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1 Introduction

Write [n] := {1, 2, . . . , n}. A mapping m : [n] → [n] is just a function, identified with
its digraph D(m) = {(i,m(i)), i ∈ [n]}. Exact and asymptotic properties of random
mappings have been studied extensively in the combinatorial literature since the 1960s
[12, 14]. Aldous and Pitman [4] introduced the method of associating a mapping-walk
with a mapping, and showed that (for a uniform random mapping) rescaled mapping-
walks converge in law to reflecting Brownian bridge. The underlying idea – that to rooted
trees one can associate tree-walks in such a way that random tree-walks have tractable
stochastic structure – has been developed by many authors in many directions over the
last 15 years, and this paper, together with a companion paper [6], takes another look
at invariance principles for random mappings with better tools.

As is well known, the digraph D(m) decomposes into trees attached to cycles. The
argument of [4] was that for a uniform random mapping the walk-segments corresponding
to different cycles, considered separately, converge to Brownian excursions, and that
the process of combining these walk-segments into the mapping-walk turned out (by
calculation) to be the same as the way that excursions of reflecting Brownian bridge are
combined. That proof (and its reinterpretation by Biane [9]) made the result seem rather
coincidental. In this paper we give a conceptually straightforward argument which both
proves convergence and more directly identifies the limit. The argument is based on the
Joyal bijection J between doubly-rooted trees and mappings. Being a bijection it takes
uniform law to uniform law; less obviously, it takes the natural p-tree model of random
trees to the natural p-mapping model of random mappings. Theorem 1 will show that
under a natural hypothesis, mapping-walks associated with random p-mappings converge
weakly to reflecting Brownian bridge. We can outline the proof in four sentences.

• It is known that rescaled walks associated with random p-trees converge in law to
Brownian excursion, under the natural hypothesis (4) on (pn) (section 2.5).

• There is a transformation J : D[0, 1] → D[0, 1] which “lifts” the Joyal bijection
trees→mappings to the associated walks (section 3.3).

• J has appropriate continuity properties (section 3.2).

• J takes Brownian excursion to reflecting Brownian bridge (section 3.4).

Filling in the details is not difficult, and indeed it takes longer in section 2 to describe the
background material (tree walks, mapping walks, the Joyal bijection in its probabilistic
form, its interpretation for walks) than to describe the new arguments in section 3. One
unusual aspect is that to handle the natural class (4) of p-mappings, we need to use

38



a certain ∗-topology on D[0, 1] which is weaker than the usual Skorokhod topology (in
brief, it permits upward spikes of vanishing width but non-vanishing height).

A companion paper [6] used a quite different approach to studying a range of models
for random trees or mappings, based on spanning subgraphs of random vertices. We
will quote from there the general result (Theorem 4(b)) that rescaled random p-tree
walks converge in the ∗-topology to Brownian excursion, but our treatment of random
mappings will be essentially self-contained. We were motivated in part by a recent paper
of O’Cinneide and Pokrovskii [16], who gave a more classically-framed study of random
p-trees (under the same hypothesis (4)) from the viewpoint of limit distributions for a
few explicit statistics. See [4, 6, 1, 5] for various explicit limit distributions derived from
the Brownian bridge.

When (4) fails the asymptotics of p-trees and p-mappings are quite different: Brow-
nian excursion and reflecting Brownian bridge are replaced by certain jump processes
with infinite-dimensional parametrization. Technicalities become much more intricate in
this case, but the general method of using the operator J will still work. We will treat
this in a sequel [3].

The recent lecture notes of Pitman [18] provide a broad general survey of this field
of probabilistic combinatorics and stochastic processes.

2 Background

2.1 Mappings

Let S be a finite set. For any mapping m : S → S, write D(m) for the mapping digraph
whose edges are s → m(s), and write C(m) for the set of cyclic points of m (i.e. the
points that are mapped to themselves by some iterate of m).

Let Tc(m) be the tree component of the mapping digraph with root c ∈ C(m). The
tree components are bundled by the disjoint cycles Cj(m) ⊆ C(m) to form the basins of
attraction Bj(m) of the mapping, say

Bj(m) :=
⋃

c∈Cj(m)

Tc(m) ⊇ Cj(m) with
⋃

j

Bj(m) = S and
⋃

j

Cj(m) = C(m) (1)

where all three unions are disjoint unions, and the Bj(m) and Cj(m) are indexed by
j = 1, 2, . . . in such a way that these sets are non-empty iff j ≤ k, the number of cycles
of the digraph, which is also the number of basins of the digraph. The choice of ordering
will be important later, but first we define the random mappings we will consider.
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From now on, suppose that S = {1, 2, . . . , n} =: [n]. Consider a probability law p on
[n], and assume that pi > 0 for each i. A random mapping M is called a p-mapping if
for every m ∈ [n][n],

P (M = m) =
∏

x∈[n]

pm(x). (2)

In other words, each point of [n] is mapped independently of the others to a point of [n]
chosen according to the probability law p.

We now define an order on the basins of attraction and cycles of a p-mapping which
will be relevant to our study. Consider a random sample (X2, X3, . . .) of i.i.d. points of
[n] with common law p, independent of M (the reason for our unusual choice of index
set {2, 3, . . .} will become clear in section 2.4). Then order the basins of M in their order
of appearance in the p-sample. More precisely, since pi > 0 for every i ∈ [n], we have
that {X2, X3, . . .} = [n] a.s., so the following procedure a.s. terminates:
• Let B1(M) be the basin of M containing X2 and C1(M) be the cycle included in

B1(M). Define τ1 = 2.
• Given (τi)1≤i≤j and the non-empty (Bi(M))1≤i≤j and (Ci(M))1≤i≤j, as long as

∪1≤i≤jBi(M) 6= [n], let τj+1 = inf{k : Xk /∈ ∪1≤i≤jBi(M)} and let Bj+1(M) be the
basin containing Xτj+1

; also let Cj+1(M) be the cycle included in Bj+1(M).
For the purpose of defining a useful marked random walk in the next section, we shall

also introduce an order on all the cyclic points, as follows. With the above notations, let
cj ∈ Cj(M) be the cyclic point which is the root of the subtree of the digraph of M that
contains Xτj . Then within Cj(M) the vertices are ordered as follows:

M(cj),M
2(cj), . . . ,M

|Cj(M)|−1(cj), cj.

Together with the order on basins, this induces an order on all cyclic points.
Call this order (on basins, cycles, or cyclic points) the p-biased random order.

2.2 Coding trees and mappings by marked walks

Let To
n be the set of ordered rooted trees on n vertices. By ordered, we mean that the

children of each vertex of the tree, if any, are ordered (i.e. we are given a map from
the set of children into {1, 2, 3, . . .}). Consider some tree T in To

n. Denote by Hi(T )
the height of vertex i in this tree (height = number of edges between i and the root).
Suppose that each vertex i has a weight wi > 0, to be interpreted as the duration of
time that the walk spends at each vertex. Then one can define the height process of the
tree as follows. First put the vertices in depth-first order (the root is first, and coming
after a certain vertex is either its first child, or (if it has no children) its next brother,
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or (if he has no brother either), the next brother of its parent, and so on). This order
can be written as a permutation σ: we say that σ(i) is the label of the i-th vertex. For
s ≤∑n

i=1 wσ(i) set

HT
s = Hσ(i)(T ) if

i−1
∑

j=1

wσ(j) ≤ s <
i
∑

j=1

wσ(j),

and HT
∑n

i=1 wσ(i)
= Hσ(n)(T ) (so the process is right-continuous). This also induces a map

s 7→ sT from [0,
∑

i wi] to [n], where sT = σ(i) whenever
∑i−1

j=1 wσ(j) ≤ s <
∑i

j=1 wσ(j).

With this notation, HT
s = HsT (T ). We say that s is a time at which the vertex sT is

visited by the height process of T .
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Fig. 1: A mapping pattern digraph and a p sample
run until it has visited the three basins.

-×
0

×
Z1

× ×
Z2

× +
Z3 = 1

Fig. 2: The corresponding marked walk.
Crosses indicate visits to cyclic points.

Now consider a p-mapping M on [n] with the assumptions above on p. Given the
choice of a particular order on the cyclic points, say (c1, . . . , cK), one can construct the
“height processes” associated with the p-mapping, as follows: in the digraph of M , delete
the edges between cyclic points and consider the tree components Tc1 , Tc2 , . . . , TcK of the
resulting random forest, with respective roots c1, c2, . . . , cK . The tree components are
unordered trees, but we can make them into ordered trees by putting each set of children
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of the vertices of the Tci ’s into uniform random order. This induces a depth-first order
on each Tci . Let HTci be the height process of Tci (where the weight wx of a point x is
its p-value px). Now define the mapping walk (HM

s , 0 ≤ s ≤ 1) to be the concatenation
of these tree-walks, in the order dictated by the order on the cyclic points. That is, for
0 ≤ s ≤ 1 set

HM
s = H

Tci
s−∑

j<i p(Tcj )
if
∑

j<i

p(Tcj) ≤ s <
∑

j≤i

p(Tcj), (3)

and HM
1 = HM

1−. Here p(Tcj) denotes the p-measure of the vertex-set of Tcj . As with the
trees, we denote by sM the vertex that is visited by HM at time s. Also, for x ∈ [n] let
[gM(x), dM(x)) be the interval where x is visited by the walk associated with M . Several
features of the mapping M are coded within this walk, such as the number of cyclic
points (which is the number of points x such that HM

gM (x) = 0), and the shapes of the
trees planted on the cyclic points, which can be deduced from the excursions of the walk
away from 0.

Now suppose that c1, . . . , cK , and the basins B1(M),B2(M), . . . are in the p-biased
random order. Put a mark Zi at the time when the i-th non-empty basin of M has been
entirely visited. This must be a time when HM is 0 (this is the time when the walk
visits the first cyclic point of the next basin), unless Zi is the time when the last basin
has been visited, and then one has Zi = 1. The marks 0 = Z0, Z1, Z2, . . . determine the
visits of each basin, i.e. the portion of HM between Zj−1 and Zj is the mapping walk
corresponding to the j-th basin of the mapping. In particular p(Bj) = Zj − Zj−1.

Last, we denote by `Ms the number of cyclic points that are before sM in depth-first
order. Precisely,

`Ms =
∑

j≤i

1{HM
∑j

k=1 pσ(k)
= 0} if

∑

j<i

pσ(j) ≤ s <
∑

j≤i

pσ(j)

where σ is the ordering of vertices implicit in the construction of the mapping-walk.
Remark. (a) Because the walk can visit two cyclic points consecutively, some infor-
mation about the mapping pattern (i.e. the digraph with unlabeled vertices) is lost in
(HM , (Z1, Z2, . . .)). But when we are also given ((gM(i), dM(i)))i∈[n], which is a partition
of [0, 1], we can recover the mapping pattern.

(b) The height process of a tree is a particular instance of a “tree walk”, i.e. a walk
associated with a tree. The fact that the walk spends time pi at vertex i is important;
but other walks with this property might also be usable.
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2.3 The convergence theorem

At this point we can state precisely the result of this paper, Theorem 1. For a probability
law p on [n] write

c(p) :=

√

∑

i

p2
i .

For a sequence (p(n)) of probability laws on [n], introduce the uniform asymptotic negli-
gibility condition

maxi p
(n)
i

c(p(n))
→ 0 as n→∞. (4)

This turns out to be natural because of the birthday tree construction of p-trees [10], or
the direct study of iterates of random mappings [6]. It is easy to check that (4) implies
c(p(n))→ 0.

LetMn be a p
(n)-mapping. Consider the associated marked random walks (HMn , (Zn

1 , Z
n
2 , . . .)).

Let B|br| be standard reflected Brownian bridge on [0, 1], let (Ls, 0 ≤ s ≤ 1) be half its
local time at 0, which is normalized to be the density of the occupation measure at 0 of
the reflecting Brownian bridge. Define the random points (D1, D2, . . .) as follows: take

U1 uniform on [0, 1] independent of B |br|, and let D1 = inf{s ≥ U1 : B
|br|
s = 0}. Then

conditionally on D1 take U2 uniform on [D1, 1] independent of (B
|br|
s , D1 ≤ s ≤ 1), and

let D2 = inf{s ≥ U2 : B
|br|
s = 0}, and so on.

Theorem 1 Suppose (p(n)) satisfies (4).
(i) There is convergence in law

c(p(n))HMn → 2B|br| (5)

with respect to the ∗-topology on D[0, 1] defined in section 2.5. If p(n) is uniform on [n]
then we can use the usual Skorokhod topology on D[0, 1].
(ii) Jointly with the convergence in (i), the marks (Zn

1 , Z
n
2 , . . .) converge in law to the

sequence (D1, D2, . . .).
(iii) Jointly with the above convergences we have the limit in law (for the uniform topol-
ogy)

(c(p(n))`Mn
s , 0 ≤ s ≤ 1)→ (Ls, 0 ≤ s ≤ 1). (6)

This immediately yields

Corollary 2 The following convergence in law holds jointly with (6) in Theorem 1 :

(

p(n)(Bj(Mn)), c(p
(n))|Cj(Mn)|

)

j≥1

(d)→
n→∞

(Dj −Dj−1, LDj
− LDj−1

)j≥1. (7)
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For uniform p(n) we have c(p(n)) = n−1/2 and these results rederive the results of [4].
For (p(n)) satisfying (4), these results imply results proved by other methods in [6] while
adding assertion (iii) which cannot be proved by those methods.

2.4 p-trees, p-mappings and the Joyal bijection

Let Tn be the set of unordered rooted labeled trees on [n]. We define a random object,
the p-tree, as a random rooted unordered labeled tree whose law is given by

P (T = T ) =
∏

x∈[n]

p|Tx|x , (8)

where Tx is the set of children of vertex x. It is not obvious that the normalizing factor
on the right hand side of (8) is 1, that is, that this formula indeed defines a probability
law. This known fact [17] can be seen as a consequence of our following discussion.

As shown by Joyal [13] and reviewed in Pitman [17] one can define a bijection J
between Tn× [n] and [n][n] which pushes forward the law of the p-tree, together with an
independent p-vertex X1, to the law of the p-mapping. This bijection maps the spine
of the tree, that is, the vertices of the path from the root X0 to the distinguished vertex
X1, to the cyclic points of the mapping. As a deterministic bijection it would involve an
arbitrary matching of two sets of some cardinality K!, but for our probabilistic uses it is
more convenient to have the matching implemented by an explicit rule based on external
randomization, as follows.

Let (T , X1) denote a p-tree T , rooted at some vertex X0, together with an indepen-
dent p-point X1. Let X0 = c1, c2, . . . , cK = X1 be the path from the root to X1, which
we call the spine of the tree. Delete the edges between the vertices of the spine, obtaining
K trees Tc1 , . . . , TcK . Recall that (X2, X3, . . .) is an independent random p-sample. As
before the following construction a.s. terminates:
• Let τ1 = 2 and Tck1 be the tree containing X2. Then bind the trees Tc1 , . . . , Tck1

together by putting edges c1 → c2 → . . . → ck1 → c1. Let C1 = {c1, . . . , ck1} and
B1 = ∪1≤i≤k1Tci .
• Knowing (τi)1≤i≤j , (ki)1≤i≤j , (Ci)1≤i≤j and (Bi)1≤i≤j whose union is not [n], let

τj+1 = inf{k : Xk /∈ ∪1≤i≤jBi}. Then let Tckj+1
be the tree containing Xτj+1

, bind the

trees Tckj+1
, . . . , Tckj+1

by putting edges ckj+1 → ckj+2 → . . . → ckj+1
→ ckj+1. Let

Cj+1 = {ckj+1, . . . , ckj+1
} and Bj+1 = ∪kj+1≤i≤kj+1

Tci .
• When this ends (i.e. all the tree is examined), write J(T , X1) for the mapping

whose basins are B1,B2, . . ., and whose digraph is given by the following edges within
each basin: within each tree Tc for c ∈ C = ∪Ci, the edges are pointing towards the
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root c, and the cyclic points are pointing to each other according to the binding of trees
described above.

Proposition 3 The mapping J(T , X1) is a p-mapping, and its basins and cyclic points
are in p-biased order.

Proof. Fix m, a particular mapping on [n]. We condition on the p-sample (X2, X3, . . .).
It is then not difficult to see that there exists a unique (T, y) such that J(T, y) = m.
This tree is obtained as follows: take the first cyclic point c of m to which X2 is mapped
by some iterate of m. If it is not the unique cyclic point of the basin of m in which X2

has fallen, we delete the edge between the previous cyclic point (i.e. the cyclic point c′

such that m(c′) = c) and c. We then write c1 = c, c2 = m(c), c3 = m2(c), . . . , ck1 = c′.
We reverse the edges between these cyclic points, i.e. we put directed edges ck1 → . . .→
c2 → c1. Then we do the same with the next basin discovered by (X2, X3, . . .), and, with
obvious notations, we put an edge ck1+1 → ck1 . We then call y the top of the spine of
the tree T thus built, so that y is the root of the tree in which the point of the p-sample
(X2, X3, . . .) that has “discovered” the last basin of m has fallen. In fact, what we have
done here is the way to invert the map J .

Now, the probability that (T , X1), the p-tree with an independent p-vertex, is equal

to (T, y), is easily seen to be equal to
∏

x∈[n] p
|m−1(x)|
x . Indeed, for each vertex x of T

except y, the number of edges pointing to x is the same as in the mapping digraph, and
for y there is one ingoing edge missing, but this is compensated by our choice of X1 = Y
which has probability py.

Moreover, the probability does not depend on the values of X2, X3, . . .. So we can
uncondition on (X2, X3, . . .) and then the fact that the basins of J(T , X1) are in p-biased
random order is obvious. ¤

Remark. As hinted before, there are different ways of implementing the Joyal bijection
in a probabilistic context. In the Brownian bridge limit setting of Theorem 1, these lead
to different recursive decompositions of Brownian bridge, discussed in detail in [1].
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Fig. 3: A tree and a p-sample giving
the mapping of Fig. 1 by the Joyal map.

In Figure 3, we draw a tree with a spine (• vertices) and we run a p sample on it. The
crosses indicate the edges that must be removed to form the mapping digraph, which is
the same as in Fig. 1.

2.5 Weak convergence of random tree walks

Let Tn be a random p(n)-tree and let H (n) = HTn be the associated height process from
section 2.2. Let Bexc be standard Brownian excursion. We quote the following theorem:
part (a) is from [2] (see [15] for recent variations) and part (b) is [6] Theorem 4.

Theorem 4 (a) If p(n) is uniform on [n] then

n−1/2H(n) → 2Bexc in law

with respect to the usual Skorokhod topology on D[0, 1].
(b) If the sequence (p(n)) satisfies the uniform asymptotic negligibility condition (4) then

c(p(n))H(n) → 2Bexc in law

with respect to the ∗-topology on D[0, 1] described below.

Examples show [6] that Skorokhod convergence does not hold in the complete general-
ity of (4). In unpublished work we have sufficient conditions on (p(n)) for Skorokhod
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convergence, but we do not have a conjecture for the precise necessary and sufficient
conditions.

Here are the properties of the ∗-topology that we need (stated slightly differently

than in [6]). Write
unif→ for uniform convergence on [0, 1].

Lemma 5 Let fn ∈ D[0, 1] and f∞ ∈ C[0, 1]. Then fn →∗ f∞ if and only if there exist
functions gn, hn ∈ D[0, 1] such that

fn = gn + hn

gn unif→ f∞

hn ≥ 0

Leb{x : hn(x) > 0} → 0.

3 Proof of Theorem 1

3.1 Representation of the mapping walk with p-trees

As in section 2.4, let (T , X1) denote a p-tree T , rooted at some vertex X0, together
with an independent p-point X1. Recall the definition of the mapping J(T , X1) defined
in terms of (T , X1) and a p-sample (X2, X3, . . .). We are now going to use Proposition
3 to construct the p-mapping walk HM , for M = J(T , X1), from (T , X1). Recall that
Tc1 , . . . , TcK are the subtrees of T obtained when the edges between the vertices of the
spine are deleted, and rooted at these vertices. To each of these we can associate the
height processes HTci (with weights on vertices being the p-values). If we now concate-
nate these walks together, just as in (3), it should be clear from Proposition 3 that the
resulting process is the walk HM associated with the p-mapping M = J(T , X1), with
the order on basins induced by the Joyal map. With this interpretation, the mapping
walk is thus what we call the height process of the p-tree above the spine.

Next, we need to incorporate the time-marks of the mapping walk. Recall that these
time-marks give the successive intervals [Zj, Zj+1) of exploration of the j-th basin. By
Proposition 3, the order on basins is determined by the visits of a p-sample of components
of the p-tree. So it should be clear that we may obtain the marks as follows (this has to
be understood as a conditional form of the recursive constructions above). Let Z0 = 0.
Recall the notation [gM(i), dM(i)) for the interval during which the walk HM visits the
point i.
• Take U2 uniform (0, 1) independent of the p-tree. Then let Z1 = inf{gM(i) :

gM(i) > U2, H
M
gM (i) = 0} ∧ 1. If Z1 = 1 we are done.
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• Given (Zi)0≤i≤j with Zj < 1, let Uj+2 be uniform on (Zj, 1) independent of the tree,
and Zj+1 = inf{gM(i) : gM(i) > Uj+2, H

M
gM (i) = 0} ∧ 1. If this is 1 we are done.

Thus we can study mapping-walks directly in terms of trees, as summarized in

Proposition 6 Let T be a p-tree and X1 a p-sample. The marked height process above
the spine, (H, (Z1, . . .)), has the law of the marked walk of the p-mapping J(T , X1), with
basins in p-biased random order.

3.2 A transformation on paths

Motivated by the discrete transformation (height process → height process above spine)
above, we introduce a transformation Ju : D[0, 1] → D[0, 1]. Fix 0 ≤ u ≤ 1. Consider
f = (ft) ∈ D[0, 1]. Define the pre- and post- infimum process of f before and after u,
written f(u), as follows:

f
s
(u) =

{

inft∈[s,u] ft for s < u
inft∈[u,s] ft for s ≥ u.

An “excursion” of f above f(u) is a portion of path of f − f(u) on a constancy interval
of f(u). Each of these excursions has a starting time g which is at some height h =
fg = f

g
(u), and if two or more of these excursions have the same starting height, we

stick them together in the order induced by (0, 1), so that each height specifies at most
one “generalized” excursion of f above f . Write ε1(·), ε2(·), . . . for these generalized
excursions, ranked for example in decreasing order of lifetimes l1, l2, . . ., and let hi be
the height of the starting point of excursion εi. We now concatenate these excursions in
increasing order of starting height. That is, for s ∈ [0, 1), let h = hi be the unique height
such that

∑

j:hj<hi
lj ≤ s <

∑

j:hj≤hi
lj and define

(Ju(f))s = εi



s−
∑

j:hj<hi

lj



 .

If the sum s0 of lengths of constancy intervals of f , that is
∑

j lj, equals 1, then Ju(f) is
defined for all 0 ≤ s ≤ 1; otherwise we just define Ju(f) to equal 0 on s0 < s ≤ 1. We
call Ju(f) the process f reflected above f(u).

Lemma 7 Let fn ∈ D[0, 1] and f∞ ∈ C[0, 1]. Suppose that, for each 0 ≤ u ≤ 1,
the lengths of intervals of constancy of f∞(u) sum to 1, and suppose that the different
excursions of f∞ above f∞(u) start at different heights.
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(a) If fn unif→ f∞ then Ju(fn)
unif→ Ju(f∞).

(b) If fn →∗ f∞ and U has uniform(0, 1) law then JU(fn)→∗ JU(f∞) in probability.

Proof. We outline the argument, omitting some details. Fix u. Consider an interval
of constancy of f∞(u), say [ak, bk]. From the hypotheses on f∞ we have f(s) > f(ak)

on ak < s < bk. Consider the case fn unif→ f∞. Then for large n there must be intervals
of constancy of fn(u), say [an

k , b
n
k ], such that an

k → ak, b
n
k → bk, fn(an

k)→ f∞(ak). This
implies

(fn(an
k + s)− fn(an

k), 0 ≤ s ≤ bnk − an
k)

unif→ (f∞(ak + s)− f∞(ak), 0 ≤ s ≤ bk − ak).

Since
∑

k(b
n
k − an

k) →
∑

k(bk − ak) = 1, we easily see that in the case u = 1 we have

Ju(fn)
unif→ Ju(f∞). For general u, apply the argument above separately to [0, u] and

[u, 1], and check that the operation of “concatenation of excursions in order of starting

height” is continuous; again we deduce Ju(fn)
unif→ Ju(f∞).

Now consider the case fn →∗ f∞. Recall the Lemma 5 decomposition fn = gn + hn.
By passing to a subsequence we may assume that for almost all 0 ≤ u ≤ 1

hn(u) = 0 ultimately . (9)

Fix such a u; it is enough to show Ju(fn) →∗ Ju(f∞). The previous case implies that

Ju(gn)
unif→ Ju(f∞). Consider, as in the previous argument, an interval of constancy of

[an
k , b

n
k ] of g

n converging to an interval of constancy of [ak, bk] of f
∞. Since fn = gn + hn

with hn ≥ 0, there is a corresponding interval of constancy of fn which contains the

interval [ãn
k , b̃

n
k ] defined by

ãn
k = inf{a ≥ an

k : hn(a) = 0}, b̃nk = sup{b ≤ bnk : hn(b) = 0}.

Use (9) to see that b̃nk − ãn
k → bk − ak. We now see that the analog of Ju(gn) using only

excursions over ∪k[ã
n
k , b̃

n
k ] will converge uniformly to Ju(f∞). After adding the contribu-

tion of hn over these intervals, we will still have ∗-convergence; and the contribution to
Ju(fn) from the complement of ∪k[ã

n
k , b̃

n
k ] is asymptotically negligible for ∗-convergence.

3.3 Pushing forward tree walks to mapping walks

Let T be a p-tree on [n], and put the children of each vertex in uniform random order.
Let U be uniform on (0, 1), independent of T , and let X1 be the vertex visited by the
height process HT at time U . The fact that the height process spends time px at vertex x
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implies that X1 is a p-sample. By Proposition 3, M = J(T , X1) is a random p-mapping
with basins in p-biased random order. Let HM be the associated marked random walk,
constructed as in section 3.1, which by Proposition 6 is the height process of T above
the spine.

So to get HM from HT we have to extract from HT the height processes of the
subtrees rooted on the spine. This will be done by applying the transformation J to a
slightly modified version of HT .

Write c1, c2, . . . , cK = X1 for the vertices of the spine of T in order of height, and
as before write [g(ci), d(ci)) for the interval in which the height process HT “visits” ci.
Now we consider the process

Ks =

{

HT
g(ci)

+ 1 if s ∈ (g(ci), d(ci)), for some i

HT
s else.

(10)

In other words, we “lift” the heights of the spine vertices by 1, but we use a small artifact
here: at the point g(ci), the process stays at the value HT

g(ci)
, and the process is not càdlàg

in general. Now reflect this process K above K(U) to obtain the process JU(K).

Lemma 8
JU(K)

∣

∣

s
= (HM

s − 1)+, 0 ≤ s ≤ 1. (11)

Proof. Suppose that the height process HT of the tree is currently visiting a spine
vertex, say ci, which is not the top of the spine. Write h for its height (h = HT (ci) =
Kg(ci) = Kg(ci+) − 1). Then ci has some children, one of them being ci+1. Now we want
to recover the height process of the subtree Tci rooted at ci when we delete the edges
between the vertices of the spine. First, during the time interval (g(ci), g(ci+1)), the
height process of Tn visits ci and the vertices of Tci that are located to the left of the
spine (i.e. the descendants of the children of ci located before ci+1), if any. Then the
process examines all the descendants of ci+1, hence staying at heights greater than h+1,
and after that visits the children of ci that are to the right of the spine, if any, starting
say at time g′i > U .

Hence, Kg(ci) = h, Ks ≥ h + 1 for s ∈ (g(ci), g(ci+1)] and Ks > h + 1 for s ∈
(g(ci+1), U). So (g(ci), g(ci+1)) is an excursion interval of K above K, for an excursion
starting at height h+ 1. This excursion is easily seen as being (HTci − 1)+ restricted to
the vertices that are to the left hand side of the spine, where HTci is the height process
of Tci .

Then Kg′i
= h+ 1, so g′i is the starting time of an excursion of K above K(U), with

starting height h + 1, and this excursion is now (HTci − 1)+ restricted to the vertices
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that are to the right hand side of the spine. The analysis is easier if ci = X1 is the top of
the spine, in which case there is no child of ci at the left or right-hand side of the spine.
This gives the result. ¤

-×
0

×
×

×
×

+
U

+
1

.................

...

.................

....................

..........

.............

...

Fig. 4: The process HT (thin line) and the process K (dashed line).
The crosses and thick lines represent visits to vertices of the spine.

Note that our “artifact” was designed to give an exact equality in Lemma 8. Remov-
ing the artifact to make processes càdlàg can only change the processes involved by ±1,
which will not affect our subsequent asymptotic arguments.

Figure 4 shows the height process of the tree of Figure 3, with U such that the spine is
the same. We also draw the process K. As noted before, the unmarked walk associated
with the image of the last tree by the Joyal map depends only on the spine, and so this
walk is that of Figure 2. The next figure depicts the process JU(K).

-×
0

×× × × +
1

Fig. 5: The process JU(K) (compare with Fig. 2).
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3.4 J transforms Bexc to B|br|

Lemma 9 Let Bexc be standard Brownian excursion, and let U be uniform independent
on [0, 1]. Then JU(Bexc) is distributed as B |br|, reflecting Brownian bridge on [0, 1].

Proof. By [19], the reflecting Brownian bridge is obtained from the family of its ex-
cursions by concatenating them in exchangeable random order. Precisely, let (ε1, ε2, . . .)
be the excursions of B|br| away from 0, ranked by decreasing order of their durations
`1 ≥ `2 ≥ . . . > 0, and let ¹ be a random order (≺ is then the associated strict order)
on N independent of the excursions, such that for every k, each one of the k! possible
strict orderings on the set [k] are equally likely. Then the process

Xs = εi

(

s−
∑

j≺i

`j

)

for
∑

j≺i

`j ≤ s ≤
∑

j¹i

`j

has the same law as B|br|.
By [7, Theorem 3.2], the excursions away from 0 of JU(Bexc) are those of a reflecting

Brownian bridge. It thus remains to show that the different ordering of the excursions
used to define the process JU(Bexc) is an independent exchangeable order. Now, by a
conditioned form of Bismut’s decomposition (see e.g. Biane [8]), conditionally on U and
Bexc

U , the paths (Bexc
U−s, 0 ≤ s ≤ U) and (Bexc

s+U , 0 ≤ s ≤ 1−U) are independent Brownian
paths starting at Bexc

U , conditioned to first hit 0 at time U and 1 − U respectively, and
killed at these times. Still conditionally on (U,Bexc

U ), consider the excursions (ε1
1, ε

1
2, . . .)

of (Bexc
s , 0 ≤ s ≤ U) above its future infimum process, ordered in decreasing lifetimes

order, and their respective heights (h1
1, h

1
2, . . .). Let also (ε2

1, ε
2
2, . . .) be the excursions

of (Bexc
s+U , 0 ≤ s ≤ 1 − U) above its infimum process, also ordered in decreasing life-

times order, and denote their respective heights by (h2
1, h

2
2, . . .). Then we have from [19,

Proposition 6.2] that (h1
1/B

exc
U , h1

2/B
exc
U , . . .) and (h2

1/B
exc
U , h2

2/B
exc
U , . . .) are independent

conditionally on Bexc
U , and are two sequences of i.i.d. uniform[0, 1] r.v.’s. Hence, the

concatenation of these two sequences is again a sequence of independent uniform[0, 1]
r.v.’s. So this holds also unconditionally on (U,Bexc

U ). Now, by definition, the order of
the excursions of JU(Bexc) is that induced by this concatenated family, meaning that the
excursion εik appears before excursion εjk′ if and only if hi

k < hj
k′ for k, k

′ ≥ 1, i, j ∈ {1, 2}.
The excursions are thus in exchangeable random order, and the claim follows. ¤

Notice also from [19] that for the reflected Brownian bridge B |br| = JU(Bexc) , one
can extend the fact that L1 = 2Bexc

U to

Ls = 2hs (12)
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if s is not a zero of B |br|, where hs is the height of the starting point of the excursion of
Bexc that is matched to the excursion of JU(Bexc) straddling s, and L is then defined on
all [0, 1] by continuity.

3.5 Completing the proof of Theorem 1

As in Proposition 3, we may take the p(n)-mapping Mn in its representation Mn =
J(Tn, X1,n), where Tn is a p(n)-tree and X1,n is a p(n) sample from Tn. By Theorem
4(b) and the Skorokhod representation Theorem, we may suppose that we have a.s.
convergence of c(p(n))HTn to 2Bexc. (Here and below, convergence is ∗-convergence in
general, and uniform convergence in the special case of uniform p(n)). For each n we
may use the same U to define X1,n. From the definition (10) of Kn we also have a.s.
convergence of c(p(n))Kn to 2Bexc. Then by Lemmas 7 and 9, the process c(p(n))JU(Kn)
converges to 2B|br|. Hence, so does c(p(n))HMn according to Lemma 8. This is assertion
(i) of the Theorem.

For (ii), the assertion about the marks (Zn
1 , Z

n
2 , . . .) follows easily by incorporating

the representation of section 3.1 into the argument above (the only possible trouble is
when a Ui falls on a zero of Hn, but this happens with probability going to 0).

To obtain (iii) we observe that the number of cyclic points visited in depth-first order
before the vertex coded by s ∈ [0, 1] is equal (except for an unimportant possible error
of 1) to the starting height of some excursion of Kn above Kn. Now suppose that s
is not a zero of B|br|, so that it is strictly included in the excursion interval of, say the
k-th longest-lifetime excursion of 2B |br| away from 0. Then for n sufficiently big, s also
belongs to the excursion interval of the k-th longest-lifetime excursion of HMn away from
0, which corresponds to the k-th longest-lifetime excursion of Kn above Kn. But this
excursion’s starting height, once multiplied by c(p(n)), converges to the starting height
of the k-th longest-lifetime excursion of 2Bexc above 2Bexc. It now follows from classical
considerations (see e.g. [19]) that this last height is equal to Ls (note this is consistent
with (12) wherein 2hs is the height for 2Bexc). We can now conclude, since the limiting
process L is continuous and increasing on [0, 1], and since the lengths of excursions of
2Bexc above 2Bexc sum to 1, that the convergence of c(p(n))`Mn to L holds uniformly and
not only pointwise. ¤

4 Final comments

1. At the start of the proof of Lemma 9 we used the result from [7] that the excursions of
JU(Bexc) away from 0 are those of a reflecting Brownian bridge. Here is a way to rederive
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that result. First, by the well-known formula for the entrance law of the Brownian
excursion, one easily gets that the law of (U,Bexc

U ) has the same law as (TR/2, R/2) given
TR = 1, where T is the first-passage subordinator associated with Brownian motion and
R is an independent r.v. with Rayleigh distribution. By Bismut’s decomposition, one
deduces that the process Y defined by Yt = Bexc

U−t for 0 ≤ t ≤ U and Yt = Bexc
t − 2Bexc

U

for U ≤ t ≤ 1 is, conditionally on Bexc
U but unconditionally on U , a first-passage bridge

of the Brownian motion, i.e. a Brownian motion conditioned to first hit −2Bexc
U at time

1. By [19], its associated reflected process above its infimum is a reflecting Brownian
bridge conditioned to have local time 2Bexc

U at level 0, and we can uncondition on Bexc
U ,

since 2Bexc
U has the Rayleigh law, which is that of the local time at 0 of B |br|.

2. Our work implicitly answers a question of Pitman [18]. Let

Ck
n = |{i ∈ [n] : M k−1

n (i) /∈ C(Mn),M
k
n(i) ∈ C(Mn)}|

be the number of vertices at distance k of the set of cyclic points of the uniform ran-
dom mapping Mn (for the distance induced by the digraph of Mn). In particular,
C0

n = `Mn

1 with our previous notations. Drmota and Gittenberger [11] show that the

process (n−1/2C
[2s
√
n]

n , s ≥ 0) converges in law to the process (Ls
1(B

|br|), s ≥ 0) of local
times of B|br| (with our choice of normalization as half the occupation density). One of
the question raised in Pitman [18] is whether this convergence holds jointly with the con-
vergences of our main theorem. To show this is true, first note that from the tightness of

each individual component, we get that the pair (n−1/2HMn , n−1/2C
[2
√
n·]

n ) is tight. Call
(2B|br|, L′) its weak limit through some subsequence, and suppose that the convergence in
law holds a.s. by Skorokhod’s representation theorem. If we prove that L′(s) = Ls

1(B
|br|)

for every s, we will have shown that (2B |br|, L·1(B
|br|)) is the only possible limit, hence

that (n−1/2HMn , n−1/2C
[2
√
n·]

n ) jointly converges to this limit. Now for every s ≥ 0 one
has that

∫ 1

0

dt1{HMn
t ≤ [2

√
ns]} = n−1

[2
√
ns]

∑

k=0

Ck
n → 2

∫ s

0

duL′(u),

whereas the left-hand term converges to
∫ 1

0
dt1{B|br|

t ≤ s}, which equals 2
∫ s

0
duLu

1(B
|br|).

Hence the result by identification.
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