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Asymptotic behaviour of first passage time
distributions for subordinators*
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Abstract

In this paper we establish local estimates for the first passage time of a subordinator
under the assumption that it belongs to the Feller class, either at zero or infinity, having
as a particular case the subordinators which are in the domain of attraction of a stable
distribution, either at zero or infinity. To derive these results we first obtain uniform
local estimates for the one dimensional distribution of such a subordinator, which
sharpen those obtained by Jain and Pruitt [9]. In the particular case of a subordinator
in the domain of attraction of a stable distribution our results are the analogue of
the results obtained by the authors in [5] for non-monotone Lévy processes. For
subordinators an approach different to that in [5] is necessary because the excursion
techniques are not available and also because typically in the non-monotone case
the tail distribution of the first passage time has polynomial decrease, while in the
subordinator case it is exponential.
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1 Introduction and overview of main results

Let X be a subordinator, a stochastic process with non-decreasing càdlàg paths with
independent and stationary increments, with Laplace exponent ψ, given by

−1

t
log (E(exp{−λXt})) =: ψ(λ) = bλ+

∫
(0,∞)

(1− e−λx)Π(dx), λ ≥ 0,

where b denotes the drift and Π the Lévy measure of X. We will write ψ∗ for the exponent
of {Xt − bt, t ≥ 0}, so that

ψ∗(λ) := ψ(λ)− bλ, λ ≥ 0.

Also, we will write Π(x) := Π(x,∞), for x > 0.
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Asymptotic behaviour of first passage time distributions for subordinators

We are interested in determining the local asymptotic behaviour of the distribution
of Tx = inf{t > 0 : Xt > x}. More precisely, we would like to establish estimates for
the density function hx(t), (if it exists: it does if b = 0, see Lemma 3.3 below), or more
generally of

P(Tx ∈ (t, t+ ∆]),

uniformly for ∆ in bounded sets and uniformly for x in certain regions, both as t→∞ or
as t→ 0. Knowing the behaviour of the first passage time distribution of a subordinator
is of central importance because of its applications in stochastic modeling and theoretical
probability, see for instance [2].

This paper is a continuation of recent research in [5], where the same problem, in
the t→∞ case, has been solved for Lévy processes, excluding subordinators, that are
in the domain of attraction of a stable law without centering. The reasons for excluding
subordinators from that research were that the techniques used there rely heavily on
excursion theory for the reflected process, which in this case does not make sense, and
that in the subordinators case the rate of decrease of the tail distribution of the first
passage time is typically exponential, while for other Lévy processes in the domain of
attraction of a stable law, without centering, it is polynomial. This polynomial behaviour
in the tail distribution of the first passage time reflects the asymptotic behaviour of
the tail Lévy measure at infinity, which in general is closely related to that of the
characteristic exponent at 0. In the paper [10], under mild assumptions, the behaviour
at infinity of the tail distribution of the first passage time is related to the behaviour of
the characteristic exponent at 0.

As can be seen in the paper [5], and in the present case, the distribution of the first
passage time has different behaviour according to whether the process first crosses the
barrier by a jump or continuously, that is by creeping. So, our results will describe the
contributions of these events to the first passage time distribution separately. Naturally,
if a subordinator has zero drift, by Theorem III.5 in [1] it cannot creep, and moreover
the distribution of Tx is absolutely continuous, so our results become somewhat simpler
in that case.

Before we give a precise general statement, we start by looking at the illustrative
case where X is a stable subordinator of index α = 1/2. This means that b = 0, Π(dx) =

1
2
√
π
x−

3
2 dx, and ψ(λ) =

√
λ. In this case we know that the law of Xt is absolutely

continuous with density

ft(x) =
t

2
√
πx3

e−
t2

4x ,

and hence

hx(t) = ∂tP(Tx ≤ t) = ∂tP(X1 > xt−2) = 2xt−3f1(xt−2) =
1√
πx
e−

t2

4x .

Straightforward calculations allow us to verify the identity

hx(t) =
1√
π

∫ x

0

P(Xt ∈ dy)
1√

(x− y)
=

∫ x

0

P(Xt ∈ dy)Π(x− y), (1.1)

and we deduce that

P(Tx ∈ (t, t+ ∆]) = hx(t)

∫ ∆

0

e−ut/2x−u
2/4xdu ∼ 2x

t
(1− e− t∆2x )hx(t), (1.2)

uniformly as x
t2 → 0. Even in this simple example there is something surprising: if

t∆/x9 0 the RHS of (1.2) is not asymptotic to ∆hx(t).

The condition t2

x →∞ is equivalent to P(Tx > t) = P(Xt ≤ x)→ 0, and it was shown
in [9] that the corresponding condition for a general subordinator is that tH(ρ) → ∞,
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Asymptotic behaviour of first passage time distributions for subordinators

where H(u) = ψ(u)− uψ′(u), and ρ is the unique solution of ψ′(ρ) = x/t, so that in our
example ρ = ( t

2x )2 and H(ρ) = t/4x.
We will see later in (3.15) in Subsection 3.2 that ρ is the parameter in an exponential

measure change which is essential to our proofs and reminiscent of the large deviations
techniques. Taking σ2(u) = ψ′′(u), we have σ2(ρ) = 2x3/t3 in the example.

We therefore see that the above are special cases of

ft(x) ∼

√
1

2πtσ2(ρ)
e−tH(ρ), (1.3)

hx(t) ∼ ψ(ρ)

ρ
ft(x), (1.4)

and

P(Tx ∈ (t, t+ ∆]) ∼ 1

ρ
(1− e−∆ψ(ρ))ft(x). (1.5)

Suppose now that X is any driftless subordinator having Π(x) regularly varying as x→ 0

with index −α satisfying 0 < α < 1, so that Xt is asymptotically stable as t→ 0. Then X
is absolutely continuous, and our first main result shows that (1.3) is valid as x/t→ 0,

both as t→ 0 and as t→∞. (This significantly improves a result about the behaviour of
P(Xt ≤ x) in [9].) Using the representation for hx(t) in (1.1) it is then straightforward to
verify that (1.4) holds. In principle, this must imply (1.5), but it turns out to be easier to
deduce (1.5) from (1.3), using the formula

hJx(t,∆) : = P(Tx ∈ (t, t+ ∆], XTx > x)

=

∫
[0,x)

P(Xt ∈ x− dy)

∫
[0,y]

U∆(dz)Π(y − z).

(Here U∆(dz) =
∫∆

0
P(Xs ∈ dz)ds, see Lemma 3.3). Moreover if in this situation the

subordinator has drift b > 0, it is a consequence of the results in [8] that

P(Tx ∈ dt,X(Tx) = x) = bft(x)dt for x > bt, (1.6)

see Lemma 3.3. Since X jumps over x at time t if X − bt jumps over x− bt at time t, we
see that (1.4) holds for x > bt with ψ(ρ) replaced by ψ(ρ)− bρ, and it follows that

P(X creeps over x|Tx = t) ∼ bρ

ψ(ρ)
→
{

1, if ρ→∞,
b

ψ′(0+) , if ρ→ 0.
(1.7)

The case t→∞ and x/t→∞ is slightly more difficult: here the natural assumption is
that Xt is asymptotically stable as t→∞, or equivalently that Π(x) is regularly varying
as x → ∞ with index −α satisfying 0 < α < 1 and b ≥ 0. Here X is not automatically
absolutely continuous, and although we can get an estimate for P(Xt ∈ (x, x + ∆])

analogous to (1.3), this is only valid for ∆ in compact sub-intervals of (0,∞). The possible
singularity of Π(x− y) at y = x then seems to make a direct calculation based on (1.1)
impossible. Instead we exploit the fact that the RHS of (1.1) for fixed t is a convolution
and use the inversion theorem for characteristic functions to establish (1.4) by an
indirect method. This trick requires us to make an additional assumption which involves
the behaviour of Π near zero, (see (H) below), but crucially this assumption does not
necessitate X being absolutely continuous.

When dealing with the creeping component we therefore cannot rely on (1.6), and
instead we look for an estimate of

hCx (t,∆) := P(Tx ∈ (t, t+ ∆], XTx = x),
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Asymptotic behaviour of first passage time distributions for subordinators

for which we use the formula

P(Tx ∈ (t, t+ ∆], XTx = x) = b

∫
[0,x)

P(Xt ∈ dy)u∆(x− y).

(Here u∆(z)dz = U∆(dz); see Lemma 3.3). In the case that X is stable-1/2 plus a drift
b > 0 one can check directly that the result is

hCx (t,∆) ∼ bρ

ψ(ρ)
P(Tx ∈ (t, t+ ∆]) and (1.8)

hJx(t,∆) ∼
(

1− bρ

ψ(ρ)

)
P(Tx ∈ (t, t+ ∆]), (1.9)

where the asymptotic behaviour of P(Tx ∈ (t, t+∆]) is given by the RHS of (1.2) evaluated
with x replaced by x− bt. As we will see, (1.8) and (1.9) hold in the general case, as does
(1.7). We also have analogous results for the regime where ρ is bounded away from zero
and infinity and t→∞, where we make no assumptions about X other than (H), to be
introduced below, and that it is a strongly non-lattice subordinator.

2 Main results

Before we state our main results we introduce our basic assumptions. We will say
that the condition (H) is satisfied whenever the following condition on the small jumps of
X is satisfied:

(H) there exists a t0 > 0 such that∫ ∞
1

exp

{
−t0

∫ ∞
0

(1− cos(zy))Π(dy)

}
1 + |ψ∗(−iz)|

z
dz <∞.

As we mentioned before this condition will be useful to obtain estimates in the case
where the process is in the domain of attraction of a stable distribution at infinity. Further
details about this assumption are given in the following remarks.

Remark 2.1.

(i) Using the elementary inequalities 1− cos(y) ≥ 1
πy

2, for −1 < y < 1, and | sin(y)| ≤
1 ∧ |y|, for y ∈ R, it can be verified that (H) holds whenever there exists a t0 such
that ∫ ∞

1

exp

{
−t0z2

∫ 1/z

0

b2Π(db)

}[
1

z
+

∫ 1/z

0

Π(a)da

]
dz <∞.

(ii) The stronger condition∫ ∞
1

exp

{
−t0

∫ ∞
0

(1− cos(zy))Π(dy)

}
dz <∞ (2.1)

would imply that Xt has an absolutely continuous distribution for each t ≥ t0, see
Proposition 2.5 in [14], but it is easy to see using the above remark that (H) can
hold without (2.1) holding.

(iii) In the compound Poisson case it is clear that this condition cannot hold, but in that
case Π is integrable at zero, and so we can use a method similar to that we use to
deal with the case where X is in the domain of attraction of a stable distribution at
0.

Define a function c by tΠ(c(t)) = 1, t > 0. We will say that we are working in the
framework (RV0), (RV∞) or (G), respectively, if the following happens:
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(RV0) either t →∞ and x
t → b, or t → 0 and (x− tb)/c(t) → 0; when x 7→ Π(x), x > 0, is

regularly varying at 0 with index −α, for some α ∈ (0, 1);

(RV∞) t→∞, x/t→∞, x/c(t)→ 0; when x 7→ Π(x), x > 0, is regularly varying at∞, with
an index −α for some α ∈ (0, 1), and (H) holds;

(G) t→∞ and b < lim inft→∞
x
t ≤ lim supt→∞

x
t < µ, X is strongly non-lattice, and (H)

holds.

We start by providing some local estimates of the distribution of X in the (RV0)

cases. These are a refinement of the pioneering work by Jain and Pruitt [9], which is
one of the main sources of this research, where estimates for P(Tx > t) = P(Xt ≤ x)

are obtained. The technique we use is different to that of Jain and Pruitt, though both
techniques involve normal approximations. It seems more flexible as it allows us to
avoid the stronger condition (2.1). Throughout this paper φ : R→ R+, will denote the
standard normal density, that is

φ(x) =
1√
2π

exp{−x2/2}, x ∈ R.

Theorem 2.2. Suppose that X is a subordinator which has drift b ≥ 0 and Lévy measure
Π, such that x 7→ Π(x), x > 0, is regularly varying at 0 with index −α, for some α ∈ (0, 1).

For b < x/t < µ := E(X1), define xt := x/t and ρt := ρ(x/t), that is ψ′(ρt) = x/t,

H(u) = ψ(u)− uψ′(u), and σ2(u) = −ψ′′(u) =
∫∞

0
y2e−uyΠ(dy).

(i) The unidimensional law of X admits a density, say P(Xt ∈ dy) = ft(y)dy, y ≥ 0,

such that ft ∈ C∞(R) for each t > 0.

(ii) In the setting (RV0) we have the estimate
√
tσ(ρt)ft(z) =

(
φ((z − x)/

√
tσ(ρt)) + o(1)

)
e−tH(ρt)eρt(z−x), (2.2)

uniformly in z > 0 and x.

(To be clear, the uniformity here means, in, for example, the RV0 case with t→∞,
that given arbitrary ε > 0 there exists t0 and δ0 such that the o(1) term is less in absolute
value than ε for all z > 0, t > t0 and x satisfying |xt − b| < δ0.)

We now turn to the results for the passage time. We are interested in the probability
of X passing above level x in the time interval (t, t+ ∆], either by a jump or by creeping.
The latter is positive only when the drift b > 0. The latter and former probabilities will
be denoted by

hCx (t,∆) := P(Tx ∈ (t, t+ ∆], XTx = x),

and
hJx(t,∆) := P(Tx ∈ (t, t+ ∆], XTx > x), t > 0.

First, in the settings (RV0) we have by the forthcoming Lemma 3.3 that hCx (t,∆) =∫ t+∆

t
hCx (s)ds and

hCx (t) = bft(x), t, x > 0,

and by Theorem 2.2,

hCx (t) = bft(x) =
b√

2πtσ(ρt)
e−tH(ρt)(1 + o(1))

uniformly in x. Furthermore, in all cases the expression

hJx(t) =

∫ x

0

P(Xt ∈ dy)Π(x− y), t > 0,

is the density function of the first passage time on the event XTx > x, see [5] Lemma 1.
Then our main result is the following.
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Asymptotic behaviour of first passage time distributions for subordinators

Theorem 2.3. Assume we are in the settings (RV0), (RV∞) or (G). Put ψ∗(λ) = ψ(λ)−
λb =

∫∞
0

(1− e−λy)Π(dy). We have the following estimates

hJx(t) =
ψ∗(ρt)√

2πtρtσ(ρt)
e−tH(ρt) (1 + o(1)) , (2.3)

hJx(t,∆) =
ψ∗(ρt)

(
1− e−∆ψ(ρt)

)
ψ(ρt)

√
2πtρtσ(ρt)

e−tH(ρt) (1 + o(1)) , (2.4)

hCx (t,∆) =
b
(
1− e−∆ψ(ρt)

)
ψ(ρt)

√
2πtσ(ρt)

e−tH(ρt) (1 + o(1)) , (2.5)

uniformly in x and uniformly for 0 < ∆ ≤ ∆0, for any fixed ∆0 > 0.

In the above estimates if ∆ is bounded away from zero the term (1− e−∆ψ(ρt))/ψ(ρt)

can be replaced by ∆ or 1/ψ(ρt), according as ρt → 0 or∞.
Remark 2.4. In the frameworks RV0 and RV∞, using Karamata’s theorem and the
monotone density theorem for regularly varying functions, see e.g. [3] Chapter 1, it
can be verified that the relevant quantities in the above theorems have the following
behaviour. There is a slowly varying function ` such that

ρt ∼
(x
t

) 1
α−1

`(x/t),

ψ(ρt) ∼
1

α
ρtψ
′(ρt) =

1

α

x

t
ρt =

1

α

(x
t

) α
α−1

`(x/t),

H(ρt) ∼
1− α
α

xρt,

σ2(ρt) ∼ (2− α)
1

ρt
ψ′(ρt) ∼ (2− α)

1(
x
t

) 2−α
α−1 `(x/t)

.

Our forthcoming final result shows that, in the framework RV∞, when we remove the
condition x/c(t)→ 0, it is possible for polynomial rather than exponential decay to occur.
This is because we do not necessarily have tH(ρt)→∞.

Proposition 2.5. Suppose now that X is a strongly non-lattice subordinator which has
drift b ≥ 0 and Π(·) is regularly varying at infinity with an index −α for some α ∈ (0, 1),

and (H) holds. Define c by tΠ(c(t)) = 1, so that the process (X(tu)/c(t), u ≥ 0) converges
weakly to (Su, u ≥ 0), a stable subordinator of index α. Let g̃t(·) and h̃x(·) denote the
density functions of St and TSx := inf{t : St > x} respectively. Then uniformly for
yt := x/c(t) > 0

thJx(t) = h̃yt(1) + o(1) as t→∞. (2.6)

and, if b > 0, uniformly for yt > 0 and 0 < ∆ < ∆0,

c(t)hCx (t,∆) = b∆ (g̃1 (yt) + o(1)) as t→∞. (2.7)

The assumption that Π varies regularly at zero, or infinity respectively, implies that
the process (X(tu)/c(t), u ≥ 0) converges in the Skorohod topology to (Su, u ≥ 0), a
stable subordinator of index α, as t tends towards 0 or infinity respectively, and it is well
known this is equivalent to having the one dimensional convergence with u = 1. Three
generalisations of this setting may be suitable for applications. The first is allowing for
a centering function (bt, t ≥ 0), so that (Xt − bt)/ct converges weakly. This arises for
instance when x 7→ Π(x) is regularly varying at infinity with an index −α, and α > 1.

The second emerges when instead of having Π varying regularly this is only bounded
above and below by functions which are regularly varying with the same index. Finally,
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Asymptotic behaviour of first passage time distributions for subordinators

it may occur that the latter convergence holds only along subsequences. These three
generalisations can be handled in the single setting of subordinators in the Feller class
as defined in Maller and Mason in [12] and [11]. Namely, our main results and its
proof hold verbatim in this general setting, but for technical reasons we have chosen to
describe this class in detail in the Subsection 3.1. The reader interested only in the case
where Π varies regularly can skip this section with out harm and just read RV0 where it
reads SC0 and RV∞ for SC∞, thereafter.

The rest of this paper is organised as follows. Section 3 is intended to provide the
preliminaries for the proof of the main theorems. We start by describing the Feller class in
Subsection 3.1. Then in Subsection 3.2 we gather some useful formulas related to first
passage time of subordinators and also some other general facts. Then in Subsection 4
we prove Theorem 2.2 and Theorem 2.3 in the case (SC0). Then in Section 5 we prove
the Theorem 2.3 under the assumptions (SC∞) or (G).

3 Preliminaries

3.1 The Feller class

As we already mentioned, in the present work we allow a more general behaviour
than that of being in the domain of attraction of a stable law, namely for most of our
results we only require X to be in the Feller class, said otherwise to be stochastically
compact, either at infinity or at zero depending on whether x/t tends to b from above,
or to E(X1) from below. (This class includes subordinators for which Π(·) is O-regularly
varying at zero and infinity, see e.g. [3].) For background on stochastic compacteness
we refer to Section 14.6 of [7].

This carries a further difference from our work in [5], namely, the results here
obtained apply equally to subordinators which are stochastically compact with or without
centering, while in [5] the assumption that the Lévy process is in the domain of attraction
of a stable law without centering is in force.

In order to provide precise definitions of these notions we start by introducing some
notation. We will write

H(u) = ψ(u)− uψ′(u), σ2(u) =

∫ ∞
0

y2e−uyΠ(dy), u ≥ 0, (3.1)

and for x > 0,

Π(x) = Π(x,∞), KΠ(x) = x−2

∫
y∈(0,x)

y2Π(dy), (3.2)

QΠ(x) = Π(x) +KΠ(x). (3.3)

An integration by parts shows that

QΠ(z) = 2z−2

∫ z

0

yΠ(y)dy = 2

∫ 1

0

yΠ(zy)dy, z > 0, (3.4)

and that QΠ is a non-increasing function. We define ρ : R+ → R+ via the relation

ψ′(ρ(s)) = s, 0 ≤ b = ψ′(∞) < s < ψ′(0+) ≤ ∞.

It is worth recalling that ψ′ is strictly decreasing because Π is assumed to be non-
degenerate, and also ψ′(0+) determines the mean of X,

ψ′(0+) = b+

∫ ∞
0

yΠ(dy) = E(X1) =: µ.
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From the former relation it is easily seen that ρ(·) is a non-increasing function. For
notational convenience for b < xt < µ, we will write ρt := ρ (xt) . Note that ρt ↓ 0 when
xt ↑ µ and ρt ↑ ∞ when xt ↓ b.

We will say that X is in a Feller class or is stochastically compact at infinity, respec-
tively at 0, if

[SC] lim sup
Π(y)

KΠ(y)
<∞ as y →∞, respectively as y → 0+.

It is known that this condition is equivalent to

[SC’] ∃α ∈ (0, 2] and c ≥ 1 such that lim sup

∫ λz
0
yΠ(y)dy∫ z

0
yΠ(y)dy

≤ cλ2−α for λ > 1, as z → ∞,

respectively as z → 0+;

see Lemma 1 in [11] for a proof of this equivalence and background on the study of the
Feller class for general Lévy processes. In this case we will say that the condition SC∞,
respectively SC0, holds. We next quote some facts from the work by Maller and Mason in
[12], Theorem 2.1, and [11], Theorem 1. In the case where X is stochastically compact at
infinity (respectively at zero), Maller and Mason proved that there exist non-decreasing
functions c : [0,∞)→ (0,∞) and b : [0,∞)→ [0,∞) such that for any sequence (tk, k ≥ 0)

tending towards infinity (respectively, towards 0) there is a subsequence (t′k, k ≥ 0) such
that

Xt′k
− b(t′k)

c(t′k)

Law−−−−→
k→∞

Y ′, (3.5)

where Y ′ is a real valued non-degenerate random variable, whose law may depend on
the subsequence taken. A standard representation of the functions c and b are

tQΠ(c(t)) = 1, b(t) = t

(
b+

∫ c(t)

0

yΠ(dy)

)
, t > 0. (3.6)

If in addition to the condition SC∞ (respectively SC0) the condition

lim sup
y→∞(y→0)

y(b+
∫ y

0
zΠ(dz))∫ y

0
z2Π(dz)

<∞, (3.7)

holds, then the above defined functions satisfy

lim sup
t→∞(t→0)

b(t)

c(t)
<∞, (3.8)

so that the normalizing function b is not needed and hence can be assumed to be 0. In
this case it is said that the process X is stochastically compact at zero (respectively at
infinity) without centering. In all other cases,

lim sup
t→∞(t→0)

b(t)

c(t)
=∞. (3.9)

Throughout the rest of the paper we will work in one of the following more general
frameworks on Π, t and x: always b < xt := x/t < µ and

(SC0-I) the Lévy measure Π satisfies the condition SC0, t→∞, xt → b;
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Asymptotic behaviour of first passage time distributions for subordinators

(SC0-II) the Lévy measure Π satisfies the condition SC0, t→ 0, xt → b, and

x− b(t)

c(t)
−−−→
t→0

−∞

if (3.7) fails; or
x− bt
c(t)

−−−→
t→0

0

if (3.7) holds.

(SC∞) the Lévy measure Π satisfies the condition SC∞, t→∞, xt → µ and

x− b(t)

c(t)
−−−→
t→∞

−∞

if (3.7) fails; or
x− bt
c(t)

−−−→
t→∞

0

if (3.7) holds; and we assume also that (H) holds.

The following Lemma is an elementary consequence of Karamata’s theorem for
regularly varying functions.

Lemma 3.1.

(i) If x 7→ Π(x) is regularly varying at 0 with an index −α, for some α ∈ (0, 1), then
the condition SC0 is satisfied. Moreover, the frameworks (SC0 − I) and (SC0 − II)

include the framework (RV0).

(ii) If x 7→ Π(x) is regularly varying at ∞ with an index −α, for some α > 0, then
the condition SC∞ is satisfied. Moreover, the framework (SC∞) includes the
framework (RV∞).

This being said we can now state the more general version of our main Theorems.

Theorem 3.2.

(i) The assertion in (i) in Theorem 2.2 hold in the framework (SC0).

(ii) The assertion in (ii) in Theorem 2.2 hold in the frameworks (SC0− I) or (SC0− II).

(iii) The estimates in Theorem 2.3 hold in the frameworks (SC0 − I), (SC0 − II), (SC∞)

and (G).

3.2 Some useful facts

For sake of conciseness we gather some useful formulas in the following Lemma.

Lemma 3.3. Let X be a subordinator with Laplace exponent ψ, drift b ≥ 0, and Lévy
measure Π. We have the following facts.

(i) X creeps, viz. P(XTx = x) > 0 for some, and hence for all, x > 0, if and only if
b > 0. In that case, for any 0 < t ≤ ∞, the occupation measure

Ut(dy) := E

(∫ t

0

ds1{Xs∈dy}

)
, y ≥ 0,

has a continuous and bounded density on (0,∞), ut(y), y > 0. The formula

P(Tx ∈ (t, t+ ∆], XTx = x) = b

∫
[0,x)

P(Xt ∈ dy)u∆(x− y), (3.10)

holds for x > 0, t ≥ 0, ∆ > 0.
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(ii) On the event of non-creeping, {XTx > x}, the first passage time distribution has a
density given by

P(Tx ∈ dt,XTx > x) =

(∫
[0,x)

P(Xt ∈ dy)Π(x− y)

)
dt.

The formula

P(Tx ∈ (t, t+ ∆], XTx > x)

=

∫
[0,x)

P(Xt ∈ dy)

∫
[0,x−y]

U∆(dz)Π(x− y − z),
(3.11)

holds for x > 0, t ≥ 0, ∆ > 0.

Proof. The first claim in (i) in Lemma 3.3 follows from Theorem III.5 in [1] which
ensures that if the drift b > 0, the potential measure U∞ is absolutely continuous with a
continuous and bounded density u∞,

U∞(dy) := E

(∫ ∞
0

ds1{Xs∈dy}

)
= u∞(y)dy, y ≥ 0,

and the following identity holds

P(XTx = x) = bu∞(x), x > 0. (3.12)

The absolute continuity of Ut on (0,∞) and the bound but ≤ 1, for any t > 0, follow from
the fact that Ut is dominated by above by U∞. We have furthermore the identity

ut(y) = u∞(y)−
∫

[0,y]

P(Xt ∈ dz)u∞(y − z), y > 0;

from where the continuity of ut in (0,∞) is deduced using the continuity of u∞ and the
dominated convergence theorem.

In [8] (see Remark 3.1 (iii) therein) it has been proved that

P(XTx = x, Tx ≤ t) = b
∂

∂y
Ut[0, y]|y=x.

The latter together with Lebesgue’s derivation theorem ensures that for a.e. x > 0

P(XTx = x, Tx ≤ t) = but(x).

Now, the claim will be obtained once we prove that for any t > 0, the function

x 7→ P(XTx = x, Tx ≤ t), x > 0, (3.13)

is right-continuous. For that end we observe the identity for x > 0, t ≥ 0,

P(XTx = x, Tx ≤ t) = P(XTx = x)− P(XTx = x, Tx > t)

= bu(x)− b
∫

[0,x]

P(Xt ∈ dy)u(x− y).

Let xn ↓ x. Thanks to the equality

P(XTx = x, Tx ≤ t)− P(XTxn
= xn, Txn ≤ t)

= u(x)− u(xn) + b

∫
[0,x]

P(Xt ∈ dy)(u(x− y)− u(xn − y))

− b
∫

(x,xn]

P(Xt ∈ dy)u(xn − y),
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and the continuity of u, the claim is easily deduced from the following facts. Since u is a
continuous and bounded function the monotone convergence theorem allows us to infer
the limit

b

∫
[0,x]

P(Xt ∈ dy)(u(x− y)− u(xn − y)) −→ 0.

Moreover, thanks to the bound bu(z) ≤ 1, for z > 0, we deduce the majoration

0 ≤ b
∫

(x,xn]

P(Xt ∈ dy)u(xn − y) ≤ P(x < Xt ≤ xn)

= P(Xt ≤ xn)− P(Xt ≤ x);

and the right most term in the above equation tends to zero by the right continuity of
y 7→ P(Xt ≤ y). The claim follows putting the pieces together.

The proof of the formula (3.10) is obtained from the identity

P(Tx ∈ (t, t+ ∆], XTx = x) = P(Xt < x, Tx ◦ θt ∈ (0,∆], XTx = x)

=

∫
[0,x)

P(Xt ∈ dy)P(Tx−y ∈ (0,∆], XTx−y = x− y),

where θt denotes the shift operator, and we applied the simple Markov property at time
t to get the second equality. Also, in the case where for any s > 0, P(Xs ∈ dy) = fs(y)dy,

with fs(y) a continuous function in y, we can take

ut(y) =

∫ t

0

dsfs(y).

It follows from the formulas above that Tx has a density on the event of creeping and

P(Tx ∈ dt,XTx = x) = bft(x), x > 0, t > 0.

The result in (ii) follows from the fact

hJx(t) =

∫ x

0

P(Xt ∈ dy)Π(x− y), t > 0,

proved in [5] Lemma 11, together with an application of the Markov property as above.

Most of our calculations involve an exponential change of measure, introduced on
page 93 in [9], which we now recall. For ψ′(∞) = b < x

t =: xt < µ = ψ′(0+) we denote
by (Ys, s ≥ 0), a subordinator whose Laplace exponent is

ψρt(λ) = ψ(ρt + λ)− ψ(ρt) = bλ+

∫
(0,∞)

(1− e−λy)e−ρtyΠ(dy), λ ≥ 0. (3.14)

In particular, identifying the Laplace transforms and using ψ′(ρt) = xt, we have the
following relation:

P(Yt ∈ dy) = etH(ρt)e−ρt(y−txt)P(Xt ∈ dy), y ∈ R+. (3.15)

Observe that in the above definition of Y we are deliberately excluding the dependence
in xt of Y. We do this for notational convenience and also because we will mainly use the
equality of measures in (3.15).

The proof of our main results rely on the following technical results. The first of them
relates various quantities we will consider.
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Lemma 3.4. We have the following relations

(a)
1

2e
QΠ(1/u) ≤ H(u) ≤ QΠ(1/u), for u > 0.

(b) u2σ2(u) ≤ 2H(u) for u ≥ 0.

(c)
u2σ2(u)

H(u)
≥ e−1(

1 + Π(1/u)
Kπ(1/u)

) , for u > 0. In particular, if X is stochastically compact at

infinity, respectively at 0, then

lim inf
u2σ2(u)

H(u)
> 0,

as u −→ 0, respectively as u −→∞.

Proof. (a) is (5.4) in [9], (b) is (5.5) in [9], and (c) is (5.6) and (5.7) in [9].

Lemma 3.5. For t > 0, b < xt < µ, we have for any s > 0

E(Ys) = sxt =: µs, (3.16)

E(Ys − µs)2 = s

∫ ∞
0

y2e−ρtyΠ(dy) = sσ2(ρt), (3.17)

E(Ys − µs)3 = s

∫ ∞
0

y3e−ρtyΠ(dy), (3.18)

E
(
|Ys − µs|3

)
≤ 6s(ρt)

−3QΠ(1/ρt) + 2µssσ
2(ρt). (3.19)

Proof. The first three identities are proved by bare hands calculations on the Laplace
transform, while the claimed upper bound is obtained as follows:

E
(
|Ys − µs|3

)
= E

(
(Ys − µs)3

)
+ 2E

(
(µs − Ys)3 : Ys ≤ µs

)
≤ E

(
(Ys − µs)3

)
+ 2µsE

(
(µs − Ys)2 : Ys ≤ µs

)
≤ s

∫ ∞
0

y3e−ρtyΠ(dy) + 2µssσ
2(ρt)

= s

∫
{yρt≤1}

y3e−ρtyΠ(dy) + s

∫
{yρt>1}

y3e−ρtyΠ(dy) + 2µssσ
2(ρt)

≤ s(ρt)−1

∫
{yρt≤1}

y2Π(dy) + 6s(ρt)
−3Π(1/ρt) + 2µssσ

2(ρt)

≤ 6s(ρt)
−3QΠ(1/ρt) + 2µssσ

2(ρt).

Lemma 3.6. In the settings (SC0-(I-II)), (SC∞) and (G), we have that tH(ρt) → ∞
uniformly in x.

Proof. The proof of the case (G) is a straightforward consequence of the fact that in this
setting t→∞ and

0 < lim inf
t→∞

H(ρt) ≤ lim sup
t→∞

H(ρt) <∞,

because b < lim inft→∞ xt ≤ lim supt→∞ xt < µ, and hence

0 < lim inf
t→∞

ρt ≤ lim sup
t→∞

ρt <∞.
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To deal with the cases (SC0-(I-II)), (SC∞) we use Theorem 5.1 of Jain and Pruitt [9]
which establishes that the condition tH(ρt) → ∞ is equivalent to P(Xt ≤ x) → 0, as
t→∞ or t→ 0. For the case (SC0 − I) when (3.7) fails, the equality

P(Xt ≤ x) = P

(
Xt

t
− b ≤ xt − b

)
,

and an application of the weak law of large numbers for subordinators gives the result
because Π is non-degenerate. To deal with the case (SC0 − II), we use the equality

P(Xt ≤ x) = P

(
Xt − b(t)

c(t)
≤ x− b(t)

c(t)

)
,

which together with the sequential convergence in (3.5) and the assumption that
x−b(t)
c(t) → −∞ as t → 0, lead to P(Xt ≤ x) → 0 as t → 0. The case when (3.7) holds as

well as the cases (SC∞) are proved with a similar argument. To show the uniformity
observe that the function

λ 7→ H(λ) = ψ(λ)− λψ′(λ) =

∫
(0,∞)

(1− e−λx − λxe−λx)Π(dx),

is increasing because the function z 7→ 1− e−z − ze−z is. This implies that the function
λ 7→ H(ρ(λ)) is decreasing. The uniformity in the cases (G) and (SC0-(I-II)) follows easily
from this fact. Indeed, it is enough to observe that tH(ρt) tends towards∞ as soon as we
take a x0 such that x0 > x and tH

(
ρ
(
x0

t

))
→∞. To establish the uniformity in the case

(SC∞) when (3.7) holds, we observe that the hypotheses imply that there is a function D
such that x ≤ b(t)−D(t), and D(t)/c(t)→∞ as t→∞. The function D is such that

tH(ρt) ≥ tH
(
ρ

(
b(t)−D(t)

t

))
−−−→
t→∞

∞,

because by the assumption of stochastic compactness at∞ we have that

P(Xt < b(t)−D(t)) = P

(
Xt − b(t)

c(t)
≤ −D(t)

c(t)

)
−−−→
t→∞

0.

In the case (SC∞), when (3.7), does not hold we proceed as above but using that there
is a function j such that x ≤ bt+ j(t) and j(t)/c(t)→ 0 as t→∞.

Lemma 3.7. If (H) holds then∫
|z|>1

|exp{−t (ψ(λ− iz)− ψ(λ))}|
∣∣∣∣ψ∗(λ− iz)λ− iz

∣∣∣∣ dz
≤ e2tψ∗(λ)

∫
|z|>1

|exp{−t (ψ(−iz))}| ψ∗(λ) + |ψ∗(−iz)|
z

dz <∞,

for any λ > 0 and t > t0.

Proof. The proof of this result is an easy consequence of the two inequalities:

R (ψ(λ− iz)− ψ(λ))

=

∫
(0,∞)

(1− cos(zy))e−λyΠ(dy)

=

∫
(0,∞)

(1− cos(zy))Π(dy)−
∫

(0,∞)

(1− cos(zy))
(
1− e−λy

)
Π(dy)

≥
∫

(0,∞)

(1− cos(zy))Π(dy)− 2

∫
(0,∞)

(
1− e−λy

)
Π(dy)

= Rψ(−iz)− 2

∫
(0,∞)

(
1− e−λy

)
Π(dy);

EJP 20 (2015), paper 91.
Page 13/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3879
http://ejp.ejpecp.org/


Asymptotic behaviour of first passage time distributions for subordinators

and

| (ψ∗(λ− iz)− ψ∗(−iz)) |

= |
∫

(0,∞)

(1− e−λy)eizyΠ(dy)| ≤
∫

(0,∞)

(1− e−λy)Π(dy) = ψ∗(λ).

4 Proof of Theorem 2.2 and Theorem 2.3 in the SC0 cases

4.1 Proof of (i) in Theorem 2.2

Let U(x) =
∫ x

0
yΠ(y)dy, x ≥ 0, and

Û(s) =

∫ ∞
0

e−syU(dy) = s

∫ ∞
0

e−syU(y)dy, s > 0,

be its Laplace transform. By hypothesis we have that the condition (SC ′0) is satisfied,
which implies that U has bounded increase at 0, see [3] page 68 and 71. So, by the proof
of the inclusion (i) ⇒ (ii) in Theorem 2.10.2 in [3], we know that there are constants
0 < c1 ≤ c2 < ∞ such that for small s, c1U(s) ≤ Û(1/s) ≤ c2U(s). From this it follows
that Û has bounded decrease at infinity. Indeed, taking α as in (SC ′0) we have for λ > 1

lim inf
s→∞

Û(sλ)

Û(s)
≥ c3 lim inf

s→∞

U
(

1
sλ

)
U
(

1
s

) = c3

(
lim sup
v→0+

U(λv)

U(v)

)−1

≥ c3
1

λ2−α .

Proposition 2.2.1 in [3] implies that for any β < −(2−α) there exist constants c4 > 0 and˜̀> 0, such

Û(y)

Û(x)
≥ c4

(y
x

)β
, y ≥ x ≥ ˜̀. (4.1)

Also, an easy integration by parts implies the identity

Û(s) = −
(
ψ(s)

s

)′
=
H(s)

s2
, s > 0. (4.2)

So, by (4.1) we have
H(y)

H(x)
≥ c4

(y
x

)2+β

, y ≥ x ≥ ˜̀, (4.3)

where 2 + β < α ≤ 2. Since 0 < α there exists β0 and positive constants c6 and ˜̀such
that 0 < 2 + β0 < α ≤ 2 and

H(y) ≥ y2+β0c6, y ≥ ˜̀.
To conclude we observe that the following inequalities hold∫ ∞

0

(1− cos(θy))Π(dy) ≥ c7θ2

∫ 1/θ

0

y2Π(dy)

= c7KΠ(1/θ) = c7
KΠ(1/θ)

QΠ(1/θ)
QΠ(1/θ)

≥ c8QΠ(1/θ)

= 2c8θ
2U(1/θ)

≥ c9H(θ)

(4.4)
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for θ large enough; here we used the assumption (SC0) and the equality (3.4). We infer
that for θ > 0 large enough

<(ψ(iθ)) =

∫ ∞
0

(1− cos(θy))Π(dy) ≥ c10θ
β0+2.

As a consequence, for n ≥ 0∫
R

|θ|n|E(eiθXt)|dθ =

∫
R

|θ|n exp{−t<(ψ(iθ))}dθ <∞,

and the conclusion follows from Proposition 28.1 in [14].

4.2 Proof of (ii) in Theorem 2.2

Before we start with the proof we state a further auxiliary theorem. This is a
consequence of Lemma 5.1 in page 147 in [13].

Lemma 4.1. Let Z1,Z2, · · ·Zn be independent rvs having finite 3rd moments, write
E(Zr) = µr, V ar(Zr) = σ2

r , and E
(
|Zr − µr|3

)
= νr, and put W =

∑n

1
Zr,m = E(W ) =∑n

1
µr, and s2 = V arW =

∑n

1
σ2
r . Assume further that

∫∞
−∞ |Ψ(u)|du < ∞, where

Ψ(u) = E
(
eiuW

)
, and denote by f and φ the pdf of W and the standard Normal pdf.

Then there is an absolute constant A such that

sup
y

∣∣∣∣f(y)− s−1φ

(
y −m
s

)∣∣∣∣ ≤ AL+ d, (4.5)

where L =
∑n

1 νr/s
4 and, with l = (4Ls2)−1,

d = 2

∫ ∞
l

|Ψ(u)|du.

Proof. Use Fourier inversion as in Lemma 3 of [4].

Remark 4.2. Our use of this result exploits the fact that, for any Lévy process, any t > 0,

and any n ≥ 1, Xt is the sum of n independent and identically distributed summands.

Proof of (ii) in Theorem 2.2. We observe first that the assumption that b < xt < µ and
xt → b implies that ρt →∞, irrespective of whether t→ 0 or t→∞. We next establish
that these conditions on xt, the fact that tH(ρt)→∞, and the stochastic compactness
at 0, imply that xρt → ∞, again irrespective of whether t → 0 or t → ∞. Indeed, the
identities

tH(ρt)

xρt
=
tψ(ρt)− tρtψ′(ρt)

tρtψ′(ρt)
=

ψ(ρt)

ρtψ′(ρt)
− 1, (4.6)

show that it is enough to justify that 0 < lim infz→∞
zψ′(z)
ψ(z) . If the drift of X is positive

this is straightforward. If the drift is zero this holds whenever lim supz→0
zΠ(z)∫ z

0
yΠ(dy)

<∞,
which in turn holds by stochastic compactness at zero,

lim sup
z→0

zΠ(z)∫ z
0
yΠ(dy)

≤ lim sup
z→0

z2Π(z)∫ z
0
y2Π(dy)

<∞.

The former claim is an easy consequence of the following inequalities

λψ′(λ)

ψ(λ)
=

∫∞
0
ye−λyΠ(dy)∫∞

0
e−λyΠ(y)dy

≥
∫ 1/λ

0
ye−1Π(dy)∫ 1/λ

0
Π(y)dy + (1/λ)Π(1/λ)

=
e−1

∫ 1/λ

0
yΠ(dy)∫ 1/λ

0
yΠ(dy) + (2/λ)Π(1/λ)
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which are obtained by barehand calculations. It is important to remark that the above
facts and the Lemma 3.6 imply that xρt →∞ uniformly in x. Furthermore, our previous
remarks allow us to provide a unified proof of the cases t→ 0 or t→∞.

We will apply Lemma 4.1 with n = [xρt] and W = Yt =
∑n
k=1 Zk with Zk = Y tk

n
−

Y t(k−1)
n

Law
= Y t

n
, for k ∈ {1, . . . , n}. We use the estimate (3.16) with s = t/n, thus µs = x/n,

which together with our choice of n lead to the approximation

nν := nE
(
|Z1 − x/n|3

)
≤ t
{

6(ρt)
−3QΠ(1/ρt) + 2

x

n
σ2(ρt)

}
= t

{
6(ρt)

−3QΠ(1/ρt) + 2
ρ2
tσ

2(ρt)

ρ3
t

(1 + o(1))

}
,

(4.7)

for ρt large enough; here the term

1 ≤ 1 + o(1) =
xρt

[xρt]
≤ 1

1− 1
xρt

→ 1,

and the convergence is uniform in x. It is then immediate from the definition of L that
for ρt large enough

√
tσ(ρt)L =

nν

{tσ2(ρt)}
3
2

≤ 1

(tρ2
tσ

2(ρt))
1/2

(
6
QΠ(1/ρt)

ρ2
tσ

2(ρt)
+ 2(1 + o(1))

)
. (4.8)

Which because of the assumption of stochastic compactness at 0 and Lemma 3.4 imply
that for xρt and ρt large enough there is a constant k1 such that

√
tσ(ρt)L ≤

k1√
tH(ρt)

. (4.9)

So the lemma tells us that (2.2) holds provided that

γ :=
√
tσ(ρt)

∫ ∞
l

e−t<(ψρt (iθ))dθ → 0.

To prove that this is indeed the case, observe that the above estimate for L gives

` =
1

4Ls2
=
tσ2(ρt)

4nν
& k2

(
tρ2
tσ

2(ρt)
)1/2

(tσ2(ρt))
1/2

= k2ρt,

for ρt large enough. Applying the inequality (4.4) we obtain that for θ ≥ ` ≥ k2ρt

<(ψρt(iθ)) =

∫ ∞
0

(1− cos(θy))e−ρtyΠ(dy)

≥ k3e
−1/k2θ2

∫ 1/θ

0

y2Π(dy) ≥ k4H(θ).

It follows from the above and the estimate (4.3) that for any 0 < α0 < α ≤ 2, with α as in
(SC ′0), and for ρt large enough

√
tσ(ρt)

∫ ∞
l

e−t<(ψρ(iθ))dθ ≤
√
tσ(ρt)

∫ ∞
l

exp{−k4tH(ρt)
H(θ)

H(ρt)
}dθ

≤
√
tσ(ρt)

∫ ∞
`

exp

{
−k5tH(ρt)

(
θ

ρt

)α0
}
dθ

≤
√
tρtσ(ρt)

∫ ∞
k2

exp {−k5tH(ρt)θ
α0} dθ

≤ k6

√
tρtσ(ρt)

(tH(ρt))
1/α0

≤ k7
1

(tH(ρt))
1/α0−1/2

−→ 0,
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where in the last inequality we used Lemma 3.4 (b). Observe that the uniformity follows
from Lemma 3.6 and the fact that ρt tends to infinity uniformly as well because it is
non-increasing.

4.3 Proof of Theorem 2.3 in the SC0 cases

Proof of estimate in (2.3) in the SC0 case. With st :=
√
tσ(ρt) we start by observing that

√
2πste

tH(ρt)hJx(t)

=
√

2πste
tH(ρt)

∫ x

0

Π(y)ft(x− y)dy

=
√

2π

∫ x

0

Π(y)e−ρty
(
φ

(
y

st

)
+ o(1)

)
dy

≤ ψ∗(ρt)

ρt
(1 + o(1))

(4.10)

where we have used the identity

∫ ∞
0

e−ρtyΠ(y)dy =
ψ∗(ρt)

ρt
.

To establish a lower bound, we use that for ε > 0, there exists a δ > 0 such that if v ≤ δst
we have

√
2πφ

(
v
st

)
≥ 1− ε. Put x∗ := x ∧ δst and write

√
2π

∫ x

0

Π(y)e−ρtyφ

(
y

st

)
dy ≥ (1− ε)

∫ x∗

0

Π(y)e−ρtydy

= (1− ε)
(
ψ∗(ρt)

ρt
−
∫ ∞
x∗

Π(y)e−ρtydy

)
= (1− ε)

(
ψ∗(ρt)

ρt

)
(1 + o(1)).

Here we use ∫∞
x∗

Π(y)e−ρtydy
ψ(ρt)
ρt
− b

≤ Π(x∗)e−ρtx
∗∫∞

0
(1− e−ρty)Π(dy)

≤ Π(x∗)e−ρtx
∗

(1− e−ρtx∗)Π(x∗)
=

1

eρtx∗ − 1

and the fact that x∗ρt →∞, uniformly either as t→∞ or t→ 0, which follows from the
fact that stρt =

√
tρtσ(ρt) ≥ tH(ρt), in Lemma 3.4, and the Lemma 3.6; together with the

fact that xρt →∞, uniformly, which was proved in (4.6).

Essentially the same arguments, together with the formulas in (3.10) and (3.11) allow
us to prove the estimates in (2.4) and (2.5).

Proof of (2.5) in the SC0 case. From the identity (3.10) and (2.2) we deduce the follow-
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ing upper bound

√
2πste

tH(ρt)hCx (t,∆)

= b
√

2πste
tH(ρt)

∫
[0,x)

dyft(y)u∆(x− y)

= b

∫
[0,x)

dy

[√
2πφ

(
y

st

)
+ o(1)

]
e−ρtyu∆(y)

≤ b(1 + o(1))

∫
[0,∞)

dye−ρtyu∆(y)

= b(1 + o(1))
1− e−∆ψ(ρt)

ψ(ρt)
.

To get a lower bound, we proceed as in the previous proof and bound by below the
expression in the 3rd line above by

b(1− ε+ o(1))

∫
[0,x∗)

dye−ρtyu∆(y)

= b(1− ε+ o(1))

(
1− e−∆ψ(ρt)

ψ(ρt)
−
∫

[x∗,∞)

dye−ρtyu∆(y)

)
.

The conclusion follows from the bound

∫
[x∗,∞)

dye−ρtyu∆(y) ≤ e−ρtx
∗/2

∫
[0,∞)

dye−ρty/2u∆(y)

= e−ρtx
∗/2 1− e−∆ψ(ρt/2)

ψ(ρt/2)
= o

(
1− e−∆ψ(ρt)

ψ(ρt)

)
,

where we have used the fact that ψ(ρt) ∼ bρt, which is in turn a well known property
of the Laplace exponent ψ, see Proposition 2 in Chapter I in [1], and the fact that
ρt →∞.

Proof of (2.4) in the SC0 case. From the identity (3.11) and (2.2) we deduce the follow-
ing upper bound

√
2πste

tH(ρt)hJx(t,∆)

=
√

2πste
tH(ρt)

∫
[0,x)

dyft(x− y)

∫
[0,y)

U∆(dz)Π(y − z)

=

∫
[0,x)

dy

[√
2πφ

(
y

st

)
+ o(1)

]
e−ρty

∫
[0,y)

U∆(dz)Π(y − z)

≤ [1 + o(1)]

∫
[0,∞)

dye−ρty
∫

[0,y)

U∆(dz)Π(y − z)

= (1 + o(1))

[∫ ∆

0

dsE(e−ρtXs)

][∫
(0,∞)

dzΠ(z)e−ρtz

]

= (1 + o(1))

[
1− e−∆ψ(ρt)

ψ(ρt)

] [
ψ∗(ρt)

ρt

]
.

To get a lower bound, we proceed as in the previous proof and bound by below the
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expression in the 3rd line above by

(1− ε+ o(1))

∫
[0,x∗)

dye−ρty
∫

[0,y)

U∆(dz)Π(y − z)

= (1− ε+ o(1))

([
1− e−∆ψ(ρt)

ψ(ρt)

] [
ψ∗(ρt)

ρt

]
−
∫

[x∗,∞)

dye−ρty
∫

[0,y)

U∆(dz)Π(y − z)

)
.

The conclusion follows from the bound∫
[x∗,∞)

dye−ρty
∫

[0,y)

U∆(dz)Π(y − z)

≤ e−ρtx
∗/2

∫
[0,∞)

dye−ρty/2
∫

[0,y)

U∆(dz)Π(y − z)

= e−ρtx
∗/2

[
1− e−∆ψ(ρt/2)

ψ(ρt/2)

] [
ψ∗(ρt/2)

ρt/2

]
,

since it is easy to see that there is some K with[
1− e−∆ψ(ρt/2)

ψ(ρt/2)

] [
ψ∗(ρt/2)

ρt/2

]
≤ K

[
1− e−∆ψ(ρt)

ψ(ρt)

] [
ψ∗(ρt)

ρt

]
.

Indeed, this is a consequence of the results in Lemma 2 of Chapter 2 in [6] and the fact
that the function x 7→ U∆[0, x] is subadditive, which in turn follows from the identity

U∆[0, x] = E(Tx ∧∆),

and the strong Markov property of X.

5 Proof of Theorem 2.3

We have already proved Theorem 2.3 in the (SC0) cases, so we will hereafter omit
that case. For the (SC∞) and (G) cases we will use the following result instead of Lemma
4.1.

Lemma 5.1. Let Λ be defined by

Λ := stL =
[xρt]E

(
|Y1 − µ1|3

)
(tσ2(ρt))3/2

.

We have the inequality

|E(e−iz(Yt−µt)/st)− e−z
2/2| ≤ 16Λ|z|3e−z

2/3 for all |z| ≤ 1/4Λ,

and under the assumptions of Theorem 2.3 there exists a constant K ∈ (0,∞), such that
for large t,

Λ ≤ K√
tH(ρt)

→ 0. (5.1)

uniformly in x.

Proof. The claimed inequality is a consequence of the Esséen-like inequality in Lemma
5.1 page 147 in [13], applied to the sum of i.i.d. random variables

n∑
k=1

(
Y tk
n
− Y t(k−1)

n

)
= Yt,
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with n = [xρt]. The common mean and variance are µt/n = t
nxt and s2

t/n = t
nσ

2(ρt),

respectively. As in the proof of (ii) in Theorem 2.2 it is proved that xρt →∞ uniformly.
Using this fact it is easy to verify that the arguments used to obtain (4.7) and (4.8) can
be extended to show that

√
tσ(ρt)L =

[xρt]E
(
|Y1 − µ1|3

)
(tσ2(ρt))3/2

.
1

(tρ2
tσ

2(ρt))
1/2

(
6
QΠ(1/ρt)

ρ2
tσ

2(ρt)
+ 2

)
. (5.2)

In the (SC∞) case, the above inequality together with the Lemma 3.4 gives the result.
In the (G) case, the result also follows immediately from the latter inequality but one
needs to recall that because b < lim inft→∞ xt ≤ lim supt→∞ xt < µ, then

0 < lim inf
t→∞

ρt ≤ lim sup
t→∞

ρt <∞,

0 < lim inf
t→∞

H(ρt) ≤ lim sup
t→∞

H(ρt) <∞,

and
0 < lim inf

t→∞
σ2(ρt) ≤ lim sup

t→∞
σ2(ρt) <∞.

Proof of estimate in (2.3). We carry out this proof in several steps.
Step 1: A useful representation for hJx . Let λ ≥ 0, fixed. We know that

hJz (t) =

∫ z

0

P(Xt ∈ dy)Π(z − y) (5.3)

= eλz
∫ z

0

e−λyP(Xt ∈ dy)e−λ(z−y)Π(z − y), (5.4)

and we note that for β ∈ C, such that <β ≥ 0,∫ ∞
0

e−βyΠ(y)dy =
ψ∗(β)

β
;

when β = 0 the above inequality is understood in the limiting sense. It follows that∫ ∞
0

eiyze−λyhJy (t)dy =

(
ψ∗(λ− iz)
λ− iz

)
e−tψ(λ−iz).

For each t > 0 and λ > 0 define a probability density function by the relation

gλt (y) =
λ

ψ∗(λ)
e−λy+tψ(λ)hJy (t), y ≥ 0.

This probability density equals that of the convolution of P(Y λt ∈ dy) := e−λy+tψ(λ)P(Xt ∈
dy) and P(Zλ ∈ dy) = λ

ψ∗(λ)e
−λyΠ(y)dy. It follows from the above calculations that for

any z ∈ R

ĝλt (z) :=

∫ ∞
0

dyeiyzgλt (y)

= exp{−t (ψ(λ− iz)− ψ(λ))}ψ∗(λ− iz)
λ− iz

λ

ψ∗(λ)
.

As a consequence of the hypothesis (H) it is proved in the Lemma 3.7 that we always
have ĝλ ∈ L1. Then by the inversion theorem for Fourier transforms we get the key
expression

gλt (y) =
1

2π

∫ ∞
−∞

e−izy ĝλt (z)dz, y ∈ R. (5.5)
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Now take y = x, and λ = ρt = ρ(x/t), and denote µt = E(Yt) = x. Recalling that
ρtx = tρtψ

′(ρt), we rewrite the above formula as

ρt
ψ(ρt)

etH(ρt)hJx(t) = gρtt (x) =
1

2π

∫ ∞
−∞

e−izxĝρtt (z)dz

=
1

2π

∫ ∞
−∞

E(exp {iz ((Yt − µt) + Zρt)})dz.
(5.6)

Step 2: Taking st :=
√
tσ(ρt) we prove the uniform convergence

st
2π

∫ ∞
−∞

E(exp {iz ((Yt − µt) + Zρt)})dz −→
1√
2π

(5.7)

To this end, we first notice that by a change of variables (5.7) amounts to

1

2π

∫ ∞
−∞

E

(
exp

{
iz

(
Yt − µt
st

)})
E

(
exp

{
iz
Zρt
st

})
dz −→ 1√

2π
(5.8)

Step 2.1: We show that E (Zρt/st)→ 0 uniformly. We write

E(Zρt) =
ρt

ψ∗(ρt)

∫ ∞
0

ye−ρtyΠ(y)dy =
ρt

ψ∗(ρt)

∫
(0,∞)

Π(dz)

∫ z

0

ye−ρtydy

=
1

ρt (ψ∗(ρt))
(ψ∗(ρt)− ρtψ′∗(ρt)) ≤

1

ρt
,

and the result follows since we know ρtst →∞ uniformly.
Step 2.2. We now split the integral in (5.8) in four terms∫ ∞

−∞
E

(
exp

{
iz

(
Yt − µt
st

)})
E

(
exp

{
iz
Zρt
st

})
dz

=

∫
|z|>1/4Λ

E

(
exp

{
iz

(
Yt − µt
st

)})
E

(
exp

{
iz
Zρt
st

})
dz +

∫
|z|≤1/4Λ

e−z
2/2dz

+

∫
|z|≤1/4Λ

[
E

(
exp

{
iz

(
Yt − µt
st

)})
− e−z

2/2

]
E

(
exp

{
iz
Zρt
st

})
dz

−
∫
|z|≤1/4Λ

e−z
2/2

[
1− E

(
exp

{
iz
Zρt
st

})]
dz

= I + II + III + IV

(5.9)

By Lemma 5.1 we know that Λ→ 0 uniformly in x. It follows that II →
√

2π. Also by the
inequality in Lemma 5.1 it is straightforward that III → 0. We can bound IV in modulus
by

E (Zρt)

st

∫
|z|≤1/4Λ

|z|e−z
2/2dz,

so by the previous result it remains only to verify that∣∣∣∣∣
∫
|z|>1/4Λ

E

(
exp

{
iz

(
Yt − µt
st

)})
E

(
exp

{
iz
Zρt
st

})
dz

∣∣∣∣∣→ 0, (5.10)

Step 2.3: In the frameworks (SC∞) or (G), the estimate (5.10) holds. From
Lemma 5.1 and Lemma 3.4 we know that there is a constant k1 such that stΛ ≤ k1/ρt.
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Using this fact and making elementary manipulations we deduce the following upper
bound ∣∣∣∣∣

∫
|z|>1/4Λ

E

(
exp

{
iz

(
Yt − µt
st

)})
E

(
exp

{
iz
Zρt
st

})
dz

∣∣∣∣∣
≤ st

∫
|z|>1/4stΛ

exp {−t<{ψρt (−iz)}}
∣∣∣∣ψ∗(ρt − iz)ρt − iz

ρt
ψ∗(ρt)

∣∣∣∣ dz
≤ st

∫
k2ρt<|z|<1

exp {−t<{ψρt (−iz)}}
∣∣∣∣ψ∗(ρt − iz)ρt − iz

ρt
ψ∗(ρt)

∣∣∣∣ dz
+ st

∫
|z|>1

exp {−t<{ψρt (−iz)}}
∣∣∣∣ψ∗(ρt − iz)ρt − iz

ρt
ψ∗(ρt)

∣∣∣∣ dz
=: A+B

(5.11)

Step 2.3.1: (SC∞) case. In order to prove that A→ 0 uniformly, we start by observing
that the hypothesis of stochastic compactness at infinity (SC∞), and Proposition 2.2.1 in
[3] imply that for any α0 ∈ (2− α, 2) there are constants k4 and k5 such that∫ u

0
zΠ(z)dz∫ v

0
zΠ(z)dz

≤ k4

(u
v

)α0

, u ≥ v ≥ k5

and thus
QΠ(u)

QΠ(v)
≤ k4

(u
v

)α0−2

, u ≥ v ≥ k5. (5.12)

We fix α0 ∈ (2− α, 2), take ρ > sup{t>1} ρt, and choose v0 > 1 such that k5ρ ∨
(

1
k3

)
< v0.

Next, we bound A above as follows

A = st

∫
k2ρt<|z|<1

exp {−t<{ψρt (−iz)}}
∣∣∣∣ψ∗(ρt − iz)ρt − iz

ρt
ψ∗(ρt)

∣∣∣∣ dz
≤ stρt

∫
k2<|θ|<1/ρt

exp {−t<{ψρt (−iθρt)}} dθ =: A1.

(5.13)

To describe the behaviour of A1 we start by bounding from below the exponent of the
integrand as follows. For θ ∈ ((v0)−1, (k5ρt)

−1), or equivalently k5 < (θρt)
−1 < v0/ρt

<ψρt(−iθρt) =

∫ ∞
0

(1− cos(θρty))e−ρtyΠ(dy)

≥ k6e
−1/θKΠ(1/(θρt))

≥ k6e
−v0 inf

u≥1/(v0ρt)

{
KΠ(u)

QΠ(u)

}
QΠ(1/(θρt))

QΠ(v0/ρt)
QΠ(v0/ρt)

≥ k7 inf

{
KΠ(u)

QΠ(u)
, u ≥ (v0ρ)

−1

}
(θv0)2−α0QΠ(v0/ρt),

where in the last inequality we used (5.12). The latter together with the inequality

v2
0QΠ(v0/ρt) = ρ2

t

∫ v0/ρt

0

yΠ(y)dy ≥ ρ2
t

∫ 1/ρt

0

yΠ(y)dy = QΠ(1/ρt) ≥ H(ρt),

imply

t<ψρt(−iθρt) ≥ k8θ
2−α0(v0)−α0tH(ρt),
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for t large enough, uniformly in x. Applying this in A1 and the results from Lemma 3.4
we obtain

A1 ≤
√
tσ(ρt)ρt

∫ 1/ρtk5

1/v0

exp{−k8θ
2−α0(v0)−α0tH(ρt)}dθ

≤
√

2tH(ρt)

∫ 1/ρtk5

1/v0

exp{−k9θ
2−α0tH(ρt)}dθ,

where k9 = k8v
−α
0 . Recall that tH(ρt)→∞, so that putting θ2−α0tH(ρt) = z2−α0 gives

A1 ≤ (
√

2tH(ρt))
−α0

2(2−α0)

∫ ∞
(tH(ρt)/v0)

1
2−α0

exp{−k9z
2−α0}dz → 0.

Step 2.3.2: (SC∞) case. We next prove that B → 0. Proceeding as above we easily get
that for θ > 1/ρtk5

<ψρt(−iθρt) ≥ k10e
−v0QΠ(1/θρt) ≥ k10e

−v0QΠ(k5) := k11.

Now, we apply this estimate to B to get that for t > t0

B ≤ ste−(t−t̃0)k11
ρt

ψ∗(ρt)

∫
|z|>1

exp
{
−t̃0<{ψρt (−iz)}

} ∣∣∣∣ψ∗(ρt − iz)ρt − iz

∣∣∣∣ dz.
Observe that by Lemma 3.7 the latter integral, as a function of ρt, is uniformly bounded.
This will be enough to conclude the argument because we already know that ρt

ψ∗(ρt)
→

1/(E(X1)− b) <∞ and it is easy to verify that st grows at most as a power function of t.
The latter is actually true because Lemma 3.4 allows us to ensure that

st ≤
1

ρt

√
tH(ρt) ≤

1

ρt

√
tH(ρ),

with ρ = supt ρt <∞; and moreover given that tH(ρt)→∞ we deduce from (5.12) that
for all large enough t

tρ2−α0
t ≥ k13tQΠ(1/ρt) ≥ k13tH(ρt) ≥ k13 > 0,

that is
ρt ≥ k14t

−1/(2−α0), for t large enough.

Which implies the claimed fact.
Step 2.3.3: case (G). We will prove that the term

st

∫
|z|>1/4stΛ

exp {−t<{ψρt (−iz)}}
∣∣∣∣ψ∗(ρt − iz)ρt − iz

ρt
ψ∗(ρt)

∣∣∣∣ dz
tends to 0 uniformly in x. Recall that in this setting we have

0 < ρ := lim inf
t→∞

ρt ≤ lim sup
t→∞

ρt := ρ <∞.

Using this, the definition of stΛ, and the calculations used in the proof of (3.16) it is easy
to check that stΛ is bounded by below by a strictly positive constant, say l∗. Also, as
we required X to be strongly non-lattice, and this is a property that is preserved under
change of measure, we have that

lim inf
θ→∞

<(ψρt(−iθ)) = lim inf
θ→∞

∫ ∞
0

(1− cos(θy))e−ρtyΠ(dy)

≥ lim inf
θ→∞

∫ ∞
0

(1− cos(θy))e−ρyΠ(dy) > 0.

(5.14)
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We denote ψ̃ρ(θ) =
∫∞

0
(1− cos(θy))e−ρyΠ(dy), and m(s) = infθ≥s ψ̃ρ(θ). The above obser-

vations and the continuity of ψ̃ρ(θ) imply that m(s) > 0, for all s > 0. It follows that for
t > t0

st

∫ ∞
l

e−t<(ψρt (−iθ))
∣∣∣∣ψ∗(ρt − iθ)ρt − iθ

ρt
ψ∗(ρt)

∣∣∣∣ dθ
≤
√
tσ(ρt)e

−(t−t0)m(l∗)

∫ ∞
l∗

e−t0ψ̃ρ(θ)

∣∣∣∣ψ∗(ρt − iθ)ρt − iθ
ρt

ψ∗(ρt)

∣∣∣∣ dθ.
By Lemma 3.7 the right most term tends to 0 uniformly in x.

The proofs of the estimates (2.4) and (2.5) use arguments very similar to those used
in the previous proof, and hence in the forthcoming lines we will only outline the keys
facts needed to adapt that proof.

Proof of the estimate (2.4). We proceed as before, using Lemma 3.3 we define a proba-
bility density

Qλt (y) =
λψ(λ)etψ(λ)

ψ∗(λ)(1− e−∆ψ(λ))
e−λyhJy (t,∆)

=
λψ(λ)etψ(λ)

ψ∗(λ)(1− e−∆ψ(λ))
e−λyP(Ty ∈ (t, t+ ∆], XTy > y)

=

∫ y

0

P(Xt ∈ da)e−λaetψ(λ) ψ(λ)

(1− e−∆ψ(λ))

∫ y−a

0

U∆(dz)e−λz

× λ

ψ∗(λ)
e−λ(y−a−z)Π(y − a− z).

(5.15)

We easily verify from the above expression that this is the density of the sum of the three
independent random variables, Y λt , Zλ, and Wλ, with Y λt , and Zλ, as defined in the proof
of estimate (2.3), and Wλ that follows the probability law

P(Wλ ∈ dy) =
ψ(λ)

(1− e−∆ψ(λ))
U∆(dy)e−λy.

We can therefore proceed as in the proof of estimate (2.3) replacing Zρt by Zρt +Wρt .

But for that end we should first prove that the Fourier transform of Qλt is integrable.
This is a straightforward consequence of the fact that

∣∣E(exp{iβ(Y λt + Zλ +Wλ)})
∣∣ ≤ ∣∣E(exp{iβ(Y λt + Zλ)})

∣∣
and that we already proved that the rightmost term in the above inequality is integrable.
We should now prove that E (Wρt/st) tend to zero , uniformly in x and in ∆. We have

∣∣∣∣E(exp

{
iβ
Wρt

st

})
− 1

∣∣∣∣ ≤ E( |β|Wρt

st

)
, (5.16)
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and

E

(
Wρt

st

)
=

1

st

ψ(ρt)

1− e−∆ψ(ρt)

∫ ∆

0

dsE
(
Xse

−ρtXs
)

=
1

st

ψ(ρt)

1− e−∆ψ(ρt)

∫ ∆

0

dse−sψ(ρt)E
(
Xse

−ρtXs+sψ(ρt)
)

=
1

st

ψ(ρt)

1− e−∆ψ(ρt)

∫ ∆

0

dse−sψ(ρt)E (Ys)

=
xt
st

ψ(ρt)

1− e−∆ψ(ρt)

∫ ∆

0

dse−sψ(ρt)s

=
xt
st

ψ(ρt)

1− e−∆ψ(ρt)

1

(ψ(ρt))
2

(
1− e−∆ψ(ρt) −∆ψ(ρt)e

−∆ψ(ρt)
)

≤ ρtxt
ψ(ρt)

1√
tρ2
tσ

2(ρt)
.

(5.17)

The rightmost term in the above equation converges to zero uniformly in x and ∆ because

ρtxt
ψ(ρt)

=
ρtψ
′(ρt)

ψ(ρt)
≤ 1,

which is in turn an easy consequence of the elementary inequality

ψ′(λ) = b+

∫ ∞
0

ye−λyΠ(dy) = b+

∫ ∞
0

da

∫ ∞
a

e−λyΠ(dy)

≤ b+

∫ ∞
0

dae−λaΠ(a) =
ψ(λ)

λ
,

(5.18)

for all λ > 0.

Proof of the estimate (2.5). By Lemma 3.3 we have the key identity

hCy (t,∆) = P(Ty ∈ (t, t+ ∆], XTy = y) = b

∫
[0,y]

P(Xt ∈ dz)u∆(y − z).

Taking Laplace transform in y we obtain∫ ∞
0

dye−λyhCy (t,∆) = be−tψ(λ) (1− e−∆ψ(λ))

ψ(λ)
.

for any t > 0. Observe the identity

P(Wλ ∈ dy) =
ψ(λ)

(1− e−∆ψ(λ))
e−λyu∆(y)dy,

with Wλ as defined in the previous proof. We deduce therefrom the identity

bP(Y λt +Wλ ∈ dy) = etψ(λ) ψ(λ)

(1− e−∆ψ(λ))
e−λyhCy (t,∆)dy, y ≥ 0. (5.19)

The Fourier transform of the left most term in the above equation is integrable because
of the inequality ∣∣∣∣1− e−∆ψ(λ−iθ)

ψ(λ− iθ)

∣∣∣∣ ≤ ∣∣∣∣ 1

ψ(λ− iθ)

∣∣∣∣ ∼ ∣∣∣∣ 1

bθ

∣∣∣∣ ,
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the hypothesis (H), the Lemma 3.7 and Proposition 2 in Chapter 1 in [1]. We then deduce
the identity

st
ψ(ρt)

(1− e−∆ψ(ρt))
etH(ρt)hCx (t,∆)

=
b

2π

∫ ∞
−∞

dzE

(
exp

{
iz

((
Yt − µt
st

)
+
Wρt

st

)})
.

(5.20)

Using the arguments in the previous proofs we get that the rightmost term in the above
identity equals

b√
2π

(1 + o(1)),

and the error term is uniform in x and ∆. This finishes the proof.

6 Proof of Proposition 2.5

Proof. We repeat the calculation on page 9 with λ = 0 to get

ĥJz (t) :=

∫ ∞
0

eizyhJy (t)dy = e−tψ(−iz)ψ∗(−iz)
−iz

,

so that

thJx(t) =
t

2π

∫ ∞
−∞

e−ixze−tψ(−iz)ψ∗(−iz)
−iz

dz. (6.1)

The integral above is well defined since the hypothesis (H) ensures the integrability in a
neighbourhood of infinity, and that around zero follows from the regular variation of Π

at infinity. Indeed, the regular variation of Π implies the finiteness of the integral∫ ∞
1

dz

z
Π(z) <∞,

and some elementary calculations allow to deduce therefrom that∫
|z|<1

∣∣∣∣ψ∗(−iz)−iz

∣∣∣∣ dz <∞.
We write the RHS of (6.1) as I1 + I2, where

I1 =
t

2π

∫
|z|≤Kc(t)

e−ixze−tψ(−iz)ψ∗(−iz)
−iz

dz

=
1

2π

∫
|z|≤K

e−izyte−tψ(−iz/c(t)) tψ∗(−iz/c(t))
−iz

dz

=
1

2π

∫
|z|≤K

e−izyte−ψ̃(−iz) ψ̃(−iz)
−iz

dz + o(1),

where ψ̃ is the exponent of the limiting stable process S, and we use the fact that
tψ∗(−iz/c(t)) ∼ tψ(−iz/c(t))→ ψ̃(−iz) uniformly on [−K,K]. Clearly

lim
K→∞

|
∫
|z|>K

e−ψ̃(−iz) ψ̃(−iz)
−iz

dz| = 0,

so that

lim
K→∞

lim
t→∞

|I1 − h̃yt(1)| = 0, uniformly in yt.
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The result follows because, for any fixed K

lim
t→∞

|I2|

≤ lim
t→∞

te−(t−t0)κ

∫
|z|>Kc(t)

exp

{
−t0

∫ ∞
0

(1− cos(zy))Π(dy)

}
|ψ(−iz)|

z
dz

= 0,

where κ = lim inf |z|→∞
∫∞

0
(1− cos(zy))Π(dy) > 0, by the strongly non-lattice assumption.

Similarly we have the representation

c(t)hCx (t,∆) =
bc(t)

2π

∫ ∞
−∞

e−ixze−tψ(−iz) (1− e−∆ψ(−iz))

ψ(−iz)
dz,

the integrability following from (H) and the bound∣∣∣∣ (1− e−∆ψ(−iz))

ψ(−iz)

∣∣∣∣ ≤ ∣∣∣∣ 1

−ibz + ψ∗(−iz)

∣∣∣∣
∼ 1

b|z|
as |z| → ∞.

Again we have the uniform estimate,

bc(t)

2π

∫
|z|≤Kc(t)

e−ixze−tψ(−iz) (1− e−∆ψ(−iz))

ψ(−iz)
dz

=
b

2π

∫
|z|≤K

e−izyte−tψ(−iz/c(t)) (1− e−∆ψ(−iz/c(t)))

ψ(−iz/c(t))
dz

=
b∆

2π

∫
|z|≤K

e−izyte−tψ̃(−iz)dz + o(1),

and the proof is concluded as before.

Acknowledgments. We would like to thank two anonymous referees for their thorough
revision of the paper. Their comments helped us to substantially improve the presentation
of the paper.

References

[1] Jean Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge Univer-
sity Press, Cambridge, 1996. MR-1406564

[2] , Subordinators: examples and applications, Lectures on probability theory and statis-
tics (Saint-Flour, 1997), Lecture Notes in Math., vol. 1717, Springer, Berlin, 1999, pp. 1–91.
MR-1746300

[3] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathemat-
ics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. MR-1015093

[4] R. A. Doney, One-sided local large deviation and renewal theorems in the case of infinite
mean, Probab. Theory Related Fields 107 (1997), no. 4, 451–465. MR-1440141

[5] R. A. Doney and V. Rivero, Asymptotic behaviour of first passage time distributions for Lévy
processes, Probab. Theory Related Fields 157 (2013), no. 1-2, 1–45. MR-3101839

[6] Ronald A. Doney, Fluctuation theory for Lévy processes, Lecture Notes in Mathematics, vol.
1897, Springer, Berlin, 2007, Lectures from the 35th Summer School on Probability Theory
held in Saint-Flour, July 6–23, 2005, Edited and with a foreword by Jean Picard. MR-2320889

[7] Bert Fristedt and Lawrence Gray, A modern approach to probability theory, Probability and
its Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. MR-1422917

EJP 20 (2015), paper 91.
Page 27/28

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=1746300
http://www.ams.org/mathscinet-getitem?mr=1015093
http://www.ams.org/mathscinet-getitem?mr=1440141
http://www.ams.org/mathscinet-getitem?mr=3101839
http://www.ams.org/mathscinet-getitem?mr=2320889
http://www.ams.org/mathscinet-getitem?mr=1422917
http://dx.doi.org/10.1214/EJP.v20-3879
http://ejp.ejpecp.org/


Asymptotic behaviour of first passage time distributions for subordinators

[8] Philip S. Griffin and Ross A. Maller, The time at which a Lévy process creeps, Electron. J.
Probab. 16 (2011), no. 79, 2182–2202. MR-2861671

[9] Naresh C. Jain and William E. Pruitt, Lower tail probability estimates for subordinators and
nondecreasing random walks, Ann. Probab. 15 (1987), no. 1, 75–101. MR-877591
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