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permutations with fixed descent set
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Abstract

In [5], Ehrenborg, Levin and Readdy have introduced a new probabilistic approach
to the combinatorics of permutations with fixed set of descents. In this paper we
extend this approach by introducing a more general probabilistic model. The study of
this model yields new estimates on the behavior of a uniform random permutation σ
having a fixed descent set. In particular, we find a positive answer to Conjecture 1 of
[2] and we show that independently of the shape of the descent set, σ(i) and σ(j) are
almost independent when i− j becomes large.
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1 Introduction

A descent of a permutation σ of n ∈ N∗ is an integer i such that σ(i) > σ(i+ 1). For
each permutation σ, the corresponding descent set D(σ) is the set of all the descents of
σ. Since descents can be located everywhere except on n, a descent set is just a subset
of {1, . . . , n−1}. Let us call a composition of n the data of n and a subset of {1, . . . , n−1}.
A composition D is represented by a ribbon Young diagram λD of n cells labelled 1 to
n by the following rule : cells i and i+ 1 are neighbors and the cell i+ 1 is right to i if
i 6∈ D, below i otherwise. Therefore, the descent set of a permutation σ is D if and only
if inserting σ(i) in each cell i of λD yields a standard ribbon Young tableau. For example,
the composition D = {10, (3, 5, 9)} gives the ribbon Young diagram displayed in Figure 1:

The permutation σ = (3, 5, 8, 4, 7, 1, 6, 9, 10, 2) has the descent set D since the associated
filling of λD yields a ribbon Young tableau, as shown in figure 2.

The descent statistic of a composition D is the number of standard fillings of the
associated ribbon Young tableau λD (or, equivalently, the number of permutations having
D as descent set). This latter number, denoted by β(D), has been intensively studied
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Large permutations with fixed descent set

Figure 1: Ribbon Young diagram λD of to the composition D = {10, (3, 5, 9)}
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Figure 2: Standard filling of the composition (3, 2, 4, 1)

in the last decades (see Viennot [10] and [11] , Niven [8], de Bruijn [3] , ...). Two main
questions arose in this study: the first one is to find the compositions of n having a
maximum descent statistic, and the second one is to find exact or asymptotic formulae for
the descent statistic of large compositions having a given shape. For example, Niven and
de Bruijn proved in [8] and [3] that the two compositions of n maximizing the descent
statistic are D1(n) = {1, 3, 5, . . . } ∩ [1, n] and D2(n) = {2, 4, 6, . . . , } ∩ [1, n]: permutations
having such descent sets are called alternating permutations. Désiré André already gave
in [1] an asymptotic formula for the number of alternating permutations by showing that
β(D1)(n) ∼ 2(2/π)nn! as n goes to infinity.
In order to evaluate the descent statistic of a broad class of compositions, Ehrenborg,
Levin and Readdy formalized in [5] a probabilistic approach to the counting problem,
by relating each permutation of n to a particular simplex of [0, 1]n. Since the Lebesgue
measure yields a probability measure on [0, 1]n, it is possible to use probabilistic tools to
get interesting results on descent statistics. Ehrenborg obtained in [4] an asymptotic
formula for the descent statistics of the so-called nearly periodic permutations: the latter
consist in permutations having the same descent pattern repeated several times, with
some local perturbations. As for alternating permutations, the asympotic formula has the
shape Kλnn!, with K and λ being some constants depending on the situation. Using the
approach of [5] with functional analysis tools, Bender, Helton and Richmond extended in
[2] the previous results to a broader class of descent sets, and they found asymptotic
formulae of the same shape as before.
The factorial term of the asymptotic formula is easy to understand, since it comes from
the cardinality of the set of permutations of n elements. However, the term λn seems
more mysterious. In [2], the authors identified in their examples the phenomenon that
makes the term λn appear: namely, if we consider a large uniform random permutation
with a fixed descent set, then the value of σ(1) and σ(n) are nearly independent, which
causes a factorization in the asymptotic counting. Thus, the natural question is to know
which compositions induce this phenomenon; it has been conjectured in [2] that every
composition have this property as they become large.
In the present article we construct a family of probabilistic models, called sawtooth
models, which extend the probabilistic approach of Ehrenborg, Readdy and Levin. These
models are more general than the ones used in [2], but the combinatorial properties
of the large descent sets appear more clearly in this broader case; thus, we first study
these models in their full generality, before deducing some specific results on descent
sets. A main consequence of the latter work is an affirmative answer to Conjecture 1 on
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Large permutations with fixed descent set

asymptotic independence from Bender, Helton and Richmond ([2]). We are also able to
give by the following intuitive result on compositions:
In the random filling of a composition, the contents of two distant cells are almost
independent.
In a forthcoming paper, we will use the results of this article to study an analog of the
Young lattice that was introduced by Gnedin and Olshanski in [6].

2 Preliminaries and results

2.1 Compositions

This paragraph gives definitions and notations concerning compositions.

Definition 2.1. Let n ∈ N. A composition λ of n is a sequence of positive integers
(λ1, . . . , λr) such that

∑
λj = n.

A unique ribbon Young diagram with n cells is associated to each composition: each
row j has λj cells, and the first cell of the row j + 1 is just below the last cell of the
row j. For example the composition of 10, (3, 2, 4, 1) is represented as in figure 1. This
picture shows directly the link between Definition 2.1 and the definition we stated in
the introduction : a composition λ = (λ1, . . . , λr) of n yields a subset Dλ of {1, . . . , n− 1},
namely the subset {λ1, λ1 + λ2, . . . , λ1 + · · ·+ λr−1}. The latter correspondence is clearly
bijective.
The size |λ| of a composition is the sum of the λj . When nothing is specified, λ will always
be assumed to have the size n, and n will always denote the size of the composition λ.
A standard filling of a composition λ of size n is a standard filling of the associated ribbon
Young diagram: this is an assignement of a number between 1 and n for each cell of the
composition, such that every cells have different entries, and the entries are increasing
to the right along the rows and decreasing to the bottom along the columns. An example
for the composition of figure 1 is shown in figure 2.
In particular, reading the tableau from left to right and from top to bottom associates a
permutation σ to each standard filling; moreover, the descent set of such a permutation
σ, namely the set of indices i such that σ(i+ 1) < σ(i), is exactly the set

Dλ = {λ1, λ1 + λ2, . . . ,

r−1∑
1

λi}.

There is a bijection between the standard fillings of λ and the permutations of |λ| with de-
scent setDλ. For example the filling in figure 2 yields the permutation (3, 5, 8, 4, 7, 1, 6, 9, 10, 2).

2.2 Runs of a composition

Let λ be a composition. We number the cells as we read them, from left to right
and from top to bottom . The cells are identified with integers from 1 to n through this
numbering. For example in the standard filling of figure (2), the number 7 is in the cell 5.
We call run any set consisting in all the cells of a given column or row. The set of runs is
ordered with the lexicographical order. In the same example as before the runs are

s1 = (1, 2, 3), s2 = (3, 4), s3 = (4, 5), s4 = (5, 6), s5 = (6, 7, 8, 9), s6 = (9, 10),

where we put in the parenthesis the cells of each run.
Note that inside each run the cells are ordered by the natural order on integers. We call
extreme cell a cell that is an extremum in a run with respect to this order, and denote by
Eλ the set of extreme cells of λ. Apart from the first and last cells of the composition,
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Large permutations with fixed descent set

each extreme cell belongs to two consecutive runs. Let Pλ be the set of extreme cells
followed by a column, or preceded by a row and Vλ the set of extreme cells followed by a
row or preceded by a column. The elements of Pλ are called peaks and the ones of Vλ
valleys. The sets Vλ and Pλ are also ordered with the natural order:

Pλ = {p1 < · · · < pk}, Vλ = {q1 < · · · < qk′},

with k − 1 ≤ k′ ≤ k + 1.
The first and last cells are always extreme points. A composition is said being of type
++ (resp. +-,-+,- -) if the first cell is a peak and the last cell is a peak (resp peak-valley,
valley-peak, valley-valley).
Finally, let l(s), the length of a run s, be the cardinality of s, and L(λ), the amplitude of
λ, be the supremum of all lengths l(s).

2.3 Result on asymptotic independence

We present here the main results that are proven in the present paper.

Notation 2.2. Let λ be a composition. Let Σλ denote the set of all permutations with
descent set Dλ. With the uniform counting measure Pλ, it becomes a probability space,
and σλ denotes the random permutation coming from this probability space. As usual
|Σλ| is the cardinality of the set Σλ.

|Σλ| is thus the descent statistic associated to the composition λ.
Denote for each random variable X by µ(X) its law and by dX its density, and write µ⊗ ν
for the independent product of two laws. The goal of the paper is to prove that distant
cells in a composition have independent entries, namely:

Theorem 2.3. Let ε, r ∈ N. Then there exists k ≥ 0 such that if λ is a composition of n
and 0 < i1 < · · · < ir ≤ n are indices with ij+1 − ij ≥ k,

π

(
µ(
σλ(i1)

n
, . . . ,

σλ(ir)

n
), µ(

σ(i1)

n
)⊗ · · · ⊗ µ(

σ(ir)

n
)

)
≤ ε,

with π denoting the Levy-Prokhorov metric on the set of measures of [0, 1]r.

As it is shown in Section 6, if ij is in a large run then the law of σ(ij)
n is approximately

a dirac mass, which yields directly the approximate independence. Therefore, the
interesting cases arise when none of the considered cells are in large runs. In particular,
if the first and last runs of λ remain bounded and λ becomes large then the approximate
independence of σλ(1)

n and σλ(n)
n can be given with a stronger metric than the Levy-

Prokhorov metric. This is the content of Conjecture 1 of [2], which is proven in this
paper and formulated in Theorem 6.2.

2.4 The coupling method

In this paragraph we introduce a probabilistic tool called the coupling method, and
set the relative notations for the sequel. We refer to [7] for a review on the subject. We
will present the notions in the framework of random variables but we could have done
the same with probability laws as well.

Definition 2.4. Let (E, E) be a probability space and X,Y two random variables on E.
A coupling of (X,Y ) is a random variable (Z1, Z2) on (E × E, E⊗, E) such that

Z1 ∼law X,Z2 ∼law Y.

Such a coupling always exists : it suffices to consider two independent random
variables Z1 and Z2 with respective law µX and µY . However, a coupling is often useful
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Large permutations with fixed descent set

precisely when the resulting random variables Z1 and Z2 are far from being independent.
In particular, in this article we are mainly interested in the case where Z1 and Z2 respect
a certain order on the set E. From now on E is a Polish space considered with its Borel
σ−algebra E , and / is a partial order on E such that the graph G = {(x, y), x / y} is
E−measurable.

Definition 2.5. Let X,Y be two random variables on E. Y stochastically dominates X
(denoted Y � X) if and only if

P(X ∈ A) ≤ P(Y ∈ A)

for any Borel set A such that

x ∈ A⇒ {y ∈ E, x / y} ⊂ A.

For example if E = R with the canonical order ≤ and σ−algebra B(R), then Y

stochastically dominates X if and only if for all x ∈ R,

P(X ∈ [x,+∞[) ≤ P(Y ∈ [x,+∞[)

or equivalently, if we denote their respective cumulative distribution function by FX(t)

and FY (t):
FY (t) ≤ FX(t) for all t ∈ R.

There are several ways to characterize the stochastic dominance:

Proposition 2.6. The three following statements are equivalent :

• Y stochastically dominates X
• there exists a coupling (Z1, Z2) of X,Y such that Z1 / Z2 almost surely.
• for any positive measurable bounded function f that is non-decreasing with respect

to /,
E(f(X)) ≤ E(f(Y ))

The proof is straightforward and can be found in [7]. This yields the following intuitive
Lemma :

Lemma 2.7. Let (X1, X2, Y1, Y2) be a random variable on E4 such that :

• X1 � Y1 and Y2 � X2,
• (X1, Y1) is independent from (X2, Y2).

Then
P(X1 / X2) ≥ P(Y1 / Y2).

Proof. Let� be the partial order on E × E defined by

(x, y)� (x′, y′)↔ x / x′ and y′ / y.

Since Y1 � X1 and X2 � Y2, there exists a coupling (X̂1, Ŷ1) (resp. (X̂2, Ŷ2)) of X1, Y1

(resp. X2, Y2) such that almost surely X̂1 / Ŷ1 (resp X̂2 . Ŷ2). The random variables
(X̂1, Ŷ1) and (X̂2, Ŷ2) can be chosen independent one from each other. Since (X1, Y1)

and (X2, Y2) are also independent, this implies that ((X̂1, X̂2), (Ŷ1, Ŷ2)) is a coupling of
((X1, X2), (Y1, Y2)) with almost surely

(X̂1, X̂2)� (Ŷ1, Ŷ2).

But if Ŷ1 / Ŷ2, then X̂1 / Ŷ1 / Ŷ2 / X̂1 and thus

P(Y1 / Y2) = P(Ŷ1 / Ŷ2) ≤ P(X̂1 / X̂2) = P(X1 / X2).
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Large permutations with fixed descent set

These results will be concretely applied on Rp, p ≥ 1, and thus we need to define a
family of partial orders on those sets.

Definition 2.8. Let p ≥ 1. The partial order ≤ on Rp is the natural order on R for p = 1,
and for p ≥ 2 if (xi)1≤i≤p, (yi)1≤i≤p ∈ Rp,

(xi)1≤i≤p ≤ (yi)1≤i≤p ⇔ ∀i ∈ [1; p], xi ≤ yi.

For any word ε of length p in {+1,−1} (or simply in {+,−}), the modified partial order
≤ε is defined as

(xi)1≤i≤p ≤ε (yi)1≤i≤p ⇔ ∀i ∈ [1; p], εixi ≤ εiyi.

The easiest way to check the stochastic dominance is to look at the cumulative
distribution function. The proof of the following Lemma is a direct application of
Proposition 2.6.

Lemma 2.9. Let (Xi)1≤i≤p and (Yi)1≤i≤p be two random variables on (Rp,≤ε). Then
(Yi)1≤i≤p stochastically dominates (Xi)1≤i≤p if and only if for all (ti)1≤i≤p ∈ Rp,

F ε(Xi)(t1, . . . , tp) ≥ F
ε
(Yi)

(t1, . . . , tp),

with F ε(Xi) being the modified cumulative distribution function defined by

F ε(Xi)(t1, . . . , tp) = P((Xi) ≤ε (ti)).

The stochastic dominance in the case (Rp,≤ε) is denoted as (X1, . . . , Xp) �ε (Y1, . . . , Yp).
A consequence of the previous result is that if (Y1, . . . , Yp) stochastically dominates
(X1, . . . , Xp), then for all subsets I = (i1, . . . , ir) of {1, . . . , p}, (Yi1 , . . . , Yir ) also stochasti-
cally dominates (Xi1 , . . . , Xir ).
Applying Lemma 2.9 to the case p = 2 yields the following Lemma:

Lemma 2.10. Let (U1, V1), (U2, V2) be two random variables on [0, 1] such that U2 and V2

are independent. Suppose that for all 0 ≤ t ≤ 1,

FV1(t) ≤ FV2(t)

and for all v ∈ [0, 1],

FU1|V1=v(t) ≤ FU2
(t).

There exists a coupling ((Z1, Z̃1), (Z2, Z̃2)) of (U1, V1) and (U2, V2) such that almost surely

(Z1, Z̃1) ≥ (Z2, Z̃2).

3 Sawtooth model

3.1 Definition of the model

In this section we introduce a statistical model of particles in a tube, which is a
generalization of the probabilistic approach of Ehrenborg, Levin and Readdy in [5]. The
model consists in a sequence of particles, each of them moving vertically in an horizontal
two-dimensional tube. Each particle has a repulsive action on the two neighbouring
particles, and moreover, the set of particles splits into two groups: the upper particles
and the lower particles. The upper particles are always above the lower ones. The model
is depicted in Figure 3.
Such a system is called a Sawtooth model in the sequel.
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q1

q2

q3

p1

p2 p3

Figure 3: Upper particles {p1, p2, p3} and lower particles {q1, q2, q3} in a tube.

Remark 3.1. If there are k upper-particles, there must be k′ lower particles with
k′ ∈ {k − 1, k, k + 1}, depending on the type of the first and the last particles. We define
therefore the type ε(S) of the model S as the word εIεF , with εI = + (resp. εF = +) if
the first (resp. last) particle is an upper one, and εI = − (resp. εF = −) otherwise.

Unless specified otherwise, the first particle is a lower particle (as in the picture).
The particles are ordered from the left, and following this order the upper particles are
written {p1 < p2 < · · · < pk} and the lower particles {q1 < · · · < qk′}. Since the nature of
our results won’t depend on the type of the model, we will also assume that there are
k + 1 lower particles, yielding that the last particle is a lower one too.
Denote by xi the position of qi and by yi the position of pi: by a rescaling, we can assume
that xi, yi ∈ [0, 1]. These positions are considered as random, and each configuration of
positions is weighted according to repulsive interactions between neighbouring particles.
This yields the following definition:

Definition 3.2. A Sawtooth model S is the union of two families of random variables
{Xi}1≤i≤k+1 and {Yj}1≤j≤k on [0, 1] with the multivariate density

P({Xi = xi, Yj = yj}) =
1

V
∏

1xi≤yi≥xi+1
fi(yi − xi)gi(yi − xi+1)

∏
dxi

∏
dyj , (3.1)

where {fi, gi}1≤i≤k is a family of increasing positive C1 functions on [0, 1].
The quantity V is called the volume of S and is sometimes denoted by V(S) to avoid
confusion.
S is said normalized if

∫
fi =

∫
gi = 1 for 1 ≤ i ≤ k.

The volume has the following expression:

V(S) =

∫
[0,1]2k+1

∏
1xi≤yi≥xi+1

fi(yi − xi)gi(yi − xi+1)
∏

dxidyi. (3.2)

In particular, an appropriate rescaling of the functions fi, gi can transform any Sawtooth
model into a normalized one, without changing the probability space. Thus, from
now on and unless stated otherwise, the model is assumed normalized. In case we
are considering non-normalized models, we will use the notation fi, gi, etc. for the
normalized quantities, and f̃i, g̃i, etc. for the non-normalized ones.
Aiming the results we stated on compositions, we should answer these questions :

1. As the number of particles goes to infinity, is there some independence between
X1 and Xk+1 ?

2. It is possible to estimate the behavior of a particle Xr by only considering its
neighbouring particles ?

For each subset of particles Ω = (qi1 , . . . , qir , pj1 , . . . , pjr′ ) and measurable event X ,
denote by

dΩ|X (xi1 , . . . , xir , yj1 , . . . , yjr′ )
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the marginal density of Ω conditioned on X . The subscripts will be dropped when there
is no confusion, and we denote by XI the first variable X1 and XF the last variable
Xk+1. Finally, since the system is fully described by the functions {fi, gj}, we will refer
sometimes to a particular system just by mentioning this set of functions.
The definition of a Sawtooth model yields directly two first results which are given in
Lemma 3.3 and Lemma 3.4. The first one stresses the Markovian aspect of a Sawtooth
model :

Lemma 3.3. Let S be a Sawtooth model of size k, and 1 ≤ i ≤ k. Let Z be the position
of a particle right to Xi (namely Z = Xj for j > i or Z = Yj for j ≥ i) and X be an event
depending on the positions of particles right to Z. Then for 0 ≤ z ≤ 1,

dXi|Z=z,X = dXi|Z=z.

Proof. It suffices to prove that the particles left to Z are independent of the particles
right to Z conditionally on the value of Z. This is implied by the form of the density of
the model, since the latter splits between the density of the particles left to Z and the
ones right to Z.

The second one is a generalization of Lemma 3-(a) in [2]. :

Lemma 3.4. Let 1 ≤ r ≤ k + 1, and let X be an event depending on the position of all
particles except Xr. Then dXr|X (xr) is decreasing in xr.

Proof. Let a be in [0, 1]. By Lemma 3.3,

dXr|X (a) =

∫
[0,1]2

d(Xr|X )|Yr−1=z,Yr+1=z′(a)dYr−1,Yr+1|X (z, z′)dzdz′

=

∫
[0,1]2

dXr|Yr−1=z,Yr+1=z′(a)dYr−1,Yr+1|X (z, z′)dzdz′.

Thus, it is enough to prove the monotonicity in the case of a conditioning on Yr−1 =

z, Yr+1 = z′. In this case

dXr|Yr−1=z,Yr+1=z′(a) = 1z≥a,z′≥a
1

R
(gr−1(z − a)fr(z

′ − a)),

with R a normalizing constant. Since gr−1 and fr are increasing, this concludes the
proof.

The same result holds for upper particles, but in this case the density is increasing.

3.2 The processes Sλ and Σλ

Let us see how these definitions fit into the framework of compositions. The main
idea from [5] is to consider the set of all permutations with a given descent set Dλ as a
probability space.
|Σλ| can indeed be related to the volume of a polytope in [0, 1]n (see for example the
survey of Stanley on alternating permutations, [9]) . For each sequence of distinct
elements ~z = (z1, . . . , zn) in [0, 1], the ranking permutation of ~z is the permutation σ(~z)

that assigns to each j the position of zj in the ordered sequence (zi1 < · · · < zin): namely,
σ(~z)(j) = k if and only if #{1 ≤ i ≤ n|zi ≤ zj} = k.

Proposition 3.5 ([5]). The law of σλ is the law of the ranking permutation for a sequence
of independent uniform variables Z1, . . . , Zn in [0, 1] conditioned on the event

{Zi > Zi+1 if and only if i ∈ Dλ}.
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In particular, the following expression of the number of permutations with descent set
Dλ holds :

|Σλ| = n!

∫
[0,1]n

∏
i∈Dλ

1zi≥zi+1

∏
i6∈Dλ

1zi≤zi+1

∏
dzi,

with zn+1 = 1.

The proof of the latter proposition is straightforward as soon as we remark that the
volume of the polytope {0 ≤ z1, . . . , zn ≤ 1} is exactly 1

n! . The processus {Zi}1≤i≤n in

the previous proposition is denoted by S̃λ. Since the indicator function in the integrand
depends on conditions between neighbouring points, this result can be rephrased in
terms of Sawtooth model.
Regrouping the inequalities between elements of the same run of λ yields:

|Σλ| = n!

∫
[0,1]n

1z1≤z2≤···≤zi11zi1≥zi1+1≥···≥zi1+i2
. . .1zn−i2r≤···≤zn

∏
dzi, (3.3)

and by integrating over all the coordinates that do not correspond to extreme cells, we
get

|Σλ| =n!

∫
[0,1]n

1x−1 ≤x
+
1 ≥x

−
2 ≤...

1

(l(s1)− 2)!
|x+

1 − x
−
1 |l(s1)−2

1

(l(s2)− 2)!
|x+

1 − x
−
2 |l(s2)−2 . . .

1

(l(s2r)− 2)!
|x+
k − x

−
k+1|

l(sk)−2
k∏
i=1

dx+
i

k+1∏
i=1

dx−i .

Let Sλ be the non-normalized Sawtooth model with the non-normalized density functions
{f̃j , g̃j}1≤i≤r such that

f̃j(t) =
1

(l(s2j−1)− 2)!
tl(s2j−1)−2, g̃j(t) =

1

(l(s2j)− 2)!
tl(s2j)−2.

A comparison between the latter expression of |Σλ| and the expression (3.2) of the
volume of a Sawtooth model gives

|Σλ| = |λ|!V(Sλ)

To sum up, three processes are constructed from λ. The first one, σλ comes from the
uniform random standard filling of the ribbon Young tableau λ, the second one, S̃λ,
comes from the probabilistic approach of [5], and the third one, Sλ, is obtained from
S̃λ by considering only the extreme particles. They are of course intimately related,
even if the first one is discrete and the second and third ones are continuous. σλ can be
recovered from S̃λ by the associated ranking permutation, and when |λ| goes to infinity
σλ(i)
n and Zi are approximately the same :

Lemma 3.6. The following inequality always holds for 0 < A,n ∈ N:

P(max(| σλ(i)

n+ 1
− Zi| >

A√
n+ 2

) ≤ 1

A2

In particular, if the densities of Zi remains bounded by a constant B,

‖FZi − Fσ(i)
n
‖∞ →|λ|→+∞ 0.
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Proof. Let us evaluate P(|σλ(i)
n+1 −Zi| >

A
n+2 ). Condition the event {|σλ(i)

n+1 −Zi| >
A
n+2} on

a particular realization σ of σλ, and suppose that σ(i) = k. In this case, the conditional
density of Zi is :

dZi|σλ=σ(zi) =n!

∫
0≤zσ−1(1)≤···≤zσ−1(k−1)≤zi

∏
1≤σ(j)≤k−1

dzj


∫

zi≤zσ−1(k+1)≤···≤zσ−1(n)≤1

∏
k+1≤σ(j)≤1

dzj


=

n!

(k − 1)!(n− k)!
zk−1
i (1− zi)n−k.

Computing the conditional expectation yields E(Zi|σλ = σ) = k
n+1 and

V ar(Zi|σλ = σ) =

(
k

n+ 1

n+ 1− k
n+ 1

)
1

n+ 2
≤ 1

n+ 2
.

Thus, by the Chebyshev’s inequality,

PZi|σλ=σ

(
|Zi −

σ(1)

n+ 1
| > A√

n+ 2

)
≤ 1

A2
.

Integrating this inequality on all the disjoint events σ on which Zi can be conditioned
yields the first part of the Lemma.

From now on, let γ̃r denote for r ≥ 2 the function γ̃r(t) = 1
(r−2)! t

r−2, and γr(t) =

(r − 1)tr−2 its normalized density function.

4 Convex Sawtooth Model

In this section, we study the behavior of the extreme particles for a Sawtooth model
respecting a particular convexity property. The results of this section are much easier to
get in the particular case of the Sawtooth models Sλ of the last section, since the density
functions {fi, gi} are explicitly given. We will use this particular Sawtooth models as
examples for our more general computations.

4.1 Log-concave densities

To be able to get some results on the behavior of the particles, it is necessary to
impose some conditions on the density functions {fi, gi}. Actually the condition we need
is quite natural from a physical point of view, since we will require that the repulsive
forces in the definition of the Sawtooth model come from a convex potential : the
consequence is that the density functions should be log-concave. This motivates the
following definition :

Definition 4.1. A Sawtooth model is called convex if all the functions (fi, gi)1≤i≤k are

log-concave. This means that for all 1 ≤ i ≤ k, f
′
i(t)
fi(t)

and g′i(t)
gi(t)

are decreasing.

The main advantage of the log-concavity is that the behavior of the particles becomes
monotone in a certain sense.
For 1 ≤ s ≤ k+ 1, let S→Xs (resp. SXs←) denote the Sawtooth model obtained by keeping
only the particles between XI and Xs (resp. between Xs and XF ) and the functions
{fi, gi}i≤s (resp. {fi, gi}i≥s+1). Likewise, let S→Ys (resp. SYs←) denote the Sawtooth
model obtained by keeping only the particles between XI and Ys (resp. between Ys and
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XF ) and the functions {fi, gj} i≤s
j≤s−1

(resp. {fi, gj}i≥s+1
j≥s

).

In order to emphasize a specific Sawtooth model S, we write XSi to denote the particle
Xi in S, and FXi,S to denote the cumulative distribution function of Xi in S (and the
same for Yi).

Proposition 4.2. Let {fi, gi} be a convex Sawtooth model. Then for 1 ≤ s ≤ k, (Xs|Ys =

y) is increasing with y (in terms of stochastic dominance) and (Ys|Xs+1 = x) is increasing
with x. Moreover,

X
S→Xs
s � (Xs|Ys = y), Y

S→Ys
s � (Ys|Xs+1 = x).

Proof. Let 1 ≤ s ≤ k. To prove the first part of the proposition, it is enough to show that
for 0 ≤ t ≤ 1, FXs|Ys=y(t) is decreasing in y and FYs|Xs+1=x(t) is decreasing in x.
Let d(x) be the density of Xs in S→Xs . Then by the definition of the probability density
of S, the density of Xs in S conditioned on the value of Ys is 1x≤y

d(x)fs(y−x)
A , with A a

normalizing constant. Thus, the cumulative distribution function Fy(.) of Xs conditioned
on Ys = y is

Fy(t) =

∫ t∧y
0

d(x)fs(y − x)dx∫ y
0
d(x)fs(y − x)dx

.

For t > y it is clear that ∂
∂yFy(t) = 0, and from now on we only consider t ≤ y. Since

the logarithm function is increasing, it is enough to show that ∂
∂y log(Fy(t)) ≤ 0. This

derivative is equal to

∂

∂y
log(Fy(t)) =

∫ t
0
d(x)f ′s(y − x)dx∫ t

0
d(x)fs(y − x)dx

−
∫ y

0
d(x)f ′s(y − x)dx∫ y

0
d(x)fs(y − x)dx

− d(y)fs(0)∫ y
0
d(x)fs(y − x)dx

.

Since (− d(y)fs(0)∫ y
0
d(x)fs(y−x)dx

) ≤ 0, the non-positivity of the remaining part of the sum suffices.

Denote

∆ =

∫ t

0

d(x)f ′s(y − x)dx

∫ y

0

d(x)fs(y − x)dx−
∫ y

0

d(x)f ′s(y − x)dx

∫ t

0

d(x)fs(y − x)dx.

Thus, we have to show that ∆ ≤ 0. For t ≤ y,

∆ =

∫ t

0

d(x)f ′s(y − x)dx

(∫ t

0

d(x)fs(y − x)dx+

∫ y

t

d(x)fs(y − x)dx

)
−
(∫ t

0

d(x)f ′s(y − x)dx+

∫ y

t

d(x)f ′s(y − x)dx

)∫ t

0

d(x)fs(y − x)dx

=

∫ t

0

d(x)f ′s(y − x)dx

∫ y

t

d(x)fs(y − x)dx

−
∫ y

t

d(x)f ′s(y − x)dx

∫ t

0

d(x)fs(y − x)dx.

Expressing products of integrals as double integrals yields

∆ =

∫
0≤z1≤t
t≤z2≤y

d(z1)d(z2)f ′s(y − z1)fs(y − z2)dz1dz2

−
∫

0≤z1≤t
t≤z2≤y

d(z1)d(z2)fs(y − z1)f ′s(y − z2)dz1dz2

=

∫
0≤z1≤t
t≤z2≤y

d(z1)d(z2)(f ′s(y − z1)fs(y − z2)− fs(y − z1)f ′s(y − z2))dz1dz2.
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Since d(z1)d(z2) is positive and f ′s(t)
fs(t)

is decreasing, ∆ ≤ 0 and the first part of the
proposition is proven.
The second part of the proposition is equivalent to the inequalities

FXs|Ys=y(t) ≥ FXs,S→Xs (t)

and
FYs|Xs+1=x(t) ≤ FYs,S→Ys (t)

for all 0 ≤ t ≤ 1.
From the first part of the Proposition, it suffices to prove the first inequality only for
y = 1. Since fs is increasing, there exists a measure µ on [0, 1] such that fs(x) =

∫ x
0
dµ(u).

Thus,

F1(t) =

∫ t
0
d(x)

(∫ 1−x
0

dµ(u)
)
dx∫ 1

0
d(x)

(∫ 1−x
0

dµ(u)
)
dx

=

∫
[0,1]2

1x≤t,u≤1−xd(x)dµ(u)dx∫
[0,1]2

1u≤1−xd(x)dµ(u)dx
.

The main point is to express the latter quantity as the expectation of a random variable
almost surely greater than

∫ t
0
d(x)dx. Changing the order of the integrals yields

F1(t) =

∫ 1

0

(∫ t∧(1−u)

0
d(x)dx

)
dµ(u)∫ 1

0

(∫ 1−u
0

d(x)dx
)
dµ(u)

=

∫ 1

0

(∫ t∧(1−u)

0
d(x)∫ 1−u

0
d(x)dx

dx
)(∫ 1−u

0
d(x)dx

)
dµ(u)∫ 1

0

(∫ 1−u
0

d(x)dx
)
dµ(u)

.

Let Ũ be a random variable absolutely continuous with respect to µ and having the
density

dŨ (u) =

(∫ 1−u
0

d(x)dx
)
dµ(u)∫ 1

0

(∫ 1−u
0

d(x)dx
)
dµ(u)

.

Then

F1(t) = EŨ

∫ t∧(1−Ũ)

0
d(x)dx∫ 1−Ũ

0
d(x)dx

 .

Since for each u ≥ 0 ∫ t∧1−u
0

d(x)dx∫ 1−u
0

d(x)dx
≥
∫ t

0

d(x)dx,

this concludes the proof.
It is exactly the same for FYs|Xs+1=x(t).

Remark 4.3. In the case of a Sawtooth model Sλ, a simpler proof of the monotonicity
result of Proposition 4.2 can be done by induction on the length of the run of λ between
x−s and x+

s . Namely, if the run has length 2,

FXs|Ys=y(t) =

∫ t∧y
0

dXs,Sλ→Xs(x)dx∫ y
0
dXs,Sλ→Xs(x)dx

,

which is decreasing in y. If the run has length r > 2, the expression of the density in the
integral of (3.3) yields

FXs|Ys=y(t) =

∫ y
0
FX̃s|Ỹs=y′(t)dỸs,Sλ̃→Ỹs

(y′)dy′∫ y
0
dỸs,Sλ̃→Ỹs

(y′)dy′
,

where λ̃ is the composition λ with the run between x−s and x+
s reduced to r − 1, and

X̃s and Ỹs correspond to the variables x−s and x+
s in Sλ̃. By the induction hypothesis,

FX̃s|Ỹs=y′(t) is decreasing in y′, and thus,

∫ y
0
FX̃s|Ỹs=y′ (t)dỸs,Sλ̃→Ỹs

(y′)dy′∫ y
0
dỸs,Sλ̃→Ỹs

(y′)dy′
is decreasing in y.
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In Proposition 4.2, the convexity of the Sawtooth model is essential to get the
monotonicity of the conditional law. Suppose for example that f1(x) = (2x2 + 1)ex

2

. In
this case, for t ≤ y,

FX1|Y1=y(t) =

∫ t∧y
0

f1(y − x)dx∫ y
0
f1(y − x)dx

=
yey

2 − (y − t)e(y−t)2

yey2
.

Thus,
∂

∂y
FX1|Y1=y(t) = tet

2−2ty(
2y(y − t)− 1

y2
),

which is positive for y > 1√
2

and 0 < t < 2y2−1
2y . Therefore, (X1|Y1 = y) is not increasing

in y for y ≥ 1√
2
.

4.2 Alternating pattern of a convex sawtooth model

Proposition 4.2 yields two main features for the model. The first one is an extension
of the previous result.

Proposition 4.4. Let 1 ≤ s, 0 ≤ t ≤ 1. Then for r ≥ s, FXs|Xr=x(t) is decreasing in x and
FXs|Yr=y(t) is decreasing in y. Likewise, FXs|Xr=0(t) is decreasing in r and FXs|Yr=1(t) is
increasing in r.
Moreover,

FXs,S→Xr (t) ≤ FXs|Yr=y(t)

and
FXs,S→Yr (t) ≥ FXs|Xr+1=x(t).

Proof. Let s ≥ 1 and let us prove the monotonicty on x and y by induction on r, starting
at s = r. FXs|Xs=x(t) is clearly decreasing in x and from Proposition 4.2, FXs|Ys=y(t) is
decreasing in y. Thus, the initialization is done.
Suppose the result proved until Xr. Then

FXs|Xr+1=x(t) =

∫ 1

0

FXs|Yr=y,Xr+1=x(t)dYr|Xr+1=x(y)dy,

and by an integration by part, since from Lemma 3.3 FXs|Yr=y,Xr+1=x(t) = FXs|Yr=y(t),

FXs|Xr+1=x(t) = FXs|Yr=1(t)−
∫ 1

0

∂

∂y
FXs|Yr=y(t)FYr|Xr+1=x(y)dy.

Thus,
∂

∂x
FXs|Xr+1=x(t) = −

∫ 1

0

∂

∂y
FXs|Yr=y(t)

∂

∂x
FYr|Xr+1=x(y)dy.

By induction, ∂
∂yFXs|Yr=y(t) is negative and by Proposition 4.2 ∂

∂xFYr|Xr+1=x(y) is nega-

tive, thus ∂
∂xFXs|Xr+1=x(t) is also negative. It is exactly the same for FXs|Yr+1=y(t).

Let r ≥ s. FXs|Xr+1=0(t) =
∫ 1

0
FXs|Xr=x(t)dXr|Xr+1=0(x)dx, thus by Proposition 4.2

FXs|Xr+1=0(t) ≤
∫ 1

0

FXs|Xr=0(t)dXr|Xr+1=0(x)dx ≤ FXs|Xr=0(t).

The same proof holds to show that FXs|Yr=1(t) is increasing in r.
Let us prove the second part of the proposition and let y ∈ [0, 1]. Conditioning Xs on Xr

in S→Xr yields

FXs,S→Xr (t) = E
(
FXs|Xr=X̃r

(t)
)
,
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with X̃r following the law of qr in S→Xr .
On one hand from the first part of the proposition, FXs|Xr=x(t) is decreasing in x. On the

other hand from Proposition 4.2, X̃r stochastically dominates (Xr|Yr = y). Thus, from
Proposition 2.6,

FXs,S→Xr (t) = E
(
FXs|Xr=X̃r

(t)
)
≤ FXs|Yr=y(t).

The same pattern proves the second inequality.

There is an immediate consequence of this Proposition on the behavior of FXs,S→Xu (t)

with u ≥ s.
Corollary 4.5. The following inequalities hold for k ≥ s:

FXs,S→Xs (t) ≤ · · · ≤ FXs,S→Xu (t) ≤ · · · ≤ FXs,S→Yu (t) · · · ≤ FXs,S→Ys (t).

Proof. The previous Proposition yields directly the following inequalities :

FXs,S→Yr (t) ≥ FXs|Yr=1(t) ≥ FXs,S→Xr (t).

Moreover,

FXs,S→Xu+1
(t) =

∫
[0,1]

FXs|Yu=y(t)dYn,S→Xu+1
(y)dy

≥
∫

[0,1]

FXs,S→Xu (t)dYu,S→Xu+1
(y)dy

≥FXs,S→Xu (t),

the first inequality being due to Proposition 4.2. By symmetry between Xu and Yu the
general result holds.

4.3 Estimates on the behavior of extreme particles

As a second consequence of Proposition 4.2 we can get a more accurate estimate on
the behavior of the first and last particles of S. In particular, we can achieve a coupling
of (XI , XF ) with two couples of random variables, which only depend on f1 and gn and
give some bounds on (XI , XF ) in the sense of the stochastic domination.
In this paragraph we will not assume that the first and last particles are lower ones,
and deal with model of any type (refer to Remark 3.1 for the definition of the type of
a model). Moreover, to describe the bounding random variables, we introduce two
particular transforms Γ+ and Γ−:

Definition 4.6. Let f be a positive function on [0, 1]. Then Γ+(f) and Γ−(f) are the
functions defined on [0, 1] as :

Γ−(f)(t) =

∫ 1

1−t f(u)du∫ 1

0
f(u)du

,

and

Γ+(f)(t) =

∫ t
0
f(u)du∫ 1

0
f(u)du

.

Remark that Γ−(f)(t) (resp. Γ+(f)(t)) is the cumulative distribution function of the
random variable 1− Z (resp. Z), Z being the random variable with density f(x)∫ 1

0
f(x)dx

.

Proposition 4.7. Let S be a convex Sawtooth model of type ε with density functions
{fi, gi}1≤i≤k and at least four particles. There exists a probability space and two couples
of random variables (X+, Y+), (X−, Y−) on it, such that :
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• (X−, Y−) �ε (XI , XF ) �ε (X+, Y+).

• X+ and Y+ are independent with distribution function

FX+,Y+
(s, t) = Γε1(f1)(s)Γε2(gn)(t).

• X− and Y− are independent with distribution function

FX−,Y−(s, t) =
(

Γε1 ◦ Γε
∗
1 (f1)

)
(s)
(

Γε2 ◦ Γε
∗
2 (gn)

)
(t).

with −∗ = + and +∗ = −.

Proof. We assume without loss of generality that each fi, gi is normalized and, since the
type of the Sawtooth model doesn’t change the pattern of the proof, we assume that S is
of type −−.
On one hand the conditional law of (XI , XF ) given the value of Y1 = y1, Yk = yk has for
cumulative distribution function :

FXI ,XF |Y1=y1,Yk=yk(t1, t2) =

(∫ t1∧y1
0

f1(y1 − x)dx
)(∫ t2∧yk

0
gk(yk − y)dy

)
(
∫ y1

0
f1(x)dx)(

∫ yk
0
gk(x)dx)

=FXI |Y1=y1(t1)FXF |Yk=yk(t2).

This together with Proposition 4.2 gives the bound

FXI ,XF |Y1=y1,Yk=yk(t1, t2) =FXI |Y1=y1(t1)FXF |Yk=yk(t2)

≥FXI |Y1=1(t1)FXF |Yk=1(t2).

Since

FXI |Y1=1(t1)FXF |Yk=1(t2) = (1− Ff1(1− t1))(1− Fgk(1− t2)) = Γ−(f1)(t1)Γ−(gk)(t2),

this gives the upper part of the stochastic bound.
On the other hand, the density of (Y1, Yk) conditioned on the value of (X2, Xk) is

dY1,Yk|X2=x2,Xk=xk(y1, yk)

=1y1≥x2,yk≥xk

(∫ y1
0
f1(y1 − x)dx

)
g1(y1 − x2)∫ 1

x2

(∫ z
0
f1(z − x)dx

)
g1(z − x2)dz

(∫ yk
0
gk(yk − x)dx

)
fk(yk − xk)∫ 1

xk

(∫ z
0
gk(z − x)dx

)
fk(z − xk)dz

=1y1≥x2,yk≥xk
Ff1(y1)g1(y1 − x2)∫ 1

x2
Ff1(z)g1(z − x2)dz

Fgk(yk)fk(yk − xk)∫ 1

xk
Fgk(z)fk(z − xk)dz

.

Factorizing the latter density yields

dY1,Yk|X2=x2,Xk=xk(y1, yk) = dY1|X2=x2
(y1)dYk|Xk=xk(yk).

Let us first consider Y1. Recall that g1 is an increasing C1 function. This means in
particular that

g1(x) =
1

K

∫ x

0

dλ(u),

with λ a probability measure on [0, 1] having eventually a dirac mass at 0 and then a
continuous density function on ]0, 1]. Thus, the density of Y1 conditioned on the value of
X2 is

dY1|X2=x2
(y1) =

1

A
1y1≥x2

Ff1(y1)

∫ y1

x2

dλ(u− x2),
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with A a normalizing constant. Let du be the density function defined for 0 ≤ u ≤ 1 by

du(y) =
1

Au
1y≥uFf1(y),

with Au a normalizing constant depending on u and let Fu(t) be the associated cumulative
distribution function. On one hand

FY1|X2=x2
(t) =

∫ t
0
1y1≥x2Ff1(y1)

∫ y1
x2
dλ(u− x2)dy1∫ 1

0
1y1≥x2Ff1(y1)

∫ y1
x2
dλ(u− x2)dy1

=

∫ t
0

∫ 1

x2
1y1≥uFf1(y1)dλ(u− x2)dy1∫ 1

0

∫ 1

x2
1y1≥uFf1(y1)dλ(u− x2)dy1

,

and after changing the order of the integrals, since Fu(1) = 1,

FY1|X2=x2
(t) =

∫ 1

x2

(∫ t
0
1y1≥uFf1(y1)dy1

)
dλ(u− x2)∫ 1

x2

(∫ 1

0
1y1≥uFf1(y1)dy1

)
dλ(u− x2)

=

∫ 1

x2
AuFu(t)dλ(u− x2)∫ 1

x2
Audλ(u− x2)

=EŨ (FŨ (t)),

with Ũ a random variable with law dŨ(u) = 1u≥x2

Audλ(u−x2)∫ 1
x2
Audλ(u−x2)

.

On the other hand

Fu(t) = 1t≥u

∫ t
u
Ff1(u)du∫ 1

u
Ff1(u)du

= 1t≥u
Ff1(t)−Ff1(u)

Ff1(1)−Ff1(u)
,

with Ff1 being the primitive of Ff1 taking the value 0 at 0. This yields

∂

∂u
Fu(t) =

∂

∂u

(
1u≤t

Ff1(t)−Ff1(u)

Ff1(1)−Ff1(u)

)
=1u≤t

∂

∂u

(
(Ff1(t)−Ff1(1))

1

Ff1(1)−Ff1(u)
+ 1

)
=1u≤t (Ff1(t)−Ff1(1))

∂

∂u

(
1

Ff1(1)−Ff1(u)

)
=1u≤t (Ff1(t)−Ff1(1))

Ff1(u)

(Ff1(1)−Ff1(u))
2 ≤ 0,

and thus

Fu(t) ≤ F0(t) =
Ff1(t)

Ff1(1)
.

Integrating with respect to Ũ yields

FY1|X2=x2
(t) = EŨ (FŨ (t)) ≤ EŨ (F0(t)) ,

and finally, FY1|X2=x2
(t) ≤ Ff1 (t)

Ff1 (1) . We can now integrate this inequality to get a bound on
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the cumulative distribution function of XI conditioned on X2 :

FXI |X2=x2
(t) =

∫ 1

0

FXI |Y1=y(t)dY1|X2=x2
(y)dy

=FXI |Y1=1(t)−
∫ 1

0

∂

∂y
FXI |Y1=y(t)FY1|X2=x2

(y)dy

≤FXI |Y1=1(t)−
∫ 1

0

∂

∂y
FXI |Y1=y(t)

Ff1(y)

Ff1(1)
dy

≤
∫ 1

0

FXI |Y1=y(t)
Ff1(y)

Ff1(1)
dy.

Note that the direction of the inequality on the third line is due to the negative sign of
∂
∂yFXI |Y1=y(t). Since

∫ 1

0

FXI |Y1=y(t)
Ff1(y)

Ff1(1)
dy =

∫ 1

0

∫ t∧y
0

f1(y − u)du

Ff1(y)

Ff1(y)

Ff1(1)
dy

=

∫ t

0

∫ 1

u

f1(y − u)

Ff1(1)
dydu

=

∫ t
0
Ff1(1− u)du

Ff1(1)
= Γ−(Ff1)(t),

this yields the inequality

FXI |X2=x2
(t) ≤ Γ− ◦ Γ+(f1)(t).

Note that the latter inequality is valid even if the model has only three particles (see the
next Corollary). Finally, since in our case there are at least four particles, XF 6= X2, and
thus FXI |X2=x2,XF=y(t) = FX1|X2=x2

(t). Therefore

FXI |XF=y(t) ≤ Γ− ◦ Γ+(f1)(t),

and by averaging on y,

FXI (t) ≤ Γ− ◦ Γ+(f1)(t).

Doing the same with XF gives the bound :

FXF (t) ≤ Γ− ◦ Γ+(gk)(t).

The result follows from Lemma 2.10.

Remark 4.8. The case of a Sawtooth model Sλ illustrates the pattern of the proof in
the general case. Namely, suppose that λ has a first run of length r which is increasing.
Then, conditioning the law of x1 on the value of the first particle after the first peak
(which is xr+1 in this case) yields the formula:

Fx1|xr+1=z(t) =

∫ t
0
(
∫ 1

x∧z(y − x)rdy)dx∫ 1

0
(
∫ 1

x∧z(y − x)rdy)dx
.

Computing the integral in the numerator and in the denominator yields

Fx1|xr+1=z(t) =
[1− (1− t)r]− [zr − ((t ∨ z)− t)r]

1− zr
. (4.1)
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By Proposition 4.2, Fx1|xr+1=1(t) ≤ Fx1|xr+1=z(t) ≤ Fx1|xr+1=0(t): therefore, the bounds
are given by the cases z = 1 and z = 0. By Equation (4.1), Fx1|xr+1=0(t) = 1− (1− t)r =

Γ−Γ+(γ̃r)(t). Suppose that z ≥ t: rewriting the right hand side of (4.1) as h(1)−h(zr)
1−zr with

h(x) = x− (x1/r − t) yields

Fx1|xr+1=1(t) = h′(1) = 1− (1− t)r−1 = Γ−(γr)(t).

The proof of Proposition 4.7 is actually a generalization of the proof in the case Sλ.

In particular, as a corollary of Proposition 4.7 (and as a corollary of the proof in the
case k = 2), the following result holds :

Corollary 4.9. Let S be a convex Sawtooth model of type ε with density functions
{fi, gi}1≤i≤k . There exists a couple of random variables (Z(1), Z(2)) such that for y ∈
[0, 1],

• Z(1) �ε(1) (XI |XF = y) �ε(1) Z
(2),

• The cumulative distribution function of Z(2) is :

FZ(2)(t) = Γε(1)(f1)(t).

• The cumulative distribution function of Z(1) is

FZ(1)(t) = Γε(1) ◦ Γε(1)∗(f1)(t).

Proof. For k ≥ 3, the result is deduced from the latter Proposition. In the case k = 2, the
proof is exactly the same as in the latter Proposition, except that we only deal with the
left case, and thus we don’t need anymore the fact that X2 6= XF .

In the case of a composition λ with first run of length R+ 1, the latter corollary yields
that for Sλ:

1− (1− t)R ≤ FXI (t) ≤ 1− (1− t)R+1,

if the first run is increasing, and

tR+1 ≤ FXI (t) ≤ tR,

if the first run is decreasing.

5 The independence theorem in a bounded Sawtooth Model

This section is devoted to the proof of the approximate independence of XI and XF

when the number of particles grows whereas the repulsion forces remain bounded. In
this section the Sawtooth model is assumed normalized.

5.1 Decorrelation principle and bounding Lemmas

Definition 5.1. Let A > 0. A Sawtooth model S with density functions {fi, gi} is bounded
by A if

max(‖fi‖[0,1], ‖gi‖[0,1]) ≤ A.

The purpose is to prove the following Theorem :

Theorem 5.2. Let A > 0. For all ε > 0 there exists NA ≥ 0 such that for any Sawtooth
model S bounded by A and with 2k ≥ NA particles we have :

‖dXI ,XF (x, y)− dXI (x)dXF (y)‖∞ ≤ ε
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Figure 4: Decorrelation of the process

The pattern of the proof is the following : conditioned on the fact that a particle P -
from now on called a splitting particle - is close to the boundary of the domain, the left
part S→P and the right part S←P of the system are almost not correlated anymore (see
Figure 4).
However, we may still not have independence if the law of XI and XF depends on which
particle splits the system. Thus, we have to find a set of particles that is large enough, so
that with probability close to one an element of this set is close to the boundary, and such
that nonetheless conditioning on having any particle from this set close to the boundary
yields the same law on (XI , XF ).
Let us first begin by bounding the density of (XI , XF ).

Lemma 5.3. Suppose that ‖f1‖∞ ≤ A and let S be a Sawtooth model larger than 2. Then
there exists KA only depending on A such that for any event X depending on {Xi, Yi}i≥2,

‖dXI |X ‖∞ ≤ KA.

More precisely KA = 4A2 fits.

This Lemma was already mentioned in the specific context of compositions in [2]. We
provide here a different proof.

Proof. By Lemma 3.3, it suffices to prove it for a conditioning on {X2 = x2}. From
Lemma 3.4, dXI |X2=x2

(x) is decreasing in x and thus it is enough to bound dXI |X2=x2
(0).

We have

dXI |X2=x2
(0) =

∫ 1

x2
f1(z)g1(z − x2)dz∫ 1

x2
Ff1(z)g1(z − x2)dz

≤ A
∫ 1

x2
g1(z − x2)dz∫ 1

x2
Ff1(z)g1(z − x2)dz

.

Remark that ∫ 1

x2
g1(z − x2)dz∫ 1

x2
Ff1(z)g1(z − x2)dz

=
1

EZ̃(Ff1(Z̃))
,

with Z̃ being a random variable with density 1z≥x2g1(z − x2). Since ‖F ′f1‖ ≤ A and
Ff1(1) = 1, Ff1(t) ≥ 1/2 on [1 − 1/(2A)]; moreover, z 7→ g1(z − x2) is increasing, thus
P(Z̃ ∈ [1− 1/(2A), 1]) ≥ 1

2A and by Markov’s inequality EZ̃(Ff1(Z̃)) ≥ 1/4A. Finally,

dXI |X2=x2
(0) ≤ 4A2.

The next step is to get a bound on the first derivative of dXI . This is possible only if
g1 is also bounded by A and the model is large enough.
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Lemma 5.4. Suppose that max(‖f1‖∞, ‖g1‖∞) ≤ A and that S is a Sawtooth model with
at least four particles. Then there exists a constant RA only depending on A such that
for any event X depending on {Xi+1, Yi}i≥2,

‖(dXI |X )′‖∞ ≤ RA.

Proof. For exactly the same reasons as in the previous proof, it suffices to bound the
derivative of the density conditioned on X = {Y2 = y2}. The expression of the density
probability yields

dXI |Y2=y2(x) =

∫ 1

x
f1(y1 − x)dY1|Y2=y2(y1)dy1∫ 1

0

(∫ 1

x
f1(y1 − x)dY1|Y2=y2(y1)dy1

)
dx
.

Let ∆ =
∫ 1

0

(∫ 1

x
f1(y1 − x)dY1|Y2=y2(y1)dy1

)
dx, which is independent of x. Then

| ∂
∂x
dXI |Y2=y2(x)| = 1

∆
| ∂
∂x

∫ 1

x

f1(y1 − x)dY1|Y2=y2(y1)dy1|

=
1

∆
|
∫ 1

x

(
∂

∂x
f1(y1 − x))dY1|Y2=y2(y1)dy1 − f1(0)dY1,SY2←|Y2=y2(x)|

≤ 1

∆

(
|
∫ 1

x

−(
∂

∂x
f1)(y1 − x)dY1|Y2=y2(y1)dy1|+ |f1(0)dY1|Y2=y2(x)|

)
,

Let us first bound the numerator. By the expression of the density of Y1 conditioned on
Y2 = y2,

dY1|Y2=y2(y1) =
Ff1(y1)dY1,SY1←|Y2=y2(y1)

EỸ1
(Ff1(Ỹ1))

,

with Ỹ1 having the density dY1,SY1←|Y2=y2 . Since g1 is bounded by A, from Lemma
5.3, |dY1,SY1←|Y2=y2 | ≤ KA. From Lemma 3.4, dY1,SY1←|Y2=y2(y) is increasing in y, and

|F ′f1 | ≤ A, thus EỸ1
(Ff1(Ỹ1)) ≥ 1

4A2 and

|f1(0)dY1,SY2←|Y2=y2(x)| ≤ 4A2K2
A.

Let us bound also the first term of the sum: f1 being increasing, ∂
∂xf1(y1 − x) ≤ 0 and

we can thus remove the absolute value in this first term. An other application of Lemma
5.3 yields:∫ 1

x

−(
∂

∂x
f1)(y2 − x)dY1|Y2=y2(y1)dy1 ≤ KA(

∫ 1

x

(
∂

∂x
f1)(y2 − x)dy2)

≤ KA((f1(1− x)− f1(0)) ≤ A×KA.

The numerator is thus bounded by AKA + 4A2K2
A.

Changing the order of the integrals in ∆ yields :

∆ =

∫ 1

0

Ff1(y1)dY1|Y2=y2(y1)dy1.

Since F ′f1 is bounded by A and Ff1(1) = 1, we can conclude as in the previous proof that

Ff1(t) ≥ 1
2A on [1− 1/(2A), 1]. Moreover, Y1 is an upper particle, and thus by Lemma 3.4,

dY1|Y2=y2(y1) is increasing in y2. Since
∫

[0,1]
dY1|Y2=y2 = 1, this implies that∫ 1

1−1/(2A)

dY1|Y2=y2(y1)dy1 ≥
1

2A
,
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and yields ∆ ≥ 1
4A2 . The bounds on the numerator and on ∆ yield :

| ∂
∂x
dXI |Y2=y2(x)| ≤ 4A3(KA + 4AK2

A).

As an application of Lemma 5.4, we can also prove that y 7→ FXI |XF=y(t) is Lipchitz :

Proposition 5.5. Let S be a Sawtooth model with k ≥ 3 lower particles. Suppose that
{f1, g1, fk, gk} are bounded by A > 0. Let RA be the constant of Lemma 5.4 (with RA ≥ 1).
Then on a neighbourhood [0, 1/RA] of 0,

F :

{
[0, 1/RA] → (C([0, 1],R), ‖.‖)

y 7→ FXI |XF=y

is Lipschitz with a Lipschitz constant BA only depending on A.

Proof. It suffices to prove that for x ∈ [0, 1], y 7→ dXI |XF=y(x) is Lipschitz on [0, 1/RA]

with a Lipschitz constant independent of x.
From Lemma 3.4, dXF is decreasing and thus on [1/RA, 1], dXF ≤ dXF (1/RA). From
Lemma 5.4, | ∂∂ydXF (y)| ≤ RA and thus on [0, 1/RA], dXF (y) ≤ dXF (1/RA)+RA(1/RA−y).
This implies that∫

[0,1]

dXF (y)dy ≤
∫ 1/RA

0

dXF (1/RA) +RA(1/RA − y)dy +

∫ 1

1/RA

dXF (1/RA)

≤dXF (1/RA) +
1

2RA
.

Since
∫

[0,1]
dXF = 1, this implies that dXF (1/RA) ≥ 1− 1

2RA
, and thus that dXF ≥ 1− 1

2RA

on [0, 1/RA].
From Lemma 5.4, ‖ ∂∂ydXF |XI=x‖ ≤ RA. Thus, since ‖f1‖ ≤ A, this yields by applying
Lemma 5.3 on dXI ,XF (x, y) = dXF |XI=x(y)dXI (x):

| ∂
∂y
dXI ,XF (x, y)| ≤ KARA.

Thus, on [0, 1/RA],

| ∂
∂y
dXI |XF=y(x)| = 1

dXF (y)
| ∂
∂y
dXI ,XF (x, y)−

dXI ,XF (x, y) ∂∂ydXF (y)

dXF (y)
|

≤ 1

1− 1/(2RA)
(KARA +

RAK
2
A

1− 1/(2RA)
).

Set BA = 1
1−1/(2RA) (KARA +

RAK
2
A

1−1/(2RA) ). Then F is BA−Lipschitz on [0, 1/RA].

5.2 Behavior of {Xi} for large models

The purpose of this subsection is to find for a model S a large set of intermediate
particles {Xr} for which one of these particles is close to 0 with high probability and
such that FXI |Xr=0 is essentially the same for all particles of this set.
The first part is a essentially probability computation :

Proposition 5.6. Let η > 0, ε > 0. There exists N0 such that for any model S of size N
larger than N0 + 4 and for any 2 ≤ r ≤ N −N0, yr+N0

∈ [0, 1],

P(
⋃

r≤i≤r+N0

{Xi < η}|Yr+N0 = yr+N0) ≥ 1− ε.
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Proof. Let N0 be an integer to specify later and let S, r be as in the statement of the
Proposition. Let P̃ = P(

⋂
r≤i≤r+N0

{Xi ≥ η}|Yr+N0
= yr+N0

).
Let 0 ≤ yr−1, . . . , yr+N0

≤ 1 and condition (
⋂
r≤i≤r+N0

{Xi ≥ η}|Yr+N0
= yr+N0

) on the
event

⋂
r−1≤i≤r+N0−1{Yi = yi}. We denote by P~y the probability of this conditioned event.

By Lemma 3.3, the random variables {Xi}r≤i≤r+N0
are conditionally independent given

the value of {Yi}r−1≤i≤N0
; therefore,

P~y =

r+N0∏
i=r

P(Xi ≥ η|Yi−1 = yi−1, Yi = yi).

Moreover, Lemma 3.4 yields that dXi|Yi−1=yi−1,Yi=yi is decreasing: thus, P(Xi ≥ η|Yi−1 =

yi−1, Yi = yi) ≤ (1− η). This yields

P~y ≤ (1− η)N0+1.

Integrating P~y with respect to yr−1, . . . , yN0−1 gives P̃ ≤ (1− η)N0+1. Let N0 be such that
(1− η)N0+1 ≤ ε. For N ≥ N0,

P(
⋃

r≤i≤r+N0

{Xi < η}|Yr+N0 = yr+N0) ≥ 1− ε.

As said before, it is also necessary that FXI |Xr=0 remains almost constant among this
subset of particles. This is possible for large Sawtooth models, thank to the monotonicity
results of Proposition 4.4 :

Proposition 5.7. Let A, ε > 0, M ∈ N∗. There exists Nε,A,M such that for any Sawtooth
model bounded by A and of size N ≥ Nε,A,M , there exists 1 ≤ r ≤ N −M such that for
r ≤ i, j ≤ r +M ,

‖FXI |Xi=0 − FXI |Xj=0‖∞ ≤ ε.

Proof. Let S be a Sawtooth model bounded by A and of size N .
Denote by Fi the function t 7→ FXI |Xi=0(t) for 2 ≤ i ≤ N . By Lemma 5.3, all the Fi are
KA−Lipschitz. Let K = b 2KA

ε c. It suffices to find r ≥ 2 such that for all r ≤ i, j ≤ r +M ,
and all 0 ≤ k ≤ K,

|Fi(
k

K
)− Fj(

k

K
)| ≤ ε

3
.

Denote by vi ∈ [0, 1]K+1 the vector (Fi(
k
K ))0≤k≤K and let Nε,A,M = (M + 1)(b 3

ε c+ 1)K+1.
Suppose that N ≥ Nε,A,M . For ~m ∈ J0, b 3

ε cK
K+1, denote by C~m the hypercube {~x ∈

[0, 1]K+1|∀1 ≤ i ≤ K + 1,mi
ε
3 ≤ xi < (mi + 1) ε3}. {C~m}~m∈J0,b 3ε cKK+1 is a partition of

[0, 1]K+1 in (b 3
ε c + 1)K+1 subsets. If vi and vj are both in a same C~m, then for all

0 ≤ k ≤ K, |vi(k)− vj(k)| ≤ ε
3 .

Since N ≥ (M + 1)(b 3
ε c + 1)K+1, Dirichlet’s principle yields the existence of ~m0 ∈

J0, b 3
ε cK

K+1 such that #({vi}1≤i≤N ∩C~m0
) ≥M + 1. Let i0 < · · · < iM be such that for all

0 ≤ j ≤M , vij ∈ C~m0
; in particular, iM ≥ i0 +M . From the previous paragraph, for all

0 ≤ k ≤ K, |viM (k)− vi0(k)| ≤ ε
3 . By Proposition 4.4, Fi(

k
K ) is decreasing in i; thus, since

vi(k) = Fi(
k
K ), for all i0 ≤ j ≤ iM and all 0 ≤ k ≤ K

vi0(k) ≥ vi(k) ≥ viM (k).

Since i0 +M ≤ iM , this yields ‖vi − vj‖∞ ≤ ε
3 for i0 ≤ i, j ≤ i0 +M .
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5.3 Proof of Theorem 5.2

Theorem 5.2 is a consequence of the following proposition :

Proposition 5.8. Let A > 0. For all ε > 0, there exists a number NA,ε ≥ 0 such that
for any Sawtooth model S bounded by A and with 2k ≥ NA,ε particles, the following
inequality holds:

|FXI |XF=y(t)− FXI (t)| ≤ ε.

for all t, y ∈ [0, 1].

Proof. Set η = inf( 1
RA
, ε
BA

) with RA, BA the constants given respectively by Lemma 5.4
and Proposition 5.5. Let N0 be the constant given for η and ε by Proposition 5.6. Finally,
set NA,ε = Nε/4,A,N0

+ 4 given by Proposition 5.7.
Let S be a Sawtooth model bounded by A of size larger than NA,ε. Then by Proposition
5.7, there exists 2 ≤ r ≤ NA,ε − 2−N0 such that for all r ≤ i, j ≤ r +N0,

‖FXI |Xi=0 − FXI |Xj=0‖∞ ≤ ε.

Denote t = r + N0 and let yt ∈ [0, 1]. For r ≤ i ≤ r + N0, set Li = {Xi ≤ η ∩ {∀s >
i,Xs > η}}. Note that Li ∩ Lj = ∅ for all i 6= j and

⋃
Li = L with L =

⋃
r≤i≤r+N0

{Xi ≤
η}. Moreover, since Li is (Xs, Ys)s≥i−measurable, by Lemma 3.3, conditioning XI on
{Xi = u, Yt = yt} ∩ Li is the same as conditioning XI on {Xi = u}. Thus,

‖FXI |Li,Yt=yt − FXI |Xr=0‖∞ =‖
∫ η

0

(FXI |Xi=u − FXI |Xr=0)dXi|Li,Yt=yt(u)du‖∞

≤
∫ η

0

‖FXI |Xi=u − FXI |Xr=0‖∞dXi|Li,Yt=yt(u)du

≤2ε,

by the choice of η. Recall that if A =
⋃
Ai, with Ai disjoint events, then for any event C,

P(C|A) =
∑

P(C|Ai)P(Ai|A)

In particular, for L =
⋃
i Li this yields

‖FXI |L,Yt=yt − FXI |Xr=0‖ =‖
∑
i

(FXI |Li,Yt=yt − FXI |Xr=0)P(Li|L, Yt = yt)‖∞

≤
∑
i

‖(FXI |Li,Yt=yt − FXI |Xr=0‖∞P(Li|L, Yt = yt)

≤2ε.

By Proposition 5.6 and the choice of N0, P(L|Yt = yt) ≥ 1− ε, and thus

‖FXI |Yt=yt − FXI |Xr=0‖∞ ≤ 3ε.

By averaging on yt with the density dYt|XF=y we get

‖FXI |XF=y − FXI‖∞ ≤ 4ε.

Let us end the proof of the Theorem 5.2, which consists essentially in a rewriting in
terms of densities of the latter Proposition.
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Proof. Let A > 0, ε > 0. Set ε1 =
(ε/K2

A)

4RA
and let S be a Sawtooth model bounded by A of

size larger than NA,ε1 (NA,ε1 being given by Proposition 5.8). Then from Proposition 5.8,
for y ∈ [0, 1],

‖FXI |XF=y − FXI‖∞ ≤
(ε/KA)2

4RA
. (5.1)

Moreover, the following result holds for C1−functions on [0, 1]:

Lemma 5.9. Let f, g : [0, 1]→ [0, 1] be two C1− functions, such that ‖f ′‖∞, ‖g′‖∞ ≤M .
Then for ε > 0 small enough, if F,G are two primitives of f, g and

‖F −G‖∞ ≤
ε2

4M
,

then ‖f − g‖∞ ≤ ε.

Proof. This is implied by proving that if f : [0, 1] −→ R verifies ‖f‖∞ ≤ ε2

4M and ‖f ′′‖∞ ≤
M , then ‖f ′‖∞ ≤ ε. But the majoration on f ′′ yields that if |f ′(x)| ≥ ε,

max(|
∫ x+ε/M

x

f ′(x)dx|, |
∫ x

x−ε/M
f ′(x)dx|) ≥ ε2

2M
.

Thus,

max(|f(x+ ε/M)|, |f(x)|, |f(x− ε/m)|) ≥ ε2

4M
.

Applying this Lemma to (5.1) yields for y ∈ [0, 1],

‖dXI |XF=y − dXi‖∞ ≤ ε/KA.

Finally,

|dXI ,XF (x, y)− dXI (x)dXF (y)| = |dXF (y)‖|dXI |XF=y(x)− dXI (x))| ≤ KA
ε

KA
≤ ε.

6 Application to compositions

Theorem 5.2 can be applied to the framework of compositions :

Corollary 6.1. Let A ≥ 0, ε > 0. There exists n ≥ 0 such that for any composition λ of
size larger than n with every runs bounded by A,

‖dSλ(x, y)− dSλ(x)dSλ(y)‖ < ε

Proof. Each run of λ of length l yields a density function γl in Sλ, and ‖γl‖∞ = l − 1.
Thus, if any run of λ is bounded by A, then all the density functions {fi, gi} in Sλ are
bounded by A− 1. It suffices then to apply Theorem 5.2.

The purpose of this section is to strengthen Corollary 6.1 and to prove the following
Theorem :

Theorem 6.2. Let ε > 0, A ≥ 0. There exists n ≥ 0 such that for any composition λ of
size larger than n with first and last run bounded by A,

‖dSλ(x, y)− dSλ(x)dSλ(y)‖ < ε. (6.1)

This Theorem was Conjecture 1 in [2]. The proof of Theorem 6.2 is followed by some
applications.
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6.1 Effect of a large run on the law of (XI , XF )

From Corollary 6.1, it is enough to prove that the presence of a large run inside the
composition disconnects the behaviors of XI and XF . The main reason for this is the
Lemma below: for each composition λ, denote by λ+ the composition λ with a cell added
on the last run, and by λ− the composition λ with a cell removed on the last run.

Lemma 6.3. Let A > 0 and let λ be a composition with more than three runs and with
the first run smaller than A. If the last run of λ is of size R,

‖dXI ,Sλ − dXI ,Sλ+ ‖∞ ≤
KA

R− 1
,

where KA is the bound on the density of XI as defined in Lemma 5.3.

Proof. Let us prove it in the case where the first run of λ is increasing and the last run
decreasing, the other cases having the same proof. The expression (3.3) yields

d(XI ,XF ),Sλ+ (x, y) =

∫ 1

y
d(XI ,XF ),Sλ(x, z)dz∫

[0,1]2

(∫ 1

y
d(XI ,XF ),Sλ(x, z)

)
dxdy

.

Thus, by integrating with respect to y and then changing the order of the integrals, this
yields

dXI ,Sλ+ (x) =

∫ 1

0

(∫ 1

0
d(XI ,XF ),Sλ(x, z)1y≤zdy

)
dz∫

[0,1]2

(∫ 1

0
d(XI ,XF ),Sλ(x, z)1y≤zdy

)
dxdz

=

∫ 1

0
d(XI ,XF ),Sλ(x, z)zdz∫

[0,1]2
d(XI ,XF ),Sλ(x, z)zdzdx

.

Factorizing by dXI ,Sλ(x) makes a conditional expectation appear and thus

dXI ,Sλ+ (x) = dXI ,Sλ(x)
ESλ(XF |XI = x)

ESλ(XF )
.

Moreover, Proposition 4.7 yields

FZ1
≤ FXF |XI=x ≤ FZ2

,

with FZ1
= Γ−(FγR) and FZ2

= Γ−(γR). Since Γ−(FγR)(t) = 1− (1− t)R and Γ−(γR)(t) =

1− (1− t)R−1, by stochastic dominance, applying Proposition 2.6 gives

1

R
≤ ESλ(XF |XI = x) ≤ 1

R− 1
.

Integrating the latter result on x yields 1
R ≤ ESλ(XF ) ≤ 1

R−1 , and thus

R− 1

R
≤ ESλ(XF |XI = x)

ESλ(XF )
≤ R

R− 1
.

This yields

|dXI ,Sλ+ (x)− dXI ,Sλ(x)| ≤ |dSλ(x)| 1

R− 1
≤ KA

R− 1
.
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In particular, the previous Lemma can be used to bound the conditional law of the
first particle with respect to the last one. For each composition λ, and any cells i, j ∈ λ,
denote by λ→i (resp λi→, resp λi→j) the composition consisting of the cells of λ from 1

to i (resp. from i to n, resp. from i to j). Moreover, denote by Rint(λ) the set of all runs
of λ except the first and last ones.

Proposition 6.4. Let A ≥ 0 and λ a composition with first run bounded by A. Then

‖FXI |XF=x − FXI‖∞ ≤
KA

maxs∈Rint(λ) l(s)− 2
.

Proof. Let t ∈ [0, 1]. Let s0 be the run with maximal length R in Rint and let i0 be
the rightest cell of this run. This cell corresponds to a particle Xi or Yi in Sλ. Let us
assume without loss of generality that this particle is a lower one. From Proposition 4.2,
FX1|Xr=x(t) is decreasing in x and thus

|FXI |XF=x(t)− FXI (t)| =|FXI |XF=x(t)−
∫
XF

FXI |XF=x(t)dXF (x)dx|

≤|FXI |XF=0(t)− FXI |XF=1(t)|
≤FXI |XF=0(t)− FXI |Yk=1(t).

Moreover, from Proposition 4.2 and Proposition 4.4,

FXI |XF=0(t) ≤ FXI ,Sλ→Yk(t) ≤ FXI ,Sλ→Yi(t) ≤ FXI |Xi=0,

and
FXI |Yk=1(t) ≥ FXI ,Sλ→Xk(t) ≥ FXI ,Sλ→Xi(t).

These inequalities imply

|FXI |XF=x(t)− FXI (t)| ≤ FXI |Xi=0(t)− FXI ,Sλ→Xi(t).

From the expression (3.3), FXI ,Sλ→Xi(t) = FXI ,Sλ→i0
(t) and FXI |Xi=0(t) = FX1,Sλ−→i0

(t).

Thus, with the previous Lemma, since the last run of λ−→i0 is of size R− 1,

|FXI |XF=x(t)− FXI (t)| ≤ |FXI ,Sλ→i0 (t)− FXI ,Sλ−→i0
(t)| ≤ KA

R− 2
.

6.2 Proof of Theorem 6.2

The latter Proposition together with Lemma 5.9 yields Theorem 6.2 in case d′XI
remains bounded. However, the bound of the derivative in Lemma 5.4 requires also a
bound on the second run, and the latter is not assumed in our case. We should thus deal
with this case before getting the general proof. Let us first consider a particular case.

Lemma 6.5. Let λb be the composition with three runs of respective length 2, b and 2,
and db(x, y) = dXI ,|Y2=y(x). Then the following convergence holds:

lim
b→∞

sup
[0,1]2

(db(x, y)− (1− xb)) = 0.

In particular, the asymptotic independence :

lim
b→∞

sup
x,y,y′

(db(x, y)− db(x, y′)) = 0. (6.2)

is valid.
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Proof. After integrating in (3.3) the coordinates of the particles inside the composition :

db(x, y) =
1− xb − (1− y)b + ((x− y) ∧ 0)b

(1− 1/(b+ 1))(1− (1− y)b) + y/(b+ 1)(1− y)b
. (6.3)

Let us show that lim
b→∞

db(x, y)− (1− xb+1) = 0 uniformly in x and y. In the denominator

of (6.3), letting b go to +∞ yields

(1− 1

b+ 1
)(1− (1− y)b) + y/(b+ 1)(1− y)b ∼b→∞ 1− (1− y)b,

with the equivalent being uniform in x and y. Indeed

y/(b+ 1)(1− y)b

1− (1− y)b
=

1

b+ 1

(1− y)b∑b−1
k=0(1− y)k

≤ 1

b+ 1
.

Since for x ∈ [0, 1/2], y ∈ [1/2, 1], db(x, y) converges uniformly to 1, it suffices to consider
in the sequel that x ∈ [1/2, 1] and y ∈ [0, 1/2]. Let ∆ be defined as

∆(x, y) =
1− xb − (1− y)b + (x− y)b

1− (1− y)b
− (1− xb)

=(1− xb − (x− y)b

1− (1− y)b
)− (1− xb) =

(x− y)b − (1− y)bxb

1− (1− y)b
.

A derivative computation shows that ∆(x, y) ≤ 1
b , which proves the uniform convergence.

Since lim
b→∞

‖db(x, y)− (1− xb+1)‖∞,[0,1]2 = 0,

lim
b→∞

sup
y,y′,x

(db(x, y)− db(x, y′)) = 0.

From the latter result can be deduced the asymptotic independence with a large
second run :

Lemma 6.6. Let A, ε > 0. There exist BA ∈ N such that if λ is a composition with at
least three runs, the extreme runs bounded by A and the second run larger than BA,
then

‖dXI ,XF − dXIdXF ‖∞ ≤ ε

Proof. Let λ be a composition with first run of length a and second run of length b. From
the definition of the density dXI ,XF in (3.3), conditioning the law of XI on the position
xP of the particle P = a+ b yields

dXI |xp=y(x) =

∫ 1

x

(∫ z1∧y
0

(z1 − x)a−2(z1 − z2)b−2dz2

)
dz1

Z
.

Let 2 ≤ a ≤ A. Then

dXI |xp=y(x) =

∫ 1

x
(u− x)a−3db(u, y)du

1
a−2

∫ 1

0
ua−2db(u, y)du

From the first part of Lemma 6.5, |db(u, y)− (1− ub)| →b→∞ 0 uniformly in u and y, and
thus

1

a− 2

∫ 1

0

ua−2db(u, y)du→b→∞
1

(a− 2)(a− 1)
,
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uniformly in y. Since a is bounded by A, and from the second part of Lemma 6.5,

‖dXI |xp=y − dXI |xp=y′‖∞ ≤ A2 sup
y,y′,x

(db(x, y)− db(x, y′))→ 0

uniformly in y. Thus, for b large enough, ‖dXI |xp=y − dXI |xp=y′‖ < ε/A for all y, y′; then
averaging on the law of xp conditioned on XF = y yields |dXI |XF=y − dXI |XF=y′ | < ε/A

for all y, y′. Finally, this implies that

‖dXI ,XF − dXIdXF ‖∞ ≤ ε.

The proof of Theorem 6.2 is just a gathering of all the previous results :

Proof. Let A, ε > 0. Since the first and last runs are bounded by A, any composition
large enough has at least three runs. Let BA be given by Lemma 6.6, R be the associate
constante given by Lemma 5.4 for BA, and set C = 4KAR

(ε/A)2 . Finally, let n be the integer
given by Corollary 6.1 for compositions of runs bounded by C. Suppose that λ is a
composition larger than n. By Lemma 6.6, if the second run is larger than BA, (6.1) is
verified. Thus, we can suppose that the second run is bounded by BA.
If λ has a run larger than C, then from Proposition 6.4,

‖FXI |XF=x − FXI‖∞ ≤
KA

C − 1
≤ (ε/A)2

4R
.

But from Lemma 5.4, d′XI is bounded by R, thus the latter inequality yields with Lemma
5.9 :

‖dXI |XF=y − dXI‖ ≤ ε/A.

And dXI being bounded by A, this yields (6.1).
Thus, we can assume that all the runs of λ are bounded by C. Once again by the choice
of n and Corollary 6.1, (6.1) is verified.

Note that we actually proved something stronger than Theorem 6.2, namely :

Corollary 6.7. Let A, ε > 0. There exists n0 such that for every composition λ of size
larger than n0 and first run bounded by A, and for all y, y′ ∈ [0, 1],

‖dXI |XF=y − dXI |XF=y′‖ ≤ ε.

6.3 Consequences and proof of Theorem 2.3

Here are some interesting consequences of Theorem 6.2. Let us first remove the
constraints on the extreme runs.

Lemma 6.8. Let ε > 0. There exists n ≥ 0 such that for all compositions larger than n
with at least two runs,

sup
(y,y′)∈[0,1]2

(‖FXI |XF=y − FXI |XF=y′‖∞) ≤ ε.

Proof. Let R be the length of the first run of a composition λ. From Proposition 4.7
applied to Sλ,

1− (1− t)R ≤ FXI |XF=y(t) ≤ 1− (1− t)R−1.

Since sup[0,1](u
R−1 − uR) →R→∞ 0, there exists A such that for any composition with

first run larger than A,

sup
[0,1]2

‖FXI |XF=y − FXI |XF=y′‖∞ ≤ ε.
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Applying Corollary 6.7 to A, ε yields that there exists n such that for any composition
larger than n,

sup
[0,1]2

‖FXI |XF=y − FXI |XF=y′‖∞ ≤ ε.

This result can be adapted to show that the law of the first particle depends only on
the neighbouring particles : for any composition λ of size N , and n ≤ N , denote by λ(n)

the composition λ containing only the n first cells.

Proposition 6.9. Let ε > 0. There exists n0 ≥ 1 such that for any n ≥ n0 and any
composition λ of size larger than n with first run smaller than n,

‖FSλXI − F
Sλ(n)

XI
‖∞ ≤ ε.

The proof consists only in an averaging of the inequality of the previous Lemma.
We will close this paper by proving Theorem 2.3.
Let λ be a composition and let s = Ji1, i2K be a run of λ. For a cell i in s, the position of
i in s, denoted by ai, is the ratio ai = i−i1

i2−i1 (resp. i2−i
i2−i1 ) if the run is increasing (resp.

decreasing). When a run is large, the behavior of a cell in this run is approximately
frozen:

Lemma 6.10. Let ε > 0. There exists Rε > 0 such that for any composition λ of n and
1 ≤ i ≤ n such that i is in a run s of size larger than Rε,

P(|σλ(i)

n
− ai| ≥ ε) ≤ ε,

where ai is the position of i in s as previously defined.

Proof. Let λ be a composition of n, and let 1 ≤ i ≤ n be a cell of λ in a run s of length
R. Let i1 ≤ i2 be the extreme cells of the run s and suppose without loss of generality
that s is increasing. We use the probabilistic model S̃λ of Section 3.2. By Lemma 3.6, it
suffices to prove that for R large enough,

P(|Zi − ai| ≥ ε) ≤ ε.

Conditioning Zi1 on the value of Zi1−1 and Zi2 gives the conditional expectation:

E(Zi1 |Zi1−1 = z, Zi2 = z′) =

∫ z∧z′
0

x(z′ − x)R−2dx∫ z∧z′
0

(z′ − x)R−2dx
≤ 1

R
,

where the last bound is given by a computation of the integral. Since the bound is
independent of z and z′, for R large enough P(Zi1 ≥ ε) ≤ ε. Likewise, for R large enough,
P(Zi2 ≤ 1− ε) ≤ ε. This gives the result if i = i1 or i = i2. Suppose that i 6= i1 and i 6= i2.
Conditioned on the value of Zi1 and Zi2 , the law of Zi is

dZi|Zi1=z,Zi2=z′(x) =
1z≤x≤z′(z

′ − x)i2−i−1(x− z)i−i1−1∫ z′
z

(z′ − x)i2−i−1(x− z)i−i1−1dx
.

Thus, by a computation, the conditional expectation of Zi − z is

E (Zi − z|Zi1 = z, Zi2 = z′) = (z′ − z) i− i1
i2 − i1

,

and the conditional variance of Zi − z is

V ar (Zi − z|Zi1 = z, Zi2 = z′) = (z′ − z)2 i− i1
i2 − i1

(
i− i1 + 1

i2 − i1 + 1
− i− i1
i2 − i1

)
≤ (z′ − z)2 1

R
.
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Thus, for R large enough, P(|Zi − (Zi1 + ai(Zi2 − Zi1))| ≥ ε) ≤ ε.
By the first part of the proof, for R large enough P(Zi1 ≥ ε) ≤ ε and P(Zi2 ≤ 1− ε) ≤ ε;
thus, for R large enough,

P(|Zi − ai| ≥ ε) ≤ ε.

We can improve the result of Corollary 6.8 by considering the case of a cell in the
middle of a composition.

Lemma 6.11. Let ε > 0, R > 0. There exists kR ≥ 1 such that for any composition λ and
1 ≤ j1 < i < j2 ≤ n such that i is in a run bounded by R and |i− j1|, |j2 − i| ≥ kR, then

‖dZi|Zj1=z1,Zj2=z2 − dZi|Zj1=z′1,Zj2=z′2
‖∞ ≤ ε

for all 0 ≤ z1, z2, z
′
1, z
′
2 ≤ 1, where Zi is the random variable corresponding to the particle

i in S̃λ. Likewise,

‖dZi|Zj1=z1 − dZi|Zj1=z′1
‖∞ ≤ ε

and

‖dZi|Zj2=z2 − dZi|Zj2=z′2
‖∞ ≤ ε

for all 0 ≤ z1, z2, z
′
1, z
′
2 ≤ 1.

Proof. We will only prove the first part of the Lemma, since the proof of the second part
is a simpler version of the one of the first part.
Let λ be a composition and let 1 ≤ j1 < i < j2 ≤ n be three cells of λ. By the expression
of the density in (3.3),

dZi|Zj1=z1,Zj2=z2(x) =
dXF |XI=z1,Sν1 (x)dXI |XF=z2,Sν2(x)∫ 1

0
dXF |XI=z1,Sν1 (x)dXI |XF=z2,Sν2(x)dx

,

where ν1 = λj1→i and ν2 = λi→j2 . Since i is in a run bounded by R in λ, i is in a run
bounded by R in ν1 and in ν2. Therefore by Corollary 6.7, there exists nε such that if
|ν1| ≥ nε and |ν2| ≥ nε, then

‖dXF |XI=z1,ν1 − dXF |XI=z′1,ν1
‖∞ ≤ ε

and

‖dXI |XF=z2,ν2 − dXI |XF=z′2,ν2
‖∞ ≤ ε,

for all 0 ≤ z1, z2, z
′
1, z
′
2 ≤ 1. Moreover, by Lemma 5.3, dXF |XI=z1,ν1 is bounded by some

constant K only depending on R, and the same holds for dXI |XF=z2,ν2 . Therefore

‖dXF |XI=z1,ν1(x)dXI |XF=z2,ν2(x)− dXF |XI=z′1,ν1
(x)dXI |XF=z′2,ν2

(x)‖∞ ≤ 2Aε

for 0 ≤ z1, z
′
1, z2, z

′
2 ≤ 1. In particular,

|
∫ 1

0

dXF |XI=z1,ν1(x)dXI |XF=z2,ν2(x)− dXF |XI=z′1,ν1
(x)dXI |XF=z′2,ν2

(x)dx| ≤ 2Aε.

Set

Az1,z2 =

∫ 1

0

dXF |XI=z1,ν1(x)dXI |XF=z2,ν2(x)dx,Bz1,z2 = dXF |XI=z1,ν1(x)dXI |XF=z2,ν2(x).
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By the above computations,

|Bz1,z2
Az1,z2

−
Bz′1,z′2
Az′1,z′2

| ≤|Bz1,z2
Az1,z2

−
Bz′1,z′2
Az1,z2

|+ |
Bz′1,z′2
Az1,z2

−
Bz′1,z′2
Az′1,z′2

|

≤ 1

Az1,z2
(2Rε) +

Bz′1,z′2
Az1,z2Az′1,z′2

(2Rε).

It remains to show that 1
Az1,z2

and
Bz′1,z

′
2

Az1,z2Az′1,z
′
2

are bounded by a constant only depending

on R. Since i is in a run bounded by R in ν1 and ν2, |Bz1,z2 | is bounded by K2, where K
is the constant given Lemma 5.3 for a run of size R.
Let us show that Az1,z2 admits a lower bound only depending on R; suppose without loss
of generality that the run of λ containing i is increasing and that i is not an extreme
cell. Let R1 be the length of the run containing i in ν1 and let R2 be the length of the
run containing i in ν2; since these both runs are part of the run of i in λ, they are both
increasing and R1 +R2 = R+ 1.
By Corollary 4.9, tR1 ≤ FXF |XI=z1,ν1(t) ≤ tR1−1 and 1− (1− t)R2−1 ≤ FXI |XF=z2,ν2(t) ≤
1− (1− t)R2 for 0 ≤ t ≤ 1. By Lemma 3.4, dXF |XI=z1,ν1 is increasing and dXI |XF=z2,ν2 is
decreasing, thus FXF |XI=z1,ν1 is convex and FXI |XF=z2,ν2 is concave. The convexity of
FXF |XI=z1,ν1 yields that

F ′XF |XI=z1,ν1
(t) ≥

FXF |XI=z1,ν1(t)− FXF |XI=z1,ν1(0)

t− 0
≥ tR1−1.

Likewise, the concavity of FXI |XF=z2,ν2 yields that

F ′XI |XF=z2,ν2
(t) ≥

FXI |XF=z2,ν2(1)− FXI |XF=z2,ν2(t)

1− t
≥ (1− t)R2−1.

Therefore,

Az1,z2 ≥
∫ 1

0

xR1−1(1− x)R2−1dx =
(R1 − 1)!(R2 − 1)!

(R1 +R2 − 1)!
≥ 1

(R1 +R2 − 1)!
.

Since R1 +R2 − 1 = R, Az1,z2 ≥ 1
R! . This yields

|Bz1,z2
Az1,z2

−
Bz′1,z′2
Az′1,z′2

| ≤ (2Rε)(R! +K2(R!)2).

Thus, if min(|ν1|, |ν2|) ≥ nε, then

‖dZi|Zj1=z1,Zj2=z2 − dZi|Zj1=z′1,Zj2=z′2
‖∞ ≤ (2Rε)(R! +K2(R!)2),

for all 0 ≤ z1, z2, z
′
1, z
′
2 ≤ 1. Setting kR = nε/(2R(R!+K2(R!)2) gives the appropriate constant

for the statement of the Lemma.

We can now prove Theorem 2.3.

Proof of Theorem 2.3. The proof is done by induction on r.
Let r = 2. Let ε > 0 and Rε be the constant from Lemma 6.10. Let λ be a composition of
n and let 1 ≤ i < j ≤ n be two cells of λ. If i and j are both in runs larger than Rε, then
by Lemma 6.10, P(|σλ(i)

n − ai| ≥ ε) ≤ ε and P(|σλ(j)
n − aj | ≥ ε) ≤ ε. Therefore,

π

(
µ

(
σλ(i)

n
,
σλ(j)

n

)
, µ(

σλ(i)

n
)⊗ µ(

σλ(j)

n
)

)
≤ π

(
µ(
σλ(i)

n
,
σλ(j)

n
), δai ⊗ δaj

)
+π

(
δai ⊗ δaj , µ(

σλ(i)

n
)⊗ µ(

σλ(j)

n
)

)
≤ 2ε.
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Suppose without loss of generality that i is in a run smaller than Rε. On the one hand,
for 0 ≤ t1, t2 ≤ 1,

FZi,Zj (t1, t2)− FZi(t1)FZj (t2) =

∫ t2

0

(∫ t1

0

dZi|Zj=y(x)− dZi(x)dx

)
dZj (y)dy.

On the other end, by Lemma 6.11, there exists k such that if |j − i| ≥ k,

‖dZi|Zj=z − dZi|Zj=z′‖∞ ≤ ε

for any 0 ≤ z, z′ ≤ 1. Therefore, for |j − i| ≥ k, ‖dZi|Zj=y − dZi‖∞ ≤ ε for 0 ≤ y ≤ 1. This
yields

|FZi,Zj (t1, t2)− FZi(t1)FZj (t2)| ≤
∫ t2

0

t1εdZj (y)dy ≤ ε.

In particular,
π (µ(Zi, Zj), µ(Zi)⊗ µ(Zj)) ≤ ε.

Lemma 3.6 concludes the case r = 2.
Suppose that r > 2. Let λ be a composition and let 1 ≤ i1, . . . , ir ≤ n be distinct cells of
λ. If i1, . . . , ir are all in runs larger than Rε, by the same reason as before,

π

(
µ

(
σλ(i1)

n
, . . . ,

σλ(ir)

n

)
, µ(

σλ(i1)

n
)⊗ · · · ⊗ µ(

σλ(ir)

n
)

)
≤ 2ε.

Suppose without loss of generality that ir is in a run bounded by Rε, and let k be the
constant associated to Rε in Lemma 6.11. By the induction hypothesis, there exists k1

such that if ij − ij−1 ≥ k1 for 2 ≤ j ≤ r − 1, then

π
(
µ(Zi1 , . . . , Zir−1), µ(Zi1 ⊗ · · · ⊗ µ(Zir−1)

)
≤ ε.

On the one hand for ~t ∈ [0, 1]r,

F(Zi)1≤i≤r (~t)− FZir (tr)F(Zis )s<r ((ts)s<r)

=

∫
xs∈[0,ts]

(
dZir |Zis=xs,s<r(xr)− dZir (xr)

)
d(Zis )s<r ((xs)s<r)

r∏
s=1

dxs.

By Formula (3.3), dZir |Zi1=x1,...Zir−1=xr−1
(xr) = dZir |Zia=xa,Zib=xb(xr), where a and b are

such that ia is the cell of {i1, . . . , ir−1} directly before ir and ib is the cell of {i1, . . . , ir−1}
directly after ir. By Lemma 6.11, if ir − ia ≥ k and ib − ir ≥ k, then

‖dZir |Zia=xa,Zib=xb − dZir ‖∞ ≤ ε.

Thus,

|F(Zis )1≤s≤r (~t)− FZir (tr)F(Zis )s<r ((ti)i<r)| ≤
∫
xs∈[0,ts],s<r

εd(Zis )s<r ((xs)s<r)
∏
s<r

dxs ≤ ε,

which yields
π(µ((Zi1 , . . . , Zir ), µ(Zir )⊗ µ((Zis)s<r)) ≤ ε.

Finally,

π (µ (Zi1 , . . . , Zir ) , µ(Zi1) ⊗ · · · ⊗ µ(Zir )) ≤ π (µ (Zi1 , . . . , Zir ) , µ(Zir )⊗ µ((Zis)s<r)

+π (µ(Zir )⊗ µ((Zis)s<r), µ(Zi1)⊗ · · · ⊗ µ(Zir )) ≤ ε+ ε ≤ 2ε.
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