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1 Introduction

In this paper, we study a stationary control problem when the state process is a one di-
mensional diffusion whose drift admits a unique, asymptotically stable equilibrium point
and which is controlled by adaptively choosing the variance of the noise. In particular, the
controller may choose a zero-variance, or degenerate, control. The precise mathematical
formulation of the model is specified in section 2 below in (2.1)-(2.4).

The goal is to express the stationary optimal value as an Abelian limit of discounted
optimal values and also as an ergodic limit of finite horizon optimal values, and to characterize
explicitly the optimal stationary strategy. When the drift is linear, we are also able to express
the stationary value and the optimal strategy in terms of an optimal stopping problem for an
Ornstein-Uhlenbeck process. The analysis is based in part on our study of the infinite-horizon
discounted cost problem in the paper [17].

Work on stationary control of diffusions and its relation to discounted and finite-horizon
problems is extensive. We mention only some representative papers. Mandl [16] treats the
one dimensional stationary problems in bounded domains with non-degenerate diffusion.
Among others, Kushner [13], Borkar and Ghosh [8] treat the multi-dimensional drift control
problem with a non-degenerate diffusion coefficient, as do Beneš and Karatzas [4] and Cox
and Karatzas [10]. Tarres [18] and Cox [9] study the problem of Abelian limits of discounted
cost problems A detailed analysis of the stationary Hamilton-Jacobi-Bellman equation in
IRn may be found in Bensoussan and Frehse [5]. Recently, Basak, Borkar, and Ghosh [3]
and Borkar [7] consider a stationary problem with drift control and degenerate, but un-
controlled, diffusion coefficient. Further references to variance control for discounted and
finite-horizon costs are cited in [17]; we mention also the papers of Kushner [14] and Kurtz
and Stockbridge [12] for general results on existence and uniqueness of optimal controls.

The stationary control problem of this paper is in some sense a generalization of a problem
posed and solved by Assaf [2] in an investigation of dynamic sampling. Assaf’s problem
features a state process evolving in [−1, 1], which, when no control is exercised, tends toward
the origin, a variance control which can take any value in [0,∞), a location cost which is
largest at the origin, and a control cost. Assaf derives the value function and explicit ε-
optimal controls. Formally, the optimal control consists of turning on the variance at full
strength in an interval about the equilibrium point and otherwise setting the variance to zero.
In our model, we restrict to bounded controls, but allow general drifts admitting a unique
equilibrium point and consider general location costs. The motivating case again is that of a
location cost c(·) in (2.5) which is non-negative and achieves its maximum at the equilibrium
point, which we take to be the origin; examples are c(x) = ke−x2

or c(x) = k/(x2 + 1). A
control cost, proportional to the magnitude of the square of the control is added, as in (2.5).
With this cost structure, there are two opposing tendencies: if one applies zero variance
control, no control cost accumulates, but the state process of (2.1) moves deterministically
to the point of highest location cost; on the other hand, if one exercises positive control,
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there is a control cost, but the state process is spread out stochastically, thus interrupting
its steady progression towards the point of highest location cost. The second effect will be
of great advantage to the controller in the region around the origin where c(·) is concave.
Where c(·) is reasonably flat or convex, the advantage may be outweighed by the control cost.
This reasoning provides the intuition behind the form of Assaf’s solution: For the above cost
functions c(·), our results imply that the same form will be generally valid; we find a bang-
bang optimal controls described by a feedback policy of the form π∗(x) = σ01(p∗,q∗)(x), where
p∗ < 0 < q∗ and 1(p∗,q∗)(x) denotes the indicator function of the interval (p∗, q∗). However,
our analysis implies to more general cost functions c(·), see (2.8) and (2.9), in which neither
boundedness or even symmetry are assumed. If c(·) is convex, our results yield that the zero
control, i.e. u(t) ≡ 0 in (2.1), is optimal.

Arisawa and Lions [1] study an ergodic control problem in which both drift and diffusion
are controlled and diffusion is allowed to be degenerate. They analyze the related Hamilton-
Jacobi-Bellman equation and also establish Abelian limit relationships. In their case, the
controlled diffusion takes values in a compact metric space. In contrast, the controlled dif-
fusion process we study here takes values on the real line and the cost function may be
unbounded. Also their assumption (9) in [1] fails in our case. In place of the compactness
assumption in [1], we assume that the deterministic process obtained by exercising zero vari-
ance control admits a unique, asymptotically stable equilibrium point. Because of this, for
any admissible control u, the controlled process Xu

x always reaches any small neighborhood of
the origin in finite random time. The optimal stationary process for the stationary problem
will then converge in distribution to a unique invariant measure. Under some assumptions,
this invariant measure will have compact support.

In section 2, we carefully describe the admissible controls, state the basic assumptions,
formulate the stationary, discounted and finite-horizon control problems, and present pre-
liminary technical results. In section 3, we study the case of linear drift, b(x) = −θx, θ > 0.
We treat this case separately because it is possible to express the results and their proofs in
terms of a simple optimal stopping problem. Section 4 presents a criterion for localization
of the control and an application to more general cost functions. Finally, in section 5 we
generalize our results to the case of non-linear drift. Throughout, the techniques employed
come mostly from elementary differential equations or probabilistic analysis.
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2 Problem Statement and Preliminaries

2.1 Problem statement

Throughout the paper, the controlled state process, Xu
x , is a solution of the stochastic

differential equation,

Xu
x (t) = x+

∫ t

0
b(Xu

x (s)) ds+
∫ t

0
u(s) dW (s), (2.1)

where:
(i) the control u takes values in [0, σ0], where σ0 <∞ is fixed;
(ii) the drift b is a smooth function that satisfies

b(0) = 0 and b′(x) ≤ −δ0 < 0 for all x 6= 0. (2.2)

Fron (2.2) it follows that xb(x) < −δ0x
2 if x 6= 0. Assumption (2.2) fixes a unique, ex-

ponentially, asymptotically stable equilibrium point at zero for the differential equation,
Ẋ0

x(t) = b(X0
x(t)), X0

x(0) = x, obtained from (2.1) using the null control, u ≡ 0.
As is standard, the class of admissible controls should allow choice of the underlying

space and filtration on which (2.1) is defined. The quadruple ((Ω,F , P ), IF,W, u) is called
an admissible control system if: (i) (Ω,F , P ) is a complete probability space; (ii) IF =
{Ft; t ≥ 0} is a right-continuous, complete filtration; (iii) W is both a scalar, Brownian
motion and an IF -martingale on (Ω,F , P ), and; (iv) u is an IF -progressively measurable
process such that

0 ≤ u(t) ≤ σ0 for all t ≥ 0. (2.3)

Let U denote the set of all such admissible systems.
A process u(·) from an admissible control system is called an admissible control. We

shall abuse notation by writing u ∈ U to indicate that u(·) is an admissible control, without
explicit mention of the admissible control system on which u is defined. Bear in mind that
different admissible u may be defined on different probability spaces.

As defined, an admissible control appears to be chosen exogenously. However, it is easy
to accommodate controls in feedback form. A function π : IR → [0, σ0] is an admissible
feedback policy (or strategy) if

Xx(t) = x+
∫ t

0
b(Xx(s)) ds+

∫ t

0
π(Xx(s)) dW (s) (2.4)

admits at least a weak solution, that is, there is some filtered probability space with Brow-
nian motion ((Ω,F , P ), IF,W ) on which (2.4) admits a solution and, on that space, u(t) =
π(Xx(t)) is an admissible control. The optimal feeback controls identified in this paper will
be of the form π(x) = σ01G(x), where G is an open set and 1G its indicator function. In [17],
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it is shown that such feedback controls are indeed admissible. Moreover, such controls have
the following property, which is important in the analysis of the control problems. If 0 ∈ G,
the corresponding state process solving (2.4) eventually enters the connected component of
G containing the equilibrium point x = 0 and then remains in that component for all future
time; if 0 6∈ G, then Xx(t)→ 0 as t→∞. (See [17], section 2.)

Let c : IR → IR be a cost function on the location of the state. We shall study the
stationary stochastic control problem with optimal value,

λ0
4
= inf

U
lim inf
T→∞

1

T
E

[

∫ T

0
[c(Xu

x (t)) + u2(t)] dt

]

. (2.5)

Our purpose is to characterize a stationary policy that achieves the value λ0 and to relate
the stationary control problem to the family of discounted control problems,

Vα(x)
4
= inf

U
E

[
∫ ∞

0
e−αt

(

c(Xu
x (t)) + u2(t)

)

dt
]

, α > 0, (2.6)

as well as to the family of finite horizon problems,

V0(x, T )
4
= inf

U
E

[

∫ T

0
[c(Xu

x (t)) + u2(t)] dt

]

, T > 0. (2.7)

Throughout the paper, we assume the following:

c ∈ C2(IR) and c is non-negative. (2.8)

The main results are derived under the additional assumption that for some finite constant
K and non-negative integer m,

|c′′(x)| ≤ K
(

1 + |x|2m
)

for all x. (2.9)

Conditions (2.9) and (2.8), imply there is a constant K and a generic, non-negative integer
m (possibly different from that in (2.9)), such that

c(x) + |c′(x)|+ |c′′(x)| ≤ K(1 + |x|2m) for all x. (2.10)

Since adding a constant to the cost c only shifts the value function by a constant in
each of the problems (2.5), (2.6), and (2.7), the results of the paper apply immediately if
c ∈ C2(IR) is just bounded below, rather than non-negative; non-negativity is imposed only
for convenience of exposition.
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The continuity and non-negativity of c, together with the assumption (2.2) on the drift,
easily imply finiteness of the value functions in (2.5), (2.6), and (2.7). The C2 smoothness
of c will be utilized in the analysis of the HJB equations characterizing the value functions.

The stationary optimal value λ0 is independent of the initial state x. Indeed, for any x and
any y, there exists an admissible control u such that Xu

x (t) hits y in an almost-surely finite
time. For example, the state process Xx(t) = x+

∫ t
0 b(Xx(s)) ds+

∫ t
0 σ0 dW (s), corresponding

to a constant control, is recurrent, because of assumption (2.2), and will reach any y a.s.
The cost of using control to get from x to y will disappear in the limit as T → ∞ in (2.5),
implying λ0 is independent of x. Arguments employed later in the paper in the analysis of
(2.5)–(2.7) will also imply this non-dependence.

2.2 Preliminary analysis

The discounted variance control problem (2.6) is studied in [17]. In particular, the following
variational characterization of Vα is a consequence of the general theories of Krylov [11] and
Lions [15].

Theorem 2.1 Assume (2.8) and assume b ∈ C3 satisfies (2.2). Then the following holds.
a) Vα ∈ C1(IR) and V ′α is absolutely continuous with a locally essentially bounded derivative
V ′′α . Vα solves the Hamilton-Jacobi-Bellman equation

inf
u∈[0,σ0]

u2

2
(V ′′α (x) + 2) + b(x)V ′

α(x)− αVα(x) + c(x) = 0, for a.e. x. (2.11)

b) Set Gα = {x; b(x)V ′α(x) − αVα(x) + c(x) > 0}. Then πα(x)
4
= σ01Gα(x) is an optimal

feedback policy, that is, Vα(x) = E
[
∫ ∞

0
e−αt

(

c(X∗
x(t)) + (u∗(t))2

)

dt
]

, where X∗
x solves (2.4),

with πα in place of π, and where u∗(t) = πα(X
∗
x(t)).

Actually this theorem was proved in section 3 of [17] under the additional assumption
that c ∈ C2

b (IR), that is, that c and its first and second derivatives are uniformly bounded.
However, it is true under the more general assumption (2.8) by a localization argument,
which is sketched in the appendix. The smoothness condition on b is a technical assumption
imposed so that the solution of (2.1) is C2 in x.

In the remainder of this section, we state some consequences of assumption (2.2) which
will be important for the asymptotic analysis of the discounted and finite horizon problems.
The first is a uniform moment bound on controlled processes.

Lemma 2.2 For u ∈ U , let Xu
x , x ∈ IR solve (2.1), where b and δ0 are as in (2.2).

(i) For any x and y, |Xu
x (t)−Xu

y (t)| ≤ |x−y|e−δ0t.
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(ii) Introduce the sequence {Dj(x)} defined recursively by D1 = σ2
0/2δ0, and

Dj+1(x) = ((j+1)Dj(x) + |x|
2j(j+1)2)σ2

0/δ0. Then for every positive integer n

E
[

| Xu
x (t) |

2n
]

≤
(

|x|2n +Dn(x)e
2δ0nt

)

e−2δ0nt. (2.12)

Proof: To prove part (i), notice that if x > y then Xu
x (t) ≥ Xu

y (t) for all t ≥ 0. The result

then follows by applying Itô’s rule to eδ0t
(

Xu
x (t)−Xu

y (t)
)

. ¦

The proof of (ii) is by induction. For the induction step, one applies Itô’s rule to
e2nδ0t|Xu

x (t)|
2n and uses the fact that xb(x) ≤ −δ0x

2 for all x.

The lemma implies that for every positive integer n, there exists a finite Kn such that

sup
u∈U

sup
t≥0

E
[

| Xu
x (t) |

2n
]

≤ Kn(1 + |x|
2n), (2.13)

and this will suffice for our purposes.
The second result states some apriori bounds and convergence results.

Lemma 2.3 Assume (2.2), (2.8), and (2.9). Then
(i) There is a finite K̃ independent of α such that

|Vα(x)− Vα(y)| ≤ K̃
|x−y|

2δ0

(

1 + |x|2m + |y|2m
)

(2.14)

(ii) lim
α→0+

sup
|x|≤M

| αVα(x)− αVα(0) |= 0, for any 0 < M <∞.

(iii) Γ
4
= sup

u∈U , T≥0, α>0
E [|Vα(X

u
0 (T ))− Vα(0) |] <∞.

(iv) lim
T→∞

sup
|x|≤M

|V0(x, T )− V0(0, T )|

T
= 0, for any 0 < M <∞.

Proof: (i) We prove (2.14) when y = 0, the general case being similar. From (2.10) it follows
that

|c(x)− c(y)| ≤ K|x− y|
(

1 + |x|2m + |y|2m
)

. (2.15)

Let u be an ε-optimal control for Vα(0). Then,

Vα(x)− Vα(0) ≤ ε+ E
[
∫ ∞

0
e−αt (c(Xu

x (t))− c(Xu
0 (t))) dt

]

.

Using (2.15) together with Lemma 2.2, one then obtains

Vα(x)− Vα(0) ≤ ε+
|x|

α+2δ0

K
[

1 +Km(2 + |x|
2m)

]

.
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Taking ε ↓ 0, Vα(x)− Vα(0) ≤
|x|

δ0

K
[

1 +Km(2 + |x|
2m)

]

, for any α > 0. A similar argument

gives the same estimate for Vα(0)− Vα(x), proving (i).
The proof of (ii) is an immediate Corollary of (i). To prove (iii), use the bound of (i)

together with Lemma 2.2, part (ii) and Hölder’s inequality. The proof of part (iv) proceeds
by deriving a uniform bound similar to that of part (i) for | V0(x, T )−V0(0, T ) |. The details
are omitted. ¦

3 Linear Drift

3.1 Main results

In this section we study the stationary control problem (2.5) in the special case

Xu
x (t) = x− θ

∫ t

0
Xu

x (s) ds+
∫ t

0
u(s) dW (s). (3.1)

Here, it is assumed that θ > 0, so that the system with null control, ẋ = −θx, has a globally,
asymptotically stable equilibrium point at 0.

Most of the results of this section generalize to controlled state dynamics with nonlinear
drift, as discussed in section 5. We single out the linear case first because it can be treated
nicely using the following auxiliary family of optimal stopping problems:

Uα(x)
4
= inf

τ
E

[
∫ τ

0
e−(2θ+α)tĉα(Zx(t)) dt

]

, α ≥ 0, where, (3.2)

ĉα(x)
4
= c′′(x) + 2(2θ + α), and Zx(t) = x− θ

∫ t

0
Zx(s) ds+ σ0W (t), t ≥ 0.

Here Zx is defined on an admissible control system with Brownian motion W and filtration
IF , and the infimum in the definition of Uα is taken over all IF -stopping times of all admissible
control systems. Observe that if ĉα is non-negative for all x, then Uα is identically zero. This
is the case when c(·) is a convex function.

Because of the linearity of the drift in the state dynamics (3.1), there is a simple relation
between Uα and the value functions Vα for α > 0, namely, Uα = V ′′α +2 on the component of
Gα containing the equilibrium point 0, where Gα is as in Theorem 2.1. This relation, proved
under more restrictive conditions on c in [17], is generalized in Lemma 3.6 below and is key
to the analysis of the stationary control problem. In particular, it enables us to relate the
value of λ0 in (2.5) to the value U0(0).

The statement of the main theorem follows.

Theorem 3.1 Assume (2.8)-(2.9) and let λ0 be the value defined by (2.5). Then
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(i) λ0 = (σ2
0/2)U0(0) + c(0).

(ii) For every finite, positive M ,

lim
α→0+

sup
|x|≤M

∣

∣

∣ αVα(x)− λ0

∣

∣

∣= 0. (3.3)

(ii) If U0(0) = 0, then u∗ ≡ 0 is optimal for the stationary control problem (2.5). If
U0(0) < 0, let (p0, q0) be the connected component of the open set {x ; U0(x) < 0}
with p0 < 0 < q0. Then π∗(x) = σ01(p0,q0)(x) is an optimal stationary control for the
problem (2.5).

(iv) lim
T→∞

sup
|x|≤M

∣

∣

∣

V0(x, T )

T
− λ0

∣

∣

∣= 0, for every 0 < M <∞.

In the course of the proof we also derive:

Theorem 3.2 If (2.8)–(2.9) hold, inf
u∈U

lim sup
T→∞

1

T
E

[

∫ T

0
[c(Xu

x (t)) + u2(t)] dt

]

= λ0.

The proofs are completed in section 3.4. Sections 3.2 and 3.3 establish the necessary
preliminary analysis.

3.2 The value function Uα

In this section it is often only necessary to assume in addition to (2.8), that

c′′(x) ≥ −K
(

1 + |x|2m
)

for all x, (3.4)

for some constant K and non-negative integer m, rather than the stronger condition (2.9).
The process Zx defined in (3.2) is the solution to equation (3.1) with the constant control

u ≡ σ0. Therefore, Lemma 2.2 applies, and, from (2.13),

sup
t

E
[

|Zx(t)|
2m

]

≤ Km(1+|x|
2m) (3.5)

Therefore, a simple argument using assumption (3.4) gives

E
[
∫ τ

0
e−(2θ+α)tĉα(Zx(t)) dt

]

≥ −K
[

1 +Km(1+|x|
2m)

]

(2θ+α)−1 (3.6)

for any stopping time τ and α ≥ 0, where ĉα is given in (3.2). (It is possible that the
expectation is +∞.) Therefore, it is clear that the value Uα(x) is defined and finite for all
α ≥ 0. Indeed, by (3.6), 0 ≥ Uα(x) ≥ −K [1 +Km(1+|x|

2m)] (2θ+α)−1 for all x.
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We shall state the main properties of Uα. The first is its characterization as the solution
of a variational equation. For each α ≥ 0, define the differential operator

Lα
4
=

σ2
0

2

d2

dx2
− θx

d

dx
− (2θ + α).

Proposition 3.3 Assume (2.8) and (3.4). Then Uα is the unique function such that Uα ∈
C1(IR), |Uα(x)| grows at most at a polynomial rate, U

′
α is absolutely continuous, U ′′α is locally

essentially bounded, and

min {LαUα(x) + ĉα(x),−Uα(x)} = 0 a.e. (3.7)

The set {x;Uα(x) = 0} is an optimal stopping region.

See the appendix for the statement of the general theorem from which Proposition 3.3
derives and for references. The fact that Uα ∈ C1(IR) is a rigorous statement of the smooth-fit
principle for this problem.

The optimal continuation region {x; Uα(x) < 0} is an open set in IR, and, as such, is a
countable union of disjoint, open intervals. The optimal stopping strategy in one of these
intervals is to stop upon exit from the interval. To express this, let τab be the first time at
which Zx exits (a, b), where −∞ ≤ a < b ≤ ∞, and define

Uα,ab(x)
4
= E

[
∫ τab

0
e−(2θ+α)tĉα(Zx(t)) dt

]

, a ≤ x ≤ b, |x| <∞, (3.8)

For convenience of notation, we abbreviate Uα,ab by Uab, when the value of α is clear from
context. By (3.6), Uab is always well-defined, if the value +∞ is allowed. Because Uα is the
optimal value, Uα(x) ≤ Uab(x) for any −∞ ≤ a < b ≤ ∞ and any finite x in [a, b].

The next result gives a useful characterization of the open connected components of the
optimal continuation region.

Lemma 3.4 Let (p, q) be a connected component of {x ; Uα(x) < 0}. Then for every finite
x in [p, q]:

Uα(x) = Upq(x). (3.9)

Any connected component (p, q) has the following characterization. Let (`,m) be any con-
nected component of {x ; ĉα(x) < 0} contained in (p, q); at least one such (`,m) exists. Then

p = inf {a ; ∃b such that (`,m) ⊂ (a, b) and Uab < 0 on (a, b)} ; (3.10)

q = sup {b ; ∃a such that (`,m) ⊂ (a, b) and Uab < 0 on (a, b)} . (3.11)

Proof: Proposition 3.3 says that τ ∗ = inf{t ; Uα(Zx(t)) = 0} is an optimal stopping time.
If x ∈ [p, q], then τ ∗ = τpq, which proves (3.9).
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If ĉα ≥ 0 on an interval (a, b), then it is clear from (3.8) that Uab(x) ≥ 0 for x in (a, b).
Thus, if (p, q) is a connected component of {x;Uα(x) < 0}, (p, q) must contain points x for
which ĉα(x) < 0, because Uα(x) = Upq(x) < 0 on (p, q). At the same time, if (`,m) is a
connected component of {x; ĉα(x) < 0}, definition (3.8) implies Uα(x) ≤ U`m(x) < 0 on
(`,m), so (`,m) is contained in {x;Uα(x) < 0}.

To prove (3.10) and (3.11), Finally, notice that if (`,m) ⊂ (p, q), where (p, q) is a con-
nected component of {x;Uα(x) < 0}, and if (`,m) ⊂ (a, b) where Uab < 0 on (a, b), then
(a, b) ⊂ {x;Uα(x) < 0} also. Thus (a, b) ⊂ (p, q), and (3.10) and (3.11) hold. ¦

In the appendix, it is shown how one can take (3.10)-(3.11) as the starting point for an
elementary proof of Proposition 3.3.

The value function U0 for α = 0 can be used to construct a solution of the formal HJB
equation for the stationary problem (2.5) on an interval about the origin. If U0(0) < 0, let
(p0, q0) denote the connected component of {x;U0(x) < 0} containing 0, and define

Q(x)
4
=

∫ x

0

∫ y

0
(U0(z)− 2) dz dy + θ−1

[

σ2
0

2
U ′0(0) + c′(0)

]

x

The possibility that (p0, q0) is unbounded has not been excluded. We shall use the notation
∂(p0, q0) to denote the boundary of (p0, q0), that is, the set of finite endpoints of (p0, q0).

Lemma 3.5 Let U0(0) < 0. Then Q satisfies

σ2
0

2
(Q′′(x) + 2)− θxQ′(x) + c(x) =

σ2
0

2
U0(0) + c(0) x ∈ (p0, q0) (3.12)

(Q′′ + 2) |∂(p0,q0)= 0 Q′′ + 2 < 0 on (p0, q0). (3.13)

Proof: Since Q′′ + 2 = U0, (3.13) is immediate from (3.9).
Let Φ denote the left-hand side of (3.12). By direct calculation, Φ′′(x) = L0U0(x) +

ĉ0(x) = 0 on (p0, q0), where L0 is defined as in Proposition 3.3, and Φ′(0) = 0. Hence
Φ(x) = Φ(0) = (σ2

0/2)U0(0) + c(0) on (p0, q0), which proves (3.12).

Remarks:
(i) Assume (2.9) and suppose that (p0, q0) is not bounded. By (3.6), |U0| grows at most at
a polynomial rate. Because Q′′ = U0 − 2, Q also admits at most polynomial growth.
(ii) Whenever {an} and {bn} are sequences of finite numbers with an ↓ a and bn ↑ b, where
−∞ ≤ a < b ≤ ∞, Uab(x) = limn→∞ Uanbn(x). This is a consequence of the fact that
τanbn ↑ τab, almost-surely. Decompose ĉα into the difference of its positive and negative
parts, ĉα = ĉ+

α − ĉ−α , express Uab as the difference of two terms, one involving ĉ+
α (Zx(t)), the

other ĉ−α (Zx(t)), and apply the monotone convergence theorem in each term to obtain the
result.
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3.3 Relation of Uα to Vα

Recall from Theorem 2.1 that Vα is continuously differentiable and that the optimal feedback

policy is given by πα(x)
4
= σ01Gα(x), where Gα is the open set Gα = {x; b(x)V ′α(x)−αVα(x)+

c(x) > 0}. If αVα(0) < c(0), one sees immediately that 0 ∈ Gα.
We shall use the following notation: (rα, sα), denotes the connected component of Gα

containing 0, if it exists, otherwise (rα, sα) is empty; on the other hand, (pα, qα) denotes the
connected component of the open set {x;Uα(x) < 0} containing 0, if it exists, otherwise,
(pα, qα) is be empty. In section 3 of [17] it is shown that (rα, sα) is necessarily bounded for
each α > 0.

Lemma 3.6 Let α > 0. Assume (2.8), (2.9), and (3.4). The following are equivalent:

(i) αVα(0) < c(0).

(ii) (rα, sα) is non-empty.

(iii) (pα, qα) is non-empty, i.e. Uα(0) < 0.

When these equivalent conditions hold,

(rα, sα) = (pα, qα) and V ′′α + 2 = Uα on (rα, sα). (3.14)

In all cases,

αVα(0) = c(0) +
σ0

2
Uα(0). (3.15)

Proof: Fix α > 0. To simplify notation and to reserve subscripts for other uses, write V for
Vα and U for Uα.

We have explained in defining (rα, sα) above that (i) and (ii) are equivalent.
To proceed further, it is necessary to develop some facts about V from [17]. For a < 0 < b,

where a and b are finite, let Vab denote the discounted cost associated to the feedback control
σ01(a,b)(x). That is

Vab(x)
4
= E

[
∫ ∞

0
e−αt

(

c(Yx(t)) + σ2
01(a,b)(Yx(t))

)

dt
]

,

where dYx(t) = −θYx(t) dt + σ01(a,b)(Yx(t)) dW (t), and Yx(0) = x. Observe that Yx(t)
remains in [a, b] for all time t ≥ 0 if x ∈ [a, b]; see [17], section 2.

Fact 1:
V ′′ab + 2 = Uab on [a, b]. (3.16)

12



Indeed, it is shown in Theorem 2.2 of [17] that

σ2
0

2
(V ′′ab(x) + 2)− θxV ′ab(x)− αVab(x) + c(x) = 0 x ∈ (a, b) (3.17)

V ′′ab(a+) + 2 = 0 V ′′ab(b−) + 2 = 0

Let v
4
= V ′′ab + 2. Differentiate (3.17) twice and use the above boundary conditions. Then

σ0

2
v′′(x)− θxv′(x)− (2θ + α)v(x) + ĉα(x) = 0, a < x < b (3.18)

v(a) = 0 v(b) = 0. (3.19)

Therefore, v = Uab on [a, b], where Uab is as in (3.8), by the Feynman-Kac formula. This is
the step that uses crucially the linearity of the drift.
Fact 2: By definition of V as the least discounted cost under all controls,

V (x) ≤ Vab(x) on IR for any a < 0 < b. (3.20)

Fact 3: ( See Theorems 3.1 and 3.2 in [17].) If (rα, sα) is non-empty, it is bounded, and

V (x) = Vrαsα(x) on [rα, sα] and V ′′rαsα(x) + 2 < 0 on (rα, sα). (3.21)

From (3.21), (3.17) and (3.16),

αV (x) = c(x)− θxV ′(x) +
σ2

0

2
Urαsα(x) on [rα, sα]. (3.22)

Assume that (ii) holds. Then, (3.16) and (3.21) imply that Urαsα(x) < 0 on (rα, sα).
Thus Uα(0) ≤ Urαsα(0) < 0, and statement (iii) holds.

Now assume that (iii) holds. When (pα, qα) is bounded, we can use (3.20), (3.16), and
(3.17) to conclude:

αV (0) ≤ αVpαqα(0) = c(0) +
σ2

0

2
Upαqα(0) < c(0),

whence follows (i).
However, we do not know a priori that (pα, qα) is bounded. Even if it is not, Upαqα(0) < 0

by assumption, and by (3.4)-(3.6) and the argument below (3.6), Upαqα(x) ≥ Uα(x) > −∞
for all x. We saw in the previous section that

lim
n

Uanbn(x) = Upαqα(x) for all x ∈ (pα, qα), (3.23)
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whenever {an} and {bn} are sequences of finite numbers with an < bn for all n, such that
an ↓ pα and bn ↑ qα as n→∞. Choose n large enough that Uanbn(0) < 0. Then, arguing as
above, αV (0) ≤ αVanbn(0) = c(0) + (σ2

0/2)Uanbn(0) < c(0), which proves statement (i).
Finally, assume that the equivalent conditions (i)-(iii) hold. By (3.16), (3.17), (3.21),

and the characterizations (3.10) and (3.11) of pα and qα, it is clear that (rα, sα) ⊂ (pα, qα).
We shall argue the reverse inclusion by contradiction. First, we claim that if (rα, sα) is a
proper subset of (pα, qα), then Upαqα(x) < Urαsα(x) on (rα, sα). Indeed, on (rα, sα), both
Upαqα and Urαqα are solutions of Lαw(x) + ĉα(x) = 0, and Upαqα(rα) ≤ 0 = Urαsα(rα),
Upαqα(sα) ≤ 0 = Urαsα(sα). At least one of these inequalities is strict if (rα, sα) is properly
contained in (pα, qα). The maximum principle and uniqueness of solutions then implies
Upαqα(x) < Urαsα(x) on (rα, sα). Thus, by (3.23), there exist finite a < 0 < b such that
Uab(0) < Urαsα(0).

From (3.16) and (3.21), Uab(0) = V ′′ab + 2, and Urαsα(0) = V ′′(0) + 2. Hence

αV (0) ≤ αVab(0) = c(0) +
σ2

0

2
Uab(0) < c(0) +

σ2
0

2
(V ′′(0) + 2) = αV (0).

This is a contradiction, and so we conclude that (rα, sα) and (pα, qα) are identical. This
completes the proof of (3.14); (3.15) is a direct consequence of (3.14) and (3.17).

3.4 Proofs of Theorems 3.1 and 3.2

Because of Lemma 3.6, the asymptotic behavior of αVα(0) as α ↓ 0 is determined by the
asymptotic behavior of Uα(0), which is easily computed.

Lemma 3.7 Assume (2.8)–(2.9). Then lim
α→0+

sup
|x|≤M

| Uα(x)− U0(x) |= 0, for every finite,

positive M .

Proof: From (2.9) and (3.5), it follows that sup
t≥0

E[|ĉ0(Zx(t))|] ≤ K̃(1 + |x|2m) for some

finite K̃. Let τ ∗ be the optimal stopping time that achieves the value U0(x). Observe that
ĉα = ĉ0 + 2α. Then

Uα(x)−U0(x) ≤ E

[

∫ τ∗

0
(e−2θt[e−αt−1]ĉ0(Zx(t))+e−(2θ+α)t2α) dt

]

≤
2α+K̃(1+|x|2m)α(2θ)−1

2θ+α
.

This last expression is bounded by
α

2θ
(4 +

K̃(1 + |x|2m)

2θ
). A similar inequality holds for

U0(x)− Uα(x), which implies the lemma. ¦
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Let Λ0
4
= c(0)+(σ2

0/2)U0(0). By (3.15) of Lemma 3.6 and Lemma 3.7, limα→0+ αVα(0) =
c(0) + (σ2

0/2)U0(0). It follows from Lemma 2.3 part (ii) that

lim
α→0+

sup
|x|≤M

| αVα(x)− Λ0 |= 0.

We shall show that λ0 = Λ0, thereby completing the proof of Theorem 3.1, parts (i) and (ii).
In the course of this argument, we establish part (iii) also.

Observe

λ0 = inf
U

lim inf
T→∞

1

T
E

[

∫ T

0

(

c(Xu
x (t)) + u2(t)

)

dt

]

≥ lim inf
T→∞

1

T
V0(x, T ).

We shall first establish that for any x,

lim inf
T→∞

1

T
V0(x, T ) ≥ Λ0, (3.24)

which implies λ0 ≥ Λ0. Because of Lemma 2.3 (iv), it is enough to consider the case x = 0.
We want to apply Ito’s rule to Vα(X

u
0 (t)), for arbitrary u ∈ U and arbitrary α > 0. We

do this using the approximation procedure described in Theorem 3.1 of [17] and the HJB
equation (2.11) for Vα. We obtain

E

[

∫ T

0
c(Xu

0 (t)) + u2(t) dt

]

≥ E

[

∫ T

0
αVα(X

u
0 (t)) dt

]

− Γ, (3.25)

where Γ is as in Lemma 2.3, part (iii). But using (2.13) and (2.14),

E [| Vα(X
u
0 (t))− Vα(0) |] ≤ K1E

[

1 + |Xu
0 (t)|

2m + |Xu
0 (t)|

2m+2
]

≤ K2,

where K2 is a finite constant, independent of α but depending on the constants in (2.13)

and (2.14). Hence, E
[

∫ T
0 | αVα(X

u
0 (t))− αVα(0) | dt

]

≤ αK2T . Therefore, it follows from

(3.25) that
V0(0, T )

T
≥ Λ0 −

|αVα(0)− Λ0|

T
− αK2 −

Γ

T
.

Letting T →∞ and then α ↓ 0 proves the claim (3.24).
Next, we show that the controls defined in part (iii) of Theorem 3.1 achieve the value Λ0

in the stationary control problem. This shows that Λ0 ≥ λ0, and hence, because of (3.24),
that Λ0 = λ0. It also proves optimality of the controls achieving Λ0.

If U0(0) = 0, then Λ0 = c(0). In this case, set u∗ ≡ 0. Then Xu∗

x (t) = xe−θt → 0 as
t→∞, and so

lim
T→∞

1

T
E

[

∫ T

0

(

c(Xu∗

x (t)) + (u∗)2(t)
)

dt

]

= c(0) = Λ0. (3.26)
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If U0(0) < 0, there is a connected component (p0, q0) of {x ; U0(x) < 0} with p0 < 0 < q0.
We shall use the feedback policy σ01(p0,q0)(x). The state process corresponding to this control
is Y ∗x (t), where

dY ∗x (t) = −θY ∗x (t) dt+ σ01(p0,q0)(Y
∗
x (t)) dW (t), and Y ∗x (0) = x.

Let u∗(t) = σ01(p0,q0)(Y
∗
x (t)) denote the corresponding control process. If x ∈ [p0, q0], the

process Y ∗x (t) remains in [p0, q0] for all time. Applying Itô’s rule to Q(Y ∗
x (t)), where Q is

given as in Lemma 3.5, and using the equation (3.12) yields,

E

[

∫ T

0

(

c(Y ∗x (t)) + (u∗)2(t)
)

dt

]

= Λ0T +Q(x)−Q(Y ∗x (T )). (3.27)

From Remark (i) of section 3.2, Q has at most polyomial growth, and by the moment bound
(2.13), E [Q(Y ∗x (T ))] is bounded uniformly in T . Thus,

lim
T→∞

1

T
E

[

∫ T

0

(

c(Y ∗x (t)) + (u∗)2(t)
)

dt

]

= Λ0, (3.28)

which is what we wanted to prove.
If x 6∈ [p0, q0], then since no variance control is exercised unless the process enters [p0, q0],

Y ∗x (t) = xe−θt until it hits [p0, q0], which it does in a finite time, after which it proceeds as if
started at one of the endpoints. The cost accumulated up to the hitting time is lost in the
averaged limit as T →∞ and, so (3.28) is still valid. This completes the proof of Theorem
3.1 (i)–(iii).

Notice that limits and not limit infima appear in (3.26) and (3.28). Thus, we have also
proved,

inf
u∈U

lim sup
T→∞

1

T
E

[

∫ T

0

(

c(Xu
x (t)) + u2(t)

)

dt

]

= Λ0 = λ0.

Besides verifying Theorem 3.2, this remark completes the proof of Theorem 3.1, part (iv),
when x = 0, because it implies

lim sup
T→∞

V0(0, T )

T
≤ inf

u∈U
lim sup
T→∞

1

T
E

[

∫ T

0

(

c(Xu
x (t)) + u2(t)

)

dt

]

= λ0,

which, in conjunction with (3.24), implies limT→∞ T−1V0(0, T ) = λ0. Theorem 3.1, part
(iv), now follows using Lemma 2.3, part (iv).
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4 Localization and general unbounded cost

The aim of this section is to give a simple condition under which the interval of non-trivial
variance control about the origin for the discounted problem is bounded uniformly with
respect to α. When this is the case, only the behavior of c in a bounded interval is relevant
to the analysis of the asymptotic behavior of the value functions. This effectively localizes
the analysis of the limit and allows one to obtain an extension of the main results without
a global growth condition on c.

We shall prove uniform localization under the condition

there exists R > 0 such that ĉ0(x) = c′′(x) + 4θ ≥ 0 for all |x| ≥ R. (4.1)

In what follows, it is assumed also that

inf
IR

ĉ0(x) = inf
IR

c′′(x) + 4θ < 0 (4.2)

Otherwise, the optimal controls are always u∗ ≡ 0 and the proof is trivial. Observe for later
reference that (4.1) easily implies infα≥0 infx Uα(x) > −∞; see (3.6).

Theorem 4.1 Assume that c is a non-negative, twice-differentiable cost function satisfy-
ing (4.1). Then Theorems 3.1 and 3.2 hold. Moreover, in the optimal feedback strategy
σ01(p0,q0)(x), given in part (iii) of Theorem 3.1, the interval (p0, q0) is bounded.

The idea of the proof is to show that the various value functions are equal locally to
value functions in which the cost function is in C2

b (IR), as assumed in section 3. Then the
theorems of section 3 are applied locally to deduce Theorem 4.1.

The first step is to localize the action of the optimal feedback strategies. Recall that
there is an optimal feedback strategy for the discounted control problem (2.6) of the form
σ01Gα(x), where Gα is the open set defined in Theorem 2.1.

Lemma 4.2 Let c be non-negative, twice-continuously differentiable and satisfy (4.1) and
(4.2). There exists a constant K0 depending only on inf

x
c′′(x), θ, sup

|x|≤R

|c(x)|+ |c′(x)|, and

R, such that Uα(x) = 0 on [−K0, K0]
c and Gα ⊂ [−K0, K0] for all α ≥ 0.

Proof. From assumption (4.1) and the definition of Uα it is easy to see that

`1
4
= sup

x
|Uα(x)| ≤ | inf

x
c′′(x)| <∞. One can also show by an apriori bound that

`2
4
= sup

α≥0
sup
|x|≤R

|U ′α(x)| <∞ and that the bound depends only on θ, R, and sup
|x|≤R

|c′′(x)|; we

defer the proof momentarily.
Suppose there exists a z in {x ; Uα(x) < 0} such that z > R, and let (p, q), with p < z < q,

be the connected component of {x ; Uα(x) < 0} containing z. Since (p, q) must intersect
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{x ; ĉ(x) < 0} in at least one point, and since {x ; ĉ(x) < 0} ⊂ (−R,R), it must be true that
p < R. Now integrate (3.7) twice from R to q. The result, after some rearrangement of
terms, is

σ2
0

2
[Uα(q)−Uα(R)]− c(R) +

[

(θR−
σ2

0

2
)U ′α(R)− c′(R)

]

(q −R) + (2θ+α)(q−R)2 =

(θ+α)
∫ q

R

∫ y

R
Uα(x) dx dy − c(q)

The right-hand side is negative. On the other hand, there is a K̄0, depending only on R, `1,
`2, c(R), and c′(R), and not on α, such that the left-hand side is positive if q > K̄0. Hence
we obtain a contradiction unless q ≤ K̄0. By applying the same reasoning to (−∞,−R), one
obtains a K0 such that Uα(x) = 0 for all |x| ≥ K0 and all α ≥ 0.

Next fix an arbitrary α > 0 and consider any connected component (r, s) of Gα, the op-
timal feedback set for the discounted problem. The component (r, s) is necessarily bounded.

As a consequence of Theorem 2.1, u
4
= V ′′α + 2 is a solution of

(σ2
0/2)u

′′ − θxu′ − (2θ+α)u+ ĉα = 0 x ∈ (r, s) u(p) = u(q) = 0,

and, so u(x) = Urs(x). In addition, u < 0 on (r, s). Hence (r, s) ⊂ {x ; Uα(x) < 0}, which
was just shown to be contained in [−K0, K0]. Thus Gα ⊂ [−K0, K0].

It remains to prove the boundedness of `2. There is a finite α0 such that, for α ≥ α0,
ĉα ≥ 0 and hence Uα ≡ 0. Therefore, one can restrict attention to 0 ≤ α ≤ α0. In any interval
(b, b+1), the Mean Value Theorem provides a point x0 ∈ (b, b+1), for which |U ′α(x0)| ≤ `1.
By solving (3.7) for U ′α, it follows that |U ′α(x)| is bounded uniformly for 0 ≤ α ≤ α0 and
b ≤ x ≤ b+1 by a constant depending only on b, θ, `1, and supb<x<b+1 |c

′′(x)|. It follows that
for any M , sup

0≤α

sup
|x|≤M

|U ′α(x)| is bounded by a constant depending only on `1, θ, and M . ¦

Proof of Theorem 4.1: Let R be as in (4.1). For each positive integer n, it is easy to see
that there is a non-negative, twice-continuously differentiable function cn which is equal to c
on [−n, n], which satisfies cn(x) ≤ c(x) for all x, and which also satisfies both the polynomial
growth bound (2.9) and the condition (4.1) for the given R.

Let V (n)
α and U (n)

α be the value functions for the discounted control problem and the
associated optimal stopping problem, respectively. Let Gα be as in Theorem 2.1. Let Gn

α

be the set defining the optimal feedback policy πn(x) = σ01Gnα
(x) for V (n)

α . Finally, let λn
0

denote the stationary value associated to cost cn. Because cn ≤ c,

λn
0 ≤ λ0 for all n. (4.3)

By Lemma 4.2, there is a K0 such that the interval [−K0, K0] contains all of the following
sets {x ;Uα(x) < 0}, Gα, {x ;U (n)

α (x) < 0} for all n, and Gn
α for all n. This has the following
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consequences. First, U (n)
α = Uα for all n, n > K0, and all α ≥ 0, because for such n, cn = c

on [−K0, K0], which contains the optimal continuation region for all n. Second, if n > K0,
then V (n)

α (x) = Vα(x) on [−n, n] for all α > 0. To see this, recall that if G is an open set
contained in [−K0, K0] and n > K0, the solution to

Xx(t) = x− θ
∫ t

0
Xx(s) ds+ σ0

∫ t

0
1G(Xx(s)) dW (s)

remains in [−n, n] if the initial point x is in [−n, n]. Thus for any n > K0 the optimal
processes for both V (n)

α and Vα remain in [−n, n] if they start there. Since c and cn are equal
on [−n, n], it follows that the two value functions are equal on [−n, n].

Theorems 3.1 and 3.2 are valid for each cn for, except that λ0 must be replaced by λn
0 ,

where n > K0 but is otherwise arbitrary. We show that λ0 = λn
0 for n > K0. Because of

(4.3) we need only show λ0 ≤ λn
0 . However, for any n > K0, the optimal feedback policy

σ01(p0,q0)(x) achieves the value λn
0 when the cost function is cn. Moreover, when |x| ≤ n,

the optimal state process remains in [−n, n] where cn equals c, so the value λn
0 can also be

achieved when the cost function is c. Since λ0 is the optimal stationary value, λ0 ≤ λn
0 .

Theorem 3.1, part (i), now follows by taking n > K0, as does part (iii). For Theorem 3.1
part (ii) and part (iv), take n > max{K0,M} for each M > 0. Theorem 3.1, part (iv) and
Theorem 3.2 is proved as before.

¦

5 Nonlinear drift

In this section, we sketch results for the problems (2.5)–(2.7) assuming only the condition
(2.2) on the drift b and the polynomial growth condition (2.9) on the second derivative of
the location cost c. Observe that, using the zero control, one can obtain λ0 ≤ c(0), where
λ0 is defined as in (2.5). The main result is:

Theorem 5.1 Assume (2.2), (2.8) and (2.9). Let λ0 be given by (2.5). Then for every
finite, positive M ,

lim
α→0+

sup
|x|≤M

| αVα(x)− λ0 |= 0 (5.1)

If λ0 = c(0) then u∗ ≡ 0 is an optimal control for the stationary problem. If λ0 < c(0). there
is an optimal feedback policy for the stationary problem of the form π∗(x) = σ01(p∗,q∗), where
p∗ < 0 < q∗.

Finally,

lim
T→∞

sup
|x|≤M

1

T
| V0(x, T )− λ0 |= 0, for every finite M > 0. (5.2)
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The proof uses Lemma 2.3 heavily. First note that as a consequence of Lemma 2.3, part
(i), there exists a finite constant K1, independent of α, such that

| Vα(x)− Vα(y) |≤ |x− y|K1

(

1 + |x|2m + |y|2m
)

for all α > 0. (5.3)

As a consequence,

| V ′α(x) |≤ 2K1

(

1 + |x|2m
)

for all α > 0, x ∈ IR. (5.4)

To fix terminology, let us say that a control u achieves the stationary value γ if

lim inf
T→∞

1

T
E

[

∫ T

0
[c(Xu

x (t)) + u2(t)] dt

]

= γ

Let {αn} be a sequence of positive discount factors with αn ↓ 0 as n → ∞, such that

Λ0
4
= limαn→∞ αnVαn(0) exists. Because 0 ≤ αVα(0) ≤ c(0) such sequences exist, and for

any such sequence, 0 ≤ Λ0 ≤ c(0). The argument which proves (3.24) applies without change
to the sequence αn, because it depends only on Lemma 2.3. We therefore obtain

λ0 ≥ Λ0 (5.5)

If one then exhibits a control u∗ which achieves Λ0, it follows at once from the definition
of λ0 as the optimal stationary value that λ0 = Λ0. By applying Lemma 2.3 (i), one then
obtains

lim
n→∞

sup
|x|≤M

| αnVαn(x)− λ0 |= 0 (5.6)

In particular, we know already that u∗ ≡ 0 achieves the stationary value c(0). Hence if
Λ0 = c(0), it follows that λ0 = c(0) and that (5.6) holds.

Recall that the optimal control for the discounted problem with discount α > 0 has
the form πα(x) = σ01Gα(x) for some open set Gα. As in section 3, let (rα, sα) denote the
connected component of Gα containing the origin, if such a component exists; otherwise
consider (rα, sα) to be empty. For each α, (rα, sα) is a bounded interval since V ′′

α ≤ −2 on
(rα, sα) and Vα is a non-negative function.

There are several possibilites.
First, there may exist a subsequence {βn} of {αn} such (rβn , sβn) is always empty. By

the definition of Gα and equation (2.11), βnVβn(0) = c(0) along this subsequence. It follows
that Λ0 = c(0) and so, as we argued above, λ0 = c(0) and (5.6) holds.

Second, there may exist a subsequence {βn} such that either rβn → 0 or sβn → 0.
Without loss of generality, suppose the former. From (2.11), we have

b(rβn)V
′
βn
(rβn)− βnVβn(rβn) + c(rβn) = 0.
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Since (5.4) implies that V ′
βn
(rβn) is uniformly bounded, and since b(0) = 0, it follows that

limn→∞ βnVβn(rβn) = c(0). So, again λ0 = c(0) and (5.6) holds.
If neither of the first two cases holds, there is an ε0 > 0 such that rαn ≤ −ε0 < ε0 ≤ sαn

for all n. We shall construct a function Q that is precisely analogous to the Q found in
section 3. To do this, use the uniform boundedness of V ′

αn
(0) proved in (5.4) to choose a

subsequence βn such that

p∗ := lim
n→∞

rβn , q∗ := lim
n→∞

qβn , µ0 := lim
n→∞

V ′βn(0) (5.7)

all exist and µ0 is finite. (We do not exclude the possibility of infinite limits.) From (2.11),
V ′′α (x) + 2 < 0 on (rα, sα) and Vα solves

σ2
0

2
(V ′′α (x) + 2) + b(x)V ′

α(x)− αVα(x) + c(x) = 0 for x in (rα, sα), (5.8)

V ′′α (rβn) + 2 = 0 V ′′α (sα) + 2 = 0, (5.9)

By the variation of constants formula

V ′α(x) = e−A(x)
[

V ′α(0) +
∫ x

0
eA(y)(2/σ2

0)
(

αVα(y)− c(y)− σ2
0

)

dy
]

,

where A(x) = (2/σ2
0)

∫ x
0 b(r) dr. Define Q so that Q(0) = 0 and

Q′(x) = e−A(x)
[

µ0 +
∫ x

0
eA(y)(2/σ2

0)
(

Λ0 − c(y)− σ2
0

)

dy
]

,

Clearly V ′βn converges to Q′ uniformly on compact subsets. By direct differentiation, and
limit analysis, Q solves

σ2
0

2
(Q′′(x) + 2) + b(x)Q′(x) + c(x) = Λ0 on (p∗, q∗), (5.10)

Q′′(x) + 2 ≤ 0 on (p∗, q∗), Q′′ + 2 |∂(p∗,q∗) = 0 (5.11)

Furthermore Q′ inherits the polynomial growth bound (5.4). Hence Q grows at most at a
polynomial rate also. Therefore, we can follow the argument of section 3.4 to show that the
feedback control π∗(x) = σ01(p∗,q∗) achieves Λ0 as a stationary value. We have again proved
(5.6).

We have shown that (5.6) is true for any sequence {αn} converging to 0 along which
αnVαn(0) is converges to a finite limit. We now argue that if αn → 0+, then αnVαn(0) must
converge to a finite limit. Suppose not. Since 0 ≤ αVα(0) ≤ c(0) for all α > 0, the sequence
{αnVαn} is bounded. If it does not converge it must contain two subsequences converging
to different limits. But this contradicts what we have proved above. Therefore (5.6) is
true for every sequence αn converging to 0, which proves (5.1). We have also identified the
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optimal stationary controls claimed by Theorem 5.1 in the convergence arguments above.
The statement about the convergence of T−1V0(x, T ) is proved exactly as in section 3. ¦

We conclude with some sufficient conditions for optimality of the null control in the
stationary problem and for the existence of an optimal stationary feedback policy π(x) =
σ01(p∗,q∗)(x) where (p

∗, q∗) is bounded. We only sketch the proofs. For the statement of these
results we state the extension of ĉα, defined in (3.2) for the analysis of the linear case, to the
nonlinear case. Using the same notation, this extension is

ĉα(x)
4
= c′′(x) + 2(α− 2b′(x)).

We define also,

gα(x) := ĉα(x) + b′′(x)
c′(x)− 2b(x)

α− b′(x)
.

Theorem 5.2 Assume (2.2) and (2.9). If for some α0 > 0, gα(x) ≥ 0 for all x and all
0 < α ≤ α0, then u∗ ≡ 0 is the optimal stationary control.

Proof: It is shown in section 5 of [17] that gα(x) ≥ 0 implies that the null control is optimal
for the discounted control problem (2.6) with parameter α. Thus αVα(0) = c(0) for all
0 < α ≤ α0. By the proof of Theorem 5.1, λ0 = c(0) and the null control is optimal for the
stationary problem. ¦

Theorem 5.3 Assume (2.2) and (2.9). Suppose

b′(0) (c′′(0)− 4b′(0)) > b′′(0)c′(0), (5.12)

lim sup
x→−∞

(c′(x)− 2b(x)) < 0 < lim inf
x→∞

(c′(x)− 2b(x)) . (5.13)

Then the optimal feedback control has the form π∗(x) = σ01(p∗,q∗)(x) where p∗ < 0 < q∗ and
(p∗, q∗) is bounded.

Proof: (Sketch) Condition (5.12) implies that for some α0 > 0 and ε0 > 0, we have that
sup
|x|≤ε0

sup
0<α<α0

gα(x) < 0. Then it can be shown that

V ′′−ε0ε0
(x) + 2 < 0 for all x in (−ε0, ε0) uniformly in 0 < α < α0. (5.14)

Here V−ε0ε0 is defined as in section 3.3, except that the drift b is used in place of −θx. One

proves (5.14) by considering the differential equation satisfied by W
4
= V ′′−ε0ε0

+2 (see (5.5) in
[17]) and applying the maximum principle . On the other hand Vα = Vrαsα on (rα, sα), where

(rα, sα) is the connected component of Gα containing 0. One then compares W ∗ 4= V ′′rαsα +2
to W to show (rα, sα) contains (−ε0, ε0).
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Next we show that there is a constant K2 such that (rα, sα) ⊂ (−K2, K2) for all 0 < α <

α0. Let M
4
= sup0<α<α0

|V ′α(0)|, which by (5.4) is finite. On the one hand,

V ′α(sα) < M − 2sα,

because V ′′α < −2 on (rα, sα). On the other hand, the the C1 smoothness of Vα and equation
(2.11) imply,

(α− b′(sα))V
′
α(sα) = c′(sα)− 2b(sα).

By assumption (5.13), there is a K3 such that c′(x) − 2b(x) > 0 for x > K3. Since α −
b′(sα) > 0, sα > K3 can occur only if V ′

α(sα) > 0, which requires sα < M/2. Therefore
sα ≤ max(M/2, K3). By a similar argument, |rα| ≤ max(M/2, K4), where c′(x)− 2b(x) < 0
for x < K4. These bounds are independent of α. Hence (rα, sα) ⊂ (−K2, K2) for all
0 < α < α0, where K2 = max(M/2, K3, K4).

We have shown that

(−ε0, ε0) ⊂ (p∗α, q
∗
α) ⊂ (−K2, K2) for all 0 < α < α0.

In the proof of Theorem 5.1, we obtained (p∗, q∗) as a limit of a convergent subsequence of
(rαn , sαn) where αn ↓ 0. Thus (−ε0, ε0) ⊂ (p∗, q∗) ⊂ (−K2, K2). ¦

Remarks: The condition (5.12) implies that sup0<α≤β gα(0) < 0 for some β > 0.
The condition (5.13), which implies the boundedness of (p∗, q∗), is weaker than condition

(4.1), which was used to get localization of the region of positive variance control in the
linear drift case. In this section, we took advantage of a prior bound on the derivative of
Vα which followed from the assumption of polynomial growth of c′′. With a more careful
construction of approximations to c in section 4, one can prove Theorem 4.1 in the linear
case when only (5.13) holds.

6 Appendix

Proof of Theorem 2.1 (Sketch) Theorem 2.1 is proved for cost functions c ∈ C2
b (IR)

in Theorems 3.1 and 3.2 in [17]. We extend it to the generality of assumption (2.8) by a
localization argument.

Lemma 6.1 Let c ∈ C2
b and let Gα be the optimal stopping set for the corresponding dis-

counted problem (2.6). Let η(x)
4
= (2α)−1 sup

|y|≤x+1

|c(y)|, for x > 0. Then for any x0 > 0.

[x0 − 1, x0 + η(x0) + 2] ∩Gc
α is non-empty. (6.1)
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Proof: By using zero control (u ≡ 0) and non-negativity of c,

0 ≤ Vα(x) ≤
1

α
sup
|y|≤x

|c(y)|.

Pick a point x0 > 0. By the mean value theorem and the previous estimate, there is a point
x1 in (x0−1, x0+1) such that |V ′

α(x1)| ≤ η(x0). Now suppose that the interval [x0−1, x0+1]
is contained in the component (p, q) of Gα. Since V ′′α < −2 on Gα, it follows that for any x
in (p, q),

Vα(x) ≤ η(x0) [1 + |x− x1|]− (x− x1)
2

An easy calculation then shows that |x − x1| < η(x0) + 1 for any x in (p, q). Now if
q ≤ x0 + η(x0) + 2, the result is trivial. If q > x0 + η(x0) + 2, we obtain a contradiction by
choosing x ∈ (p, q) so that |x− x1| > η(x0) + 1. ¦

Now take a non-negative function c in C2. We continue to define η(x) as above. Pick a
strictly increasing sequence {aN} such that aN > N + η(N) + 3 for each positive integer N .
Then construct an associated sequence of costs {cN} such that

(i) cN ≤ cN+1 ≤ c for every positive integer N ;

(ii) cN(x) = c(x) on [−aN , aN ] for every positive integer N ; and,

(iii) cN ∈ C2
b (IR). for every positive integer N .

For each N , let Gα,N be the set defining the optimal discounted control associated to the
cost cN . By applying (6.1) to cN and using (ii) and aN > N + 1, we see that [N,N + η(N+
1)+3]∩Gc

α,N for every N . Similarly [−(N+η(N+1)+3),−N ]∩Gc
α,N is non-empty for every

N . For each N , let kN be a point in [N,N + η(N+1) + 2] ∩Gc
α,N , and let `N be a point in

[−(N+η(N)+3),−N ] ∩Gc
α,N . Note that −aN < `N < −N < N < kN < aN .

Let Vα denote the value function defined at (2.6) using the cost function c, and, for each
N , let Vα,N(x) be the value function defined using cN . Theorems 3.1 and 3.2 of [17] state
that Theorem 2.1 holds for each Vα,N , because cN ∈ C2

b (IR). Let XN
x be the process obtained

by using the feedback policy πα,N(x) = σ01Gα,N (x); X
N
x is the optimal process achieving the

value VαN (x). Because `n and kN are not in Gα,N and the drift always points toward the
origin, XN

x (t) will remain in [`N , kN ] for all time if the initial condition x is in [`N , kN ].
By property (ii) of the sequence {cN}, cN = c on [`N , kN ], and hence Vα,N (x) ≥ Vα(x) on
[`N , kN ]. However, by property (i), Vα,N(x) ≤ Vα(x) for all x. Thus Vα,N(x) = Vα(x) on
[`N , kN ] and hence Vα satisfies (2.11) on [`N , kN ]. Since, by construction, limN `N = −∞ and
limN kN =∞, Theorem 2.1 follows.

Let f be a continuously differentiable function on IR. Let Zx solve the stochastic differ-
ential equation

Zx(t) = x+
∫ t

0
f(Zx(s)) ds+ σ0W (t),
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where W is a Brownian motion from an admissible control system. Assume that the lifetime
of Zx is a.s. infinite for all x.

Theorem 6.2 Let ` be a continuous function such that

inf
y

`(y) > −∞. (6.2)

Let λ > 0 and define U(x) = inf
τ

E
[
∫ τ

0
e−λt`(Zx(t)) dt

]

, where the infimum is over all IF

stopping times. Then U is the unique solution of

U ∈ C1(IR) ∩ L∞(IR), U ′ is absolutely continuous and U ′′ ∈ L∞loc(IR), (6.3)

min

{

σ2
0

2
U ′′(x) + f(x)U ′(x)− λU(x) + `(x),−U(x)

}

= 0, a.e. in IR. (6.4)

The set {x;U(x) = 0} is the optimal stopping region.
Suppose, instead of (6.2), it is assumed that for some positive constants M , K > 0, and

p > 0,
`−(x) ≤ K (1 + |x|p) , xf(x) ≤M, x ∈ IR, (6.5)

where `− is the negative part of `. Then U is the unique solution of (6.3 ′) and (6.4), where
(6.3 ′) is the same as (6.3), except that the condition that U ∈ L∞ is replaced by the condition
that |U(x)| grows at most polynomially in x.

This result is entirely standard, with the exception that the problem is considered over an
unbounded domain and the drift coefficient is unbounded. The requirement that U ∈ C1(IR)
is the famous smooth-fit principle, which is here a rigorous statement.

Bensoussan and Lions [6], p. 398, provide a proof of a multi-dimensional extension
of Thereom 6.2 under the additional assumption of polynomial growth on ` and its first
derivative. However, the one-dimensional case is particularly simple and it is easy to extend
the result to cover the assumptions of Theorem 6.2.

Here is an elementary approach to a proof. Rather than derive Lemma 3.4 from Proposi-
tion 3.3 one can take (3.10)-(3.11) as the starting point for an elementary proof of Proposition
3.3. For each connected component of {x; ĉα(x) < 0} define p and q as in (3.10)-(3.11).
Let {(pi, qi); i ≤ I}, where I is countable, be an enumeration of the countable set of distinct
intervals so constructed. By elementary differential equations arguments, it may be shown
that (pi, qi) and (pj, qj) are disjoint if i 6= j, and, for each i, that

σ2
0

2
U ′′piqi(x)− θxU ′piqi(x)− (2θ+α)Upiqi(x) + ĉα(x) = 0 pi < x < qi (6.6)

Upiqi |∂(pi,qi)
= 0 U ′piqi |∂(pi,qi)

= 0. (6.7)
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In (6.7), ∂(p, q) denotes the boundary of the interval, that is, the set of finite endpoints. Set
U(x) =

∑

i 1(pi,qi)(x)Upiqi(x). Then, because of the boundary conditions in (6.7), U ∈ C1. It
may be checked directly that U is a solution of (3.7); a verification argument using Itô’s rule
then shows that U ≡ Uα and that {x;Uα(x) = 0} is an optimal stopping region.
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