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Abstract

A stochastic particle model for fragmentation process is considered. Evolution of
the system of particles is described by a stochastic process on a space of discrete
measures on a Polish space. A phenomenon of shattering into dust is studied and
some criteria for mass conservation and loss of mass in our model are proven.
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1 Introduction

The fragmentation phenomenon can be observed commonly in many physical, in-
dustrial and biological processes, including grinding and crashing of such materials
as ore, stone or flour, polymer degradation, dissolving, fragmentation of organisms,
or proliferation of cells, etc. Fragmentation has been mathematically described with
various methods both stochastic and deterministic. There is a vast literature on frag-
mentation process, originating from physics of polymer degradation [26]. Some of them
use deterministic description by means of transport equations [28, 33, 4, 29, 2], while
the other ones use probabilistic approach, e.g. [23, 18, 10, 14, 21, 8]. The interesting
review is given also in [31].

It has been observed that sufficiently rapid fragmentation may result in the decrease
of total mass of the system, even though the mass is conserved in every breakup of a
single particle. Probably the first stochastic model that provides conditions for loss of
mass into zero-size particles is due to Filippov [18]. McGrady and Ziff [27] observed that,
if the breakup is fast for small particles, some solutions for fragmentation equation, which
are formally conservative, do not in fact preserve the total mass of particles. They called
this phenomenon “shattering”. The loss of mass in similar equations was intensively
investigated by means of differential equations [15, 1] and semigroups [4, 3, 5]. There are
also several approaches to stochastic modeling of the fragmentation with shattering on
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Stochastic particles model of fragmentation

the microscopic individual-based level. The first one is the homogeneous fragmentation
process introduced by Bertoin [10], extended later for more general cases [12, 20] and
for multitype particles [13]. Some other methods are used in the papers of Jeon [22] and
Fournier and Giet [19]. The next possibility is the stochastic particle systems approach
[7, 30] which will be used also here.

In [30] Wagner considers fragmentation-coagulation models in the framework of
jump processes on the space of measures consisted of finite number of Dirac deltas and
provides some criteria for explosion of such processes. Since in that case emergence of
infinite number of particles implies explosion, his model does not allow for shattering.

The aim of this paper is to present a general stochastic individual-based fragmentation
model with infinitely many particles, in which shattering may appear. We consider
a number (possibly infinite) of particles with states in some space X. Usually, in
fragmentation models particles are structured by their size or mass (either discrete,
X = {1, 2, . . . }, or continuous, X = (0,∞)), but we use more general setting here.
Namely, the state space X is an arbitrary locally compact Polish space, which covers
such examples as size and position of a particle or many types of particles. Each particle
may split up into some number of particles or jump to another place. All the events
happen randomly in time with some probability rates. We assume that each particle is
described by its mass, which is given by a continuous positive function h : X → R+. Total
mass is preserved by every event. Preservation of mass means that after a fragmentation
of a particle x into x1, x2, . . . we have

∑
i h(xi) = h(x). We describe a particle in state

x by the Dirac delta measure δx, so the state of the system is described by a measure
µ =

∑kµ
i=1 δxi ,with a number of particles kµ ∈ {0, 1, 2, . . . } ∪ {∞} and a finite total mass,

i.e.
∑kµ
i=1 h(xi) <∞. Thus we define a phase space of the system as

Nh =

{
ν =

kν∑
i=1

δxi : kν ∈ N ∪ {∞}, xi ∈ X and
kν∑
i=1

h(xi) <∞

}
. (1.1)

We may imagine a jump process that satisfies the description above and describe it
in the following way: let q be a probabilistic kernel from X into Nh that describe
the fragmentations and jumps of particles, and a the fragmentation rate. In par-
ticular a(x)q(x, {ν ∈ Nh : ‖ν‖ = 1}) is the probability rate of jump of a particle x,
a(x)q(x, {ν ∈ Nh : ‖ν‖ = n}) is the probability rate of fragmentation into n particles,
whereas a(x)q(x, {ν ∈ Nh : ‖ν‖ = ∞}) is the probability rate of fragmentation into the
infinite number of particles. We can write the jump kernel of such a process in the form

κ(ν,B) =

kν∑
i=1

a(xi)

∫
Nh

1B
(
ν − δxi + η

)
q(xi,dη), (1.2)

for

ν =

kν∑
i=1

δxi and B ∈ B(Nh).

If a number of particles in ν where always finite, κ would be indeed a kernel of some
jump process (c.f. [30]). However, in our case κ(ν,Nh) is generally infinite and, there
does not exist a jump process governed by this kernel, because it is possible here to
have infinite number of particles, and therefore the infinite number of events (‘jumps’) in
each time interval. That is why we use the martingale problem approach and define the
infinitely-many-particles fragmentation process as a solution to the martingale problem
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Stochastic particles model of fragmentation

with the operator

Lf(ν) =

∫
Nh

(
f(µ)− f(ν)

)
κ(ν, dµ)

=

kν∑
i=1

a(xi)

∫
Nh

[
f
(
ν − δxi + η

)
− f(ν)

]
q(xi,dη).

(1.3)

In the paper we prove the existence of such a process and give some criteria for mass
conservation and shattering. The IPF process defined in our paper can be thought
of as a microscopic realisation of the Filippov’s idea [18]. The setting of the IPF is
quite general thanks to the fact that phase space is a locally compact Polish space.
This generality allows for the description of moving particles or multitype processes.
Moreover, this setting may be generalized to describe e.g. continuous movement or to
include coagulation.

Section 2 provides some notations, the main results and some examples of applica-
tions. The next section contains some properties of considered spaces and proofs of the
main results. Some auxiliary definitions and results are stated in the appendix.

2 Main results

2.1 Notation

If E is a Polish space, we write Cb(E), and Cc(E) for spaces of bounded continuous,
and continuous with compact support functions, respectively. The sets of positive Radon
measures and probabilistic Radon measures on E are denoted by M(E) and M1(E),
respectively. Note that Radon measure is an inner regular and locally finite measure on
σ-algebra of Borel sets, see e.g. [6].

Throughout the paper, X is a locally compact Polish space. We write C0(X) for the
space of continuous functions on X vanishing at infinity. For µ ∈ M(X) and a Borel
measurable function f we use the notation 〈f, µ〉 =

∫
E
f(x)µ(dx) and ‖µ‖ = 〈1, µ〉. Let

N ⊂M(X) denote the space of integer-valued measures:

N =

{
ν =

kν∑
i=1

δxi : kν ∈ N ∪ {∞}, xi ∈ X

}
, (2.1)

where δx is a Dirac delta measure concentrated at x. Moreover, for a function h ∈ C0(X)

let us define Mh = {µ ∈ M : 〈h, µ〉 < ∞} and Nh = N ∩Mh. If µ ∈ N is a measure of
the form µ =

∑k
i=1 δxi , we will sometimes write for shortness

∑
xi∈µ meaning that sum

extends over all x1, x2, . . . , xk (even if some of them are equal).
We say that an E-valued càdlàg process (ξ(t))t≥0 (i.e. with trajectories in the Skoro-

chod space D([0,∞), E)) solves a martingale problem for an operator L and initial value
ξ0 ∈ E (or, equivalently, an (L, ξ0)-martingale problem) if

Prob(ξ(0) = ξ0) = 1

and

f(ξ(t))− f(ξ(0))−
∫ t

0

Lf(ξ(s))ds (2.2)

is a martingale with respect to the filtration generated by ξ for each f from the domain
of L.

By a kernel from one measurable space (E1,B1) to another (E2,B2) we mean a
function κ : E1 × B2 → R such that κ(·, B) is measurable for any B ∈ B2 and κ(e, ·) ∈
Mf (E) for any e ∈ E1. κ is a probabilistic kernel if κ(e, ·) is a probabilistic measure for
any e ∈ E1.
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2.2 Infinitely-many-particles fragmentation process

Let X be a locally compact Polish space and fix a positive function h ∈ C0(X). We
define infinitely-many-particles fragmentation process as a solution to the martingale
problem with the operator L given by (1.3) with the domain

D(L) =
{
Fg ∈ Cb(N) : Fg(ν) = e−〈g,ν〉 with g ∈ Cc(X) and LFg ∈ Cb(N)}

}
. (2.3)

Theorem 2.1. Let h ∈ C0(X) be a positive function. Let us assume that a is a continuous
function and q is such a probabilistic kernel from X to Nh that the function x 7→∫
Nh

e〈g,η〉q(x,dη) is continuous for g ∈ Cc(X). Moreover, assume that the mass h is
conserved by q, namely:

q(x, {ν ∈ Nh : 〈h, ν〉 6= h(x)}) = 0 for all x ∈ X. (2.4)

Then, for every ν ∈ Nh there exists a unique solution to the martingale problem with the
operator

(
L,D(L)

)
and the initial state ν with values in N.

Definition 2.2. The unique solution to the martingale problem with the operator(
L,D(L)

)
will be called the infinitely-many-particles fragmentation process or, in short,

the IPF process.

2.3 Criteria for the conservation of mass

We assume that in any particular fragmentation event the mass h is conserved, which
is ensured by the assumption (2.4). Nevertheless, it occurs that this condition not always
guarantees that the total mass of the system 〈h, ξt〉 is conserved. In this section we give
firstly some conditions when the mass is really conserved and then some conditions
when it is not.

Theorem 2.3. If there exist a positive function g ∈ C0(X) and a number C > 0 such that

g(x)

h(x)
→∞ as h(x)→ 0 (2.5)

and

a(x)

∫
Nh

[
〈g, η〉 − g(x)

]
q(x, dη) ≤ Cg(x), (2.6)

for all x ∈ X and 〈g, ξ0〉 < ∞ then then the IPF process starting from ξ0 is mass
conserving, i.e. 〈h, ξt〉 = 〈h, ξ0〉 for all t > 0 a.s.

This theorem allows to state the following criterion in a more specific situation. We
will call an IPF homogeneous if there exists a measure q̃ on (0, 1] such that∫

Nh

〈h, η|Xα〉q(x, dη) = h(x)

∫ 1

α/h(x)

s q̃(ds),

for all x ∈ X and α ≤ h(x), where Xα = {x ∈ X : h(x) ≥ α}.
Corollary 2.4. If the fragmentation rate a(x) is bounded and the fragmentation is
homogeneous, then the IPF process is mass conserving.

On the other side, if the fragmentation rate grows too fast for small h then decay of
mass is possible.

Theorem 2.5. If the fragmentation rate a satisfies

a(x) > C h(x)−β ,
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for some positive constants β and C, and there exists such a δ > 0 that

1

h(x)1+β

∫
Nh

〈h1+β , η〉q(x, dη) < 1− δ,

for all x ∈ X, then the IPF process is shattering, i.e. some mass is lost with positive
probability.

The second condition assures that fragmentation does not stop for x with small mass.
In particular, it is trivially satisfied for the homogeneous case. Note that the loss of mass
is connected to the situation when some particles tend to infinity (where h = 0) and the
corresponding Dirac masses converge vaguely to zero measure.

2.4 Applications

Let us firstly show the relation to some already-known models. Many of the available
results on stochastic fragmentation are (or can be) formulated in terms of partition
fragmentation, which is a process that lives in the space of partitions of N. Most of them
may be equivalently stated by means of the interval representation [11, 20], which is a
process whose state space is the set of open subsets of the interval (0, 1). Sometimes
the so called ranked fragmentation approach is used [10, 9, 20] which lives in the
space S↓ = {s = (s1, s2, . . . ) : s1 ≥ s2 ≥ · · · ≥ 0,

∑
i si ≤ 1}. See [9] for the proof of

equivalence of those approaches. We will show that the special case of our IPF with
X = (0, 1], h(x) = x and constant a(x) = a is equivalent to the Bertoin’s homogeneous
fragmentation with finite splitting measure.

Proposition 2.6. Let λ be an S↓-valued ranked homogeneous fragmentation with no
erosion and with a finite Lévy measure ν. Let Ξx : S↓ → Nh for any x ∈ (0, 1] be
given by Ξx(s) =

∑
i∈N
si>0

δx si . Then ξ(t) = Ξ1(λ(t)) is the IPF process with a = ‖ν‖ and

q(x, dη) = ν(Ξ−1x (dη)).

Proof. As proved by Berestycki in [9], there exists a Poisson point process K = (s(t), k(t))

with values in S↓×N and intensity measure ν×#, such that λ only jumps at times at which
(s(t); k(t)) has an atom, and at such a time λ(t) is obtained from λ(t−) by dislocating the
k(t)-th component of λ(t−) by s(t) (i.e. replacing λk(t)(t

−) by the sequence λk(t)(t
−)s(t))

and reordering the new sequence of fragments. Therefore, for any Fg ∈ D(L) one can
write

F̃g(λ(t)) = F̃g(λ(s)) +

∫
[s,t]

(
F̃g(λ

(k(r),s(r))(r−))− F̃g(λ(r−))
)

dKr,

where F̃g = Fg ◦ Ξ1 and λ(k(r),s(r))(r−) is λ(r−) with k(r)-th component replaced by the
sequence λk(r)(r

−)s(r)) and with reordered fragments. Note that Fg depends on a finite
number of points (since g has a compact support) and does not depend on the order of
points. Taking expectations, we obtain

E[F̃g(λ(t))] = E[F̃g(λ(s))] +

∫ t

s

∑
k

F̃g(λ(r−))
(
eg(λk(r

−))−
∑
i g(λk(r

−)si) − 1
)
ν(ds),

which means that

Fg(ξ(t))− Fg(ξ(0))−
∫ t

0

LFg(ξ(r))dr

is a martingale, and thereby ξ is an IPF process.

It is intuitively clear that if we take a(x) = ‖ν‖ eαx for some α ∈ R in the construction
above, then we obtain the Bertoin’s self-similar fragmentation, cf. [11]. However, the
proof of this fact exceeds the scope of this paper. Taking α ∈ R and a finite Lévy
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measure ν, we may think about the IPF process on X = (0, 1] with a = ‖ν‖ eαx and
q(x, dη) = ν(Ξ−1x (dη)) as the self-similar fragmentation with index α. Then Corollary 2.4
and Theorem 2.5 imply the following dichotomy: if α ≥ 0 then self-similar fragmentation
is mass-conserving; if α < 0 then self-similar fragmentation is shattering.

Let us look at another possible application of the model: the alternative description of
the multitype fragmentation processes, cf. [13]. Consider a finite set of types {1, . . . , k}
and take the state space X = (0, 1] × {1, . . . , k}, so that x = (s, i) denotes a particle of
size s ∈ (0, 1] and type i; the mass function is just h(s, i) = s. Then one can define any
rule of splitting of such a particle into smaller ones of any type by specifying a and q

(as long as the assumptions of Theorem 2.1 are satisfied). In particular, taking a family
of finite dislocation measures (νi)i∈{1,...,k} from [13] with no erosion (ci = 0), one can
construct as before the splitting kernel q that describes the Bertoin’s homogeneous
multitype fragmentations. Note also, that the set of types does not need to be finite —
it only has to be compact. We may take any compact set of types, say Y , and define
X = (0, 1]× Y .

In a very similar way we can describe particles that, besides of splitting, move in
some compact space according to a jump process possibly depending on size. Namely,
let a compact set Y denote the space, let X = (0, 1]×Y and h(s, y) = s. Consider a family
κ(s; y,dz) of jump kernels on Y parametrized by size, that is for any s ∈ (0, 1] operator
Lsf(y) =

∫
E

[f(z)− f(y)]κ(s; y,dz) generates a jump process on Y . Moreover, consider a
family of splitting kernels q0(y; s,dη) parametrized by y and splitting rate a0(s, y). Then
we can define an IPF process by a(s, y) = a0(s, y) + κ(s; y, Y ) and

q((s, y), Bs ×By) = q0(y; s,By) +
1

κ(s; y, Y )
κ(s; y,Bs),

for Bs ∈ B((0, 1]) and By ∈ B(Y ), if the resulting a and q satisfy the continuity conditions
of Theorem 2.1.

3 Proofs

3.1 Properties of spaces

As before, X is a locally compact Polish space and h ∈ C0(X) is a positive function.
For any α > 0 let us denote

Xα = {x ∈ X : h(x) ≥ α}.

Note that Xα is a compact set and that for any compact set C ⊂ X there exist α > 0

such that C ⊂ Xα. In the present section we provide some necessary information on the
spaces of measures N, Mh, and Nh. The spaces M = M(X) and N (and sometimes Mh

and Nh) are equipped with the metrics ρ0 which is a metrization of vague convergence
of measures according to the proof of Theorem 31.5 from [6]:

Definition 3.1. Let D0 be a dense subset of Cc(X). Let (Hn)n∈N be a sequence of
compact subsets of X and let (Gn)n∈N be a sequence of open subsets such that Hn ⊂
Gn ⊂ Hn+1 for n ∈ N and Hn ↑ X. Thus let en : X → [0, 1] be such functions from Cc(X)

that en(Hn) = {1} and en(X \Gn) = {0} (one can take e.g. en = χn given by (3.3)). Let
now (dn)n∈N be an enumeration of the elements of the countable set

D = D0 ∪ {f · en : f ∈ D0, n ∈ N} ∪ {en : n ∈ N},

namely D = {dn : n ∈ N}. Using this enumeration we define a metric

ρ0(µ, ν) =

∞∑
n=1

2−n min{1, |〈dn, µ− ν〉|}. (3.1)
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Remark 3.2. Note that (M, ρ0) is a Polish space and (N, ρ0) as well, since N is closed in
(M, ρ0).

Spaces Mh and Nh (unless otherwise stated) are provided with the metrics ρh defined
by the formula

ρh(µ, ν) = ρ0(µ, ν) + sup
n∈N
|〈h · (1− χn), µ− ν〉|, (3.2)

where χn ∈ Cc(X) are defined in (3.3).

Lemma 3.3. For every α > 0 the set Kh,α = {ν ∈ Nh : 〈h, ν〉 ≤ α} is vaguely compact.

Proof. According to Theorem 31.2 of [6], a set Kh,α ⊂M is vaguely relatively compact
if supµ∈Kh,α

|
∫
f dµ| < ∞ for every f ∈ Cc(X). But, since h > 0, for every f ∈ Cc(X)

there exists such an M > 0 that ‖f‖ ≤ Mh. Thus |
∫
f dµ| ≤ M

∫
hdµ ≤ Mα for

µ ∈ Kh,α. To check that Kh,α is compact, take a sequence fn ∈ Cc(X), fn ↑ h and note
that for any convergent sequence µn of measures from Kh,α we have 〈h, limn→∞ µn〉 =

limk→∞〈fk, limn→∞ µn〉 = limk→∞ limn→∞〈fk, µn〉 ≤ α .

Lemma 3.4. For every ε > 0 there exists such a number α > 0 that for all µ, ν ∈ M if
µ|Xα = ν|Xα then ρ0(µ, ν) < ε.

Proof. Take such an n0 ∈ N that 1
2n0

< ε. Let C =
⋃n0

n=1 supp dn and α = minx∈C h(x).
Then

ρ0(µ, ν) <

n0∑
n=1

2−n min{1,
∣∣〈dn, µ− ν〉∣∣}+

∞∑
n=n0+1

2−n < 0 + ε.

Lemma 3.5. The space (Mh, ρh) is complete.

Proof. Take a Cauchy sequence (µn)n∈N of measures from Mh and fix ε > 0. Note that
ρ0 ≤ ρh, and M is complete, so there exists a vague limit of (µn), say µ∞. Take such an
n0 that ρn(µm, µn) ≤ ε for m,n ≥ n0. By approximating a function h · (1−χn) from below
by functions with compact support we obtain that 〈h · (1−χn), µ∞〉 ≤ 〈h(1−χn), µn0

〉+ ε.
Take such an α = 1/k0 that

∫
X\Xα h(x)µn0

(dx) ≤ ε. Then 〈h(1 − χk), µn0
〉 ≤ ε and

〈h(1− χk), µ∞〉 ≤ 2ε for any k ≥ k0. For k < k0 and n ≥ n0 we have

〈h(1− χk0), µ∞ − µn〉 ≤ 3ε+ |〈h(χk − χk0), µ∞ − µn〉|.

The function h(χk−χk0) has a compact support and can be approximated by the functions
from the set D in the definition of ρ0, so the last integral is arbitrarily small by the vague
convergence of µn.

Remark 3.6. The set Nh is closed in (Mh, ρh) and thereby complete by Lemma 3.5.

Lemma 3.7. For every β > 0 and a continuous positive function g such that

g(x)

h(x)
→∞ as h(x)→ 0,

the set Kg,β = {ν ∈ N : 〈g, ν〉 ≤ β} is relatively compact in (Nh, ρh).

Proof. Note that Kg,β ⊂ Kh,α for some α > 0, thus Kg,β is relatively compact in ρ0 by
Lemma 3.3 and that ρ0 < ρh. Therefore, it suffices to check that if µ∞ is a vague limit of a
sequence of measures µn ∈ Kg,β then the convergence holds also in ρh. Since 〈g, µn〉 ≤ β
and g/h→∞ as h→ 0, for any ε > 0, we can find such a k0 that 〈h(1−χk), µn〉 ≤ ε for all
µn and k ≥ k0, and thereby 〈h(1− χk), µ∞〉 ≤ ε. For k < k0 the integral 〈h(1− χk), µ∞〉
is small by the same argument as in the proof of Lemma 3.5.
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Lemma 3.8. Let g be such a continuous positive function that

g(x)

h(x)
→∞ as h(x)→ 0.

For every ε > 0 and β > 0 there exists such a number α > 0 that for all µ1, µ2 ∈ M if
µ1|Xα = µ2|Xα and 〈g, µi〉 ≤ β, i = 1, 2, then ρh(µ1, µ2) < ε.

Proof. Take n0 ∈ N such that 1
2n0

< ε/3 and let α1 = minx∈C h(x) where C =
⋃n0

n=1 supp dn.
Take now α2 such that g(x)/h(x) > 3β/ε for x 6∈ Xα2

and let α = min{α1, α2}. Then∫
X\Xα h(1 − χk)µi(dx) < ε/3 for k > k0 = [1/α] + 1 and for k ≤ 1/α we have 〈h(1 −
χk), µ1 − µ2〉 ≤ 2ε/3 + |〈h(χk0 − χk), µ1 − µ2〉| = 2ε/3. So ρh(µ1, µ2) < ε.

3.2 Proof of theorem 2.1

To construct our target process which solves the martingale problem for the operator
L defined by the formula (1.3), we construct a sequence of approximating models in
which only finitely many particles move. To this end let a and q satisfy the assumptions
of Theorem 2.1 and let κ and L be given by (1.2) and (1.3), respectively. Consider the
sequence of sets X1/N =

{
x ∈ X : h(x) ≥ 1

N

}
and let

χN (x) =


1, for x ∈ X1/N ,

N [(N + 1)h(x)− 1] , for x ∈ X1/(N+1) \X1/N ,

0, for x 6∈ X1/(N+1).

(3.3)

Note that χN ∈ Cc(X) and 0 ≤ χN ≤ 1.

Let us now define approximating transition kernels as

κN (ν,B) =
∑
xi∈ν

χN (xi)a(xi)

∫
Nh

1B
(
ν − δxi + η

)
q(xi,dη), (3.4)

and a sequence of approximating operators

LNf(ν) =

∫
Nh

(
f(µ)− f(ν)

)
κN (ν, dµ)

=
∑
xi∈ν

χN (xi)a(xi)

∫
Nh

[
f
(
ν − δxi + η

)
− f(ν)

]
q(xi,dη)

(3.5)

with the domain D(LN ) = {f ∈ Cb(N) : supν∈N |LNf(ν)| <∞}.
Lemma 3.9. Let ν0 ∈ N. For every N ∈ N there exists a unique solution ξN to the
martingale problem for operator LN and initial point ν0.

Proof. We use Proposition A.1. Let us define a function

ψ(ν) = 〈hχN , ν〉. (3.6)

Notice that ψ is continuous on N and

κN (ν,Nh) =
∑
xi∈ν

χN (xi)a(xi) ≤ (N + 1)ψ(ν) max
x∈X1/(N+1)

a(x).
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Note that hχN = h on X 1
N

and check that

LNψ(ν) =
∑
xi∈ν

χN (xi)a(xi)

∫
Nh

[
〈χNh, ν − δxi + η〉 − 〈χNh, ν〉

]
q(xi,dη) ≤

∑
xi∈ν

xi∈X1/N

χN (xi)a(xi)

∫
Nh

[
〈h, η〉 − h(xi)

]
q(xi,dη)+

∑
xi∈ν

xi∈X1/(N+1)\X1/N

χN (xi)a(xi)

∫
Nh

[
χN (xi)〈h, η〉 − χN (xi)h(xi)

]
q(xi,dη),

which is less then 0. Notice moreover that LNψ(ν) ≥ −
∑
xi∈ν χN (xi)a(xi)h(xi), which is

finite for every ν ∈ N. Thereby LNψ(ν) is well defined for every ν ∈ N.
Let us now check that all bounded continuous functions with supports in sets Uψ≤α

belong to the domain of LN . To that end take F ∈ Cb(N) such that suppF ⊂ {ν :

〈χNh, ν〉 ≤ α}. Let us estimate

LNF (ν) =
∑
xi∈ν

χN (xi)a(xi)

∫
Nh

[
F (ν − δxi + η)− F (ν)

]
q(xi,dη)

≥−
∑
xi∈ν

χN (xi)a(xi)F (ν)

≥

{
0, if ν 6∈ {µ : 〈χNh, µ〉 ≤ α}
−‖F‖(N + 1)ψ(ν) maxx∈X1/(N+1)

a(x), if ν ∈ {µ : 〈χNh, µ〉 ≤ α}

≥ − ‖F‖(N + 1)α max
x∈X1/(N+1)

a(x),

and on the other side

LNF (ν) ≤{
0, if ν 6∈ {µ : 〈χNh, µ〉 ≤ α},
‖F‖(N + 1)αmaxx∈X1/(N+1)

a(x), if ν ∈ {µ : 〈χNh, µ〉 ≤ α}.

Remark 3.10. Let ξN be a solution to the martingale problem for (LN , ξ0), ξ0 ∈ Nh.
Then the same argument as in Lemma 3.13 gives E〈h, ξN (t)〉 ≤ E〈h, ξ0〉. But we have
more here, namely let us notice that ξN is a continuous-time Markov process with the
jump kernel κN defined by the formula (3.4) and, thanks to the mass conservation
assumption of Theorem 2.1, jumps cannot change the value of 〈h, ξN (t)〉. Therefore,
〈h, ξN (t)〉 = 〈h, ξ0〉 a.s.

Remark 3.11. Take ν0 ∈ Nh. Then we can replace the space (N, ρ0) by (Nh, ρh) every-
where in Lemma 3.9 and in its proof. The process defined in such a way is actually the
same process as the one defined by using Lemma 3.9 directly, but we will not prove nor
use that fact here.

Lemma 3.12. Take any ξ0 ∈ Nh and let ξN be a solution to the martingale problem for
(LN , ξ0). The set {ξN}N∈N is relatively compact in D([0,∞),N).

Proof. Let us check the assumptions of Theorem A.2. By Remark 3.10 and Lemma 3.3
the assumption (a) is satisfied in a trivial way — all processes live in a compact set
{ν ∈ N : 〈h, ν〉 ≤ 〈h, ξ0〉}. To check the second assumption fix T > 0 and ε > 0 and we
have to prove that there exists an r > 0 such that

sup
N∈N

Prob
{
w′(ξN , r, T ) ≥ ε

}
< ε. (3.7)
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Using Lemma 3.4 chose a number α > 0 for our ε. For each N consider the sequence of
all stopping times τNn such that there is a jump of process ξN that changes the measure
on the set Xα, namely: ξN

(
(τNn )−

)
(Xα) 6= ξN (τNn )(Xα) and ξN (s)(Xα) = ξN (τNn )(Xα) for

τNn ≤ s < τNn+1. Note that for a given trajectory, if the distance between all subsequent
times τNn is bigger then r then

w′(ξN , r, T ) ≤ max
1≤n≤k

sup
s,t∈[τNn−1,τ

N
n )

ρ0(ξN (s), ξN (t)) < ε,

where k is such that τNk−1 ≤ T < τNk . So now it is sufficient to prove that

Prob
(
min{τNn − τNn−1 : τNn ≤ T} > r

)
< ε

for all N ∈ N. To this end, note that the jump of process ξN changes a measure on the set
Xα only when a particle of mass bigger then α (i.e. a particle being in Xα) fragmentizes.
So, the probability rate of such a jump is∑

xi∈ξN (t)
h(xi)>α

χN (xi)a(xi) ≤
〈h, ξN (t)〉

α
sup
x∈Xα

a(x) ≤ 〈h, ξ0〉
α

sup
x∈Xα

a(x). (3.8)

Therefore, the frequency of times τNn is not bigger then frequency of jumps of Poison
process with the intensity given by the right hand side of (3.8). So the probability that
the minimal distance of two jumps in [0, T ] is less then r goes to zero as r → 0.

Lemma 3.13. If ξ is a solution to the (L, ξ0)-martingale problem then

E〈h, ξt〉 ≤ E〈h, ξ0〉. (3.9)

Proof. Let hN (x) = χN (x)h(x) where χN is given by (3.3). Notice that F (ν) = e−〈hN ,ν〉

belongs to the domain of L and LF ≥ 0. Thus

E
[
e−λ〈hN ,ξ(t)〉

]
= e−λ〈hN ,ξ0〉 +

∫ t

0

ELF (ξs)ds ≥ e−λ〈hN ,ξ0〉,

and using s e−s ≤ 1− e−s we get

E
[
λ〈hN , ξ(t)〉 e−λ〈hN ,ξ(t)〉

]
≤ E

[
1− e−λ〈hN ,ξ0〉

]
.

Going with λ to zero we obtain E〈hN , ξt〉 ≤ E〈hN , ξ0〉, and by the monotone convergence
theorem the lemma is proved.

Lemma 3.14. For any ξ0 such that E〈h, ξ0〉 <∞ there exists at most one solution to the
martingale problem for (L, ξ0).

Proof. We adapt here the method of the proof of Theorem 8.4.2 of [17]. By Theorem 4.2
of Chapter 4 in [17] it suffices to prove the uniqueness of one dimensional distributions.
Let ξt be any solution to the (L, ξ0)-martingale problem, and write

vt(g) = E[exp(−〈g, ξt〉)] (3.10)

for g ∈ Eh, where

Eh = {g ∈ Cc(X) : there exist 0 < α < β and c > 0 such that

g(x) = 0 for x ∈ X \Xα, g(x) = c(h(x)− α) for x ∈ Xα \Xβ ,

and α ≤ g(x) ≤ 1 for x ∈ Xβ}.
(3.11)
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Let us now define
Eh,N =

{
g ∈ Eh : g(x) = 0 for x 6∈ X1/N

}
, (3.12)

and notice that for any g ∈ Eh,N the function ν 7→ exp(−〈g, ν〉) belongs to D(L). Moreover,
v is bounded and continuous on Eh,N . Let us define an operator

Au(g) = lim
ε↓0

1

ε
[u(πεg)− u(g)] (3.13)

for u ∈ C(Eh,N ) if the convergence is uniform in g, where

πεg(x) = − log
[
eεa(x)e−g(x) +

(
1− eεa(x)

) ∫
Nh

e〈−g,η〉q(x,dη)
]
. (3.14)

The operator A is dissipative. Notice that for v defined by (3.10) we have

1

ε
[vt(πεg)− vt(g)]

=
1

ε

∫ ε

0

E

[
exp(−〈πsg, ξt〉)

〈
Φg(·)

1 +
(
e−s a(·) − 1

) ∫
Nh

eg(·)−〈g,η〉q(·,dη)
, ξt

〉]
ds, (3.15)

where

Φg(x) = a(x)

(∫
Nh

eg(x)−〈g,η〉q(x, dη)− 1

)
, (3.16)

so if the convergence of (3.15) for ε→ 0 is uniform then we have

Avt(g) = E
[
exp(−〈g, ξt〉)〈Φg, ξt〉

]
. (3.17)

Indeed, one can check that for every N ∈ N the convergence is uniform on Eh,N and
thereby vt for every t belongs to the domain of A.

Since ξt satisfies the martingale problem for L, we have

vt(g) = vs(g) +

∫ t

s

Avr(g)dr. (3.18)

Note also that Avt(g) is uniformly continuous. Thus by Proposition A.3 equation (3.18)
has a unique solution in C(Eh,N ) for every N ∈ N. Since Eh =

⋃
N∈NEh,N , the term

vt(g) given by (3.10) is uniquely determined for every g ∈ Eh. But Eh separates points
in N, therefore the uniqueness for one dimensional distributions holds.

Proof of Theorem 2.1. To prove the well-posedness of the martingale problem for the
operator L and the initial state ξ0 we use Theorem A.4. Let us check the assumptions of
this theorem.

We have already checked in Lemma 3.14 the uniqueness condition for the martingale
problem for (L, ξ0). Let us consider a sequence of processes ξN which are the solutions
to the martingale problems for (LN , ξ0). Thanks to Lemma 3.12 the sequence {ξN} is
relatively compact in D([0,∞),N).

It suffices to provide a sequence of sets UN and a bounded sequence FN of functions
from DLN satisfying (A.6) for every function Fg ∈ DL. To that end, let us take an
arbitrary Fg ∈ DL. We set UN = Nh and FN = Fg, since Fg ∈ DLN for every N . Then
both supN ‖FN‖ <∞, and limN→∞ supy∈UN |F (y)− FN (y)| = 0 are trivial. To check the
last estimate, let us calculate |LFg(µ)− LNFg(µ)| for µ ∈ UN .

LFg(µ)− LNFg(µ) = e−〈g,µ〉
∑
xi∈µ

(1− χN (xi))a(xi)

∫
Nh

[
e−〈g,−δxi+η〉 − 1

]
q(xi,dη),

which is 0 for N large enough to have supp g ⊂ X1/N , because 1 − χN (xi) = 0 for
xi ∈ X1/N and e−〈g,−δxi+η〉 = 1 for xi 6∈ X1/N .
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3.3 Conservation of mass

Firstly, we need to prove a new version of Lemma 3.12, namely

Lemma 3.15. Take any ξ0 ∈ Nh and let ξN be a solution to the martingale problem for
LN and the initial point ξ0. Under the assumptions of Theorem 2.3 the set {ξN}N∈N is
relatively compact in (Nh, ρh).

Proof. We will use Theorem A.2 again, but now the set {ν ∈ Nh : 〈h, ν〉 ≤ 〈h, ξ0〉} is not
compact. Therefore, to check the assumption (a) of Theorem A.2 we will show that for
every ε > 0, t ≥ 0 there exists β > 0 such that

Prob(ξN (t) ∈ Kg,β) ≥ 1− ε for all N ∈ N, (3.19)

where Kg,β = {ν : 〈g, ν〉 ≤ β} is a compact set by Lemma 3.7. To this end, note that the
function ν 7→ exp[−λ〈min{nh, g}, ν〉] belongs to the domain of LN , so

e−λ〈min{nh,g},ξN (t)〉 − e−λ〈min{nh,g},ξ0〉 −
∫ t

0

LNe
−λ〈min{nh,g},·〉(ξN (s))ds

is a martingale. Going to infinity with with n, by (2.6) and the dominated convergence
theorem we also obtain that

e−λ〈g,ξN (t)〉 − e−λ〈g,ξN (0)〉 −
∫ t

0

LNe
−λ〈g,·〉(ξN (s))ds (3.20)

is a martingale. Thus

E
[
e−λ〈g,ξN (t)〉

]
= e−λ〈g,ξ0〉 +

∫ t

0

E
[
LNe

−λ〈g,·〉(ξN (s))
]

ds (3.21)

and

E
[
λ〈g, ξN (t)〉 e−λ〈g,ξN (t)〉

]
≤ E

[
1− e−λ〈g,ξN (t)〉

]
≤ 1− e−λ〈g,ξ0〉 −

∫ t

0

E
[
LNe

−λ〈g,·〉(ξN (s))
]

ds.

But from (2.6) it follows that

E
[
λ〈g, ξN (t)〉 e−λ〈g,ξN (t)〉

]
≤ 1− e−λ〈g,ξ0〉 − C

∫ t

0

E
[
e−λ〈g,ξN (s)〉λ〈g, ξN (s)〉

]
ds,

and by Gronwall Lemma we have

E
[
λ〈g, ξN (t)〉 e−λ〈g,ξN (t)〉

]
≤
(

1− e−λ〈g,ξ0〉
)
eCt.

Going with λ to zero we obtain

E〈g, ξN (t)〉 ≤ 〈g, ξ0〉eCt. (3.22)

Thereby, there exists β > 0 such that

Prob{〈g, ξN (t)〉 > β} < ε for all N ∈ N,

which gives (3.19). Using (3.20) and (3.22), and some Doob-Kolmogorov martingale
inequalities we obtain that

Prob

{
sup
t∈[0,T ]

〈g, ξN (t)〉 > β

}
<

1

β
〈g, ξ0〉eCt for all N ∈ N.
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Knowing that ξt for t ∈ [0, T ] are in Kg,β with probability bigger then 1−ε, we use Lemma
3.8 to find such an α > 0 that ρh(µ, ν) < ε if µ|Xα = ν|Xα . As in the proof of Lemma
3.10 we claim that the jumps on the set Xα are sufficiently rare and assumption (b) of
Theorem A.2 is satisfied.

Proof of Theorem 2.3. To prove the mass conservation we show that under the assump-
tions of Theorem 2.3 the convergence in the proof of Theorem 2.1 holds also in the space
Nh with the metric ρh. We consider the same sequence of approximating processes ξN
given by Lemma 3.9 as a sequence of unique solutions to the martingale problem with
operators LN defined in (3.5). Exactly in the same way as in the proof of Theorem 2.1,
we check assumptions of Theorem A.4, using now Lemma 3.15 for the proof of relative
compactness of the sequence {ξN}. Notice that Lemma 3.14 works in this case, as well
as the rest of calculations in the proof of Theorem 2.1.

Observe now, that the function ν 7→ 〈h, ν〉 is continuous in the space (Nh, ρh), so if
〈h, ξN (t)〉 = 〈h, ξ0〉 for each N ∈ N and ξN converge to ξ, then also 〈h, ξ(t)〉 = 〈h, ξ0〉.

Formally, the process obtained as the limit in D([0,∞),Nh) is different from the
process given by Theorem 2.1. However, D([0,∞),Nh) ⊂ D([0,∞),N), the σ-algebras of
Borel sets on (Nh, ρh) and (Nh, ρ0) coincide and the uniqueness Lemma 3.14 does not
rely on the metrics. Therefore, the distributions of both processes are the same.

For the proof of Corollary 2.4 we need the following auxiliary fact:

Lemma 3.16. For any finite measure Borel µ on the interval (0, 1] there exists such
a decreasing function f : (0, 1] → R+ that lims↓0 f(s) = ∞,

∫ 1

0
f(s)µ(ds) < ∞ and

f(st) ≤ f(s)f(t) for any s, t ∈ (0, 1].

Proof. If there exists such an ε > 0 that µ((0, ε]) = 0, take f(x) = 1/x. Otherwise, let us
define the following sequences:

a0 = 1, an =

(
1

2

)2n−1

, for n ≥ 1,

b0 = 1, bn = sup
{
s : µ((0, s)) < 1/2n

}
, for n ≥ 1,

c0 = 1, cn+1 = max
{
ak : ∃l∈N bl ∈ [ak, cn)

}
, for n ≥ 1,

and let f(s) = 2 + n for s ∈ [cn+1, cn). Note that bn → 0, so cn is well defined, strictly
decreasing and cn → 0 as well, and thereby f(0+) =∞. Moreover, since cn ≤ bn, we have
f(s) ≤ 2 +n for s ≥ bn+1, thus

∫ 1

0
f(s)µ(ds) ≤

∑∞
n=0(2 +n)µ([bn+1, bn)) ≤

∑∞
n=0

2+n
2n <∞

(in the last sum one should be careful when an atom occurs at bn). To complete the
proof, take 0 < s ≤ t ≤ 1 and such an n that s ∈ [cn, cn−1). Thus t ≥ cn and st ≥ cn+1, so
f(st) ≤ n+ 2 < (n+ 1)2 ≤ f(s)f(t).

Proof of Corollary 2.4. By the previous Lemma, take a such function f : (0, 1] → R+

that f(0+) = ∞,
∫ 1

0
f(s)s q̃(ds) = C < ∞ and f(st) ≤ f(s)f(t) for s, t ∈ (0, 1] and define

g(x) = f(h(x))h(x). Then

a(x)

∫
Nh

[
〈g, η〉 − g(x)

]
q(x, dη)

≤‖a‖
[
h(x)f(h(x))

∫ 1

0

f(s)s q̃(ds)− f(h(x))h(x)

]
= ‖a‖(C − 1)g(x).

Therefore, by Theorem 2.3 the mass is conserved.
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Proof of Theorem 2.5. Let ξ be the IPF starting from ξ0. Since ξ is the solution to the
(L, ξ0)-martingale problem, for any n ∈ N we have

E e−〈χnh
1+β ,ξ(t)〉 = e−〈χnh

1+β ,ξ0〉 +

∫ t

0

ELe−〈χnh
1+β ,·〉(ξ(s))ds. (3.23)

Moreover, for any ν ∈ Nh we have

Le−〈χnh
1+β ,·〉(ν)

≥ e−〈χnh
1+β ,ν〉

∑
xi∈ν

C h(xi)
−β
∫
Nh

[
χn(xi)h(xi)

1+β − 〈χnh1+β , η〉
]
q(xi,dη)

≥ C e−〈χnh
1+β ,ν〉

∑
xi∈ν

h(xi)
−βχn(xi)h(xi)

1+β

∫
Nh

[
1− 1

h(xi)1+β
〈h1+β , η〉

]
q(xi,dη)

≥ C δ e−〈λχnh
1+β ,ν〉〈λχnh, ν〉.

Using the above inequality in (3.23) and going with n to∞ yields

E e−〈h
1+β ,ξ(t)〉 ≥ e−〈h

1+β ,ξ0〉 + C δ

∫ t

0

E
[
e−〈h

1+β ,ξ(s)〉〈h, ξ(s)〉
]

ds. (3.24)

To obtain a contradiction, let us now assume that 〈h, ξ(t)〉 = 〈h, ξ(0)〉 for all t ≥ 0 a.s.
Then

E e−〈h
1+β ,ξ(t)〉 ≥ e−〈h

1+β ,ξ0〉 + C δ〈h, ξ(0)〉
∫ t

0

E e−〈h
1+β ,ξ(s)〉ds.

This implies E e−〈h
1+β ,ξ(t)〉 ≥ e−〈h1+β ,ξ0〉eC δ〈h,ξ(0)〉t, so E e−〈h

1+β ,ξ(t)〉 becomes greater then
1 at some time, which is impossible.

A Appendix

For easy reference we state here some external facts that we use in the proofs.

Proposition A.1. Let E be a Polish space. Let κ be a kernel on E and consider an
operator of the form

Lf(e) =

∫
E

[f(e1)− f(e)]κ(e,de1) (A.1)

with some domain DL ⊂ Cb(E). Suppose that there exists a continuous function
ψ : E → [0,∞) such that

Lψ(e) ≤ c1 + c2ψ(e) for e ∈ E (A.2)

for some c1, c2 ≥ 0, and κ(·, E) is bounded on all sets Uψ≤α = {e ∈ E : ψ(e) ≤ α} (i.e.
supe∈Uψ≤α

κ(e, E) <∞). Moreover, suppose that all bounded continuous functions with
support in sets Uψ≤α belong to DL.

Then the martingale problem for L has a unique solution for every initial point e0 ∈ E.

One can find full the proof of the above proposition in [32]. Cf. also Proposition 2.2.(ii)
of [24] and the books [16, 25]. We use the following criterion for relative compactness of
a family of processes.

Theorem A.2 (Theorem 3.7.2 of [17]). Let (E, rE) be a Polish space and let {ξn} be a
family of càdlàg processes. The {ξn} is relatively compact iff

1. for all ε > 0 and t ∈ Q ∩ [0,∞) there exists a compact set Γε,t such that

inf
n

Prob
(
ξn(t) ∈ Γεε,t

)
≥ 1− ε

where Γεε,t = {e ∈ E : rE(e,Γε,t) < ε},
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and

2. for all ε > 0 and T > 0 there exists r > 0 such that

sup
n

Prob
(
w′(ξn, r, T ) ≥ ε

)
≤ ε

where

w′(ξ, r, T ) = inf
{ti}

max
1≤i≤n

sup
s,t∈[ti−1,ti)

rE(ξ(s), ξ(t)) (A.3)

the infimum is over all partitions 0 = t0 < t1 < · · · < tn−1 < T ≤ tn with
min1≤i≤n(ti − ti−1) > r and n ≥ 1.

Proposition A.3 (Proposition 1.2.10 of [17]). Let L be a dissipative linear operator on
a real Banach space E with the norm ‖ · ‖. Suppose that u : [0,∞) → E is continuous,
u(t) ∈ D(L) for all t > 0, Lu : (0,∞)→ E is continuous, and

u(t) = u(ε) +

∫ t

ε

Lu(s)ds, (A.4)

for all t > ε > 0. Then

‖u(t)‖ ≤ ‖u(0)‖ (A.5)

for all t > 0.

One can use Theorem 4.8.10 or Corollary 4.8.12 from [17] in proofs of Theorems 2.1
and 2.3, but we formulate here a fact that follows from Theorem 4.8.10 in [17] and is
more convenient in our case:

Theorem A.4. Let (E, ρ) be a Polish space. Let L : Cb(E) ⊃ DL → Cb(E) be a linear
operator and e ∈ E, and suppose that the DE [0,∞) martingale problem for (L, e) has
at most one solution. For each N ∈ N, suppose that ξN is a càdlàg solution to the
(LN , e)-martingale problem. Assume that {ξN} is relatively compact and that ξN (0) = e.
If for each F ∈ DL and T > 0 there exist FN ∈ DLN and UN ⊂ E such that ξN (t) ∈ UN
for t ≤ T a.s., supN ‖FN‖ <∞, and

lim
N→∞

sup
y∈UN

|F (y)− FN (y)| = lim
N→∞

sup
y∈UN

|LF (y)− LNFN (y)| = 0, (A.6)

then there exists a solution ξ of the DE [0,∞) martingale problem for (L, e) and the
processes ξN converge in distribution on DE [0,∞) to ξ.
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