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1. Introduction

Stepping-stone models were first proposed by Kimura [9] as stochastic models in popu-
lation genetics. Discrete-sites stepping-stone models describe the simultaneous evolutions
of populations at different colonies, where it undergoes mutation, selection and resampling
within each colony and migration among those colonies. They have been studied since by
different authors (see Handa [8] and Sawyer [13]). Similar models (interacting Fleming-Viot
models) were considered by Dawson, Greven and Vaillancourt [3]. Very loosely put, these
models can be thought as collections of Fisher-Wright models or Fleming-Viot models with
geographical structures. There is one model at each colony. Different populations interact
with each other via migrations among colonies. Results on long-term behaviors of such
models were obtained in [3, 8].

Continuous-sites stepping-stone models with two types of individuals were first intro-
duced in Shiga [14]. Cluster formation of such models was considered by Evans and Fleis-
chmann [6] for a particular class of sites, namely, the continuous hierarchical group. Another
continuous-sites stepping-stone model with infinitely many types was defined and discussed
by Evans [5]. Further properties of this model can be found in Donnelly et al. [4]. Duality
plays an important role in these studies.
Clustering is a phenomenon observed among such models, namely, individuals over sites

close to each other tend to have the same type. In models with hierarchically structured
site space the cluster formation was discussed by Fleischmann and Greven [7], Evans and
Fleischmann [6] and Klenke [10] through studying the time-site scaling of the original mod-
els. In this paper we will focus on the infinitely many types stepping-stone model over the
real line. Using the scaling property for stable processes, Evans [5] (also see [4]) showed
that if the migration process is a stable process with index 1 < α ≤ 2, then there is only
one type of individual appearing over each site as soon as time t > 0. In this paper we
point out that the above mentioned phenomenon can actually occur across an interval. i.e.
the system clusters. We call such an interval a cluster with a certain type.

When the migration is Brownian motion and the initial state of the model consists of the
same mixture of different types of individuals over each site, the evolution of the clusters
can be intuitively described as follows: If we start with the same mixture of different types
of individuals over each site, then clustering happens across the site space simultaneously
as soon as t > 0. The site space is divided into intervals where there is only one type of
individuals over each interval. As time goes on, the clusters are getting bigger and bigger in
size. The average size of those clusters is of the order of

√
t at any fixed time t. The types of

two clusters are asymptotically independent if they are separated by either a long distance
or a long time. Those results are obtained by the moment duality and analysis of the dual
process, the coalescing Brownian motion. If the initial mixing measure is diffuse, sharp
results can be obtained. We remark that in this model the clustering phenomenon occurs
in a clean-cut fashion in contrast to those in [7, 6, 10] where the clustering is described
indirectly via scaled processes.

The clustering behavior described in Theorem 3.7 resembles the one in multi-type nearest
neighbor voter models over the one-dimensional lattice Z (see Liggett [11] for an account
on the two-type case). This suggests that the continuous-sites stepping-stone model should
arise as an appropriate time-space scaling limit of voter models. We refer the reader to
Mueller and Tribe [12] and Cox, Durrett and Perkins [1] for work along this line.
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The rest of the paper is organized as follows. We first briefly introduce the setup and the
moment duality of a continuous-sites stepping-stone model in Section 2. Then in Section
3 we apply the moment duality along with a result on coalescing Brownian motion flow
to study the dynamics of cluster formation in this model. In Section 4 we prove a duality
formula involving joint moments over different times, which will be used later to investigate
the relationship between the types of clusters at different locations and different times.

2. Definitions and preliminary results

We first sketch the setup of an infinitely-many-types continuous-sites stepping-stone
model X with Brownian migration.

Let real line R be the site-space. m denotes the Lebesgue measure on R. Let K := [0, 1].
We identify K with the coin-tossing space {0, 1}N. K equipped with the product topology
serves as the type-space of X. Evans later points out that the above-mentioned topology
could also be replaced by the usual topology on [0, 1]. Write M(K) for the Banach space
of finite signed measures on K equipped with the total variation norm ‖ · ‖M(K). Let
L∞(m,M(K)) denote the Banach space of (equivalence classes of) maps µ : R → M(K)
such that ess sup{‖µ(e)‖M(K) : e ∈ R} <∞. Write C(K) for the Banach space of continuous
functions on K equipped with the usual supremum norm ‖·‖C(K). To simplify notations we

always writem(de) for de. Let L1(m,C(K)) denote the Banach space of (equivalence classes
of) maps µ : R → C(K) such that

∫

‖µ(e)‖C(K)de < ∞. Then L∞(m,M(K)) is isometric

to a closed subspace of the dual of L1(m,C(K)) under the pairing (µ, x) 7→
∫

〈µ(e), x(e)〉 de,
µ ∈ L∞(m,M(K)), x ∈ L1(m,C(K)). WriteM1(K) for the closed subset ofM(K) consist-
ing of probability measures, and let Ξ denote the closed subset of L∞(m,M(K)) consisting
of (equivalence classes of) maps with values in M1(K). Ξ equipped with the relative weak∗

topology is a compact, metrizable space. It serves as the state space of X.
The intuitive interpretation is that µ ∈ Ξ describes the relative frequencies of different

populations at the various sites: µ(e)(L) is the “proportion of the population at site e ∈ R
that has a type belonging to the set L ⊂ K”.

More elaborate discussions on the set up of such processes can be found in [5].
The nth moment of µ ∈ Ξ corresponding to φ ∈ L1(m⊗n, C(Kn)) is defined as follows.

Definition 2.1. Given φ ∈ L1(m⊗n, C(Kn)), define In( · ;φ) ∈ C(Ξ) (:= the space of
continuous real–valued functions on Ξ) by

In(µ;φ) :=

∫

Rn

〈

n
⊗

i=1

µ(ei), φ(e)

〉

de

=

∫

Rn
de

∫

Kn

φ(e)(k)
n
⊗

i=1

µ(ei)(dki), µ ∈ Ξ.

(2.1)

Write I for I1.

Now we are going to define coalescing Brownian motion which is dual to the stepping-
stone model we are interested in. Coalescing Brownian motion is a system of indexed
one-dimensional interacting Brownian motions with the following intuitive description. All
the processes evolve as independent Brownian motions until two of them first meet. After
this moment, which we call a coalescing time, the process with higher index assumes the
value of the process with lower index. We say the process with higher index is attached
to the one with lower index which is still free. They move together according to a single
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Brownian motion independent of the others until the next coalescing time. The system then
evolves in the same fashion.

To keep track of the interactions within the coalescing system we have to introduce more
notations. Given a positive integer n, let Pn denote the set of partitions of Nn := {1, . . . , n}.
That is, an element π of Pn is a collection π = {A1(π), . . . , Ah(π)} of disjoint subsets of
Nn such that

⋃

iAi(π) = Nn. The sets A1(π), . . . Ah(π) are the blocks of the partition π.
The integer h is called the length of π and is denoted by l(π). For convenience we always
suppose that the blocks are indexed such that minAi(π) < minAj(π) for i < j, i.e. they
are indexed according to the order of their smallest elements. Equivalently, we can think of
Pn as the set of equivalence relations on Nn and write i ∼π j if i and j belong to the same
block of π ∈ Pn.

Given π ∈ Pn, Let

aπ(i) := min{j : j ∼π i, 1 ≤ j ≤ n}, 1 ≤ i ≤ n.

Given i ≥ 1, let

ai(π) := minAi(π), π ∈ Pn, l(π) ≥ i.

What we really mean by Nn is that it is the collection of indices of all the processes in
a coalescing system. A partition π describes the interaction in the system at a fixed time.
Each block in π corresponds to a free process. The block consists of the index of that free
process together with the indices of all the other processes attached to it. aπ(i) is just the
index of the free process to which the ith process is attached. ai(π), i = 1, . . . , l(π), are all
the indices of the free processes left.

For π′ ∈ Pn, write π ≺ π′ or π′ Â π if π′ is obtained by merging some of the blocks in π.
Write π ¹ π′(π′ º π) if π ≺ π′(π′ Â π) or π′ = π.

Given π ∈ Pn, we can define a l(π)-dimensional subspace Rn
π of Rn by identifying the

coordinates with indices from the same block of π. More specifically,

Rn
π := {(xaπ(1), . . . , xaπ(n)) : xaπ(i) ∈ R, 1 ≤ i ≤ n}.

Put

Řn
π := Rn

π\
⋃

π′Âπ,l(π′)=l(π)−1
Rn
π′ .

Řn
π is just the effective state space of the coalescing system when the interaction is repre-

sented by π. Note that Řn
π and Řn

π′ are disjoint for π 6= π′.
More precisely, let We = (W1, . . . ,Wn) be a n-dimensional Brownian motion starting

from e ∈ Rn. The n-dimensional coalescing Brownian motion W̌e = (W̌1, . . . , W̌n) can be
constructed from We inductively as follows. Suppose that times 0 =: τ0 ≤ . . . ≤ τk ≤ ∞
and partitions {{1}, . . . , {n}} =: π0 ≺ . . . ≺ πk ¹ {{1, . . . , n}} have already been defined
and W̌e has been defined on [0, τk). If πk = {{1, . . . , n}}, then W̌e

t = (W1(t), . . . ,W1(t))
for t ≥ τk. Otherwise, let πk = {A1(πk), . . . , Al(πk)(πk)}. Put

(2.2) τk+1 := inf{t > τk : ∃i < j,Wai(πk)(t) =Waj(πk)(t)}.

Suppose that Wai(πk)(τk+1) =Waj(πk)(τk+1) for some 1 ≤ i < j ≤ l(πk), then define

(2.3) πk+1 := {A1(πk+1), . . . , Al(πk)−1(πk+1)},



5

where

Ar(πk+1) :=











Ar(πk), for 1 ≤ r < i or i < r < j,

Ai(πk) ∪Aj(πk), for r = i,

Ar+1(πk), for j ≤ r ≤ l(πk)− 1

and W̌e(t) := (Waπk (1)
(t), . . . ,Waπk (n)

(t)) for τk ≤ t < τk+1.

Theorem 2.2 was first obtained in [5]. It will be used repeatedly in the present paper.

Theorem 2.2. (Moment duality) There exists a unique, Feller, Markov semigroup {Qt}t≥0
on Ξ such that for all t ≥ 0, µ ∈ Ξ, φ ∈ L1(m⊗n, C(Kn)), n ∈ N, we have

∫

Qt(µ, dν)In(ν;φ)

=
∑

π∈Pn

∫

Rn
P



1{W̌e
t∈Řnπ}

∫ l(π)
⊗

i=1

µ(W̌ e

ai(π)
(t))(dkai(π))φ(e)(kaπ(1), . . . , kaπ(n))



 de.

(2.4)

Consequently, there is a Hunt process, (X,Qµ), with state-space Ξ and transition semigroup
{Qt}t≥0.
Remark 2.3. The duality formula (2.4) doesn’t have exactly the same expression as that in
Theorem 4.1 of [5]. But one can easily check that they turn out to be the same.

Because coalescing Brownian motion is dual to the stepping-stone model, it plays a
crucial role in analyzing the clustering behavior. We first introduce two results on a sys-

tem of coalescing Brownian motions. Given a < b, let W̌a,b,n := (W̌ a,b,n
1 , . . . , W̌

a,b,n
n )

be a collection of coalescing Brownian motions such that the initial values W̌a,b,n(0) =

(W̌ a,b,n
n (0), . . . , W̌ a,b,n

n (0)) are independent and uniformly distributed over interval [a, b].
We can define W̌a,b,n, n = 1, 2, . . . , on the same probability space in such a way that

∪ni=1{W̌a,b,n
i (t)} ⊂ ∪n+1

i=1 {W̌
a,b,n+1
i (t)} for all n = 1, 2, . . . and t ≥ 0. Set W̌a,b(t) :=

∪∞n=1 ∪ni=1 {W̌a,b,n
i (t)}. Write |W̌a,b(t)| for the cardinality of the collection of coordinates

of W̌a,b(t), i.e. the total number of “free” Brownian motions left in the coalescing system
W̌a,b,n by time t. Write W̌a for W̌−a,a.

Lemma 2.4 was first obtained in [16]. It plays a key role in analyzing the cluster formation
and the sizes of those clusters.

Lemma 2.4. P[|W̌a(t)|] = 1 + 2a√
πt
.

Since P{|W̌a(t)| ≥ 2} is equal to the probability that two independent Brownian motions,
with initial values −a and a respectively, have not met until time t. The next result is a
consequence of reflection principle of Brownian motion.

Lemma 2.5.

P{|W̌a(t)| ≥ 2} = 1√
2πt

∫ ∞

0
exp

(

−(x−
√
2a)2

2t

)

− exp

(

−(x+
√
2a)2

2t

)

dx.

3. Clustering of the continuous-sites Stepping-stone model

For θ ∈ M1(K), write θR for the element in Ξ such that θR(e) = θ for m a.e. e ∈ R.
δ{k} denotes the point mass at k ∈ K. δδ{k}R is the point mass at δ{k}

R ∈ Ξ. Then
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∫

δδ{k}Rθ(dk) ∈M1(Ξ) means that with probability θ(dk) only individuals of type k appear

over the site space R. Write Pt for the transition semigroup of one-dimensional Brownian
motion.

Theorem 3.1. Given M∈M1(Ξ) and M∗ =
∫

δδ{k}Rθ(dk) for some θ ∈M1(K), then

(3.1) lim
t→∞

MQt =M∗

if and only if for any χ ∈ C(K),

(3.2) lim
t→∞

∫

〈Ptµ(e), χ〉M(dµ) = 〈θ, χ〉

for m a.e. e ∈ R.

Proof. The necessity of (3.2) follow readily from the moment duality formula (2.4). We
only need to show that (3.2) is sufficient. Write e for (e1, ..., en). Write ψ ⊗ χ for the
tensor product of ψ ∈ L1(m⊗n)∩C(Rn) and χ ∈ C(Kn). Observe that in an n-dimensional
coalescing Brownian motion, there will be only one free Brownian motion (with index 1)
left eventually. It follows from moment duality (2.4) that

lim
t→∞

∫

MQt(dµ)In(µ;ψ ⊗ χ)

= lim
t→∞

∫

M(dµ)

∫

ψ(e)P
[
∫

χ(k, ..., k)µ(W̌ e

1 (t))(dk)

]

de

=

∫

ψ(e)〈θ, χ(k, ..., k)〉de

=

∫

In(δδ{k}R ;ψ ⊗ χ)θ(dk)

=

(
∫

δδ{k}Rθ(dk)

)

In(·;ψ ⊗ χ).

(3.3)

Hence, (3.1) follows from Lemma 3.1 in [5]. ¤

Remark 3.2. By Theorem 3.1, if the initial value of X is θR, θ ∈M1(K), i.e. X starts with
the same mixture of individuals over each site, then θRQt →

∫

δδ{k}Rθ(dk). As a result, we

certainly expect that individuals of the same type clump together.

For µ ∈ Ξ, define the block average µ[a,b] ∈M1(K) of µ on [a, b] ⊂ R as

µ[a,b] :=
1

b− a

∫ b

a

µ(e)de.

Notice that given G ⊂ K, µ[a,b](G) = 1 if and only if µx(G) = 1 for m a.e. x ∈ [a, b] and if
and only if µ[a′,b′](G) = 1 for a ≤ a′ ≤ b′ ≤ b.

Let G1, . . . , Gd be a partition of K, i.e. ∪di=1Gi = K and Gi ∩Gj = ∅, i 6= j.

Theorem 3.3. Given x ∈ R and t > 0, QθR
almost surely, there exists a constant A > 0

and 1 ≤ i ≤ d such that Xt(y)(Gi) = 1 for m a.e. y ∈ (x−A, x+A).

Given x ∈ R and a > 0, QθR
almost surely, there exists a time T > 0 and 1 ≤ i ≤ d such

that XT (y)(Gi) = 1 for m a.e. y ∈ (x− a, x+ a).
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Proof. Suppose that x = 0. For any 1 ≤ i ≤ d, a > 0 and positive integer n, apply moment
duality (2.4), we have

QθR [
Xt[−a,a](Gi)

n
]

=

∫

In(ν;
1

2a
1⊗n[−a,a] ⊗ 1⊗nGi )Qt(θ

R, dν) = P
[

θ
|Wa,n(t)|
i

]

,

whereXt[−a,a] denotes the block average ofXt and θi := P{Gi}. It follows fromXt[−a,a](Gi)
n →

1{Xt[−a,a](Gk)=1}, n→∞, that

QθR{Xt(y)(Gi) = 1 for m a.e. y ∈ (x− a, x+ a)}
= QθR{Xt[−a,−a](Gi) = 1}
= lim

n→∞
QθR [

Xt[−a,a](Gi)
n
]

= P
[

θ
|Wa(t)|
i

]

.

(3.4)

By Lemma 2.4, for fixed t > 0, |W a(t)| → 1 in probability as a→ 0+. In addition, for fixed
a > 0, |W a(t)| → 1 in probability as t→∞. Then

lim
a→0+

QθR{Xt(y)(Gi) = 1 for m a.e. y ∈ (x− a, x+ a)}

= lim
a→0+

P
[

θ
|Wa(t)|
i

]

= θi

(3.5)

and

lim
t→∞

Qµθ{Xt(y)(Gi) = 1 for m a.e. y ∈ (x− a, x+ a)}

= lim
t→∞

P
[

θ
|Wa(t)|
i

]

= θi.

Notice that
∑d

i=1 θi = 1, the assertion in this theorem is verified. ¤

Remark 3.4. It seems the initial value θR is necessary to obtain the desired result in Theorem
3.3. This is similar to the study on voter models where a typical initial distribution is a
renewal measure. Also notice the similar requirements on the initial values of related models
in [7, 6, 10].

Given a partition {G1, . . . , Gd} of K, we say µ ∈ Ξ has a cluster of type Gi over the
interval (u, v) if µ(.)(Gi) = 1 m a.e. on (u, v). The length of this cluster is just the length
of the largest interval containing (c, d) such that µ has a cluster of type Gi on it. For any
M > 0 and a > 0, let NM,a(µ) be the total number of different clusters of µ over the interval
[−M,M ] with length greater than a. Let LM,a(µ) be the summation of lengths of those
clusters of µ on [−M,M ] with lengths greater than a.

The following lemma says that clustering occurs not only locally, as described in Theorem
3.3, but also across the interval [−M,M ] at time t > 0.

Lemma 3.5. For any M > 0 and t > 0, QθR
almost surely,

(3.6) lim
a→0+

LM,a(Xt)

2M
= 1.
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Proof. Set gx,a(µ) := 1V (µ), µ ∈M1(Ξ), V :=
⋃d
i=1{ν ∈ Ξ : ν[x,x+a](Gi) = 1}. Then

QθR
[
∫ M

−M
gx,a(Xt)dx

]

=

∫ M

−M
QθR

{ ∞
⋃

i=1

{Xt[x,x+a](Gi) = 1

}

dx

=

∫ M

−M

∞
∑

i=1

QθR{Xt[x,x+a](Gi) = 1}dx

= 2M
d
∑

i=1

P[θ|W
a
2 (t)|

i ].

(3.7)

Since
∫ M

−M
gx,a(Xt)dx ≤ LM,a(Xt) ≤ 2M,a > 0,

and

lim
a→0+

QθR
[
∫ M

−M
gx,a(Xt)dx

]

= 2M,

then (3.6) holds. ¤

LetNM (µ) := lima→0+NM,a(µ), µ ∈ Ξ, be the total number of clusters in µ over [−M,M ].
The next result shows that clustering happens simultaneously over R. It also gives an
estimate on the average size of the clusters at a fixed time t > 0. Notice that Lemma 3.5
does not exclude the possibility that NM (Xt) could be infinite.

Denote by QθR
t the distribution of Xt under QθR

. Given x ∈ R, define a shifting operator
τx on Ξ by τx(µ) := µ(x+ .), µ ∈ Ξ. τx can induce a shift operator (also denoted by τx) on
C(Ξ) and M1(Ξ) by

τxΦ(µ) := Φ(τxµ),Φ ∈ C(Ξ), µ ∈ Ξ,

and

(τxQ)Φ := Q(τxΦ),Q ∈M1(Ξ),Φ ∈ C(Ξ).
We refer to [15] for the definition of strong mixing and other results concerning ergodic

theory.

Lemma 3.6. For any t > 0,QθR
t is strong mixing. Therefore, it is ergodic with respect to

τx.

Proof. The initial value θR is shifting-invariant. Then τxQθR
t = QθR

t , x ∈ R, follows from the
moment duality (2.4). τx is thus measure preserving. By Lemma 3.1 in [5] we need to show
that for any n1, n2 ∈ N+, any φ1 = ψ1 ⊗ χ1, ψ1 ∈ L1(m⊗n1) ∩ C(Rn1), χ1 ∈ C(Kn1), and
any φ2 = ψ2 ⊗ χ2, ψ2 ∈ L1(m⊗n2) ∩ C(Rn2), χ2 ∈ C(Kn2), it holds that

lim
x→∞

∫

In1(τxµ;φ1)In2(µ;φ2)QθR
t (dµ) =

∫

In1(µ;φ1)QθR
t (dµ)

∫

In2(µ;φ2)QθR
t (dµ).(3.8)

Notice that

In1(τxµ;φ1) =

∫

Rn1

〈

n1
⊗

i=1

µ(x+ ei), φ1(e)

〉

de

=

∫

Rn1

ψ1(e− x)

〈

n1
⊗

i=1

µ(ei), χ1

〉

de,

(3.9)
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where x := (x, . . . , x), (3.8) can then be easily verified by moment duality (2.4) and the
following facts. P{T e1,e2−x < t} → 0 as |x| → +∞, where T e1,e2−x := inf{s > 0 :W e1(s) =
W e2−x(s)}. W e1 and W e2−x are two independent Brownian motions starting from e1 and
e2 − x respectively. ¤

Theorem 3.7. Given a partition {G1, . . . , Gd} of K and t > 0, QθR
almost surely, there

exists a sequence . . . < b−2 < b−1 < b0 < b1 < b2 < . . . , limn→−∞ bn = −∞, limn→∞ bn =
∞, such that Xt has a cluster of type Gi for some 1 ≤ i ≤ d on each (bj−1, bj) and the
clusters over neighboring intervals are of different types. Moreover, there exists a constant

ct such that limM→∞
2M

NM (Xt)
= ct and

√
πt ≤ ct ≤

√
πt

1−∑d
i=1 θ

2
i

.

Proof. For a > 0 and µ ∈ Ξ, write fx,a(µ) := 1V (µ), where V :=
⋂d
i=1{ν ∈ Ξ : ν[x,x+a](Gi) 6=

1}. Then

QθR
[
∫ M

−M
fx,a(Xt)dx

]

=

∫ M

−M
QθR

{

d
⋂

i=1

{Xt[x,x+a](Gi) 6= 1

}

dx

=

∫ M

−M

(

1−
d
∑

i=1

QθR{Xt[x,x+a](Gi) = 1}
)

dx

= 2M

(

1−
d
∑

i=1

P[θ|W
a
2 (t)|

i ]

)

.

(3.10)

It is easy to see that

1−
d
∑

i=1

P[θ|W
a
2 (t)|

i ] ≤ 1−
d
∑

i=1

θiP{|W
a
2 (t)| = 1} = P{|W a

2 (t)| ≥ 2}(3.11)

and

1−
d
∑

i=1

P[θ|W
a
2 (t)|

i ] ≥ 1−
d
∑

i=1

θiP{|W
a
2 (t)| = 1} −

d
∑

i=1

θ2i P{|W
a
2 (t)| ≥ 2}

≥
(

1−
d
∑

i=1

θ2i

)

P{|W a
2 (t)| ≥ 2}.

(3.12)

Since a(NM,a(µ)− 1) ≤
∫M

−M fx,a(µ)dx, then

QθR
[NM,a(Xt)] ≤

1

a
QθR

[
∫ M

−M
fx,a(Xt)dx

]

+ 1

≤ 2M

a
P{|W a

2 (t)| ≥ 2}+ 1.

(3.13)

Let a→ 0+, by Lemma (2.5) we have

QθR
[NM (Xt)] ≤

2M√
πt

+ 1.(3.14)

Since NM (Xt) < ∞ QθR
a.s., this together with Lemma 3.5 imply that QθR

almost surely,
except on a m-null set, the interval [−M,M ] is divided into finite subintervals where Xt

has one type over each interval. M is arbitrary, the first assertion of this theorem is thus
proved.
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On the other hand,

QθR
[NM (Xt)] ≥

1

a
QθR

[
∫ M

−M
fx,a(Xt)dx

]

≥ 2M

a

(

1−
d
∑

i=1

θ2i

)

P{|W a
2 (t)| ≥ 2}.

Let a→ 0+, it follows form Lemma (2.5) again that

(3.15) QθR
[NM (Xt)] ≥

2M√
πt

(

1−
d
∑

i=1

θ2i

)

.

Write Nm(µ),m > 0, for the total number of clusters of µ ∈ Ξ over the interval [0,m]. It

follows from (3.13) that QθR
t [Nm] <∞. τm is measure-preserving under QθR

t . By definition
one can also verify that Nm+n ≤ Nm + τmNn. Then the subadditive ergodic theorem (see
Theorem 10.1 in [15]) implies that

lim
m→∞

Nm

m
existsQθR

t a.s..

Then

lim
m→∞

Nm(Xt)

m
exists QθR

a.s..

Therefore,

lim
M→∞

NM (Xt)

2M
exists QθR

a.s..

It follows from Lemma 3.6 that, QθR
almost surely, limM→∞

NM (Xt)
2M is a constant. Using

the subadditive ergodic theorem again, we have

1√
πt
≤ lim

M→∞
NM (Xt)

2M
≤ 1−∑d

i=1 θ
2
i√

πt
QθR

a.s..

¤

Assume that the initial mixture θ ∈M1(K) is a diffuse measure, i.e. θ({k}) = 0, k ∈ K,
then Theorem 3.7 can be improved.

Theorem 3.8. Suppose that θ ∈ M1(K) is a diffuse measure, then given t > 0, QθR

almost surely, there exists a sequence . . . < b−2 < b−1 < b0 < b1 < b2 < . . . , limn→−∞ bn =
−∞, limn→∞ bn =∞, such that Xt has a cluster of type k for some k ∈ K on each (bj−1, bj).
Moreover, limM→∞

2M
NM (Xt)

=
√
πt.

Proof. For each positive integer n, let Πn := {[ i
2n ,

i+1
2n ) : 1 ≤ i ≤ 2n − 1} be a partition

of K. Since Πn is getting finer and finer as n increase, a cluster with respect to Πn can

break into new clusters with respect to Πn+1. Apply Theorem 3.7 to Πn and let (b
(n)
i ) be

the correspondent partition of the real line, we see that the set {b(n)i : −∞ < i < ∞} is

increasing with respect to n. By (3.14), ∪∞n=1{b
(n)
i : −∞ < i < ∞} has no subsequence

converging to a finite limit and we choose it as the collection of those bis in the present
theorem. Since any k1, k2 ∈ K, k1 6= k2 are separated by Πn for n big enough, then on each
interval (bj , bj+1) Xt can only have a cluster of a single type k ∈ K. The last assertion in
this theorem follows from the subadditive ergodic theorem, (3.14), (3.15) and the fact that
θ is diffuse. ¤
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For µ ∈ Ξ, define L(µ) and U(µ), U(µ) > 0 as the essential lower and upper bounds of
the cluster of µ at 0. Given that θ is diffuse, we can obtain the joint distribution of L(Xt)
and U(Xt).

Theorem 3.9. Suppose that θ ∈M1(K) is diffuse, then for any a > 0, b > 0 and t > 0,

QθR{L(Xt) < −a, U(Xt) > b}

= 1− 1√
2πt

∫ ∞

0
exp

(

−(x−
√
2
2 (a+ b))2

2t

)

− exp

(

−(x+
√
2
2 (a+ b))2

2t

)

dx.
(3.16)

Proof. Using the same partition Πn defined in the proof of Theorem 3.7, by (3.4) we have

∑

G∈Πn
QθR{Xt(y) ∈ δG for m a.e. y ∈ (−a, b)}

=
∑

G∈Πn
P
[

θ(G)|W
a+b
2 (t)|

]

.

(3.17)

Let n→∞, since θ is diffuse, then

QθR{L(Xt) < −a, U(Xt) > b}
= lim

n→∞

∑

G∈Πn
QθR{Xt(y) ∈ δG for m a.e. y ∈ (−a, b)}

= P{|W−a,b(t)| = 1}
= P{|W a+b

2 (t)| = 1}.

(3.18)

So we can conclude (3.16) immediately from Lemma 2.5. ¤

Remark 3.10. As an consequence of Theorem 3.9, the probability that two sites a and b

belong to the same cluster of the stepping-stone model at time t is also the probability that
two independent Brownian motions with initial values a and b respectively meet each other
before time t.

4. Correlation between types over different sites

In the rest of the paper, we focus on understanding the relationship between the types of
clusters over different sites and at different times. To accomplish that we need to generalize
the moment duality formula to one involving joint moments over different times.

We first define a system of coalescing Brownian motions in which the Brownian motions
are allowed to have different starting times. Given s > 0, e1 := (e11, . . . , e1n1) ∈ Rn1

and e2 := (e21, . . . , e2n2) ∈ Rn2 , an (n1 + n2)-dimensional coalescing process W̌(e1;0;e2;s) is
defined intuitively as follows: An n1-dimensional process starts at time 0 from value e1 and
evolves according to a coalescing Brownian motion, while another n2-dimensional process is
“frozen” until time s. Starting at time s from e2, the second process joins the first process
and together they evolve according to an (n1 + n2)-dimensional process.
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Lemma 4.1. Let X be the continuous-sites stepping-stone model with Brownian motion
migration, then for any 0 < t2 < t1, µ ∈ Ξ and φi = L1(m⊗ni , C(Kni)), i = 1, 2,

Qµ[In1(Xt1 ;φ1)In2(Xt2 ;φ2)]

=
∑

π∈Pn1+n2

∫

Rn1

de1

∫

Rn2

de2

P



1{W̌A
t1
∈Řn1+n2

π }

∫

φ(e1)⊗ φ(e2)(kaπ(1), . . . , kaπ(n1+n2))

l(π)
⊗

i=1

µ(W̌A
ai(π)

(t1))(dkai(π))



 ,

(4.1)

where A = (e1; 0; e2; t1 − t2).

Proof. For any φi = ψi ⊗ χi, ψi ∈ L1(m⊗ni) ∩ C(Rni), χi ∈ C(Kni), i = 1, 2, the moment
duality (2.4) yields that

Qν [In1(Xt1−t2 ;φ1)]

=

∫

In1(ν1;φ1)Qt1−t2(ν, dν1)

=
∑

π∈Pn1

∫

Rn1

ψ1(e1)P



1{W̌e1
t1−t2∈Řn1

π }

∫

χ1(kaπ(1), . . . , kaπ(n1))

l(π)
⊗

i=1

ν(W̌ e1

ai(π)
(t1 − t2))(dkai(π))



 de1

=
∑

π∈Pn1

∫

Rn1

ψ1(e1)we1πde1

∫

Rl(π)

fe1π(ea1(π), . . . , eal(π)(π))deπ

∫

χ̄π(ka1(π), . . . , kal(π)(π))

l(π)
⊗

i=1

ν(eai(π))(dkai(π))

=
∑

π∈Pn1

Il(π)

(

ν;

(
∫

Rn1

ψ1(e1)we1πfe1πde1

)

⊗ χ̄π
)

,

(4.2)

where we1π := P{W̌e1(t1−t2) ∈ Řn1
π }, eπ := (ea1(π), . . . , eal(π)(π)), χ̄π(ka1(π), . . . , kal(π)(π)) :=

χ1(kaπ(1), . . . , kaπ(n1)) and fe1π(e
′
al(π)

, . . . , e′
al(π)(π)

) is the conditional density of (W̌ e1

a1(π)
(t1−

t2), . . . , W̌
e1

al(π)(π)
(t1−t2)) given {W̌e1(t1−t2) ∈ Řn1

π }. Write W̌e′e2 := W̌(e′1,...,e
′
l
,e21,...,e2n2 ), e′ =

(e′1, . . . , e
′
l), e2 = (e21, . . . , e2n2). Then by Markov property forX, (4.2) and moment duality,
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we have

Pµ[In1(Xt1 ;φ1)In2(Xt2 ;φ2)]

=

∫

In2(ν2;φ2)Qt2(µ, dν2)

∫

In1(ν1;φ1)Qt1−t2(ν2, dν1)

=
∑

π∈Pn1

∫

In2(ν2;φ2)Il(π)

(

ν2;

(
∫

Rn1

ψ1(e1)we1πfe1πde1

)

⊗ χ̄π
)

Qt2(µ, dν2)

=
∑

π∈Pn1

∫

Il(π)+n2

(

ν2;

(
∫

Rn1

ψ1(e1)we1πfe1πde1

)

⊗ ψ2 ⊗ χ̄π ⊗ χ2
)

Qt2(µ, dν2)

=
∑

π∈Pn1

∑

π∗∈Pl(π)+n2

∫

Rn1

ψ1(e1)we1πde1

∫

Rl(π)

fe1π(eπ)deπ

∫

Rn2

ψ2(e2)

P



1{W̌eπe2
t2

∈Řl(π)+n2
π∗ }

∫

χ̄π ⊗ χ2(kaπ∗ (1), . . . , kaπ∗ (l(π)+n2))

l(π∗)
⊗

i=1

µ(W̌ eπe2

ai(π∗)
(t2))(dkai(π∗))



 de2

=
∑

π∈Pn1+n2

∫

Rn1

ψ1(e1)de1

∫

Rn2

ψ2(e2)

P



1{W̌A
t1
∈Řn1+n2

π }

∫

χ1 ⊗ χ2(kaπ(1), . . . , kaπ(n1+n2))

l(π)
⊗

i=1

µ(W̌A
ai(π)

(t1))(dkai(π))



 de2.

(4.3)

Hence, (4.1) is a consequence of Lemma 3.1 in [5]. ¤

Remark 4.2. Lemma 4.1 can be generalized to a duality involving a n-fold joint (over
different times) moment of X. We leave the details to the readers. Also notice that there
is a similar duality in voter model. See [2] for related accounts.

Given z ∈ R and t > 0, write X[z](t) := lima→0+Xt[z−a,z+a] for the block average of
Xt at site z. Notice that X[z](t) always exists by Theorem 3.3. Since Xt(z) is defined for
m-almost all z ∈ R, X[z](t) seems to be more appropriate to describe the distribution of
types at time t and at site z. The joint(over different times) moment duality in Lemma 4.1
can be used to study the correlation of X[z1](t1)(A) and X[z2](t2)(B), A,B ⊂ K.

Theorem 4.3. Let θ be a diffuse measure in M1(K). Then for any z ∈ R and t > 0, QθR

almost surely, X[z](t) is a point mass. It satisfies

(4.4) QθR{X[z](t)(A) = 1} = θ(A), A ⊂ K.

Moreover, for any 0 < t2 < t1, z1, z2 ∈ R and sets A ⊂ K,B ⊂ K,

QθR
[X[z1](t)(A)X[z2](t)(B)]

= θ(A ∩B)

∫ ∞

|z1−z2|√
2t

2√
2π
e−

y2

2 dy + θ(A)θ(B)

∫

|z1−z2|√
2t

0

2√
2π
e−

y2

2 dy
(4.5)
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and

QRθ [X[z1](t1)(A)X[z2](t2)(B)]

= θ(A ∩B)

∫ ∞

−∞

1
√

2π(t1 − t2)
e
− x2

2(t1−t2)dx

∫ ∞

|x+z1−z2|√
2t2

2√
2π
e−

y2

2 dy

+ θ(A)θ(B)

∫ ∞

−∞

1
√

2π(t1 − t2)
e
− x2

2(t1−t2)dx

∫

|x+z1−z2|√
2t2

0

2√
2π
e−

y2

2 dy.

(4.6)

Proof. (4.4) just follows from Theorem 3.8 and (3.4).
To prove (4.5) we apply moment duality,

QRθ [X[z1− 1
n
,z1+

1
n
](t)(A)X[z2− 1

n
,z2+

1
n
](t)(B)]

= QtI2(Rθ; 2n1[z1− 1
n
,z1+

1
n
] ⊗ 2n1[z1− 1

n
,z1+

1
n
] ⊗ 1A ⊗ 1B)

= θ(A ∩B)

∫ z1+
1
n

z1− 1
n

2ndx

∫ z2+
1
n

z2− 1
n

2nP{T x,y ≤ t}dy

+ θ(A)θ(B)

∫ z1+
1
n

z1− 1
n

2ndx

∫ z2+
1
n

z2− 1
n

2nP{T x,y > t}dy,

where T x,y := inf{t ≥ 0 : Bx
t = B

y
t } is the first meeting time of two independent Brownian

motions Bx and By with initial values x and y respectively. Letting n→∞, the reflection
principle for Brownian motion yields

QRθ [X[z1](t)(A)X[z2](t)(B)]

= θ(A ∩B)P{T z1,z2 ≤ t}+ θ(A)θ(B)P{T z1,z2 > t}

= θ(A ∩B)

∫ ∞

|z1−z2|√
2t

2√
2π
e−

y2

2 dy + θ(A)θ(B)

∫

|z1−z2|√
2t

0

2√
2π
e−

y2

2 dy.

So (4.5) follows.
By Lemma 4.1,

QRθ [X[z1− 1
n
,z1+

1
n
](t1)(A)X[z2− 1

n
,z2+

1
n
](t2)(B)]

= θ(A ∩B)

∫ ∞

−∞
dx

∫ z1+
1
n

z1− 1
n

2n
√

2π(t1 − t2)
e
− (x−x′)2

2(t1−t2)dx′

∫ z2+
1
n

z2− 1
n

2nP{T x,y ≤ t2}

+ θ(A)θ(B)

∫ ∞

−∞
dx

∫ z1+
1
n

z1− 1
n

2n
√

2π(t1 − t2)
e
− (x−x′)2

2(t1−t2)dx′

∫ z2+
1
n

z2− 1
n

2nP{T x,y > t2}.

(4.7)

Hence, (4.6) can be obtained by letting n→∞.
¤
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Remark 4.4. It follows from Theorem 4.3 that the types of the two clusters at site z1, z2
and at time t1, t2 respectively are asymptotically independent as |z2 − z1|+ |t2 − t1| → ∞.
This together with Theorem 3.1 shows that X(t) converges to θR in distribution but not in
probability.
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[6] Evans, S.N. and Fleischmann, K.: Cluster formation in a stepping stone model with continuous, hier-
archically structured sites. Ann. Probab., 24, 1926–1952 (1996).

[7] Fleischmann, K. and Greven, A.: Time-space analysis of the cluster-formation in interacting diffusions.
Electron. J. Probab., 1 (1994).

[8] Handa, K.: A measure-valued diffusion process describing the stepping stone model with infinitely many
alleles. Stochastic Process. Appl., 36, 269–296 (1990).

[9] Kimura, M.: ”Stepping-stone” models of population. Technical report 3, Institute of Genetics, Japan,
1953.

[10] Klenke, A.: Different clustering regimes in systems of hierarchically interacting diffusions. Ann. Probab.,
24, 660–697 (1996).

[11] Liggett, T.M.: Interacting Particle Systems. New York: Springer-Verlag, 1985.
[12] Müller, C. and Tribe, R.: Stochastic p.d.e.’s arising from the long range contact and long range voter

processes. Probab. Th. Rel. Fields, 102, 519–546 (1995).
[13] Sawyer, S.: Results for the stepping stone models for migration in population genetics. Ann. Probab.,

4, 699–728 (1976).
[14] Shiga, T.: Stepping stone models in population genetics and population dynamics. In S. Albeverio et

al., ed, Stochastic Processes in Physics and Engineering, Mathematics and Its Applications, 345–355.
D. Reidel Publishing Company, 1988.

[15] Walters, P.: An introduction to ergodic theory. New York: Springer-Verlag, 1982.
[16] Zhou X.: Duality between coalescing and annihilating Brownian motions. Preprint.


