have the following basic relation between these two processes.

Theorem 3.1. For given natural numbers λ and t, and a state j, we have
Pr
Xt = j � ��Ht� = λ� = qλ�j��

Proof. Consider a string ω of F’s and B’s with the property that in every
prefix, the number of B’s is not more than the number of F’s. Notice that
every such string corresponds to a legitimate auxiliary sequence for the backoff
process (except if some αi = 0 or 1). Now consider strings ω and ω′ such that
ω = ω1FBω2 and ω′ = ω1ω2. Let ω be of length t and ω1 of length t1. Notice
that

Pr
Xt = j � S1� � � � � St� = ω�
= ∑

σ̄∈�
Pr
Ht1

= σ̄ � S1� � � � � St1
� = ω1�

· Pr
Xt = j � St1+1� � � � � St� = FBω2 and Ht1
= σ̄�

= ∑
σ̄∈�

Pr
Ht1
= σ̄ � S1� � � � � St1

� = ω1�

· Pr
Xt = j � St1+3� � � � � St� = ω2 and Ht1+2 = σ̄�
= ∑

σ̄∈�
Pr
Ht1

= σ̄ � S1� � � � � St1
� = ω1�

· Pr
Xt−2 = j � St1+1� � � � � St−2� = ω2 and Ht1
= σ̄�

= Pr
Xt−2 = j � S1� � � � � St−2� = ω′��
This motivates the following notion of a reduction. A sequence ω of F’s and
B’s reduces in one step to a sequence ω′ if ω = ω1FBω2 and ω′ = ω1ω2. A
sequence ω reduces to a sequence ω′′ if ω′′ can be obtained from ω by a finite
number of “reductions in one step.” Repeatedly applying the claim from the
previous paragraph, we find that if a string ω of length t reduces to a string ω′′

of length t′′, then

Pr
Xt = j � S1� � � � � St� = ω� = Pr
Xt′′ = j � S1� � � � � St′′ � = ω′′��
But every auxiliary sequence S1� � � � � St� can eventually be reduced to a
sequence of the form Fλ (i.e., consisting only of forward steps), and, further,
λ = ��Ht�. This yields

Pr
Xt = j � ��Ht� = λ� = Pr
Xλ = j � S1� � � � � Sλ� = Fλ� = qλ�j�� ✷

In addition to the sequences �Xt� and �St�, consider the sequence �Yt:
t ≥ 0�, where Yt is the history length ��Ht�. Now Yt is simply the position
after t steps of a randomwalk on the natural numbers, with a reflecting barrier
at 0, in which the probability of moving left (except at 0) is α, the probability
of moving right (except at 0) is 1− α, and the probability of moving right at 0
is 1. This correspondence will be crucial for our analysis.
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In terms of these notions, we mention one additional technical lemma.
Its proof follows simply by conditioning on the value of Yt and applying
Theorem 3.1.

Lemma 3.2. For all natural numbers t and states j, we have Pr
Xt = j� =∑
r qr�j� · Pr
Yt = r��

We are now ready to consider the two cases, where α ≤ 1
2 and α > 1

2 , and
show that in each case there is a Cesaro limit distribution.

The case of α ≤ 1
2 . Let the stationary probability distribution of the under-

lying Markov chain M be ψ1� � � � � ψn�. By our assumptions about M, this
distribution is independent of the start state i. When α ≤ 1

2 , we show that
the �M�α� i�-backoff process converges to ψ1� � � � � ψn�. That is, there is a sta-
tionary probability distribution, which is independent of the start state i, and
this stationary probability distribution equals the stationary probability dis-
tribution of the underlying Markov chain.

Theorem 3.3. For all states j of the �M�α� i�-backoff process, we have
limt→∞ Pr
Xt = j� = ψj.

Proof. Fix ε > 0, and choose t0 large enough that, for all states j of M
and all t ≥ t0, we have �qt�j� − ψj� < ε/2. Since α ≤ 1/2, we can also choose
t1 ≥ t0 large enough that for each t ≥ t1, we have Pr
Yt > t0� > 1− ε/2. Then
for t ≥ t1 we have∣∣Pr
Xt = j� − ψj

∣∣
=
∣∣∣∣∑

r

qr�j� · Pr
Yt = r� − ψj

∑
r

Pr
Yt = r�
∣∣∣∣

=
∣∣∣∣∑

r

(
qr�j� − ψj

) · Pr
Yt = r�
∣∣∣∣ ≤∑

r

�qr�j� − ψj� · Pr
Yt = r�
= ∑

r<t1

�qr�j� − ψj� · Pr
Yt = r� + ∑
r≥t1

�qr�j� − ψj� · Pr
Yt = r�

≤ ∑
r<t1

Pr
Yt = r� + ∑
r≥t1

ε/2 · Pr
Yt = r� ≤ ε/2+ ε/2 = ε� ✷

Although the proof above applies to each α ≤ 1
2 , we note a qualitative differ-

ence between the case of α < 1
2 and the “threshold case” α = 1

2 . In the former
case, for every r, there are almost surely only finitely many t for which Yt ≤ r;
the largest such t is a step on which the process pushes a state that is never
popped in the future. In the latter case,Yt almost surely returns to 0 infinitely
often, and yet the process still converges to the stationary distribution of M.

The case of α > 1
2 . When α > 1

2 , the �M�α� i�-backoff process retains pos-
itive probability on short histories as t increases, and hence retains memory
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of its start state i. Nevertheless, the process has a Cesaro limit distribution,
but this distribution may be different from the stationary distribution of M.

Theorem 3.4. When α > 1
2 , the �M�α� i�-backoff process has a Cesaro limit

distribution.

Proof. For all natural numbers t and states j we have Pr
Xt = j� =∑
r qr�j� · Pr
Yt = r� by Lemma 3.2. Viewing Yt as a random walk on the

natural numbers, one can compute the Cesaro limit of Pr
Yt = r� to be ζr = βα
when r = 0, and ζr = βzr−1 when r > 0, where β = �2α − 1�/�2α2� and
z = �1−α�/α. (Note that Yt does not have a stationary distribution, because it
is even only on even steps.) A standard argument then shows that Pr
Xt = j�
has the Cesaro limit

∑
r ζrqr�j�. ✷

Note that the proof shows only a Cesaro limit distribution, rather than a
stationary distribution. We now give an example where there is no stationary
distribution, even though the backoff process is aperiodic.

Example. Assume

M =
(
0�01 0�99
0�99 0�01

)
� α = 0�99�(1)

Assume that the two states are states 1 and 2, and that the start state is 1.
It is easy to see that the backoff process �M�α�1� can have the initial history
1� only on even steps. By considering, as before, the corresponding random
walk on the natural numbers, with a reflecting barrier at 0, in which the
probability of moving left (except at 0) is 0.99, the probability of moving right
(except at 0) is 0.01, and the probability of moving right at 0 is 1, we see that
on even steps, with high probability the backoff process has the initial history
1�, and hence is in state 1, while on the odd steps, with high probability
the backoff process has the history 1�2�, and hence is in state 2. Since the
backoff process is in state 1 with high probability on even steps and is in state
2 with high probability on odd steps, it follows that there is no stationary
distribution.

Note that the backoff process is aperiodic: this follows immediately from
the fact that there is a self-loop (in fact, both states have a self-loop; that is,
it is possible to pass from each state to itself in one step). This is in spite
of the fact that there is a periodicity in the histories. Later, we shall study
the Markov chain (the “Polish matrix”) whose states consist of the attainable
histories: the Polish matrix is always periodic.

Now, more generally, suppose that the process starts from an initial distri-
bution over states; we are given a probability vector z = z1� � � � � zn�, choose
a state j with probability zj and begin the process from j. As z ranges over
all possible probability vectors, what are the possible vectors of limit distribu-
tions? Let us again assume a fixed underlying Markov chain M, and denote
this set of limit distributions by Sα.
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Theorem 3.5. Each Sα is a simplex. As α converges to
1
2 from above, these

simplices converge to the single vector that is the stationary distribution of the
underlying Markov chain.

Proof. Let us define ζ
�α�
r to be the value of ζr given in the proof of

Theorem 3.4 when the backedge probability is α. Define qzt to be the proba-
bility vector whose jth entry is the probability that the Markov process given
by M is in state j after t steps, if the process starts from an initial distribu-
tion z of states. Thus, qzt = zMt. Note that qt�j�, as defined earlier, is the jth
entry of qzt when z is the probability distribution with zj = 1 and zk = 0 when
k �= j. Define fα�z� to be the Cesaro limit distribution, when α is the backedge
probability. As in the proof of Theorem 3.4, we have fα�z� =

∑
r ζ

�α�
r qzr. It is

easy to see that fα is a linear function, which implies that Sα is a simplex.
Let ψ be the stationary probability distribution of the underlying Markov

chain M, so that ψM = ψ. We now show that as α converges to 1
2 from above,

the simplices Sα converge to the single vector ψ. We first show that ψ ∈ Sα.
Since ψM = ψ, we have q

ψ
t = ψ for every t. It follows easily that fα�ψ� = ψ.

Hence, ψ ∈ Sα, as desired.
To show that the Sα’s converge to ψ, we show that for each ε > 0, there

is α′ such that if 1
2 < α < α′, then Sα is in the ball of radius ε about ψ.

We know that qzt = zMt converges to ψ as t goes to infinity for each
probability vector z. This convergence is in fact uniform over all probabil-
ity vectors. That is, given ε > 0, there is T such that for every t > T and
for every probability vector z, we have �qzt − ψ�2 < ε (here � · �2 is the �2-
norm). Choose k so that �qzk − ψ�2 < ε/3 for every probability vector z. Then

choose α′ > 1
2 so that for every α with 1

2 < α < α′, we have
∑

r<k ζ
�α�
r < ε/3

[it is easy to see that this is possible, by definition of ζ�α�r ]. Then �fα�z� −
ψ�2 = �

∑
r<k ζ

�α�
r �qzr−ψ�+∑r≥k ζ

�α�
r �qzr−ψ��2 ≤

∑
r<k ζ

�α�
r �qzr−ψ�2+

∑
r≥k ζ

�α�
r

�qzr − ψ�2. Now �qzr − ψ�2 ≤ 2, since qzr and ψ are each probability vectors,
and so

∑
r<k ζ

�α�
r �qzr − ψ�2 ≤ 2

∑
r<k ζ

�α�
r < 2ε/3. Further, �qzr − ψ�2 < ε/3

for r ≥ k, and so
∑

r≥k ζ
�α�
r �qzr − ψ�2 ≤ �ε/3�

∑
r≥k ζ

�α�
r ≤ �ε/3�∑r ζ

�α�
r = ε/3.

So �fα�z� − ψ�2 < ε. Therefore, Sα is in the ball of radius ε about ψ, as
desired. ✷

4. Varying backoff probabilities. Recall that the state space � of
the �M��� i�-Markov chain contains all finite attainable histories of the
backoff process. Let us refer to the transition probability matrix of
the �M��� i�-Markov chain as the Polish matrix with start state i, or sim-
ply the Polish matrix if i is implicit or irrelevant. Note that even though the
backoff process has only finitely many states, the Polish matrix has a count-
ably infinite number of states.

Our analysis in the rest of the paper will branch, depending on whether
the Polish matrix is transient, null or ergodic. We now define these concepts,
which are standard notions in the study of denumerable Markov chains (see,
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e.g., [9]). A Markov chain is called recurrent if, started in an arbitrary state i,
the probability of eventually returning to state i is 1. Otherwise, it is called
transient. There are two subcases of the recurrent case. If, started in an arbi-
trary state i, the expected time to return to i is finite, then the Markov chain
is called ergodic. If, started in an arbitrary state i, the probability of return to
state i is 1, but the expected time to return to i is infinite, then the Markov
chain is called null. Every irreducible Markov chain is either transient, ergodic
or null, and for irreducible Markov chains, we can replace every occurrence
of “an arbitrary state” by “some state” in these definitions above. Every irre-
ducible Markov chain with a finite state space is ergodic.

As examples, consider a random walk on the natural numbers, with a
reflecting barrier at 0, where the probability of moving left (except at 0) is p,
of moving right (except at 0) is 1−p, and of moving right at 0 is 1. If p < 1/2,
then the walk is transient; if p = 1/2, then the walk is null; and if p > 1/2,
then the walk is ergodic.

We say that the backoff process �M��� i� is transient (resp., null, ergodic)
if the Polish matrix is transient (resp., null, ergodic). In the constant α case
(Section 3), if α < 1/2, then the backoff process is transient; if α = 1/2, then the
backoff process is null and if α > 1/2, then the backoff process is ergodic. The
next proposition says that the classification does not depend on the start state
and therefore we may refer to the backoff process �M��� as being transient,
ergodic or null.

Proposition 4.1. The irreducible backoff process �M��� i� is transient
�resp., ergodic, null� precisely if the backoff process �M��� j� is transient �resp.,
ergodic, null�.

Proof. Let us call a state i transient if �M��� i� is transient and similarly
for the other properties (recurrent, and its subclassifications ergodic and null).
We must show that if some state is transient (resp., ergodic, null) then every
state is transient (resp., ergodic, null). If αj = 0 for some j, then every state i
is transient. This is because, starting in state i, there is a positive probability
of eventually reaching state j, and the stack i� � � � � j� can never be unwound
back to the original stack i�. So assume that αj > 0 for every j.

Assume that there is at least one transient state and at least one recurrent
state; we shall derive a contradiction. Assume first that there is some transient
state j with αj < 1. Let i be a recurrent state. Starting in state i, there
is a positive probability of eventually reaching state j. This gives the stack
i� � � � � j�. There is now a positive probability that the stack never unwinds
back to i� � � � � j� (this follows from the fact that j is transient and that αj < 1).
But if the stack never unwinds to i� � � � � j�, then it never unwinds to i�.
So there is a positive probability that the stack never unwinds to i�, which
contradicts the assumption that i is recurrent. Hence, we can assume that for
every transient state j, we have αj = 1.

Let j be an arbitrary state. We shall show that j is recurrent, a contra-
diction. Assume that the backoff process starts in state j; we must show that
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with probability 1, the stack in the backoff process returns to j�. Assume
that the next state is �, so that the stack is j� ��. If � is transient, then with
probability 1, on the following step the stack is back to j�, since α� = 1.
Therefore, assume that � is recurrent. So with probability 1, the stack is j� ��
infinitely often. Since α� > 0, it follows that with probability 1, the stack must
eventually return to j�, which was to be shown.

We have shown that if some state is transient, then they all are. Assume
that there is at least one null state and at least one ergodic state; we shall
derive a contradiction. This will conclude the proof.

Assume first that there is some null state j with αj < 1. Let i be an ergodic
state. There is a positive probability that starting in state i in �M��� i�, the
backoff process eventually reaches state j and then makes a forward step.
Since the expected time in �M��� j� to return to the stack j� is infinite, it
follows that the expected time in �M��� i� to return to i� is infinite. This
contradicts the assumption that i is ergodic. Hence, for every null state j, we
have αj = 1.

Let j be an arbitrary state. We shall show that j is ergodic, a contradiction.
For each state i, let hi be the expected time to return to the stack i� in
�M��� i�, after starting in state i. Thus, hi is finite if i is ergodic, and infinite
if i is null. From the start state j in �M��� j�, the expected time to return to
the stack j� is∑

�

Mj�

(
α��2� + �1− α��α��h� + 2� + �1− α��2α��2h� + 2�

+ �1− α��3α��3h� + 2� + · · ·)�(2)

The term Mj�α��2� represents the situation where the first step is to some
state �, followed immediately by a backward step. The term Mj��1 − α��α�×
�h�+2� represents the situation where the first step is to some state �, followed
immediately by a forward step, followed eventually by a return to the stack
j� ��, followed immediately by a backward step. The next term Mj��1−α��2×
α��2h� + 2� represents the situation where the first step is to some state �,
followed immediately by a forward step, followed eventually by a return to the
stack j� ��, followed immediately by a forward step, followed eventually by
another return to the stack j� ��, followed immediately by a backward step.
The pattern continues in the obvious way.

The contribution to the sum by null states � is finite, since α� = 1 for each
null state �. Let z� = h� + 2. Then

�1− α��α��h� + 2� + �1− α��2α��2h� + 2� + �1− α��3α��3h� + 2� + · · ·
is bounded above by

�1− α��α��z�� + �1− α��2α��2z�� + �1− α��3α��3z�� + · · · �
This is bounded, since

�1− α�� + �1− α��2�2� + �1− α��3�3� + · · · = �1− α��/�α��2�
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Therefore, the expression (2), the expected time to return to the stack j�,
is finite, so j is ergodic, as desired. ✷

We shall prove the following theorems.

Theorem 4.2. If �M��� is irreducible, then the task of classifying the
�M���-backoff process as transient or ergodic or null is solvable in polyno-
mial time.

Theorem 4.3. Each �M��� i�-backoff process has a Cesaro limit distri-
bution. If the process is irreducible and is either transient or null, then this
limit distribution is independent of the start state i. Furthermore, the limit
distribution is computable in polynomial time if the process is ergodic or null.

When the �M��� i�-backoff process is transient, the limit probabilities are
not necessarily rational in the entries ofM and � (see example in Section 4.3.3)
and therefore we cannot hope to compute them exactly. Instead, we give an
algorithm for approximating these limit probabilities. Specifically, we show
the following.

Theorem 4.4. Let �M��� i� be a transient backoff process on n states, and
let all entries of M and � be rationals expressible as ratios of �-bit integers.
Then given any error bound ε > 0, a vector π ′ that ε-approximates the limit
distribution π �i.e., satisfies �π ′j−πj� ≤ ε� can be computed in time polynomial
in n� � and log 1

ε
.

The next theorem shows the delicate balance of a null backoff process.

Theorem 4.5. Let �M��� be an irreducible, null backoff process.
(i) If �M��� is modified by increasing some αj, but leavingM and all other

αi’s the same, then the resulting backoff process is ergodic.
(ii) If �M��� is modified by decreasing some αj, but leavingM and all other

αi’s the same, then the resulting backoff process is transient.

Proof. The first part is Claim 4.28 below. The second part is demonstrated
by comments after Claim 4.28. ✷

In particular, it follows from Theorem 4.5 that null backoff processes form
a set of measure 0.

4.1. Classifying the backoff process. In this section we show how it is pos-
sible to classify, in polynomial time, the behavior of each irreducible �M���-
backoff process as transient or ergodic or null. In Section 3 (where the backoff
probability is independent of the state), except for initial histories the expected
length of the history either always grows, always shrinks or always stays the
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same, independent of the top state in the history stack. To see that this argu-
ment cannot carry over to this section, consider a simple Markov chain M on
two states 1 and 2, with Mij = 1/2 for every pair i� j, and with α1 = 0�99
and α2 = 0�01. It is clear that if the top state is 1 then the history is expected
to shrink, while if the top state is 2 then the history is expected to grow. To
deal with this imbalance between the states, we associate a weight wi with
every state i and consider the weighted sum of states on the stack. Our goal
is to find a weight vector with the property that the sum of the weights of
the states in the stack is expected to grow (resp., shrink, remain constant) if
and only if the length of the history is expected to grow (resp., shrink, remain
constant) This hope motivates our next few definitions.

Definition 4.6. For a nonnegative vector w = w1� � � � �wn� and a history
σ̄ = σ0� � � � � σ�� of a backoff process on n states, define the w-potential of σ̄ ,
denoted 'w�σ̄�, to be

∑�
i=1wσi

(i.e., the sum of the weights of the states in the
history, except the start state).

Definition 4.7. For a nonnegative vector w = w1� � � � �wn� and a history
σ̄ = σ0� � � � � σ�� of a backoff process on n states, define the w-differential
of σ̄ , denoted ('w�σ̄�, to be E
'w�succ�σ̄��� −'w�σ̄�. [Here E represents the
expected value over the distribution given by succ�σ̄�.]

The following proposition is immediate from the definition.

Proposition 4.8. If σ̄ and σ̄ ′ are noninitial histories with the same top
state j, then

('w�σ̄� = ('w�σ̄ ′� = −αjwj + �1− αj�
n∑

k=1
Mjkwk�

The above proposition motivates the following definition.

Definition 4.9. For a nonnegative vector w = w1� � � � �wn�, a history
σ̄ = σ0� � � � � σ�� of a backoff process on n states and state j ∈ �1� � � � � n�,
let ('w� j = ('w�σ̄�, where σ̄ is any history with j = top�σ̄� and ��σ̄� > 0.
Let ('w denote the vector ('w�1� � � � � ('w� n�.

For intuition, consider the constant α case with weight wi = 1 for each
state i. In this case 'w�σ̄�, thew-potential of σ̄ , is precisely ��σ̄�, and ('w�σ̄�,
the w-differential of σ̄ , is the expected change in the size of the stack, which
is 1− 2α. When α < 1/2 (resp., α = 1/2, α > 1/2), so that the expected change
in the size of the stack is positive (resp., 0, negative), the process is transient
(resp., null, ergodic).

Similarly, in the varying α case, we would like to associate a positive weight
with every state so that (1) the expected change in potential, or the “drift” of
the potential, in every step has the same sign independent of the top state
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(i.e., w is positive and ('w is either all positive or all zero or all negative),
and (2) this sign can be used to categorize the process as either transient, null
or ergodic, precisely as it did in the constant α case.

Examples. We now give examples where this approach succeeds in clas-
sifying the backoff process as transient, ergodic or null. Let M and � be as
follows:

M =
( 1

2
1
2

1
2

1
2

)
� � = 〈 25 � 2

3

〉
�(3)

Let w = �3�1�. Then ('w = �0�0�. Thus, w is a witness to �M��� being null.
(Such results are formally proved later.)

Now let M be as in (3), and let �′ = � 13 � 2
3�. Let w′ = �4�1�. Then ('w′ =

� 13 � 1
6�. Since ('w′ is all positive, we conclude that w′ is a witness to �M��′�

being transient. Note that this is consistent with the second part of
Theorem 4.5, since α′ is obtained from α by lowering α1.

Finally, let M be as in (3), and let �′′ = � 25 � 4
5�. Let w′′ = �4�1�. (It is

a coincidence that w′ = w′′.) Then ('w′′ = �− 1
10 �− 3

10�. Since ('w′′ is all
negative, we conclude that w′′ is a witness to �M��′′� being ergodic. Note that
this is consistent with the first part of Theorem 4.5, since α′′ is obtained from α
by raising α2.

There are easy counterexamples, say, if some αi = 1 and some other αj = 0,
that show that it is not possible to insist that the expected change in potential
be always positive, or always zero, or always negative, when all weights are
positive. Therefore, we relax the requirement of positivity on vectors slightly
and define the notion of an “admissible” vector (applicable to both the vector
of weights and also the vector of changes in potential).

Definition 4.10. We say that an n-dimensional vector v is admissible for
a vector � if v is nonnegative and vi = 0 only if αi = 1. (We will say simply
“admissible” instead of “admissible for �” if � is fixed or understood.)

In Section 4.1.1 we prove three very natural lemmas that combine to show
the following. Given an irreducible backoff process and an admissible vec-
tor w: (i) (Lemma 4.14). If ('w is admissible then the process is transient.
(ii) (Lemma 4.19). If ('w is zero then the process is null. (iii) (Lemma 4.17).
If −('w is admissible then the process is ergodic. Roughly speaking, we show
that 'w�σ̄� is a bounded-difference martingale. This enables us to use mar-
tingale tail inequalities to analyze the long-term behavior of the process.

This explains what could happen if we are lucky with the choice ofw. It does
not explain how to find w or even why the three cases above are exhaustive.
In the rest of this section, we show that the cases are indeed exhaustive and
give a efficient algorithm to compute w. This part of the argument relies on
the surprising properties of an n×n matrix related to the �M���-process. We
now define this matrix, which we call the Hungarian matrix.
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LetA be the n×n diagonal matrix with the ith diagonal entry being αi. Let I
be the n×n identity matrix. If αi > 0 for every i, then the Hungarian matrix for
the �M���-process, denoted H =H�M���, is the matrix �I−A�MA−1. (Notice
that A−1 does exist and is the diagonal matrix with ith entry being 1/αi.)

The spectral properties of H, and in particular its maximal eigenvalue,
denoted ρ�H�, play a central role in determining the behavior of the �M���-
process. In this section we show how it determines whether the process is
ergodic, null or transient. In later sections, we will use it to compute limit
probability vectors, for a given �M���-process.

The maximal eigenvalue ρ�H� motivates us to define a quantity ρ�M���
which is essentially equal to ρ�H�, in cases where H is defined. Let

ρ�M��� = sup�ρ � There is an admissible w such that the vector

�I−A�Mw − ρAw is admissible��
We first dispense with the case where some αi = 0.

Claim 4.11. If �M��� is irreducible and αj = 0 for some j, then
ρ�M��� = ∞.

Remark. From the proof it follows that if every entry of M and � is an
�-bit rational, then for any ρ ≤ 2�, there exists a nonnegative vector w with
�w�∞ ≤ 1 and wi ≥ 2−poly�n� �� if wi �= 0 satisfying �I−A�Mw ≥ ρw. This fact
will be used in Section 4.3.3.

Proof of Claim 4.11. Let ρ <∞ be any constant. We prove the claim by
explicitly constructing an admissible vector w such that �I −A�Mw − ρAw
is admissible.

Let Mmin be the smallest nonzero entry of M, and let αmax be the largest
entry of � that is strictly smaller than 1. Let γ be any positive number less
than �1 − αmax�Mmin/ρ. Let j be any index such that αj = 0. Let GM�� be
the graph on vertex set �1� � � � � n� that has an edge from i to k, if αi �= 1
and Mik �= 0. [This is the graph with edges giving forward steps of positive
probability of the �M���-process.] Let d�i� k� denote the length of the shortest
path from i to k in the graph GM��. By the irreducibility of the �M���-process
we have that d�i� j� < n for every state i. We now define w as follows:

wi =
{
0� if αi = 1,
γd�i� j�� otherwise.

It is clear by construction that γ > 0 and thus w is admissible. Let v =
�I −A�Mw − ρAw. We argue that v is admissible componentwise, showing
that vi satisfies the condition of admissibility for every i.

Case 1 (αi = 1). In this case it suffices to show vi ≥ 0. This follows from
the facts that

∑
k�1− αi�Mikwk ≥ 0, and −ραiwi = 0 since wi = 0.

Case 2 (αi = 0). (This includes the case i = j.). In this case, again we have
−ραiwi = 0. Further we have

∑
k�1 − αi�Mik =

∑
kMik = 1 and thus vi = 1,

which also satisfies the condition for admissibility.
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Case 3 (0 < αi < 1). In particular, i �= j and d�i� j� > 0. Let k be such
that d�k� j� = d�i� j� − 1 and there is an edge from i to k in GM��. We know
such a state k exists (by definition of shortest paths). We have

vi =
∑
k′
�1− αi�Mik′wk′ − ραiwi

≥ �1− αi�Mikwk − ραiwi

≥ �1− αmax�Mmin wk − ρwi

= �1− αmax�Mmin γd�k� j� − ργd�i� j�

= (�1− αmax�Mmin − ργ
)
γd�k� j�

> 0
(
since γ < �1−αmax�Mmin

ρ

)
�

Again the condition for admissibility is satisfied. ✷

The next claim shows that in the remaining cases, ρ�M��� = ρ�H�.

Claim 4.12. Let �M��� be irreducible. If αi > 0 for every i, then ρ�M��� =
ρ�H�. Further, there exists an admissible vector w such that �I − A�Mw =
ρ�M���Aw.

Proof. Note first that the Hungarian matrix H is nonnegative. Our hope
is to apply the Perron–Frobenius theorem to this nonnegative matrix and
derive some benefits from this. However, H is not necessarily irreducible,
so we can do this yet. So we consider a smaller matrix, H��, which is the
restriction of H to rows and columns corresponding to j such that αj < 1.
Notice that H�� is irreducible. (This is equivalent to M�� being irreducible,
which is implied by the irreducibility of the backoff process.) By the Perron–
Frobenius theorem (Theorem A.1), there exists a (unique) positive vector v′

and a (unique) positive real ρ = ρ�H��� such thatH��v′ = ρv′. In what follows
we see that ρ�M��� = ρ�H��� = ρ�H�.

First we verify that ρ�H��� = ρ�H�. This is easily seen to be true. Note
that the rows of H that are omitted from H�� are all 0. Thus a vector x is a
right eigenvector of H if and only if it is obtained from a right eigenvector x′

of H�� by padding with zeroes (in indices j where αj = 1), and this padding
preserves eigenvalues. In particular, we get that ρ�H� = ρ�H��� and there is
an admissible vector v (obtained by padding v′) such that Hv = ρ�H�v.

Next we show that ρ�M��� ≥ ρ�H�. Consider any ρ′ < ρ�H� and let w =
A−1v. Then note that �I−A�Mw−ρ′Aw =Hv−ρ′v = �ρ�H�−ρ′�v which is
admissible. Thus ρ�M��� ≥ ρ′ for every ρ′ < ρ�H� and thus ρ�M��� ≥ ρ�H�.

Finally we show that ρ�M��� ≤ ρ�H�. Let w be an admissible vector and
let ρ > 0 be such that �I − A�Mw − ρAw is admissible. Let v = A−1w.
First note that vj must be 0 if αj = 1, or else the jth component of the
vector �I−A�Mw− ρAw is negative. Now let v′ be obtained by restricting v
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to coordinates such that αj < 1. Notice now that we have H��v′ − ρv′ is a
nonnegative vector. From the fact [11], page 17, that

ρ�A� = max
x

{
min
i�xi �=0

{�Ax�i
xi

}}
for any irreducible nonnegative matrix A, we conclude that ρ�H��� ≥ ρ.

This concludes the proof that ρ�M��� = ρ�H�. The existence of a vector w
satisfying �I−A�Mw = ρ�H�Aw also follows from the argument above. ✷

Lemma 4.13. For every irreducible �M���-backoff process, the following
hold:

(i) �M��� is ergodic⇔ ρ�M��� < 1⇔ there is an admissible w such that
−('w is admissible.

(ii) �M��� is null ⇔ ρ�M��� = 1 ⇔ there is an admissible w such that
('w = 0.

(iii) �M��� is transient ⇔ ρ�M��� > 1 ⇔ there is an admissible w such
that ('w is admissible.

Furthermore, ρ�M��� and the vector w are computable in polynomial time.

Proof. The fact that ρ�M��� is efficiently computable follows from
Claims 4.11 and 4.12.

Notice now that ('w = �I − A�Mw − Aw. We start with the case
ρ�M��� < 1. Notice that in this case, no αi = 0 (by Claim 4.11) and hence we
can apply Claim 4.12 to see that there exists a vector w such that �I −A�×
Mw = ρAw. For this vector w, we have ('w = �ρ− 1�Aw. Thus, the vector
−('w = �1 − ρ�w is admissible. Applying Lemma 4.17 of Section 4.1.1, we
conclude that the �M���-process is ergodic.

Similarly, if ρ�M��� = 1, we have that for the vector w from Claim 4.12,
('w = 0. Thus, by Lemma 4.19, we find that the �M���-process is null.
Finally, if ρ�M��� > 1, then [by the definition of ρ�M���] there exists a
vector w and ρ′ > 1 such that �I −A�Mw − ρ′Aw is admissible. In particu-
lar, this implies that the vector ('w = �I −A�Mw −Aw is also admissible.
Applying Lemma 4.14, we conclude that the �M���-process is transient. ✷

Theorem 4.2 follows immediately from Lemma 4.13.

4.1.1. Classification based on drift of the potential. We now state and
prove Lemmas 4.14, 4.17 and 4.19, which relate the drift of the potential
to the behavior of the backoff process (i.e., whether they are transient, null or
ergodic).

Lemma 4.14. For an irreducible �M���-backoff process, if there exists an
admissible w s.t. ('w is also admissible, then the �M���-backoff process is
transient.
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Proof. We start by showing that the potential 'w�succ�succ�σ̄��� has a
strictly larger expectation than the potential 'w�σ̄�. This, coupled with the
fact that changes in the potential are always bounded in magnitude, allow
us to apply martingale tail inequalities to the sequence �'w�Ht��t and claim
that it increases linearly with time, with all but an exponentially vanishing
probability. This allows us to prove that with positive probability the process
never returns to the initial history, thus ruling out the possibility that it is
recurrent (ergodic or null). Details below.

Claim 4.15. There exists ε > 0 such that for all sequences H0� � � � �Ht of
positive probability in the �M��� i�-Markov chain,

E
[
'�Ht+2� −'�Ht�

]
> ε�

Proof. We start by noticing that the potential must increase (strictly)
whenever Ht is the initial history. This is true, since in this case the backoff
process is not allowed to back off. Further, by irreducibility, there exists some
state j with αj < 1 and Mij > 0. Thus the expected increase in potential from
the initial history is at least wjMij. Let ε1 = wjMij� and ε2 be the smallest
nonzero entry of ('w. We show that the claim holds for ε = min�ε1� ε2�.

Notice first that both the quantities E
'�Ht+1� −'�Ht�� and E
'�Ht+2� −
'�Ht+1�� are nonnegative (since ('w is nonnegative). So it suffices to prove
that at least one of these quantities increases by at least ε. We consider several
cases.

Case 1 �αtop�Ht� < 1�. In this case E
'�Ht+1� −'�Ht�� = ('w� top�Ht� ≥ ε2,
since ('w is admissible.

Case 2 (αtop�Ht� = 1 and ��Ht� > 1). Let Ht = σ0� � � � � σ�−1� σ��. Note that
Ht+1 = σ0� � � � � σ�−1�. Further, note that αtop�Ht+1� < 1 (since only the top or
bottom of the history stack can be states j with αj = 1). Thus, in this case we
have E
'�Ht+2� −'�Ht+1�� ≥ ε2 (again using the admissibility of ('w�.

Case 3 (αtop�Ht�� = 1 and ��Ht� ≤ 1). In this case, either Ht or Ht+1 is
the initial history, and in such a case, the expected increase in potential is at
least ε1. ✷

Next we apply a martingale tail inequality to claim that the probability
that the history is the initial history (or equivalently the potential is zero)
grows exponentially small with time.

Claim 4.16. There exists c <∞, λ < 1 such that for every integer t ≥ 0, the
following holds:

Pr
[
��Ht� = 0

] ≤ c · λt�

Proof. Since the potential at the initial history is zero, and the potential
is expected to go up by ε every two time steps, we have that the expected
potential at the end of t steps (when t is even) is at least εt/2. Further notice
that the sequence 'w�H0��'w�H2��'w�H4�� � � � � form a submartingale, and
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that the change in 'w�Ht� is absolutely bounded: �'w�Ht+2� −'w�Ht�� ≤ 2 ·
maxi∈�1� ���� n��wi�. Therefore, we can apply a standard tail inequality
(Corollary A.5) to show that there exist constants c <∞, λ < 1 such that

Pr
[
'w�Ht� = 0

] ≤ c · λt�
The claim follows by noticing that if the history is the initial history, then the
potential is zero. ✷

We use the claim above to notice that for any time T, the probability that
the �M��� i�-backoff process reaches the initial history after time T is at most∑∞

t=T c·λt ≤ c·λT/�1−λ�. Setting T sufficiently large, we get that this quantity
is smaller than 1. Thus the probability that the given �M��� i�-backoff process
returns to the initial history after time T is bounded away from 1, ruling out
the possibility that it is recurrent.

Lemma 4.17. For an irreducible �M���-backoff process, if there exists an
admissible w s.t. −('w is also admissible, then the �M���-backoff process is
ergodic.

Proof. First notice that we can modify the vector w so that it is positive
and ('w is negative, as follows. Let ε be the smallest nonzero entry of −('w.
For every j such that αj = 1, set w′j = wj+ε/2. The corresponding difference
vector, ('w′ , is at most ε/2 larger than ('w in any coordinate, and thus
entries that were already negative in ('w remain negative in ('w′ . On the
other hand, for any j such that ('w� j was 0 (implying αj = 1), the value
of ('w′� j is −w′j = −ε/2. Thus all the zero entries are now negative.

Henceforth we assume, without loss of generality, that w is positive and
('w is negative. Let wmin denote the smallest entry of −('w and wmax denote
the largest entry ofw. At this stage the expectedw-potential always goes down
except when the history is an initial history. Notice that when the history is
an initial history, the expected increase is potential is at most wmax. To deal
with initial histories, we define an extended potential.

For a history sequence H0� � � � �Ht� � � � of the �M��� i�-Markov chain, let
N0�t� denote the number of times the initial history occurs in the sequence
H0� � � � � Ht−1. Define the extended potential ψ�t� = ψ

H0� ����Ht� ���
w �t� to be

ψ�t� = 'w�Ht� − �wmax +wmin� ·N0�t��
By construction, the extended potential of a sequence is expected to go down

by at least wmin in every step. Thus we have

E
[
ψ�t�] ≤ −wmin · t�

Further, the sequence ψ�0�� � � � � ψ�t�� � � � is a supermartingale and the change
in one step is absolutely bounded. Thus, by applying a martingale tail inequal-
ity (Corollary A.6), we see that for any ε > 0, with probability tending to 1, the
extended potential after t steps is at most −�1− ε�wmin · t. [More formally, for
every ε� δ > 0, there exists a time t0 such that for every t ≥ t0, the probability
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that the extended potential ψ�t� is greater than −�1− ε�wmin · t, is at most δ.]
Since the 'w part of the extended potential is always nonnegative, and each
time the sequence reaches the initial history the extended potential is reduced
by at most �wmax +wmin�, this implies that a sequence with extended poten-
tial −�1−ε�wmin · t must include at least ��1−ε�wmin/�wmin +wmax�� · t initial
histories.

Assume for contradiction that the �M���-backoff process is null or tran-
sient. Then the expected time to return to an initial history is infinite. Let Yi

denote the length of the time between the �i− 1�st and ith visit to the initial
history. By the law of large numbers (Proposition A.9), we find that for every
δ > 0 and every c, there exists an integer N such that with probability at
least 1 − δ, the first N visits to the initial history take more than cN steps.
Setting δ = 1

2 and c = 2 · �wmin +wmax�/��1−ε�wmin� and t = cN, we see from
the previous paragraph that with probability tending to 1, after t steps there
are at least 2N initial histories. But we just showed that with probability at
least 1

2 , the first N visits to the initial history take more than t steps. This is
a contradiction. We conclude that the �M���-backoff process is ergodic. ✷

Before going on to characterize null processes, we prove a simple proposition
that we will need in the next lemma. Define the revocation probability rj to
be the probability that a given forward move to state j is eventually popped
off the history stack (for a more formal definition, see Definition 4.36).

Proposition 4.18. If an irreducible �M���-backoff process is transient,
then there exists a state j with revocation probability rj < 1.

Proof. If every state has revocation probability 1, then the first step is
revoked with probability 1, indicating that the process returns to the initial
history with probability 1, making it recurrent. ✷

The converse is also true, but we do not need it, so we do not prove it.

Lemma 4.19. For an irreducible �M���-backoff process, if there exists an
admissible w s.t. ('w = 0 then the �M���-backoff process is null.

Proof. We first define an extended potential as in the proof of Lemma 4.17,
but we will be a bit more careful. Let τ = E
'w�H1�−'w�H0�� be the expected
increase in potential from the initial history. (Note τ > 0.)

As before, for a history sequence H0� � � � �Ht� � � � of the �M��� i�-Markov
chain, let N0�t� denote the number of occurrences of the initial history in
time steps 0� � � � � t− 1, and let the extended potential ψ�t� be given by

ψ�t� = 'w�Ht� − τ ·N0�t��
Notice that the extended potential is expected to remain unchanged at

every step of the backoff process. Applying a martingale tail inequality again
(Corollary A.4) we note that for every δ > 0, there exists a constant c such
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that the probability that the extended potential ψ�t� is greater than c
√
t in

absolute value is at most δ. We will show that for an ergodic process the
extended potential goes down linearly with time, while for a transient process
the extended potential goes up linearly with time, thus concluding that the
given �M���-backoff process fits in neither category.

Claim 4.20. If the irreducible �M���-backoff process is transient, then
there exist constants ε > 0 and b such that for every time t, it is the case
that

E
[
ψ�t�] ≥ εt− b�

Proof. Let j be a state with rj < 1. Let n be the number of states of the
Markov chainM. Notice that for each t and each historyHt, there is a positive
probability that there exists a time t′ ∈ 
t + 1� t + n� such that top�Ht′ � = j
and the move from Ht′−1 to Ht′ is a forward step. Further, conditioned on this
event there is a positive probability (of 1 − rj) that this move to j is never
revoked. Thus in any interval of time of length at least n, there is a positive
probability, say γ, that the �M��� i�-backoff process makes a move that it
never revokes in the future. Thus the expected number of such moves in t
steps is γt/n. Let wmin be the smallest nonzero entry of w. Then the expected
value of 'w�Ht� is at least �γt/n�wmin.

We now verify that the expected value of τ ·N0�t� is bounded from above.
This is an easy consequence of a well-known property of transient Markov
chains, which states that the expected number of returns to the start state (or
any state) is finite. Let this finite bound on E
N0�t�� be B. Then for every t,
we have E
τ ·N0�t�� ≤ τB.

Thus the expected extended potential after t steps is at least γt/n− τB. ✷

Claim 4.21. If the irreducible �M���-backoff process is ergodic, then there
exist constants γ > 0 and b such that for all t,

E
[
ψ�t�] ≤ −γt+ b�

Proof. We first argue that the “−τ ·N0�t�” part of the extended potential
goes down linearly with time. Let Yj denote the time between the �j − 1�st
and jth return to the initial history. Then the Yj’s are independently and
identically distributed and have a bounded expectation, say T. Then applying
the law of large numbers (Proposition A.9), we have that there exists t0 such
that for all t ≥ t0 the probability that the number of visits to the initial
history in the first t time steps is less than t/2T is at most 1

2 . Thus the
expected contribution to the extended potential from this part is bounded
above by −τ · �t− t0�/�4T�.

It remains to bound the contribution from E
'w�Ht��. Let f�t� denote the
smallest nonnegative index such that the history Ht−f�t� is an initial his-
tory. Notice then that E
'w�Ht�� is at most wmax ·E
f�t��. We will bound the
expected value of f�t�. Let F�t� denote this quantity. Let p be the probability
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distribution on the return time to an initial history, starting from H0. Recall
that

∑
i ip�i� = T. Then F�t� satisfies the relation

F�t� =
t∑

i=1
p�i�F�t− i� +

∞∑
i=t+1

tp�i��

[If the first return to the initial history happens at time i and i > t, then
f�t� = t, and if i ≤ t then f�t� = f�t − i�.] We use this relation to prove, by
induction on t, that for every ε > 0, there exists a constant a such that F�t� ≤
εt + a. Set a such that

∑
i>a ip�i� ≤ ε

2T. The base cases of the induction are
with t ≤ a and these easily satisfy the hypothesis, since F�t� ≤ t ≤ a ≤ εt+a.
For t > a, we get

F�t� =
t∑

i=1
p�i�F�t− i� +

∞∑
i=t+1

tp�i�

≤
t∑

i=1
p�i�(ε�t− i� + a

)+ ∞∑
i=t+1

tp�i�

≤
∞∑
i=1

p�i�εt−
t∑

i=1
p�i�εi+

∞∑
i=1

p�i�a+
∞∑

i=t+1
ip�i�

= εt+ a−
∞∑
i=1

p�i�εi+
∞∑

i=t+1
�1+ ε�ip�i�

≤ εt+ a− εT+ �1+ ε��ε/2�T
≤ εt+ a (using ε ≤ 1).

By selecting ε sufficiently small (so that the overall coefficient of t is negative),
the claim follows. ✷

4.2. Existence of Cesaro limit distributions. In this section we prove that
the �M��� i�-backoff process always has a Cesaro limit distribution. The proofs
are different for each case (ergodic, null and transient), and so we divide the
discussion based on the case. In the transient case, we prove even more (the
existence of a stationary distribution, not just a Cesaro limit distribution,
when the backoff process is aperiodic). As we showed earlier, there need not
be a stationary distribution in the ergodic case, even when the backoff process
is aperiodic. It is an open problem as to whether there is always a stationary
distribution in the aperiodic null case (we conjecture that there is).

4.2.1. Ergodic case. The simplest argument is for the ergodic case.

Theorem 4.22. If the �M��� i�-backoff process is ergodic, then it has a
Cesaro limit distribution.

Proof. Since the Polish matrix is ergodic, the corresponding Markov pro-
cess has a Cesaro limit. This gives us a Cesaro limit in the backoff process,
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where the probability of state i is the sum of the probabilities of the states
(stacks) in the Polish matrix with top state i. ✷

4.2.2. Transient case. Next, we consider the transient case (where the
Polish matrix is transient). The crucial notion underlying the analysis of this
case is that of “irrevocability.” When the backoff process is in a state (with
a given stack), and that state is never popped off of the stack (by taking a
backedge), then we refer to this (occurrence of the) state as irrevocable. Let us
fix a state i, and consider a renewal process (see Definition A.7), where each
new epoch begins when the process has an irrevocable occurrence of state i.
Since the Polish matrix is transient, the expected length of an epoch is finite.
The limit probability distribution of state j is the expected number of times
that the process is in state j in an epoch, divided by the expected length of an
epoch. This argument is formalized below, to obtain a proof of the existence of
a Cesaro limit distribution.

Theorem 4.23. If the �M��� i�-backoff process is transient, then it has
a Cesaro limit distribution, which is independent of the start state i. If it is
aperiodic, then it has a stationary distribution.

Proof. Since the Polish matrix is transient, we know that for each state σ̄
of the Polish matrix (which is a stack of states of the backoff process) where
the top state top�σ̄� has αtop�σ̄� �= 1, there is a positive probability, starting
in σ̄ , that the top state top�σ̄� is never popped off of the stack. It is clear that
this probability depends only on the top state top�σ̄� of the stack σ̄ .

When the backoff process is in a state (with a given stack) and that state
is never popped off of the stack (by taking a backedge), then we refer to this
(occurrence of the) state as irrevocable. Technically, an irrevocable state should
really be thought of as a pair consisting of the state (of the backoff process)
and the time, but for convenience we shall simply refer to the state itself as
being irrevocable.

We now define a new matrix, which we call the Turkish matrix, which
defines a Markov chain. Just as with the Polish matrix, the states are again
stacks of states of the backoff process, but the interpretation of the stack
is different from that of the Polish matrix. In the Turkish matrix, the stack
σ0� � � � � σ�� represents a situation where σ0 is irrevocable, and where
σ1� � � � � σ� are not irrevocable. The intuition behind the state σ0� � � � � σ�� is
that the top states of the stack of the Polish matrix (from σ0 on up) are
σ0� � � � � σ�. As with the Polish matrix, the states σ0� � � � � σ�� of the Turkish
matrix are restricted to being the attainable ones: in this case this means
(a) ασj

�= 1 for 0 ≤ j < �; (b) ασj
�= 0 for 1 ≤ j ≤ � and (c) Mσiσi+1 > 0

for 0 ≤ i < �. There is a subtlety if the start state i has αi = 1, since then
the state i� is not reachable from any other state, and so we do not consider
it to be a state of the Turkish matrix. One way around this issue is simply to
assume that the start state i has αi �= 1. It is not hard to see this assumption
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is without loss of generality, since the backoff process will reach an irrevocable
state j (which necessarily has αj �= 1) with probability 1.

We now define the entries of the Turkish matrix T. If σ̄ and σ̄ ′ are states of
the Turkish matrix, then the entry Tσ̄σ̄ ′ is 0 unless either (a) σ̄ ′ is the result
of popping the top element off of the stack σ̄ , (b) σ̄ ′ is the result of pushing one
new element onto the stack σ̄ or (c) both σ̄ and σ̄ ′ each contain exactly one
element. The probabilities are those induced by the backoff process. Thus, in
case (a), if � ≥ 1, then Tσ0�����σ��σ0�����σ�−1� equals the probability that the backoff
process takes a backedge from σ�, given that the last irrevocable state was σ0,
that the stack from σ0 on up is σ0� � � � � σ��, and that the remaining states
σ1� � � � � σ�−1 on the stack are not irrevocable. That this conditional probabil-
ity is well defined (and is independent of the time) can be seen by writing
Pr
A � B� as Pr
A ∧B�/Pr
B�. Note that even though this conditional proba-
bility represents the probability of taking a backedge from state σ�, it is not
necessarily equal to ασ�

, since the event of taking the backedge is conditioned
on other events, such as that σ0 is irrevocable. Similarly, in case (b), we have
that Tσ0�����σ��σ0�����σ�+1� equals the probability that the backoff process takes a
forward edge from σ� to σ�+1 and that σ�+1 is not irrevocable, given that the
last irrevocable state was σ0, that the stack from σ0 on up is σ0� � � � � σ��, and
that the remaining states σ1� � � � � σ� on the stack are not irrevocable. Finally,
in case (c) we have that Tσ0�σ ′0� equals the probability that the backoff process
takes a forward edge from to σ0 to σ

′
0 and that σ ′0 is irrevocable, given that σ0

is irrevocable.
We now show that the Turkish matrix is irreducible, aperiodic (if the backoff

process is aperiodic) and (most important) ergodic.
We first show that it is irreducible. We begin by showing that from every

state of the Turkish matrix, it is possible to eventually reach each (legal) state
σ0� with only one element in the stack (by “legal,” we mean that ασ0

�= 1).
This is because in the backoff process, it is possible to eventually reach the
state σ0, because the backoff process is irreducible; further, it is possible that
once this state σ0 is reached, it is then irrevocable. Next, from the state σ0�, it
is possible to eventually reach each state σ0� � � � � σ�� with bottom element σ0.
This is because it is possible to take forward steps from σ0 to σ1, then to σ2� � � � ,
and then to σ�, with each of the states σ1� σ2� � � � � σ� being nonirrevocable
(they can be nonirrevocable, since it is possible to back up from σ� to σ�−1 � � �
to σ0). Combining what we have shown, it follows that the Turkish matrix is
irreducible.

We now show that the Turkish matrix is aperiodic if the backoff process
is aperiodic. Let i be a state with αi �= 1. Since the backoff process is aperi-
odic, the gcd of the lengths of all paths from i to itself is 1. But every path
from i to itself of length k in the backoff process gives a path from i� to
itself of length k in the Turkish matrix (where we take the arrival in state i
at the end of the path to be an irrevocable state). So the Turkish matrix is
aperiodic.

We now show that the Turkish matrix is ergodic. It is sufficient to show
that for some state of the Turkish matrix, the expected time to return to
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this state from itself is finite. We first show that the expected time between
irrevocable states is finite. Thus, we shall show that the expected time, starting
in an irrevocable state σ0 in the backoff process at time t0, to reach another
irrevocable state is finite. Let Ek be the event that the time to reach the next
irrevocable state is at least k steps (i.e., takes place at time t0 + k or later,
or does not take place at all after time t0). It is sufficient to show that the
probability of Ek is O�θk� for some constant θ < 1. Assume that the event Ek

holds. There are now two possible cases.
Case 1. There are no further irrevocable states. In this case, the size of the

stack (state) in the Polish matrix is one bigger than it was at time t0 infinitely
often.

Case 2. There is another irrevocable state, that occurs at time t0 + k or
later. Assume that it occurs for the first time at time t0 + k′, where k′ ≥ k. It
is easy to see that the size of the stack in the Polish matrix at time t0 + k′ is
one bigger than it was at time t0.

So in both cases, there is k′ ≥ k such that after k′ steps, the size of the
stack in the Polish matrix has grown by only one.

Now since the Polish matrix is transient, we see from Section 4.1 that we
can define a potential such that there is an expected positive increase in the
potential at each step. So by a submartingale argument (Corollary A.5), there
are positive constants c1� c2 such that the probability that the size of the stack
in the Polish matrix has grown by only one after k′ steps is at most c1e−c2k

′
.

Therefore, the probability that there is some k′ ≥ k such that that the size of
the stack in the Polish matrix has grown by only one after k′ steps is at most∑

k′≥k c1e−c2k
′ = c1e

−c2k∑∞
m=0 e

−c2m = c1�1/�1− e−c2��e−c2k. Let θ = e−c2 . So the
probability of Ek is O�θk�, as desired.

We have shown that the expected time between irrevocable states is finite.
So starting in state σ0� of the Turkish matrix, there is some state σ1 such that
the expected time to reach σ1� from σ0� is finite. Continuing, we see that
there is some state σ2 such that the expected time to reach σ2� from σ1�
is finite. Similarly, there is some state σ3 such that the expected time to
reach σ3� from σ2� is finite and so on. Let n be the number of states in the
backoff process. Then some state σ appears at least twice among σ0� σ1� � � � � σn.
Hence, the expected time from σ� to itself in the Turkish matrix is finite. This
was to be shown.

We have shown that the Turkish matrix is irreducible and ergodic. So it has
a Cesaro limit distribution. This gives us a Cesaro limit distribution in the
backoff process, where the probability of state m is the sum of the probabili-
ties of the stacks in the Turkish matrix with top state m. Since the Turkish
matrix is the same, independent of the start state i, this probability does not
depend on the start state. (As mentioned earlier, there is a subtlety if the start
state i has αi = 1. It is not hard to see that this independence of the Cesaro
limit probabilities on the start state holds even then.) If the backoff process
is aperiodic, then the Turkish matrix has a stationary distribution, and hence
so does the backoff process. ✷
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4.2.3. Null case. Finally, we consider the null case. In this case our proof
is based on a surprising property of a recurrent (ergodic or null) �M��� i�-
backoff process: its steady state distribution turns out to be independent of αi

(the backoff probability of the start state). We exploit this property (which
will be proved implicitly in Lemma 4.25 below) as follows. We select a state j
where αj �= 1. Let us consider a new backoff process, where the underlying
Markov matrix M is the same; where all of the backoff probabilities αk are
the same, except that we change αj to 1 and where we change the start state
to j. This new backoff process is shown to be ergodic. We show a way of
“pasting together” runs of the new ergodic backoff process to simulate runs of
the old null process. Thereby we show the remarkable fact that the old null
process has a Cesaro limit distribution which is the same as the Cesaro limit
distribution of the new ergodic process.

Theorem 4.24. If the �M��� i�-backoff process is null, then it has a Cesaro
limit distribution, which is independent of the start state i.

As before, we can assume without loss of generality that the �M��� i�-
backoff process is irreducible, since we can easily restrict our attention to an
irreducible “component.”

The theorem follows from Lemma 4.25 below, which asserts that the limit
distribution exists and equals the limit distribution of a related ergodic process
and is independent of the start state i.

Lemma 4.25. Let �M��� be null. Let j be any state ofM such that αj < 1.
Let �′ be the vector given by α′j = 1 and α′j′ = αj′ otherwise. Then the �M��′� j�-
backoff process is ergodic and hence has a Cesaro limit distribution. Let i be any
state of M. Then the �M��� i�-backoff process has a Cesaro limit distribution
which is the same as the Cesaro limit distribution of the �M��′� j�-backoff
process.

Proof. The first part of Lemma 4.25, claiming that �M��′� is ergodic,
follows from the first part of Theorem 4.5, and is proven in Claim 4.28. We
now move to the more difficult part. It is convenient for us to use the term
walk, which refers to the sequence of states visited (along with the information
about the auxiliary sequence that tells whether each move was a forward or
backward step and the history sequence). For this part, we consider a walk W
of length t of the �M��� i�-backoff process and break it down into a number of
smaller pieces. This breakdown is achieved by a “skeletal decomposition” as
defined below.

Fix an �M��� i�-walk W with X0� � � � �Xt� being the sequence of states
visited, with auxiliary sequence S0� � � � � St� and associated history sequence
H0� � � � �Ht�.

For every t1 ≤ t such that St1
= F (i.e., W makes a forward step at time t1)

and Xt1
= j, we define a partition of W into two walks W′ and W′′ as follows.
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Let Ht1
= σ̄ be the history stack at time t1. Let t2 > t1 be the first time at

which this history repeats itself (t2 = t if this event never happens). Consider
the sequence 0� � � � � t1� t2+1� � � � � t� of time steps (and the associated sequence
of states visited and auxiliary sequences). They give a new �M��� i�-walk W′

that has positive probability. On the other hand, the sequence t1� t1+1� � � � � t2�
of time steps defines a walkW′′ of an �M��� j�-backoff process, of length t2−t1,
with initial history being j�. We call this partition �W′�W′′� a j-division of
the walk W. (Notice that W′�W′′ do not suffice to recover W, and this is fine
by us.) A j-decomposition of a walk W is an (unordered) collection of walks
W0� � � � �Wk that are obtained by a sequence of j-divisions of W. Specifically,
W is a j-decomposition of itself. Further, if (a)W0� � � � �W� is a j-decomposition
of W′, (b) W�+1� � � � �Wk is a j-decomposition of W′′, and (c) �W′�W′′� is a j-
division of W, then W0� � � � �Wk is a j-decomposition of W. If a walk has no
nontrivial j-divisions, then it is said to be j-indivisible. A j-skeletal decompo-
sition of a walk W is a j-decomposition W0� � � � �Wk of W, where each W� is
j-indivisible. Note that the j-skeletal decomposition is unique and indepen-
dent of the choice of j-divisions. We refer to W0� � � � �Wk as the skeletons of
W. Note that the skeletons come in one of three categories (assuming j �= i):

(i) Initial skeleton. This is a skeleton that has i� as its initial history.
Note that there is exactly one such skeleton (unless i = j, in which case we say
that there is no initial skeleton). We denote the initial skeleton
by W0.

(ii) Closed skeletons. These are the skeletons with j� as their initial and
final history.

(iii) Open skeletons. These are the skeletons with j� as their initial history,
but not their final history.

Our strategy for analyzing the frequency of the occurrence of a state j′

in the walk W is to decompose W into its skeletons and then to examine
the relative frequency of j′ in these skeletons. Roughly, we will show that
not too much time is spent in the initial and open skeletons and that the
distribution of closed skeletons of W is approximated by the distribution of
random walks returning to the initial history in an �M��′� j�-backoff process.
But the �M��′� j�-backoff process is ergodic, and thus the expected time to
return to the initial history in such walks is finite. With a large number of
closed j-skeletons, the frequency of occurrence of j′ converges (to its frequency
in �M��′� j�-backoff processes).

Consider the following.
Simulation of W.

1. Pick an (infinite) walk W′
0 from the �M��′� i�-backoff process.

2. Pick a sequence W′
1�W

′
2� � � � � of walks as follows: for each k, the walk W′

k

starts at j� and walks according to �M��′� j� and terminates the first time
it returns to the initial history.
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3. We now cut and paste from the W′
i’s to get W as follows:

(a) We initialize W =W′
0 and t′ = 0, N = 0.

(b) We iterate the following steps till t′ ≥ t:

(i) Let t′′ be the first visit to j occurring at some time after t′ inW.
Set t′ = t′′.

(ii) With probability αj do nothing, else (with probability 1−αj), set
N =N+ 1 and splice the walk W at time t′ and insert the walk W′

N

into W at this time point.

(c) Truncate W to its first t steps and output it. Further, let Wi denote
the truncation of W′

i so that it includes only the initial portion of W′
i

that is used in W.

The following proposition is easy to verify.

Proposition 4.26. W generated as above has exactly the same distribution
as that of the �M��� i�-backoff process. FurtherW0� � � � �WN give the j-skeletal
decomposition of W.

LetW′ denote a random walk obtained by starting at j�, walking according
to �M��′� j� and stopping the first time we reach the initial history. Since
the �M��′� j�-backoff process is ergodic, the expected length of W′ is finite.
Let µ denote the expectation of the length of the walk W′ and let µj′ denote
the expected number of occurrences of the state j′ in W′. By Theorem A.8
µj′/µ = π ′j′ , where π ′ denotes the Cesaro limit distribution of the �M��′� j�-
backoff process.

Let a′k denote the number of visits to j′ in W′
k and let b′k denote the length

of W′
k. Since the walks W′

k (k ∈ �1� � � � �N�) are chosen independently from
the same distribution as W′, we have that the expectation of a′k is µj′ and
the expectation of b′k is µ. Let ak denote the number of visits to j′ in Wk and
let bk denote the length ofWk. Notice our goal is to show that

∑N
k=0 ak/

∑N
k=0 bk

approaches π ′j′ with probability tending to 1 as t tends to infinity. Fix any
β > 0. We now enumerate a number of bad events, argue that each one of
them has low probability of occurrence and then argue that if none of them
happens, then for N sufficiently large,

�1− β�π ′j′ ≤
N∑
k=0

ak

/ N∑
k=0

bk ≤ �1+ β�π ′j′�

1. N is too small. In Claim 4.29 we show that this event has low probability.
Specifically, there exists δ > 0 such that for every ε > 0 there exists t0 such
that for all t ≥ t0, the probability that N is less than δt is at most ε.

2. W0 is too long. Claim 4.30 shows that for every ε > 0, there exists t1 such
that for all t ≥ t1, the probability that W0 is longer than εt is at most ε.

3. There are too many open skeletons. In Claim 4.32, we prove that for every
ε0 > 0, there exists t2 such that if t ≥ t2, then the probability that the
number of open skeletons is more than ε0t is at most ε0.
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4.
∑N

k=1 bk is too large. By the law of large numbers (Proposition A.9), we
have that for every ε > 0, there exists N1 such that for all N ≥ N1, the
probability that

∑N
k=1 b

′
k ≥ �1 + ε�µN is at most ε. Using the fact that

bk ≤ b′k, we obtain the same upper bound on
∑N

k=1 bk as well.
5.
∑N

k=1 ak is too large. As above, we have that we have that for every ε > 0,
there exists N2 such that for all N ≥ N2, the probability that

∑N
k=1 ak ≥

�1+ ε�µj′N is at most ε.
6. (Informally)

∑N
k=1 bk is too small. The first formal event considered here

is that for some large subset S ⊆ �1� � � � �N�, the quantity
∑

k∈S b
′
k turns

out to be too small. Using the fact that the b′k’s are independently and
identically distributed and have finite mean µ, Claim 4.34 can be used to
show that for every ε > 0, there exists ε1 > 0 and N3 > 0, such that for
all N ≥ N3 the probability that there exists a subset S ⊆ �1� � � � �N� of
cardinality at least �1− ε1�N such that

∑
k∈S b

′
k ≤ �1− ε�µN is at most ε.

Taking S to be the subset of closed skeletons and using the fact that for a
closed skeleton bk = b′k, and relying on the negation of item (3), we get to
the informal claim here.

7.
∑N

k=1 ak is too small. Obtained as above. Specifically, for every ε > 0, there
exists ε2 > 0 and N4 > 0, such that for all N ≥ N4 the probability that
there exists a subset S ⊆ �1� � � � �N� of cardinality at least �1− ε2�N such
that

∑
k∈S a

′
k ≤ �1− ε�µN is at most ε.

Given the above claims, the lemma may be proved as follows. Let δ be
as in item (1) above. Given any β, let ε = min�β/7� β/�2 + 1/�µδ��� β/�2 +
1/�µj′δ�+β��. Let ε1 and ε2 be as given in items (6) and (7) above and let ε0 =
min�ε� ε1δ� ε2δ�. For these choices of ε and ε0, let t0� t1� t2� N1� N2� N3� N4
be as given in items (1)–(7) and take t ≥ max�t0� t1� t2� 1

δ
N1�

1
δ
N2�

1
δ
N3�

1
δ
N4�.

Then since t is large enough, we have that for any of items (1), (2) or (3), the
probability that the bad event listed there happens is at most ε. If the bad
event of item (1) does not occur, then N ≥ �N1�N2�N3�N4� and thus the
probability of any of the bad events list in items (3)–(7) is at most ε. Summing
over all bad events, we have the probability that no bad events happens is
at least 1 − 7ε ≥ 1 − β. We now reason that if none of these events happen
then

∑N
k=0 ak/

∑N
k=0 bk is between �1−β�π ′j′ and �1+β�π ′j′ . We show the lower

bound; the proof of the upper bound is similar. We first give an upper bound
for

∑N
k=0 bk by the negations of items (2) and (4). By the negation of item (2),

b0 ≤ εt ≤ ε
δ
N [where the second inequality uses the negation of item (1).] By

the negation of item (4),
∑N

k=1 bk ≤ �1+ ε�µN and thus we have

N∑
k=0

bk ≤ �1+ ε+ ε/�µδ��µN�

Next we give a lower bound on
∑N

k=0 ak. Here we use the negation of item
(3) to conclude that the number of closed skeletons is at least N − ε0t ≥
N−�ε0/δ�N ≥ �1−ε2�N. Let S denote the set of indices k of closed skeletons
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Wk. Thus, we have

N∑
k=0

ak ≥
∑
k∈S

ak =
∑
k∈S

a′k ≥ �1− ε�µj′N�

Putting the above together, we get∑N
k=0 ak∑N
k=0 bk

≥ 1− ε

1+ ε+ ε/�µδ�
µj′

µ
≥ �1− β�π ′j′�

as desired. [The final inequality above uses π ′j′ = µj′/µ and ε ≤ β/�2+1/�µδ��.]
The upper bound follows similarly, using the inequality ε ≤ β/�2+1/�µj′δ�+β�.
This concludes the proof of the lemma, modulo Claims 4.28–4.34. ✷

For the following claims, let H denote the Hungarian matrix corresponding
to the �M���-backoff process and let H′ denote the Hungarian matrix corre-
sponding to the �M��′�-backoff process. For a nonnegative matrix A, let ρ�A�
denote its maximal eigenvalue. For n × n matrices A and B, say A < B if
Aik ≤ Bik for every i� k and there exists i, k such that Aik < Bik. Claim 4.28
will use the following simple claim.

Claim 4.27. If A and B are n × n irreducible nonnegative matrices such
that A < B, then ρ�A� < ρ�B�.

Proof. Notice first that it suffices to prove that ρ�I+A� < ρ�I+B�, since
ρ�I +M� = 1 + ρ�M�. Similarly it suffices to prove that for some positive
integer k, we have ρ��I +A�k� < ρ��I +B�k�, since ρ�Mk� = ρ�M�k. We will
do so for k = 2n− 1. Let C = �I+A�2n−1 and D = �I+B�2n−1.

We first show that for every pair i� j, we have Cij < Dij. (By contrast,
we know only that the strict inequality Aij < Bij holds for some pair i� j.)
Notice that the �i� j� entry of a matrix Mk has the following combinatorial
interpretation: it counts the sum of the weights of all walks of length k between
i and j, where the weight of a walk is the product of the weight of the edges
it takes, and where the weight of an edge �u� v� is Muv. Thus we wish to show
that for every i� j, there exists a walk P from i to j of length 2n−1 such that
its weight under I +A is less than its weight under I + B. By assumption,
there are ��m so that Alm < Blm. By irreducibility of A we know there exists
a path from i to � of positive weight and by taking enough self-loops this can
be converted into a path P1 of length exactly n − 1 with positive weight in
�I+A�. The path has at least the same weight in I+B. Similarly, we can find
a path P2 of positive weight in I+A from m to j of length exactly n−1. Now
the path P1 ◦ ���m� ◦P2 has positive weight in both I+A and I+B and has
strictly larger weight in I+B since Blm > Alm. Thus we find that Cij < Dij,
for every pair i� j.
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Now we use the properties of the maximal eigenvalue to show that ρ�C� <
ρ�D�. Notice that

ρ�C� = max
x

min
i∈�1�����n�

{�Cx�i
�x�i

}
�

Pick x that maximizes the right-hand side above and now consider

ρ�D� = max
y

min
i∈�1� ���� n�

{�Dy�i
�y�i

}
≥ min

i∈�1� ���� n�

{�Dx�i
�x�i

}
> min

i∈�1� ���� n�

{�Cx�i
�x�i

}
(since Dij > Cij and x �= 0)

= ρ�C� (by our choice of x)� ✷

We are now ready to prove that the �M��′�-backoff process is ergodic.

Claim 4.28. Let �M��� be irreducible and null. Let j be a state such that
αj < 1. Assume that α′j > αj and α′j′ = αj′ if j

′ �= j. Then �M��′� is ergodic
�though it may not be irreducible�.

Proof. We first focus on the case α′j < 1. In this case, we observe that
�M��′� is also irreducible. For this part, we use Lemma 4.13 and Claim 4.12 to
rephrase this question in terms of the maximal eigenvalues of the correspond-
ing Hungarian matrices H [for �M���] and H′ [for �M��′�]. In particular, we
have ρ�H� = 1 and we need ρ�H′� < ρ�H� = 1.

Note that for every k� �, we have

H′
kl = �1− α′k�Mklα

′−1
�

≤ �1− α′k�Mklα
−1
�

≤ �1− αk�Mklα
−1
�

=Hkl�

Further, the first inequality is strict if � = j and Mkj �= 0 (and such a k does
exist, by the irreducibility of M). Using Claim 4.27 we now have ρ�H′� <
ρ�H� = 1 and thus we have shown the desired result for the case α′j < 1.

For the case α′j = 1, we first use the first part shown above to show that
the �M��′′�-backoff process, where αj < α′′j < 1 (and α′′j′ = αj′ for other j′),
is ergodic. Thus it suffices to prove that �M��′� is ergodic, given that �M��′′�
is ergodic. However, since we may not have irreducibility, we need to argue
this individually for every �M��′� i�-backoff process. Now the expected return
time of the �M��′′� i�-backoff process (to its initial history) is finite. But it is
not hard to see that the expected return time of the �M��′� i�-backoff pro-
cess (to its initial history) is bounded above by the expected return time of
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the �M��′′� i�-backoff process, since it can only cost additional steps to not
pop j immediately off the history stack whenever it appears. So the �M��′� i�-
backoff process is ergodic, as desired. ✷

Claim 4.28 gives the first part of Theorem 4.5. The proof of the second part
is similar, provided αj is not lowered to α′j = 0 (in which case the Hungarian
matrix would not be defined). However, if α′j = 0, then the resulting backoff
process is certainly transient.

The next claim shows thatN, the number of skeletons in a walk of length t,
grows linearly in t.

Claim 4.29. There exists δ > 0, such that for every ε > 0 there exists t0
such that for all t ≥ t0, the probability that N is less than δt is at most ε.

Proof. Notice that the number of skeletons is lower bounded by the num-
ber of times j is pushed onto the history stack in the walk W. We lower bound
this quantity by using the fact that in any sequence of n steps (where n is
the size of the Markov chain M), there is a positive probability ρ of pushing j
onto the history stack. Thus the expected number of times j is pushed onto
the history in t steps is at least ρ�t/n�. Applying the law of large numbers
(Proposition A.9), we get that there exists t0 such that if t ≥ t0, then the prob-
ability that j is pushed on the stack fewer than 1

2ρ�t/n� times is at most ε.
The claim follows with δ = ρ/�2n�. ✷

Next we argue that the initial skeleton is not too long.

Claim 4.30. For every ε > 0, there exists a time t1 such that for all times
t > t1,

Pr
length of W0 > εt� < ε�

Proof. We prove the claim in two steps. First we note that in a walk of
length t, with high probability, the (null) �M��� i�-backoff process returns to
the initial history o�t� times. Note that the expected time to return to the
initial history is infinite. Thus we get the following.

Subclaim 1. For every ε′ > 0, there exists a time t′1 such that for all t > t′1,
the probability that an �M��� i�-walk of length t returns to the initial history
at least ε′t times is at most ε′.

The next subclaim follows from the law of large numbers (Proposition A.9).

Subclaim 2. Let T be the expected return time to the initial history in
the �M��′� i�-backoff process. [Note that T < ∞, since the �M��′� i�-backoff
process is ergodic.] Then for every ε′′, there exists N0 such that if N ≥ N0
and N′ ≤ N, then the probability that N′ returns to the initial history take
more than 2NT steps is at most ε′′.



842 FAGIN ET AL.

From the two subclaims, we get the claim as follows. Set ε′′ = ε/2 and
ε′ = min�ε/2� ε/�2T��. Now let N0 and T be as in Subclaim 2 and let t0 =
max�t′1�2N0T/ε�. Given t ≥ t0, let N = �εt�/�2T�. Notice N ≥ N0. Applying
Subclaim 1, we get that the probability that the number of returns to the
initial history in the �M��� i�-backoff process is at least N [= �εt�/�2T� ≥ ε′t]
is at most ε′ ≤ ε/2. Now applying Subclaim 2, we get that the probability
of N returns to the initial history taking more that 2NT = εt steps in the
�M��′� i�-backoff process is at most ε′′ = ε/2. So with probability at least 1−ε,
neither of the bad events in the subclaims occurs, which means that there are
less than N returns to the initial history in the initial skeleton, and even N
returns would take time at most εt steps. So with probability at least 1 − ε,
the length of the initial skeleton is at most εt. This proves the claim. ✷

Next we show that not too many skeletons are open. We do it in two claims.

Claim 4.31. If �M��� i� is null and w is a weight vector as guaranteed to
exist by Lemma 4.13, then the w-potential 'w�Ht� is expected to grow as o�t�.

Proof. Recall that the extended potential used in Lemma 4.17 is expected
to be 0 after t steps. Further, by Subclaim 1 of Claim 4.30, the number of
returns to the initial history is less than ε′t, with probability all but ε′. Thus
the expected number of returns to the initial history is at most 2ε′t. Hence,
the expected value of φw�Ht� is also at most 2ε′t. ✷

Claim 4.32. For every ε > 0, there exists t2 such that for all t ≥ t2, the
probability that more than εt of the skeletons W1� � � � �WN are open at time t
is at most ε.

Proof. Consider the event E that the history Ht contains more than εt
occurrences of the state j. We wish to show that the probability that E occurs
is at most ε. Assume E occurs with probability at least ε. Let w be the weight
vector as shown to exist in Lemma 4.13, and let φw�Ht� be the potential of the
historyHt. Notice that if E occurs, then the potential φw�Ht� is at least wjεt.
Since E happens with probability at least ε, the expected potential E
φ�Ht��
is at least ε2wjt, and so is growing linearly in t. But this contradicts the
previous claim. ✷

We now use our machinery to prove a lemma that we need to prove
Theorem 4.35.

Lemma 4.33. In a null backoff process, for every ε > 0, there exists t2 such
that for all t ≥ t2, the probability that more than εt of the forward edges into
state � are unrevoked at time t is at most ε.

Proof. If α� < 1, then if we take j = � every unrevoked edge into state
� corresponds, in the machinery we have just developed, to a different open
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skeleton. The result then follows from Claim 4.32. If α� = 1, then every forward
edge into state � is immediately followed by a revocation, so the result again
follows. ✷

Our final claim to complete the proof of Lemma 4.25, and hence of Theorem
4.24, is a technical one. In this claim, 
N� = �1� � � � �N�.

Claim 4.34. For every distribution � on nonnegative integers with finite
expectation µ and every ε > 0, there exists ε1 > 0 and N3 > 0 such that for all
N ≥N3, if X1� � � � �XN are N samples drawn i.i.d. from � , then

Pr

[∑
i∈S

Xi ≥ �1− ε�µN for every S ⊆ 
N� with �S� ≥ �1− ε1�N
]
≥ 1− ε�

Proof. We will find ε1 and pick τ such that with high probability the
(ε1N)th largest element of X1� � � � �XN is greater than or equal to τ. We will
then sum only those elements in the Xi’s whose value is at most τ and this
will give a lower bound on

∑
i∈SXi.

Let p�j� be the probability given to j by � . Let µk =
∑

j≤k jp�j�. Notice
that the µk’s converge to µ. Let τ be such that µ−µτ ≤ �ε/2�µ. LetT�X� =X if
X ≤ τ and 0 otherwise. Notice that for X drawn from � , we have E
T�X�� ≥
�1 − ε/2�µ (by definition of τ). Thus by the law of large numbers (Proposi-
tion A.9), there exists N′

3 such that for all N ≥N′
3, the following holds:

Pr

[
N∑
i=1

T�Xi� ≤ �1− ε�Nµ

]
≤ ε/2�(4)

Now set ε1 =
∑

j>τ p�j�/2. Then the probability that X has value at least τ
is at least 2ε1. Thus, applying the law of large numbers (Proposition A.9)
again, we find that there exists N′′

3 such that for all N ≥ N′′
3, the following

holds:

Pr
[∣∣�i�Xi ≥ τ�∣∣ < ε1N

] ≤ ε/2�(5)

Thus, for N3 = max�N′
3�N

′′
3� and any N ≥ N3, we have that with proba-

bility at least 1− ε neither of the events mentioned in (4) or (5) occur. In such
a case, consider any set S of cardinality at least �1− ε1�N, and let S′ be the
set of the �1− ε1�N smallest Xi’s. We have∑

i∈S
Xi ≥

∑
i∈S′

Xi

≥
N∑
i=1

T�Xi�

≥ �1− ε�Nµ�

This proves the claim. ✷
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4.3. Computation of limit distributions. We now show how the limit dis-
tribution may be computed. We can assume without loss of generality that the
backoff process is irreducible, since we can easily restrict our attention to an
irreducible “component.” Again, we branch into three cases.

4.3.1. Null Case. The matrix H = �I − A�MA−1, which we saw in
Section 4.1, plays an important role in this section. We refer to this matrix as
the Hungarian matrix of the �M���-backoff process. The next theorem gives
an important application of the Hungarian matrix.

Theorem 4.35. The limit probability distribution π satisfies π = πH. This
linear system has a unique solution subject to the restriction

∑
i πi = 1. Thus,

the limit probability distribution can be found by solving a linear system.

Proof. The key ingredient in the proof is the observation that in the null
case, the limit probability of a transition from a state i to a state j by a
forward step is the same as the limit probability of a transition from state j
to a state i by a backward step (since each forward step is eventually revoked,
with probability 1). Thus if we let πi→j denote the limit probability of a forward
step from i to j and πi←j denote the limit probability of a backward step from j
to i (and πi denotes the limit probability of being in state i), then the following
conditions hold:

πi =
∑
j

πi→j +
∑
j

πj←i� πi→j = �1− αi�Mijπi� πi→j = πi←j�

The only controversial condition is the third one, that πi→j = πi←j. The fact
that πi←j exists and equals πi→j follows easily from Lemma 4.33. Manipulat-
ing the above conditions shows that π satisfies π = πH.

We now consider uniqueness. Assume first that αi < 1 for every i. Then
H is irreducible and nonnegative and thus by the Perron–Frobenius theorem
(Theorem A.1), it follows easily that π is the unique solution to the linear
system. If some αi = 1, we argue by focusing on the matrix H�α, which is
irreducible (as in Section 4.1, H�α is the principal submatrix of H containing
only rows and columns corresponding to i such that αi < 1). Renumber the
states of M so that the αi’s are nondecreasing. Then the Hungarian matrix
looks as follows:

H =
(
H�α X
0 0

)
�

where H�α is nonnegative and irreducible and X is arbitrary. Write π =
�πAπB�, where πB has the same number of elements as the number of αi’s
that are 1. Then the linear system we have to solve is

�πAπB� = �πAπB�
(
H�α X
0 0

)
�

This system can be solved by finding πA = πAH�α and then setting πB =
πAX. Now πB is uniquely determined by πA. Furthermore, πA is uniquely
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determined by the Perron–Frobenius theorem (Theorem A.1). This concludes
the proof of the theorem. ✷

4.3.2. Ergodic case. In this case also the limit probabilities are obtained by
solving linear systems, obtained from a renewal argument. We define “epochs”
starting at i by simulating the backoff process as follows. The epoch starts at
an initial history with X0 = i�. At the first step the process makes a forward
step. At every subsequent unit of time, if the process is back at the initial
history, it first flips a coin that comes up B with probability αi and F otherwise.
If the coin comes up B, the end of an epoch is declared.

Notice that the distribution of the length of an epoch starting at i is pre-
cisely the same as the distribution of time, starting at an arbitrary noninitial
history with i on top of the stack, until this occurrence of i is popped from the
stack, conditioned on the fact that the first step taken from i is a forward step.

Let Ti denote the expected length of (or more precisely, number of transi-
tions in) an epoch when starting at state i. Let Nij denote the expected num-
ber of transitions out of state j in an epoch when starting at state i. From
Theorem A.8 we see that the Cesaro limit probability distribution vector π�i�,
for an �M��� i�-backoff process, is given by π

�i�
j = Nij/Ti, provided Ti is

finite. This gives us a way to compute the Cesaro limit distribution. The key
equations that allow us to compute the Nij and Ti are

Ti = 1+∑
k

Mik
αk · 1+ �1− αk��Tk + 1�� + �1− αi�Ti�(6)

Nij = δij +
∑
k

Mik
αk · δjk + �1− αk��Nkj + δjk�� + �1− αi�Nij�(7)

where δij = 1 if i = j and 0 otherwise. [The above equations are derived by
straightforward conditioning. For example, if the first step in the epoch takes
the process to state k, then it takes Tk units of time to return to i� and then
with probability �1− αi� it takes Ti more steps to end the epoch.]

We claim that the first set (6) of linear equations completely specify T. We
argue this as follows. First we may rearrange terms in the equation and use
the fact that

∑
kMik = 1 to simplify (6) to

αiTi = 2+∑
k

�1− αk�MikTk�

Dividing both sides by αi (we know that no αi = 0 in the ergodic case), moving
all terms involvingTk to the left, and using the fact that the Hungarian matrix
H is given by Hik = ��1− αk�/αi�Mik, we get

Ti −
∑
k

HikTk =
2
αi

�

Letting T = T1� � � � �Tn� and b = 2/α1� � � � �2/αn�, we get �I −H�T = b.
Since the maximal eigenvalue of H is less than 1, we know that I−H has an
inverse (and is given by I+H+H2 + · · ·) and thus T is given by �I−H�−1b.
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Similarly, if we let Nj = N1j� � � � �Nnj� and bj = �δ1j +M1j�/α1� � � �,
�δnj +Mnj�/αn�, then (7) simplifies to yield Nj = �I−H�−1bj.

Thus T and the Nj’s can be computed using the above linear equations.

Using now the formula π
�i�
j = Nij/Ti, we can also compute the stationary

probability vectors.
4.3.3. Transient case. We now prove Theorem 4.4.
We now give a formal definition of the revocation probability, which was

defined informally earlier.

Definition 4.36. For a state j, define the revocation probability as fol-
lows. Pick any noninitial history σ̄ = σ0� � � � � σ�� with top�σ̄� = j. The revoca-
tion probability rj is the probability that the �M��� i�-Markov chain starting
at state σ̄ reaches the state σ̄ ′ = σ0� � � � � σ�−1�. (Notice that this probability
is independent of i, �, and σ0� � � � � σ�−1; thus, the quantity is well-defined.)

Note that ri is the probability that an epoch starting at i, as in Section 4.3.2,
ends in finite time. Let r denote the vector of revocation probabilities. The fol-
lowing lemma shows how to compute the limit probabilities π given r. Further,
it shows how to compute a close approximation to π, given a sufficiently close
approximation to r.

Lemma 4.37. The limit probabilities satisfy π = π�I−A�MR, where R is
a diagonal matrix with Rii = 1/�1 − �1 − αi�

∑
k rkMik�. Further, there exists

a unique solution to the this system subject to the condition
∑

i πi = 1.

Remarks. If αi = 0 for every i, then ri = 0 for every i, and so we recover
the familiar condition for Markov chains that π = πM. Although we are
considering the transient case here, note that if we formally take ri = 1,
which occurs in the null case, then we in fact recover the equation we found
in the null case, namely π = π�I−A�MA−1.

Proof of Lemma 4.37. The first part of the lemma is obtained as in
Theorem 4.35. Let πi→j denote the limit probability of a forward step from i
to j, and let πi←j denote the limit probability of a backward step from j to i.
Then the following conditions hold:

πi←j = rjπi→j�(8)

πi→j = πi�1− αi�Mij�(9)

πi =
∑
j

πj→i +
∑
j

πi←j�(10)

Equation (8) is shown as follows. Note that is is obvious that πi→j exists
and equals πi�1 − αi�Mij. Let π

+
i←j denote the limiting probability of moves

from i to j that are eventually revoked. Note that this limit does exist and
equals riπi→j. Next, using the ergodicity of the Turkish matrix (from the proof
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of Theorem 4.23) we deduce that πi←j also exists (it is the sum of certain
steady-state transitions of the Turkish matrix). Finally, we note that the total
number of unrevoked forward moves at time t that eventually do get revoked
is given by the length � of the state σ0� � � � � σ�� in the Turkish matrix. By the
ergodicity of the Turkish matrix, this length is o�t� with probability 1− o�1�.
Thus, we get πi←j = π+i←j, and this yields equation (8).

Using (8) to eliminate all occurrences of variables of the form πi←j and then
using (9) to eliminate all occurrences of πi→j, (10) becomes

πi =
∑
j

πj�1− αj�Mji + πi�1− αi�
∑
j

rjMij�(11)

Thus if we let D be the matrix with

Dij =
�1− αi�Mij

1− �1− αj�
∑

kMjkrk
�

then π satisfies π = πD. As in the proof of Theorem 4.35 if we permute the
rows and columns of D so that all states i with αi = 1 appear at the end, then
the matrix D looks as follows:

D =
(
Dα X
0 0

)
�

where Dα is nonnegative and irreducible. Thus π = 
πAπB� must satisfy πA =
πADα and πB = πAX. Now πA is seen to be unique (up to scaling) by the
Perron–Frobenius theorem (Theorem A.1), while πB is unique given πA. The
lemma follows by noticing that D can be expressed as �I−A�MR. ✷

Lemma 4.38. Let the entries of M and � be �-bit rationals describing a
transient �M��� i�-backoff process and let π be its limit probability vector. For
every ε > 0, there exists β > 0, with log 1

β
= poly �n� �� log 1

ε
�, such that given

any vector r′ of �′-bit rationals satisfying �r′ − r�∞ ≤ β, a vector π ′ satisfying
�π ′ − π�∞ ≤ ε can be found in time poly �n� �� �′� log 1

ε
�.

Remark. By truncating r′ to log 1
β
bits, we can ensure that �′ also grows

polynomially in the input size, and thus get a fully polynomial time algorithm
to approximate π.

We defer the proof of Lemma 4.38 to the Appendix B.
In the next lemma, we address the issue of how the revocation probabilities

may be determined. We show that they form a solution to a quadratic pro-
gram, in fact a semidefinite program. [Recall that a real symmetric matrix A
is positive semidefinite if all of its eigenvalues are nonnegative. A semidefinite
program is an optimization problem with a linear objective function whose con-
straints are of the form “A
x� is positive semidefinite,” where A
x� denotes a
symmetric matrix whose entries are themselves linear forms in the variables
x1� � � � � xn. Semidefinite programs are a special case of convex programs, but
more general than linear programs. They can be approximately solved effi-
ciently using the famed ellipsoid algorithm (see [4] for more details).]
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Lemma 4.39. The revocation probabilities ri are the optimum solution to
the following system:

min
∑
i

xi

such that xi ≥ αi + �1− αi�xi

∑
jMijxj�

xi ≤ 1�
xi ≥ 0�

(12)

Further, the system of inequalities above is equivalent to the following semidef-
inite program:

min
∑
i

xi

such that qi = 1− �1− αi��
∑

jMijxj�
xi ≤ 1�
xi ≥ 0�
qi ≥ 0�

Di positive semidefinite, where Di =
(

xi
√
αi√

αi qi

)
�

(13)

Proof. We start by considering the following iterative system and proving
that it converges to the optimum of (12).

For t = 0�1�2� � � �, define x
�t�
i as follows:

x
�0�
i = 0� x

�t+1�
i = αi + �1− αi�x�t�i

∑
j

Mijx
�t�
j �

By induction, we note that x�t�i ≤ x
�t+1�
i ≤ 1. The first inequality holds, since

x
�t+1�
i = αi + �1− αi�x�t�i

∑
j

Mijx
�t�
j

≥ αi + �1− αi�x�t−1�i

∑
j

Mijx
�t−1�
j

= x
�t�
i �

The second inequality follows similarly. Hence, since x�t�i �t is a nondecreasing
sequence in the interval 
0�1�, it must have a limit. Let x∗i denote this limit.

We claim that the x∗i give the (unique) optimum to (12). By construction,
it is clear that 0 ≤ x∗i ≤ 1 and x∗i = αi + �1 − αi�x∗i

∑
jMijx

∗
j; and hence x∗i ’s

form a feasible solution to (12). To prove that it is the optimum, we claim that
if a1� � � � � an are a feasible solution to (12), then we have ai ≥ x

�t�
i and thus

ai ≥ x∗i . We prove this claim by induction. Assume ai ≥ x
�t�
i , for every i. Then

ai ≥ αi + �1− αi�ai
∑
j

Mijaj
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≥ αi + �1− αi�x�t�i
∑
j

Mijx
�t�
j

= x
�t+1�
i �

This concludes the proof that the x∗i give the unique optimum to (12).
Next we show that the revocation probability ri equals x∗i . To do so, note

first that ri satisfies the condition

ri = αi + �1− αi�
∑
j

Mijrjri�

[Either the move to i is revoked at the first step with probability αi, or there is
a move to j with probability �1−αi�Mij and then the move to j is eventually
revoked with probability rj, and this places i again at the top of the stack
and with probability ri this move is eventually revoked.] Thus the ri’s form a
feasible solution, and so ri ≥ x∗i . To prove that ri ≤ x∗i , let us define r

�t�
i to be

the probability that a forward step onto vertex i is revoked in at most t steps.
Note that ri = limt→∞ r

�t�
i . We will show by induction that r�t�i ≤ x

�t�
i and this

implies ri ≤ x∗i . Notice first that

r
�t+1�
i ≤ αi + �1− αi�

∑
j

Mijr
�t�
j r

�t�
i �

(This follows from a conditioning argument similar to the above and then
noticing that in order to revoke the move within t+1 steps, both the revocation
of the move to j and then the eventual revocation of the move to i must occur
within t time steps.) Now an inductive argument as earlier shows r

�t+1�
i ≤

x
�t+1�
i , as desired. Thus we conclude that x∗i = ri. This completes the proof of

the first part of the lemma.
For the second part, note that the condition that Di be positive semidefi-

nite is equivalent to the condition that xiqi ≥ αi. Substituting qi = 1 − �1 −
αi�

∑
jMijxj turns this into the constraint xi − �1− αi�xi

∑
jMijxj ≥ αi, and

thus establishing the (syntactic) equivalence of (12) and (13). ✷

Using Lemmas 4.37 and 4.39 above, we can derive exact expressions for the
revocation probabilities and limit probabilities of any given backoff process.
The following example illustrates this. It also shows that the limit proba-
bilities are not necessarily rational, even when the entries of M and � are
rational.

Example. The following example shows that the limit probabilities may
be irrational even when all the entries of M and � are rational. Let M and �
be as follows:

M =
( 1

2
1
2

1
3

2
3

)
� � =  12 � 13��
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Using Lemma 4.39, we can now show that the revocation probabilities are
roots of cubic equations. Specifically, r1 is the unique real root of the equation
−16+30x−13x2+2x3 = 0 and r2 is the unique real root of the equation −9+
21x− 14x2 + 8x3 = 0. Both quantities are irrational and given approximately
by r1 ≈ 0�7477 and r2 ≈ 0�5775. Applying Lemma 4.37 to this, we find that
the limit probabilities of the �M���-process are π1 and π2, where π1 is the
unique real root of the equation

−1024+ 3936x− 3180x2 + 997x3 = 0

and π2 is the unique real root of the equation

−729+ 567x+ 189x2 + 997x3 = 0�

It may be verified that the cubic equations above are irreducible over the
rationals, and thus π1 and π2 are irrational and given approximately by π1 ≈
0�3467 and π2 ≈ 0�6532.

In the next lemma we show how to efficiently approximate the vector of
revocation probabilities. The proof assumes the reader is familiar with stan-
dard terminology used in semidefinite programming and in particular the
notion of a separation oracle and its use in the ellipsoid algorithm (see [4] for
more details).

Lemma 4.40. If the entries of M and � are given by �-bit rationals, then
an ε-approximation to the vector of revocation probabilities can be found in
time poly�n� �� log 1

ε
�.

Proof. We solve the convex program given by (12) approximately using
the ellipsoid algorithm [4]. Recall that the ellipsoid algorithm can solve a con-
vex programming problem given (i) a separation oracle describing the convex
space, (ii) a point x inside the convex space, (iii) radii ε and R such that the
ball of radius ε around x is contained in the convex body and the ball of radius
R contains the convex body. The running time is polynomial in the dimension
of the space and in log R

ε
.

The fact that (12) describes a convex program follows from the fact that it
is equivalent to the semidefinite program (13). Further, a separation oracle
can also be obtained due to this equivalence. In what follows we will describe
a vector x that is feasible, and an ε ≥ 2−poly�n��� such that every point y sat-
isfying �x− y�∞ ≤ ε is feasible. Further it is trivial to see that every feasible
point satisfies the condition that the ball of radius

√
n around it contains the

unit cube and hence all feasible solutions. This will thus suffice to prove the
lemma.

Recall, from Lemma 4.13 of Section 4.1, that since �M��� is transient,
there exists ρ > 1 and a vector w such that �I −A�Mw ≥ ρAw. Let wmax =
maxi�wi� and wmin = mini�wi �=0�wi�. Notice further that we can choose ρ

and w such that ρ ≥ 1 + 2−poly�n��� and wmax = 1 and wmin ≥ 2−poly�n���.
[In case ρ�M��� = ∞, this follows by picking, say ρ = 2, and using the
remark after Claim 4.11. In case ρ�M��� < ∞ we use Claim 4.12 and set
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ρ = ρ�H� and w = A−1v, where v is a right eigenvector of H. Since ρ > 1
is an eigenvalue of a matrix whose entries are �-bit rationals and since w is
a multiple of the eigenvector, the claims about the magnitude of ρ and wmin
follow.]

Before describing the vector x and ε, we make one simplification. Notice
that if αi = 1 then ri = 1, and if αi = 0 then ri = 0. We fix this setting and
then solve (12) only for the remaining choices of indices i. So henceforth we
assume 0 < αi < 1 and in particular the fact that αi ≥ 2−�.

Let δ = �ρ − 1�/�2ρ�. Note δ > 2−poly�n���. Let ε = 2−��+3�wmin��ρ − 1�/ρ�2.
We will set zi = 1− δwi and first show that zi − αi − �1− αi�zi

∑
jMijzj is at

least 2ε. Consider

zi − αi − �1− αi�zi
∑
j

Mijzj

= 1− δwi − αi − �1− αi��1− δwi�
∑
j

Mij�1− δwj�

= 1− δwi − αi − �1− αi��1− δwi�
(
1− δ

∑
j

Mijwj

)

= �1− δwi�
(
δ
∑
j

�1− αi�Mijwj

)
− δwiαi

≥ �1− δwi�
(
δραiwi

)− δwiαi

= δαiwi

(
ρ− ρδwi − 1

)
≥ δαiwiρ

≥
(
ρ− 1
2ρ

)2

αiwi

≥ 2ε�

Now consider any vector y such that zi − 2ε ≤ yi ≤ zi. We claim that y is
feasible. First, yi ≤ 1 since yi ≤ zi = 1 − δwi ≤ 1. We now show that yi ≥ 0.
First, zi ≥ 0 since wi ≤ 1 and δ < 1. Since, as we showed above, zi −αi − �1−
αi�zi

∑
jMijzj ≥ 2ε, it follows that yi ≥ zi−2ε ≥ αi+�1−αi�zi

∑
jMijzj ≥ 0.

Finally,

yi − αi − �1− αi�yi

∑
j

Mijyj ≥ zi − 2ε− αi − �1− αi�yi

∑
j

Mijyj

≥ zi − 2ε− αi − �1− αi�zi
∑
j

Mijzj

≥ 0 (using the claim about the zi’s).

Thus setting xi = zi − ε, we note that every vector y satisfying xi − ε ≤
yi ≤ xi + ε is feasible. This concludes the proof. ✷
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Proof of Theorem 4.4. Given M, � and ε, let β be as given by
Lemma 4.38. We first compute a β-approximation to the vector of revoca-
tion probabilities in time poly �n� �� log 1

β
� = poly �n� �� log 1

ε
� using Lemma

4.40. The output is a vector r′ of �′ = poly �n� �� log 1
ε
�-bit rationals. Apply-

ing Lemma 4.38 to M, �, r and ε, we obtain an ε-approximation to the limit
probability vector π in time poly�n� �� �′� log 1

ε
� = poly �n� �� log 1

ε
�. ✷

5. Allowing backoff probabilities on edges. In this paper, we have
considered the backoff probability to be determined by the current state. What
if we were to allow the backoff probabilities to be a function not just of the
current state, but of the state from which the current state was entered by a
forward step? Thus, in this situation, each edge �j′� j� that corresponds to a
forward step from j′ to j has a probability of being revoked that depends not
just on j, but on j′ also. We refer to this new, more general process as an edge-
based backoff process, and our original backoff process as a node-based backoff
process. We now define edge-based backoff processes a little more precisely.

As with node-based backoff processes, for an edge-based backoff process we
are given a Markov matrix M, indexed by the set � of states. The difference
is that for node-based backoff processes, we are given a vector � of backoff
probabilities αi for each state i; however, for edge-based backoff processes, we
are given a vector � of backoff probabilities κij for each pair i� j of states.

For a history σ̄ = σ0� � � � � σ�−1� σ��, define next-to-top�σ̄� to be σ�−1.
Given the Markov chain M and backoff vector �, and history σ̄ with

next-to-top�σ̄� = j′ and top�σ̄� = j, define the successor (or next state) succ�σ̄�
to take on values from � with the following distribution:

succ�σ̄� =
{pop�σ̄� with probability κj′j� if ��σ̄� ≥ 1�

push�σ̄� k� with probability �1− κj′j�Mjk� if ��σ̄� ≥ 1�
push�σ̄� k� with probability Mjk� if ��σ̄� = 0�

We denote by �M��� i� the edge-based backoff process, with start state i.
We now show how to convert our results about node-based backoff processes

into results for edge-based backoff processes. Assume we are given the edge-
based backoff process �M��� i�. Let � ′ be the set of all ordered pairs �j� k� of
states of � such that Mjk > 0. Define a new matrix M′, indexed by � ′, such
that M′

�j� k��k� �� =Mk�, and M′
�j� k����m� = 0 if � �= k. It is easy to verify that M′

is a Markov chain, that M′ is irreducible if M is and that M′ is aperiodic if M
is. Define � over � ′ by taking α�j� k� = κjk. We correspond to the edge-based
backoff process �M��� i� the node-based backoff process �M��� �m� i��, where
m is an arbitrary state in � such that Mmi > 0. This correspondence allows
us to carry over results about node-based backoff processes into results about
edge-based backoff processes. For example, we have the following result.

Theorem 5.1. Every edge-based backoff process has a Cesaro limit
distribution.
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Proof. Let �M��� i� be an edge-based backoff process. Let �M′��� �m� i��
be the corresponding node-based backoff process. We have shown that every
node-based backoff process has a Cesaro limit distribution. This gives a Cesaro
limit distribution for the edge-based backoff process, where the limit proba-
bility of state j in the edge-based backoff process is the sum of the limit
probabilities of all states �k� j� in the corresponding node-based backoff
process. ✷

Similarly, the Cesaro limit distribution for the edge-based backoff process
is efficiently computable, just as it is for node-based backoff processes.

6. Conclusions. We have introduced backoff processes, which are gener-
alizations of Markov chains where it is possible, with a certain probability,
to back up to the previous state that was entered by a forward step. Backoff
processes are intended to capture a feature of browsing on the World Wide
Web, namely, the use of the back button, that Markov chains do not. We show
that backoff processes have certain properties that are similar to those of
Markov chains, along with some interesting differences. Our main focus is
on limiting distributions, which we prove always exist and can be computed
efficiently.

We view this research as only a first step. First, we believe that backoff pro-
cesses are a natural extension of Markov chains that deserve further study.
Second, we feel that further generalizations should be considered and inves-
tigated. We gave one simple example of such a generalization in Section 5.
More powerful generalizations should be considered, including studies as to
how well various stochastic models actually capture browsing, along with a
mathematical analysis of such models.

APPENDIX

A. Preliminaries. In this section, we review background material
essential to our proofs.

A.1. Perron-Frobenius theorem.

Theorem A.1 (Perron–Frobenius theorem; see e.g., [7], page 508). Let A
be an irreducible, nonnegative square matrix. Then:

(i) There exists v, with all components positive, and λ0 > 0 such that
Av = λ0v.

(ii) λ0 = supx
{
mini�xi �=0

{�Ax�i/xi

}}
.

(iii) If λ �= λ0 is any other eigenvalue of A, then �λ� < λ0.
(iv) Each w such that Aw = λ0w is a constant multiple of v.
(v) Each nonnegative eigenvector of A is a constant multiple of v.
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A.2. Martingale tail inequalities. We begin by reviewing the basic defini-
tions.

Definition A.2. We now define a martingale, supermartingale and sub-
martingale.

(i) A sequence X0�X1� � � � of random variables is said to be a martingale
if E
Xi�X0� � � � �Xi−1� =Xi−1 for all i > 0.

(ii) A sequence X0�X1� � � � of random variables is said to be a super-
martingale if E
Xi�X0� � � � �Xi−1� ≤Xi−1 for all i > 0.

(iii) A sequence X0�X1� � � � of random variables is said to be a submartin-
gale if E
Xi�X0� � � � �Xi−1� ≥Xi−1 for all i > 0.

Theorem A.3 (Azuma’s inequality; see, e.g., [12], page 92). LetX0�X1� � � �
be a martingale such that for each k

�Xk −Xk−1� ≤ ck�

where ck may depend on k. Then for each t ≥ 0 and each λ > 0,

Pr
Xt −X0� ≥ λ� ≤ 2 exp

(
− λ2

2
∑

1≤k≤t c
2
k

)
�

Corollary A.4. Let X0�X1� � � � be a martingale such that for all k,

�Xk −Xk−1� ≤ c�

Then for each t ≥ 0 and each λ > 0,

Pr
Xt −X0� ≥ λc
√
t� ≤ 2e−λ

2/2�

Corollary A.5. Let X0�X1� � � � be a submartingale such that

E�Xi�X0� � � � �Xi−1� ≥Xi−1 + β�

(β > 0) and for all k,

�Xk −Xk−1� ≤ c�

Then for each t ≥ 0 and each λ ≥ 0,

Pr��Xt −X0� ≤ λ� ≤ 2 exp
(
− β

2c2

(
t− 2λ

β

))
�

Corollary A.6. Let X0�X1� � � � be a supermartingale such that

E�Xi�X0� � � � �Xi−1� ≤Xi−1 − β�

(β > 0) and for all k,

�Xk −Xk−1� ≤ c�

Then for all t ≥ 0,

Pr��Xt + βt−X0� ≥ γt� ≤ 2e−γ
2t/�2c2��
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A.3. Renewal theory.

Definition A.7. A renewal process �N�t�� t ≥ 0� is a nonnegative integer-
valued stochastic process that counts the number of occurrences of an event
during the time interval �0� t�, where the times between consecutive events
are positive, independent, identically distributed random variables.

Theorem A.8 (Corollary of renewal theorem; see e.g., [8], page 203). Let
N�t� be a renewal process where the time between the ith and �i+1�st event is
denoted by the random variable Xi. Let Yi be a cost or value associated with
the ith epoch [period between ith and �i + 1�st event], where the values Yi,
i ≥ 1, are also positive, independent, identically distributed random variables.
Then

lim
t→∞

E
∑1≤k≤N�t�+1Yk�
t

= E�Y1�
E�X1�

�

A.4. Law of large numbers. We shall make use various times of the fol-
lowing (weak form of the) law of large numbers.

Proposition A.9. Let p! �+ → 
0�1� be a probability distribution 
i.e.,∑∞
i=1p�i� = 1� with expectation at least µ 
i.e., ∑∞

i=1 ip�i� ≥ µ�. Let Y1� � � � �
YN� � � � � be a sequence of independent random variables distributed according
to p. Then for every δ > 0 and µ′ < µ, there exists an index N such that

Pr

[
N∑
i=1

Yi > µ′ ·N
]
≥ 1− δ�

B. Stability of computations in the transient case. In this section
we show that the linear system used to find the stationary probability vector
(given the vector of revocation probabilities) in Section 4.3.3 is stable. Thus
it can be solved even if some of the entries of the system are only known
approximately. This proof relies on a general theorem (Theorem B.1), due to
Gurvits [5], about the stability of the maximal eigenvector of a positive matrix.
For completeness, a proof of this theorem is also included in this section.

Restatement of Lemma 4.38. Let the entries of M and � be �-bit rationals
describing a transient �M���-backoff process and let π be its limit probability
vector. For every ε > 0, there exists β > 0, with log 1

β
= poly �n� �� log 1

ε
�, such

that given any vector r′ of �′-bit rationals satisfying �r′ − r�∞ ≤ β, a vector π ′

satisfying �π ′ − π�∞ ≤ ε can be found in time poly �n� �� �′� log 1
ε
�.

Proof. Let r′ be such that �r′ − r�∞ ≤ β (where β will be specified later).
We will assume for notational simplicity that r′i ≥ ri for every i. (If this is not
the case, then the vector r′′ given by r′′i = r′i + β does satisfy this property
and still satisfies �r′′ − r�∞ ≤ 2β. Thus the proof below with r′ replaced by r′′

and β by 2β will work for the general case.)
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Let D, Dα and X be as in the proof of Lemma 4.37. Define D′, D′
α and X′

analogously. Thus, D′ is the matrix given by

D′
ij =

�1− αi�Mij

1− �1− αj�
∑

kMjkr
′
k

and D′ can be described as

D′ =
(
D′

α X
′

0 0

)
�

where D′
α is irreducible. Notice first that X′ = X, since if αj = 1, then for

each i we have Dij = D′
ij =Mij�1−αi�. Recall that our goal is to approximate

the maximal left eigenvector π of D, such that �π�1 = 1. Write π = 1/�1 +
�B�
πAπB�, where πA is a left eigenvector of Dα with �πA�1 = 1, πB = πAX
and �B = �πB�1. We will show how to compute π ′A�π

′
B such that �π ′A�1 = 1,

�π ′A − πA�∞ ≤ ε/�n + 1� and �π ′B − πB�∞ ≤ ε/�n + 1�. It follows then that if
we set π ′ = 1/�1+ �π ′B�1�
π ′Aπ ′B�, then

�π ′ − π�∞ ≤
1

1+ �B
max

{�π ′A − πA�∞� �π ′B − πB�∞
}+ ∣∣�B − �π ′B�1∣∣

≤ ε

n+ 1
+ ∣∣�π ′B − πB�1

∣∣
≤ ε

as desired. [The term ��B − �π ′B�1� is an upper bound on �π ′A/�1+ �b� −
π ′A/�1+ �π ′B�1��∞, and also on �π ′B/�1+ �b� − π ′B/�1+ �π ′B�1��∞.]

Further, if π ′A is any vector such that �π ′A − πA�∞ ≤ ε/�n�n + 1��, then a
π ′B satisfying �π ′B − πB�∞ ≤ ε/�n+ 1� can be obtained by setting π ′B = π ′AX.
[Notice that maxij�Xij� ≤ 1 and thus ��π ′B�j−�πB�j� ≤

∑
i Xij��π ′A�i−�πA�i� ≤

n�ε/�n�n+ 1���.]
Thus, below we show how to find π ′A that closely approximates πA, specifi-

cally satisfying �π ′A − πA�∞ ≤ ε/�n�n+1��. To do so, we will use the matrixD′.
We now show that the entries of D′ are close to those of D, using the fact

that 0 ≤ r′k − rk ≤ β. Note that

D′
ij −Dij =

�1− αi�Mij

1− �1− αj�
∑

kMjkr
′
k

− �1− αi�Mij

1− �1− αj�
∑

kMjkrk

= �1− αi�Mij

�1− αj�
∑

kMjk�r′k − rk�(
1− �1− αj�

∑
kMjkr

′
k

)(
1− �1− αj�

∑
kMjkrk

)
≤ β(

1− �1− αj�
∑

kMjkrk
)2 �

Thus to upper bound this difference, we need a lower bound on the quantity
1− �1− αj�

∑
kMjkrk. If αj �= 0, then this quantity is at least αj ≥ 2−�. Now

consider the case where αj = 0. In such a case, for any k, either αk = rk = 1,
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or αk < 1 and in such a case, we claim rk ≤ 1 − 2−2n�. This is true, since
the �M�α�-backoff process is irreducible and hence there is a path consisting
only of forward steps that goes from k to j, and this path has probability at
least 2−2n�; once we push j onto the history stack, it will never be revoked.
Further, by the irreducibility of the �M���-backoff process, there must exist k0
such that Mjk0

> 0 and rk0
≤ 1 − 2−2n�. Now Mjk0

≥ 2−�. Since
∑

kMjk = 1,
we have

∑
k �=k0

Mjkrk +Mjk0
≤ 1, that is,

∑
kMjkrk −Mjk0

rk0
+Mjk0

≤ 1. So∑
kMjkrk ≤ 1−Mjk0

�1− rk0
� ≤ 1− 2−�2n+1��. Hence, 1− �1− αj�

∑
kMjkrk is

lower bounded by 2−�2n+1� �. Thus we conclude that

�D′
ij −Dij� ≤ 2�4n+2��β�

Next consider the matrix B = ( 12�I+Dα�
)n. Notice that B has a (maximal)

eigenvalue of 1, with a left eigenvector πA. We claim B is positive, with each
entry being at least 2−�2�+1�n. To see this, first note that every nonzero entry of
Dα is at least 2−2�. Next consider a sequence i0 = i� i1� i2� � � � � i� = j of length
at most n satisfying Dik� ik+1 > 0. Such a sequence does exist since Dα is irre-
ducible. Further Bij is at least 2−n

∏
k Dikik+1 which is at least 2−n�2�+1�. Thus B

is a positive matrix and we are interested in computing a close approximation
to its left eigenvector πA.

Next we show that B′ = ( 12�I+D′
α�
)n is a close enough approximation to B.

Note that since maxij �Dij −D′
ij� ≤ 2�4n+2��β, we have maxij �B′ij −Bij� ≤ �1+

2�4n+2��β�n−1�, which may be bounded from above by �2n ·2�4n+2���β provided
β ≤ 2−�4n+2��. [This follows from the fact that if x ≤ 1, then �1+x�n−1 ≤ 2nx,
which we can see by considering the binomial expansion of �1+x�n and noting
that the sum of the coefficients is 2n.]

Now let π ′A be any vector satisfying �π ′A − π ′AB
′�∞ ≤ 2n+��4n+2�β and

�π ′A�1 = 1. (Such a vector does exist. In particular, πA satisfies this condi-
tion. Further, such a vector can be found by linear programming.) Applying
Theorem B.1 below to BT� �B′�T�πA and π ′A with γ = 2−n�2�+1�, ε = δ =
2n+��4n+2�β yields �π ′A − πA�∞ ≤ β2O�n��. Thus setting β = ε2/2−F�n�� suffices
to get π ′A to be an ε/�n�n+ 1�� close approximation to πA. This concludes the
proof. ✷

The rest of this section is devoted to the proof of the following theorem.
As pointed out earlier, this theorem is due to Leonid Gurvits, and its proof is
included here for completeness.

Theorem B.1 [5]. Let B�C be n × n matrices and x�y be n-dimensional
vectors satisfying the following conditions:

(i) Bij ≥ γ > 0 for every i� j. Further, ρ�B� = 1� 
Recall that ρ�B� is the
maximal eigenvalue of B��

(ii) �Cij −Bij� < δ for every i� j.
(iii) �x�1 = 1 and Bx = x.
(iv) �y�1 = 1 and �Cy − y�∞ ≤ ε.
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Then �x − y�∞ ≤ �ε+ δ�/γ3, provided ε+ δ ≤ γ
2 .

To prove the above theorem, we need to introduce some new definitions. In
particular, a “projective norm” on vectors introduced by Hilbert, a norm on pos-
itive matrices induced by Hilbert’s projective norm and a theorem of Birkhoff
bounding the matrix norm play a crucial role in the proof of Theorem B.1. We
introduce this background material next.

Definition B.2 For n-dimensional positive vectors x and y the Hilbert
projective distance between x and y, denoted d�x�y�, is defined to be

ln
β

α
where α = min

i

{
xi

yi

}
and β = max

i

{
xi

yi

}
�

It may be verified that for every γ1� γ2 > 0, it holds that d�x�y� =
d�γ1 · x� γ2 · y�, and thus d�·� ·� is invariant under scaling of vectors. Further,
the projective norm satisfies the three properties of metrics (on the projective
space), namely (1) nonnegativity; that is, d�x�y� ≥ 0 with equality holding if
and only if x = y, (2) symmetry; that is, d�x�y� = d�y�x� and (3) the triangle
inequality; that is, d�x�y� ≤ d�x� z� + d�z�y�. In the following lemma, we
relate the �∞-distance between two positive unit vectors in the �1-norm with
the projective distance between the two.

Lemma B.3 Let x�y be positive vectors. Then the following hold:

(i) d�x�y� ≤ 3�x − y�∞/mini�yi�, provided �x − y�∞ ≤ �mini�yi��/2.
(ii) If �x�1 = 1 and �y�1 = 1, then �x − y�∞ ≤ d�x�y�.

Proof. Let ε = �x − y�∞ and γ = mini�yi�. For Part (i), note that xi/yi ≤
1 + �xi − yi�/yi ≤ 1 + ε

γ
. (The first inequality holds by considering two cases:

if xi ≤ yi, then the left-hand side is at most 1; if xi > yi, then the right-hand
side equals xi/yi. Similarly, considering the two cases xi ≤ yi and xi > yi, we
obtain xi/yi ≥ 1 − �xi − yi�/yi ≥ 1 − ε

γ
. Thus d�x�y� ≤ ln��1 + ε

γ
�/�1 − ε

γ
�� =

ln�1+ ε
γ
�+ln�1/�1− ε

γ
��. Using the inequality ln�1+z� ≤ z, we see that the first

term is at most ε
γ
. For the second term, we use the fact that �1/�1−z�� ≤ 1+2z,

if z ≤ 1
2 . Combined with the monotonicity of the natural logarithm, we get

that ln�1/�1− ε
γ
�� ≤ ln�1+2 ε

γ
� ≤ 2 ε

γ
, where the first inequality holds provided

ε ≤ γ/2. If follows that d�x�y� ≤ 3 ε
γ
, provided ε ≤ γ/2.

For Part (ii), let i0 be such that �xi0
− yi0

� = ε. Assume without loss of
generality that xi0

= yi0
+ ε. Since

∑
j xj = 1, we have xi0

≤ 1. Therefore xi0
/

�xi0
−ε� ≥ 1/�1−ε� (as we see by clearing the denominators in the inequality),

that is xi0
/yi0

≥ 1/�1−ε�. Thus maxi�xi/yi� ≥ 1/�1−ε�. Since∑j xj =
∑

j yj,
there must exist an index i1 such that yi1

≥ xi1
. Thus mini�xi/yi� ≤ 1. Putting

the above together, we get d�x�y� ≥ ln�1/�1− ε�� ≥ ε. ✷

The Hilbert projective distance between vectors induces a natural norm on
positive matrices, as defined below.
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Definition B.4 For a positive square matrixA, define the projective norm
of A, denoted ρH�A�, to be

ρH�A� = sup
x�y>0

{
d�Ax�Ay�
d�x�y�

}
�

It turns out that the projective norm of every positive matrix is strictly
smaller than 1. This can be shown using a theorem of Birkhoff that we will
state shortly. First we need one more definition related to positive matrices.

Definition B.5 For a positive square matrix A, define the diameter of A,
denoted (�A�, to be

(�A� = sup
x�y>0

{
d�Ax�Ay�}�

Birkhoff ’s theorem below relates the projective norm of a matrix to its diam-
eter. In particular it shows that if the diameter of a matrix is bounded, then
its projective norm is strictly smaller than 1.

Theorem B.6 [2]. For every positive square matrix A,

ρH�A� = tanh�(�A�/4��

Recall that tanh�x� = �ex − e−x�/�ex + e−x�, and so tanh�x� < 1 for every x.
In the following lemma it is shown that the diameter of every positive matrix
is bounded, and thus every positive matrix has a projective norm less than 1.

Lemma B.7 For a positive square matrix A satisfying ρ�A� = 1 and Aij ≥
γ > 0, it is the case that ρH�A� ≤ 1− γ2.

Proof. Let z be the maximal right eigenvector of A normalized to satisfy
�z�1 = 1. (Note z is positive by the Perron–Frobenius theorem.) Let Ã =
D−1AD, where D is the diagonal matrix with ith diagonal entry being zi. We
bound ρH�A� in four steps showing: (1) ρH�A� = ρH�Ã�, (2) Ã is row-stochastic
(i.e., its rows sum to one), (3) Ãij ≥ γ2 and (4) (�Ã� ≤ 1 − mini� j�Ãij� for

each row-stochastic matrix Ã.
For step 1, note first that by the definition of the projective distance, we have

d�D1xD2�D1yD2� = d�x�y� for each pair x�y of vectors and each pair D1�D2
of positive diagonal matrices. As a consequence, we find that for each choice
of a positive matrix A and positive diagonal matrices D1 and D2, we have
ρH�A� = ρH�D1AD2�. Setting D1 = D−1 and D2 = D yields ρH�A� = ρH�Ã�.

For step 2, we need to verify that
∑

j Ãij = 1 for every i. Note that Ãij =
Aij · zj/zi. Summing, we get

∑
j Aij�zj/zi� = �1/zi�

∑
j Aijzj = 1, where the

last equality uses the fact that Az = z.
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For step 3, we need to verify that Aij�zj/zi� ≥ γ2. Since we know Aij ≥ γ,
it suffices to show that zj ≥ γ and zi ≤ 1. For the former, note that zj =∑

k Ajkzk ≥
∑

k γzk = γ (since Ajk ≥ γ and �z�1 = 1). For the latter, we use
zi ≤

∑
k zk = 1. Thus we get Ãij ≥ γ2.

Finally, for step 4, let µ = mini� j�Ãij�. Assume that x and y are vectors of

�1-norm1.Thenµ ≤ �Ãx�i ≤ 1andµ ≤ �Ãy�i ≤ 1.Hence,µ ≤ �Ãx�i/�Ãy�i ≤ 1
µ
.

Thus for every x and y of �1-norm 1, we have d�Ãx� Ãy� ≤ −2 lnµ. Hence

(�Ã� = sup
x�y>0

{
d�Ãx� Ãy�} = sup

x�y>0� �x�1=�y�1=1

{
d�Ãx� Ãy�} ≤ −2 lnµ�

where the second equality holds since the projective distance is invariant with
respect to scaling of the arguments. From Theorem B.6 and the fact that
tanh�x� ≤ 1− e−2x, we get ρH�Ã� = tanh�(�Ã�/4� ≤ 1− e−(�Ã�/2 ≤ 1− e− ln µ =
1− µ. ✷

Next we derive an easy corollary of Lemma B.7.

Lemma B.8 IfA is a positive matrix with maximal right eigenvector x, then
limk→∞�d�Aky�x�� = 0 for every positive vector y.

Proof. Assume without loss of generality that ρ�A� = 1, and Ax =
x (since A may be scaled without affecting its projective properties). Note
that d�Aky�Akx� ≤ ρH�A�d�Ak−1y�Ak−1x� by the definition of the projective
norm ρH�·�. Since Akx = x, we get that d�Aky�x� ≤ ρH�A�kd�y�x�. Since
ρH�A� < 1, we have d�Aky�x� tends to 0 as k→∞. ✷

The next lemma shows that if Ay is close to y for a positive matrix A with
maximal eigenvalue 1 and positive vector y, then y is close to the maximal
eigenvector of A, where closeness is under the projective norm.

Lemma B.9 For a positive square matrixA, with maximal right eigenvector
x, if y satisfies d�Ay�y� ≤ ε, then d�y�x� ≤ ε/�1− ρH�A��.

Proof. Again, we assume that ρ�A� = 1, to simplify the notation. Then
from Lemma B.8 we have limk→∞�d�Aky�x�� = 0. Thus, using triangle
inequality on the projective distance we get d�y�x� ≤ ∑∞

k=0 d�Aky�Ak+1y�.
But d�Aky�Ak+1y� ≤ ρH�A�d�Ak−1y�Aky� ≤ ρH�A�kd�y�Ay� ≤ ρH�A�kε.
Thus, we have d�y�x� ≤∑∞

k=0 ρH�A�kε = ε/�1− ρH�A��. ✷

Proof of Theorem B.1. By Conditions (ii) and (iv) of the hypothesis we
get

�By − y�∞ ≤ ��B−C�y�∞ + �Cy − y�∞ ≤ δ+ ε�(14)

Applying part (i) of Lemma B.3, where the roles of x, y of the lemma are
played here by y, By, respectively, we get d�y�By� ≤ 3�ε+δ�/γ. [Note the nec-
essary condition for the application of Lemma B.3 follows from the condition
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ε+δ ≤ γ/2. Applying Lemma B.9, where the roles of A, x, y of the lemma are
played here by B, x, y, respectively, we get d�y�x� ≤ 3�ε+δ�/�γ · �1−ρH�B��.]
By Lemma B.7 we have ρH�B� ≤ 1− γ2, and thus d�y�x� ≤ �ε+ δ�/γ3. Apply-
ing part (ii) of Lemma B.3 to vectors x and y, we get �x − y�∞ ≤ d�x�y� ≤
�ε+ δ�/γ3. ✷

Acknowledgment. An earlier version of this paper contained a flawed
proof of Theorem B.1. We thank Leonid Gurvits for pointing out the error, for
suggesting an alternate proof and for permission to include his proof in this
paper.
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