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Abstract

Widely used models in genetics include the Wright-Fisher diffusion and its moment
dual, Kingman’s coalescent. Each has a multilocus extension but under neither ex-
tension is the sampling distribution available in closed-form, and their computation
is extremely difficult. In this paper we derive two new multilocus population ge-
netic models, one a diffusion and the other a coalescent process, which are much
simpler than the standard models, but which capture their key properties for large
recombination rates. The diffusion model is based on a central limit theorem for
density dependent population processes, and we show that the sampling distribution
is a linear combination of moments of Gaussian distributions and hence available
in closed-form. The coalescent process is based on a probabilistic coupling of the
ancestral recombination graph to a simpler genealogical process which exposes the
leading dynamics of the former. We further demonstrate that when we consider the
sampling distribution as an asymptotic expansion in inverse powers of the recombina-
tion parameter, the sampling distributions of the new models agree with the standard
ones up to the first two orders.
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1 Introduction

The basis of many important problems in genetics is to find an expression for a
sampling distribution or likelihood. Valuable tools in this endeavour are stochastic
models of allele frequency evolution forwards in time, and their dual genealogical
processes backwards in time. In particular, the numerous variants of the Wright-Fisher
diffusion and Kingman’s coalescent, respectively, have focused attention on the scaling
limit as the population size goes to infinity, leading from a (complicated) finite-population
model of reproduction to a (simpler) infinite-population limit. At a single genetic locus,
the problem of computing sampling distributions in these models is well studied, with
even some closed-form formulas available (Wright, 1949; Ewens, 1972; Jenkins and Song,
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Evolution of weakly correlated loci

2011; Bhaskar et al., 2012). However, with ongoing technological developments in high-
throughput DNA sequencing, large genomic datasets are becoming available and it is
necessary to consider multilocus models. Inter-locus recombination quickly makes such
models intractable; for neither the Wright-Fisher diffusion with recombination nor the
coalescent with recombination—or ancestral recombination graph (ARG)—is it possible
to obtain a closed-form expression for the sampling distribution. This has remained a
notoriously difficult problem, and to make progress using these models it has usually
been necessary to resort to computationally-intensive techniques such as importance
sampling (Griffiths and Marjoram, 1996; Fearnhead and Donnelly, 2001; Griffiths et al.,
2008; Jenkins and Griffiths, 2011), Markov chain Monte Carlo (Kuhner et al., 2000;
Nielsen, 2000; Wang and Rannala, 2008; Rasmussen et al., 2014), or other numerical
approximations (Boitard and Loisel, 2007; Miura, 2011). Denoting the population-scaled
recombination parameter by ρ, only in the special cases of ρ = 0 or ρ =∞ is it possible
to make progress analytically, since then we are back to a single locus, or to many
independent single loci, respectively.

In another direction, we have considered an analytic approach to the problem, as
follows. Denote the observed sample configuration at two loci by n and its sampling
probability by q(n; ρ) (to be defined precisely below). Consider the asymptotic expansion
in inverse powers of ρ:

q(n; ρ) = q0(n) +
q1(n)

ρ
+
q2(n)

ρ2
+ · · · , (1.1)

where for convenience we suppress the dependence of these terms on other parameters
of the model. Under an infinite-alleles type of mutation, we obtained closed-form formulas
for q0(n) and q1(n) in terms of the marginal one-locus sampling probabilities, and a
decomposition of q2(n) into a closed-form term plus a second part which is evaluated
easily by dynamic programming (Jenkins and Song, 2010). (The result is stated more
precisely in Theorem 2.1 below.) This provides the first closed-form extension of Ewens’
Sampling Formula (Ewens, 1972) to handle finite amounts of recombination. It has
been extended subsequently to include more general models of mutation (Jenkins and
Song, 2009), natural selection (Jenkins and Song, 2012), higher-order terms (Jenkins and
Song, 2012), and more than two loci (Bhaskar and Song, 2012), and has had practical
implications for genomic inference (Chan et al., 2012). One particularly appealing
conclusion of these works is that both q0(n) and q1(n) are universal ; that is, their
functional form is invariant to our assumptions about mutation and selection acting
marginally at each locus. The effects of these marginal processes are entirely subsumed
into the relevant one-locus sampling distributions.

The simple and universal forms for q0(n) and q1(n) provide strong circumstantial
evidence that there exists an underlying stochastic process which is much simpler than
the standard models for finite amounts of recombination. In particular, we previously
conjectured (Jenkins and Song, 2010) the existence of a process which is both much
simpler than the standard models based on the Wright-Fisher diffusion or on the ARG,
and is in agreement with the sampling distribution (1.1) up to O(ρ−2). The goal of this
paper is to describe such a process. In fact, using different arguments we describe
two such processes, obtaining both a limiting diffusion and a coalescent process with
these properties. In the diffusion approximation, the key idea is to suppose that the
probability r of a recombination per individual per generation scales as N−β as the
population size N → ∞, for 0 < β < 1, rather than the usual choice of β = 1. Interest
in asymptotically large recombination rates is reasonable because of extensive recom-
bination rate heterogeneity along chromosomes in e.g. humans, strong recombination
rates in some species such as Drosophila melanogaster (Chan et al., 2012), and be-
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cause of the need to understand the long-range dependencies between well-separated
loci. Our diffusion in this scaling is intimately related to the central limit theorem for
density dependent population processes (see Ethier and Kurtz, 1986, Theorem 11.2.3),
which has been analyzed in genetics—for models of strong mutation rather than strong
recombination—by Feller (1951) and Norman (1975). A closely related scaling in the
context of Ξ-coalescent processes was also recently explored by Birkner et al. (2013) (in
that paper β = 1 but with timescale N2). The coalescent approach, meanwhile, uses a
coupling argument. Intuitively, we would like to couple the ARG to the limiting case of
two independent coalescent trees (ρ =∞). To account for contributions to the sampling
distribution of O(ρ−1), we must quantify the “leading order reasons” for such a coupling
to fail. When ρ is large but finite, lineages in the ARG ancestral to both loci undergo
recombination backwards in time very rapidly, until the first time U that no such lineage
survives. In this paper we show that, roughly speaking, in order to recover the sampling
distribution up to O(ρ−1) we need consider only the following type of exceptional event:
a coalescence occurs more recently than time U in the ARG, and the coalescence is
between two lineages each of which is ancestral to both of the two loci. This observation
enables us to define a simple coalescent process which allows for at most one of these
events but is otherwise very similar to the easy limiting process corresponding to ρ =∞.

The paper is organized as follows. In Section 2 we specify our notation and summarize
previous research. Novel diffusion and coalescent processes are introduced in Sections
3 and 4, respectively, and we conclude in Section 5 with a brief discussion.

2 Notation and previous results

For M ∈ N = {0, 1, 2, . . .}, let [M ] := {1, 2, . . . ,M}. The complement of a set J is
written J{. Denote the Kronecker delta by δij which takes the value 1 if i = j and 0
otherwise. Let ei denote a unit vector whose jth entry is δij , and let eij denote a matrix
with (k, l)th entry equal to δikδjl. For a vector v ∈ Rd we denote by |v| the usual Euclidean
norm. Denote the k × 1 zero vector by 0k and the k × 1 all-one vector by 1k. We will
replace a subscript with a “·” to denote summation over that index. A prime symbol ′ will
denote vector or matrix transpose. For z ∈ R≥0 and n ∈ N, (z)n↑ := z(z+ 1) · · · (z+n− 1)

denotes the nth ascending factorial of z. Finally, for a matrix R of processes we let
[R]t = ([Ri, Rj ]t)i,j denote the matrix of corresponding covariation processes.

Consider the usual diffusion limit of an exchangeable model of random mating with
constant population size of N haplotypes. Our interest will be in a sample from this
population at two loci, which we call A and B, with the probability of mutation per
haplotype per generation denoted by uA and uB respectively. In the diffusion limit we
let N → ∞ and uA, uB → 0 while the population-scaled parameters θA = 2NuA and
θB = 2NuB remain fixed. In this paper we will suppose a finite-alleles model of mutation
such that a mutation to an allele i in type space EA = [K], K ∈ N, takes it to allele
k ∈ [K] with probability PAik, with EB = [L] and PBjl , j, l ∈ [L] defined analogously. (As we
discover below, the mutation model is not important and we could pose something more
complicated with little extra effort.) The probability of a recombination between the
two loci per haplotype per generation is denoted by r, and we assume that ρβ = 2Nβr is
fixed as N →∞, for some fixed β ∈ (0, 1]. Previous work has focused on the case β = 1

with time measured in units of N generations. For consistency with the usual notation
we write ρ = ρ1.

A sample from this model comprises a haplotypes observed only at locus A, b hap-
lotypes observed only at locus B, and c haplotypes observed at both loci. The sample
configuration is denoted by n = (a, b, c) where a = (ai)i∈[K] and ai is the number of
haplotypes observed to exhibit allele i at locus A; b = (bj)j∈[L] where bj is the number of
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haplotypes observed to exhibit allele j at locus B; and c = (cij)i∈[K],j∈[L] where cij is the
number of haplotypes with allele i at locus A and allele j at locus B. Thus,

a =

K∑
i=1

ai, b =

L∑
j=1

bj , c =

K∑
i=1

L∑
j=1

cij ,

and we let n = a + b + c. We further write cA = (ci·)i∈[K] and cB = (c·j)j∈[L] to denote
the marginal sample configurations of c restricted to locus A and locus B respectively.
Finally, we use q(a, b, c) to denote the probability that when we sample n haplotypes
from the population at stationarity we obtain a given ordered configuration consistent
with (a, b, c); by sampling exchangeability this is indeed a function only of the unordered
configuration (a, b, c). For convenience we suppress the dependence of this quantity on
the model parameters and on β. The main result motivating this work is an expansion
for q(a, b, c) for the case of β = 1, and later we will show that this expansion holds for all
β ∈ (0, 1].

Theorem 2.1 (See Jenkins and Song (2009)). Consider the following asymptotic expan-
sion for q(a, b, c) under the diffusion limit with β = 1:

q(a, b, c) = q0(a, b, c) +
q1(a, b, c)

ρ
+O

(
1

ρ2

)
, as ρ→∞,

with q0, q1, . . . independent of ρ. Then the zeroth order term is given by

q0(a, b, c) = qA(a+ cA)qB(b+ cB), (2.1)

and the first order term is given by

q1(a, b, c) =

(
c

2

)
qA(a+ cA)qB(b+ cB)

− qB(b+ cB)

K∑
i=1

(
ci·
2

)
qA(a+ cA − ei)

− qA(a+ cA)

L∑
j=1

(
c·j
2

)
qB(b+ cB − ej)

+

K∑
i=1

L∑
j=1

(
cij
2

)
qA(a+ cA − ei)qB(b+ cB − ej), (2.2)

where qA, qB are the marginal sampling distributions at locus A and locus B, respectively.

Remark 2.2. Under a neutral, finite-alleles model of mutation, if mutation is parent
independent—that is, PAki = PAi , i, k ∈ [K], and PBlj = PBj , j, l ∈ [L], then qA(a) and qB(b)

are known in closed-form:

qA(a) =
1

(θA)a↑

K∏
i=1

(θAP
A
i )ai↑, and qB(b) =

1

(θB)b↑

L∏
j=1

(θBP
B
j )bj↑.

These expressions follow, for example, from the moments of the Wright-Fisher diffu-
sion with parent-independent mutation, whose stationary distribution at locus A is
Dirichlet(θAPA1 , . . . , θAP

A
K−1) (Wright, 1949), and similarly at locus B.

Remark 2.3. The zeroth-order decomposition is well known (e.g. Ethier, 1979) and also
intuitive, since the two loci become independent as ρ→∞.

Theorem 2.1 can be obtained by diffusion (Jenkins and Song, 2012) or by coalescent
(Jenkins and Song, 2009, 2010) arguments. In this paper we address both approaches in
further detail.
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3 Diffusion model

In this section we extend the above results by obtaining a full description of a simple
diffusion process such that its sampling distribution is known exactly and has a Taylor
expansion about ρ =∞ consistent with (2.1) and (2.2). For simplicity we will obtain our
diffusion as the limit of an appropriately rescaled Moran model, although we expect our
results to hold for a more general class of discrete models of reproduction within the
domain of convergence of the Wright-Fisher diffusion.

3.1 Neutral Moran model

A population of N haploid, monoecious individuals evolves as a multitype birth-and-
death process in continuous time. Each individual carries a haplotype comprising a pair
of alleles (i, j) ∈ [K]× [L], one at locus A and one at locus B. Let Zij(τ) ∈ {0, 1, . . . , N}
denote the number of (i, j) haplotypes in the population at time τ ∈ R≥0, and Z(τ) =

(Zij(τ))i∈[K],j∈[L]. The population evolves as follows. At rate N2/2 a reproduction event
occurs, in which an individual is chosen uniformly at random from the population to
die. It is replaced by a copy of another individual also chosen uniformly at random (the
same individual could be chosen; whether sampling is with or without replacement does
not affect the diffusion limit). Independently, each locus of each haplotype undergoes
mutation: any locus A mutates at rate θA/2 and its allele is updated according to the
transition matrix PA = (PAik)i,k∈[K]; similarly any locus B mutates at rate θB/2 and its

allele is updated according to PB = (PBjl )j,l∈[L]. Finally, each haplotype independently
undergoes recombination at rate ρ/2: at such an event, it is replaced by a haplotype
formed by sampling two alleles (one for each locus) independently from the population.
Putting all this together, the rate at which a haplotype (i, j) dies and is replaced by a
haplotype (k, l) when Z(τ) = z is given by

λ
(N)
ij,kl(z) =

zij
N

[
N2

2

zkl
N

+N

(
θA
2
PAikδjl +

θB
2
PBjl δik +

ρ

2

zk·
N

z·l
N

)]
, (i, j), (k, l) ∈ [K]×[L].

Notice that, as is standard (e.g. Baake and Herms, 2008), we decouple the mutation and
recombination mechanisms from reproduction (and from each other). This simplifies the
analysis without unduly affecting the diffusion limit.

Remark 3.1. It is worth mentioning that the parameters of the Moran model—θA, θB,
and ρ—are defined directly, without reference to uA, uB, and r as in Section 2. The two
sets of definitions are reconciled provided we interpret one generation of the Moran
model as N−1 units of time. Then for example the expected number of recombination
events per individual per unit of time in the Moran model is Nr = ρ/2, as before.
This interpretation of one “generation” is reasonable since the expected lifetime of an
individual is 2/N units of time (a factor of two difference arising because the effective
population size of the Moran model is N/2 (Ewens, 2004, p121)). The advantage of
introducing uA, uB, and r in this way is that the new scaling described below, given
by ρβ = 2Nβr, provides both biological intuition and a means of comparison with the
Wright-Fisher model. We can now continue to speak of the asymptotic behaviour of the
parameter r; equivalently, we are going to rescale ρ by writing ρ = 2Nr = 2Nβr×N1−β =

ρβN
1−β and fixing ρβ as N →∞.

We next change variables by introducing the collection

M (N)(τ) := {X(N)(τ),Y (N)(τ),D(N)(τ)},
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where

X(N)(τ) = (X
(N)
i (τ))i∈[K] =

(
Zi·(τ)

N
: i ∈ [K]

)
,

Y (N)(τ) = (Y
(N)
j (τ))j∈[L] =

(
Z·j(τ)

N
: j ∈ [L]

)
,

D(N)(τ) = (D
(N)
ij (τ))i∈[K],j∈[L] =

(
Zij(τ)

N
− Zi·(τ)

N

Z·j(τ)

N
: i ∈ [K], j ∈ [L]

)
.

That is, we describe the state of the Moran model at time τ by the marginal allele
frequencies and the coefficients of linkage disequilibrium (see, e.g. Ewens, 2004, p69,
p227). We will write this succinctly by arranging the variables in a linear order:

(X
(N)
1 , . . . , X

(N)
K , Y

(N)
1 , . . . , Y

(N)
L , D

(N)
11 , . . . , D

(N)
KL )′,

and thinking of M (N)(τ) as a vector of length Λ := K + L+KL. The process (M (N)(τ) :

τ ≥ 0) is then Markov on a state space we denote by ∆
(N)
KL−1, which is a rational subset

(those points consistent with
∑K
i=1

∑L
j=1 Zij = N ) of the (KL− 1)-dimensional shifted

simplex

∆KL−1 =(x,y,d) ∈ [0, 1]K × [0, 1]L × [−1, 1]KL :

K∑
i=1

xi = 1 =

L∑
j=1

yj ,

K∑
i=1

dij = 0 =

L∑
j=1

dij

 .

To find the diffusion limit we first need the conditional means and covariances of the
increments

∆M (N)(τ) := M (N)(τ + dτ)−M (N)(τ).

From these, and under the assumption that θA, θB, and ρ are fixed as N → ∞, it is
possible to show that the model converges to a (Wright-Fisher) diffusion limit (Ethier
and Kurtz, 1986, Example 10.3.9, p433). Recall however that our interest is when ρβ,
rather than ρ, is fixed, so below we write these increments in terms of ρβ using the fact
that ρ = ρβN

1−β , as noted in Remark 3.1.
In the following, for convenience we drop the dependence on τ.

Proposition 3.2. In the neutral two-locus Moran model with mutation and recombina-
tion, the conditional means and covariances of increments of M (N) are given by

lim
dτ→0

(dτ)−1E[∆X
(N)
i |M (N)] =

θA
2

K∑
k=1

(PAki − δik)X
(N)
k , (3.1)

lim
dτ→0

(dτ)−1E[∆Y
(N)
j |M (N)] =

θB
2

L∑
l=1

(PBlj − δjl)Y
(N)
l , (3.2)

lim
dτ→0

(dτ)−1E[∆D
(N)
ij |M (N)] = − ρβ

2Nβ−1
D

(N)
ij −D

(N)
ij +

θA
2

K∑
k=1

(PAki − δik)D
(N)
kj

+
θB
2

L∑
l=1

(PBlj − δjl)D
(N)
il +O

(
1

Nβ

)
, (3.3)

lim
dτ→0

(dτ)−1Cov[∆X
(N)
i ,∆X

(N)
k |M (N)] = X

(N)
i (δik −X(N)

k ) +O

(
1

Nβ

)
,

lim
dτ→0

(dτ)−1Cov[∆Y
(N)
j ,∆Y

(N)
l |M (N)] = Y

(N)
j (δjl − Y (N)

l ) +O

(
1

Nβ

)
,
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lim
dτ→0

(dτ)−1Cov[∆X
(N)
i ,∆Y

(N)
j |M (N)] = D

(N)
ij +O

(
1

Nβ

)
,

lim
dτ→0

(dτ)−1Cov[∆X
(N)
i ,∆D

(N)
kl |M

(N)] = D
(N)
kl (δik −X(N)

i )−X(N)
k D

(N)
il +O

(
1

Nβ

)
,

lim
dτ→0

(dτ)−1Cov[∆Y
(N)
j ,∆D

(N)
kl |M

(N)] = D
(N)
kl (δjl − Y (N)

j )− Y (N)
l D

(N)
kj +O

(
1

Nβ

)
,

lim
dτ→0

(dτ)−1Cov[∆D
(N)
ij ,∆D

(N)
kl |M

(N)] = X
(N)
i Y

(N)
j (δik −X(N)

k )(δjl − Y (N)
l )

+D
(N)
kj X

(N)
i Y

(N)
l +D

(N)
il X

(N)
k Y

(N)
j

+D
(N)
ij (X

(N)
k Y

(N)
l − δikY (N)

l − δjlX(N)
k )

+D
(N)
kl (X

(N)
i Y

(N)
j − δikY (N)

j − δjlX(N)
i )

+D
(N)
ij (δikδjl −D(N)

kl ) +O

(
1

Nβ

)
.

Higher order moments of order m ≥ 2 are O(N−(m−2)).

Proof. These expressions follow directly from the first four moments of Z(τ + dτ) | Z(τ),
which are easily computed by noting that

E[f(Z(τ + dτ)) | Z(τ) = z] =
∑
(i,j)

∑
(k,l)

f(z − eij + ekl)λ
(N)
ij,kl(z)dτ

+ f(z)

[
1− N

2
(N + θA + θB + ρ)dτ

]
+ o(dτ).

For example, choosing f(z) = zuv we find

E[Zuv(τ + dτ) | Z(τ) = z] = zuv

+N

[
θA
2

K∑
k=1

(PAku − δku)
zkv
N

+
θB
2

L∑
l=1

(PAlv − δlv)
zul
N

+
ρ

2

(zu·
N

z·v
N
− zuv

N

)]
dτ + o(dτ),

and hence we recover (3.1) via

E[∆Xu |M (N)] =
1

N

L∑
v=1

(E[Zuv(τ + dτ) | Z(τ)]− Zuv)

=
θA
2

K∑
k=1

(PAku − δku)X
(N)
k dτ + o(dτ).

The remaining terms follow similarly; we omit the straightforward but lengthy algebraic
details.

To prepare for our diffusion limit, we must rescale time; from (3.3) it is clear that to
obtain a nontrivial limit we should let t = N1−βτ. Henceforth, to avoid a trivial rescaling
of time we assume β ∈ (0, 1). Now introduce the conditional mean vector w(N) and
conditional covariance matrix s(N) on this timescale, defined by

lim
dt→0

(dt)−1E[∆M (N)(τ) |M (N)(τ) = m]

= Nβ−1 lim
dτ→0

(dτ)−1E[∆M (N)(τ) |M (N)(τ) = m] =: w(N)(m), (3.4)
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lim
dt→0

(dt)−1Cov[∆M (N)(τ) |M(τ) = m]

= Nβ−1 lim
dτ→0

(dτ)−1Cov[∆M (N)(τ) |M (N)(τ) = m] =: Nβ−1s(N)(m), (3.5)

with entries determined by Proposition 3.2. (Notice the appearance of τ on the left-hand
side of (3.4) and (3.5); we are considering the evolution of M (N) over a fixed time
interval dτ as measured in two different time units, t and τ.) Thus, with m = (x1, . . . , xK ,

y1, . . . , yL, d11, . . . , dKL), equations (3.1)–(3.3) show that

w(N)(m) = w(m) +O(Nβ−1),

where w(m) =
(

0, . . . 0︸ ︷︷ ︸
K

, 0, . . . 0︸ ︷︷ ︸
L

,−ρβ
2
d11, . . . ,−

ρβ
2
dKL︸ ︷︷ ︸

K×L

)′
, (3.6)

with s(N)(m) = s(m) +O(N−β) determined in a similar fashion:

s(m) =

sXX(m) sXY(m) sXD(m)

sXY(m) sYY(m) sYD(m)

sXD(m) sYD(m) sDD(m)

 ,
where

[sXX(m)]ik = xi(δik − xk),

[sYY(m)]jl = yj(δjl − yl),
[sXY(m)]ij = dij ,

[sXD(m)]i,kl = dkl(δik − xi)− xkdil,
[sYD(m)]j,kl = dkl(δjl − yj)− yldkj ,

[sDD(m)]ij,kl = xiyj(δik − xk)(δjl − yl) + dkjxiyl + dilxkyj + dij(xkyl − δikyl − δjlxk)

+ dkl(xiyj − δikyj − δjlxi) + dij(δikδjl − dkl).

Notice in particular the different leading orders of the two quantities in (3.4) and (3.5):
the mean increments are of O(1) on this timescale while the covariances are of O(Nβ−1).
It is this difference, which is a consequence of our assumption that the recombination
parameter r is O(N−β) for β < 1, that leads to a novel diffusion limit. Under the usual
choice of β = 1 it is well known that we see convergence to a diffusion process: in
the special case of a Wright-Fisher model and K = L = 2, such a diffusion limit was
obtained (after a rescaling of time) by Ohta and Kimura (1969a,b). Our interest is
however in β ∈ (0, 1), for which r is larger, and the loss of linkage disequilibrium (LD)
is subsequently much faster. Intuitively, we should expect such loss to resemble the
exponential decay predicted in an infinitely large population, but with small fluctuations
about this deterministic behaviour. The diffusion process we define below quantifies
these fluctuations precisely.

3.2 Gaussian diffusion limit of fluctuations in linkage disequilibrium

We first provide a heuristic description of the diffusion limit. First observe that,
for β ∈ (0, 1), equations (3.4) and (3.5) reduce to an ordinary differential equation as
N →∞:

dM(t)

dt
= w(M(t)). (3.7)

Thus, if M (N)(0)→M(0) as N →∞ then we should expect M (N)(t) to converge to the
solution of (3.7):

M (N) d→M :=
{

(X(0),Y (0),D(0)e−ρβt/2)′ : t ≥ 0
}
, N →∞, (3.8)
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the deterministic exponential decay in LD typical of an infinitely large population. See
Baake and Herms (2008) for a formal statement of this law-of-large-numbers type result
for the Moran model with recombination. For the corresponding central limit theorem,
we seek a diffusion limit for

U (N)(t) := rN [M (N)(t)−M(t)], (3.9)

for some rescaling rN →∞. In our application the appropriate choice is

rN := N (1−β)/2,

which can be regarded as the one on which both recombination and genetic drift are
observable on the fastest timescale (Jenkins and Song, 2012). We will assume this scaling
henceforward. To find the limit U = limN→∞U

(N), write

U (N)(t) = rN

[
[M (N)(0)−M(0)] +

∫ t

0

[w(N)(M (N)(s))−w(M(s))]ds+R(N)(t)

]
,

(3.10)
where

R(N)(t) := M (N)(t)−M (N)(0)−
∫ t

0

w(N)(M (N)(s))ds

describes the deviations of M (N)(t) from its expected behaviour and is a martingale.
It suffices to characterize the limits of each of the three grouped terms on the right of

(3.10). For the first term we assume that it converges to a limit, U (N)(0)
d→ U(0) as

N →∞. For the second term, from (3.6) we should expect

rN

∫ t

0

[w(N)(M (N)(s))−w(M(s))]ds

= rN

∫ t

0

[(
0K ,0L,−

ρβ
2

[D(N)(s)−D(s)]
)′

+O(Nβ−1)

]
ds

=

∫ t

0

[
−ρβ

2
(0K ,0L,1KL)

′ ◦U (N)(s) +O(N (β−1)/2)
]

ds

d→ −ρβ
2

∫ t

0

(0K ,0L,1KL)
′ ◦U(s)ds, N →∞, (3.11)

where ◦ denotes the Hadamard (elementwise) product of two vectors. Finally, we obtain

a complete description of the limit rNR
(N) d→ R as N → ∞ by an application of the

martingale central limit theorem (Ethier and Kurtz, 1986, Theorem 7.1.4); we find

R(t) =

∫ t

0

σ(M(s))dW (s),

where σσ′ = s, and W is a (KL− 1)-dimensional Brownian motion. In summary then,
we expect U to satisfy

U(t) = U(0)− ρβ
2

∫ t

0

(0K ,0L,1KL)
′ ◦U(s)ds+

∫ t

0

σ(M(s))dW (s). (3.12)

Our main result formalizes this argument, as follows.

Theorem 3.3. Suppose that U (N)(0)
d→ U(0) as N → ∞. Then for each t > 0, as

N →∞,

sup
s≤t
|M (N)(s)−M(s)| d→ 0;
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N (1−β)/2R(N) d→ R, where R has Gaussian, independent increments with mean zero,
and with

E[R(t)R(t)′] =

∫ t

0

s(M(s))ds; (3.13)

and U (N) d→ U , satisfying (3.12).

Proof of Theorem 3.3. This is an application of a central limit theorem for density depen-
dent population processes; for textbook coverage see Ethier and Kurtz (1986, Chapter
11) and for a recent treatment see Kang et al. (2014). We apply Theorem 2.11 of Kang
et al. (2014). To do so we need to validate each of the assertions that led to (3.12) above
by checking the following sufficient conditions (i)–(iv). (Kang et al. (2014, Theorem 2.11)
is rather more general than is required here: it permits the state space of M (N) to be
unbounded, and for M (N) to depend on other processes that evolve on faster timescales
than that of the diffusion. We omit those conditions which are not needed.)
(i) The Moran process converges to an identifiable, deterministic limit. This is
guaranteed by the following: the infinitesimal generator AN of M (N) satisfies

lim
N→∞

sup
m∈∆

(N)
KL−1

|ANf(m)−Af(m)| = 0, f ∈ D(A),

for a generator A with domain D(A).
(ii) Fluctuations about the deterministic limit are well behaved. More precisely,

R(N) is a local martingale and the covariations processes [M (N)]t
d→ 0.

(iii) Contributions of O(r−1
N ) to the error w(N) −w can be identified. These would

contribute to the limiting drift of U(t), and a sufficient condition to identify them is:
there exists a continuous function G0 : ∆KL−1 → RΛ (recall Λ = K + L+KL) such that

lim
N→∞

sup
m∈∆

(N)
KL−1

∣∣∣rN [w(N)(m)−w(m)
]
−G0(m)

∣∣∣ = 0.

(iv) The martingale central limit theorem applies to rNR
(N). This is guaranteed

by the following:

lim
N→∞

E

[
sup
s≤t

rN

∣∣∣M (N)(s)−M (N)(s−)
∣∣∣] = 0, (3.14)

and there exists a continuous G : ∆KL−1 → RΛ×Λ such that for each t > 0,

r2
N [M (N)]t −

∫ t

0

G(M (N)(s))ds
d→ 0. (3.15)

We address each of these requirements in turn.
(i) It follows immediately from Proposition 3.2 that ANf(m) converges to Af(m) :=

w.∇f(m), the generator of M [see (3.8)] with domain D(A) = C2(∆KL−1), the set of
twice continuously differentiable functions. Convergence is uniform in m because the
O(N−β) terms in Proposition 3.2 have coefficients that are polynomials in M (N) on a
compact space.

(ii) Since the state space is bounded, for R(N) to be a martingale it suffices that the
jump rate is bounded across all values of M (N)(t) in ∆

(N)
KL−1 (Kurtz, 1971, Proposition

2.1), as is the case for the Moran process. The covariations process [M (N)]t
d→ 0 as a

consequence of (3.15), verified below.
(iii) From (3.6), rN [w(N)(m)−w(m)] = O(N (β−1)/2), again uniformly in m ∈ ∆

(N)
KL−1,

so here the appropriate choice is G0 ≡ 0. Thus, the only relevant contribution to the
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limit (3.11) is from the error w(M (N)(s))−w(M(s)) rather than from w(N)(M (N)(s))−
w(M (N)(s)).

(iv) Jumps of any component of M (N) are bounded in magnitude by 2/N , so

sup
s≤t

rN

∣∣∣M (N)(s)−M (N)(s−)
∣∣∣ ≤ N (1−β)/2 · 2Λ1/2

N
→ 0, N →∞,

and (3.14) holds. To identify the asymptotic behaviour of r2
N [M (N)]t, let

N (N)
m (t) = Ym

(∫ t

0

λ(N)
m (M (N)(s))ds

)

denote the total number of jumps of the Moran process into state m ∈ ∆
(N)
KL−1 by time

t, where (Ym : m ∈ ∆
(N)
KL−1) is a collection of independent Poisson processes of unit

rate and λ(N)
m (M (N)(s)) denotes the rate of transition of the process from current state

M (N)(s) to m. Then

r2
N [M (N)]t = N1−β

∫ t

0

∑
m∈∆

(N)
KL−1

[∆M (N)(s)][∆M (N)(s)]′dN (N)
m (s),

∼ N1−β
∫ t

0

∑
m∈∆

(N)
KL−1

[m−M (N)(s)][m−M (N)(s)]′λ(N)
m (M (N)(s))ds,

∼
∫ t

0

s(N)(M (N)(s))ds,

by (3.5). Thus we may take G = s in (3.15) [G identifies the moments appearing in
(3.13)].

Remark 3.4. One could obtain the same diffusion limit starting from a Wright-Fisher
model rather than a Moran model, since the means and covariances of its increments
are identical to leading order, up to a rescaling of time. (Specifically, t = b2Nβτc when
τ counts generations of the Wright-Fisher model, differing from the Moran model by a
usual factor of 2/N .) This alternative approach is in some respects less appealing since
the Wright-Fisher model, when expressed in continuous time, is non-Markovian. The
additional complications raised by this approach have been addressed by Norman (1975)
(see also Ethier and Nagylaki, 1980, 1988), and we have checked that the conditions of
his theorems still apply when we introduce recombination to the Wright-Fisher model.
The theory of Norman (1975) has been used to study strong mutation and selection
(Norman, 1972, 1975; Kaplan et al., 1988; Nagylaki, 1986, 1990; Wakeley and Sargsyan,
2009), and a Gaussian diffusion approximation of a Moran model with strong selection is
developed by Feder et al. (2014), but to the best of our knowledge this is the first time a
central limit theorem has been obtained for strong recombination.

Remark 3.5. The exponential decay of linkage disequilibrium implied by M [equation
(3.8)] is a classical result; the above theorem further quantifies the fluctuations about this
deterministic behaviour in a fully time-dependent manner. In particular, the definition
of U [equation (3.9)] shows that fluctuations are of order N (1−β)/2 on a timescale of
Nβ−1 units of the Moran process. If we designate N−1 units as one generation, as we
discussed in Remark 3.1, then these fluctuations can be said to occur on a timescale of
order Nβ generations.
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3.3 Stationary distribution

Although U is described completely by (3.12), the volatility term σ(M(t)) is neither
simple nor time-independent. On the other hand, our main interest is in stationary
behaviour, and σ(M(∞)) takes on a much simpler form. First note that the components
of U(t) corresponding to each Xi and Yj undergo Brownian motions (with nonunit
volatility), so we restrict our attention to the stationary distribution of the component
corresponding to D, which we denote UD. Setting σ(M(s)) = σ(M(∞)) in (3.12), we
find

dUD(t) = −ρβ
2
UD(t)dt+ σ∞dW (t), (3.16)

where σ∞ is a constant defined by

σ∞σ
′
∞ = s∞ := sDD(M(∞)) = [Xi(0)Yj(0)(δik −Xk(0))(δjl − Yl(0))]ij,kl.

The process (3.16) is much simpler to describe. Marginally, UDij is an Ornstein-Uhlen-
beck process with damping towards linkage equilibrium at rate ρβ/2 and constant
volatility [σ∞]ij,ij . UD has stationary distribution Normal (0KL, s∞/ρβ). This is a slightly
different idea of stationarity than usual, since it depends on X(0) and Y (0), so an
immediate question is: what should be the distributions for X(0) and Y (0)? We address
this by reconsidering the usual two-locus Wright-Fisher diffusion limit operating on a
slower timescale. We can exploit (3.16) to obtain a simple approximation of this diffusion
limit, as follows. First, we have derived the Gaussian diffusion approximation

D(0)e−ρβt/2 +N (β−1)/2UD(t)

for D(N)(t). Thus the stationary distribution of this approximation is

Normal

(
0KL,

s∞
ρ

)
. (3.17)

(One can think of this as an approximation for the distribution of

lim
N→∞

lim
t→∞

D(N)(t)

having been obtained by exchanging the two limits.) Notice that the description (3.17)
does not depend on the particular choice of β. Under the usual “Wright-Fisher” regime
we treat ρ as fixed. It remains to specify the stationary distributions for the marginal
allele frequenciesX and Y , which we suppose to have reached their usual (independent)
stationary distributions in the Wright-Fisher diffusion limit, which we refer to as πA and
πB, respectively (and whose respective sampling distributions are qA and qB). Then we
can complete the picture for (3.17) by specifying (X(0),Y (0)) ∼ πA ⊗ πB.

The distribution (3.17) therefore provides a simple, explicit method for the approxi-
mate simulation of haplotype frequencies under a stationary, two-locus Wright-Fisher
diffusion, which we summarize in Algorithm 1 below. (When mutation is parent indepen-
dent, as in Remark 2.2, πA and πB take on a particularly simple form, but we note that
these distributions are not known in general.)

3.4 Sampling distribution

The significance of the Gaussian diffusion approximation UD is further evident from
the following theorem. First we need some further notation. Let

Pm =

r ∈ NK×L :

K∑
i=1

L∑
j=1

rij = m

 ,
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Algorithm 1 Simulate from a Gaussian approximation to the stationary Wright-Fisher
diffusion with recombination.

1. Simulate marginal allele frequencies at locus A, X(0) ∼ πA.

2. Independently simulate marginal allele frequencies at locus B, Y (0) ∼ πB.

3. Conditionally simulate D from (3.17) given X(0) and Y (0).

4. Calculate two-locus haplotype frequencies via

Xij = Dij +Xi(0)Yj(0), for each i ∈ [K], j ∈ [L].

for m ∈ N, and let l(r) ∈ ([K] × [L])m denote a sequence of m haplotypes (in some
arbitrary, fixed order) with multiplicities specified by r ∈ Pm. Further let l(r)A ∈ [K]m

denote the corresponding list of alleles obtained by looking at the first entry of each
element of l(r), and define l(r)B similarly. For λ ∈ N denote by Q2λ the set of partitions
of [2λ] with precisely λ blocks of size 2, and write a representative element as ξµν =

{{µk, νk} : k = 1, . . . , λ} ∈ Q2λ; µ = (µk) and ν = (νk) are sequences of length λ. For
J ⊆ [λ], denote by µJ , νJ the subsequences obtained by looking only at the indices in J ,
and denote by l(r)

µ the subsequence of l(r) obtained by looking only at the indices in µ.

The matrix of multiplicities of l(r)
µ is denoted by r(µ), so that r(µ) +r(ν) = r. For example,

if r = [ 1 2
0 1 ] then a representative list of haplotypes is l(r) = ((1, 1), (1, 2), (1, 2), (2, 2))

with marginal allele lists l(r)A = (1, 1, 1, 2) and l(r)B = (1, 2, 2, 2). Here, m = 2λ = 4,
and Q4 =

{
{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}

}
. Then for example the first

element in Q4 is the partition ξµν constructed from µ = (1, 3) and ν = (2, 4), and so

l(r)
µ = ((1, 1), (1, 2)) and l(r)

ν = ((1, 2), (2, 2)).

Theorem 3.6. Suppose that X ∼ πA, Y ∼ πB independently, and conditional on X and
Y , D is distributed according to the Gaussian distribution in (3.17). Then the sampling
distribution is given exactly by

qG(a, b, c) =

bc/2c∑
λ=0

1

ρλ

∑
r∈P2λ

∑
ξ∈Q2λ

 K∏
i=1

L∏
j=1

(
cij
rij

)
×

[ ∑
I⊆[λ]: l

(r)A
µI

=l
(r)A
νI

(−1)|I
{|qA(a+ cA − r(νI)

A )

]

×

[ ∑
J⊆[λ]: l

(r)B
µJ

=l
(r)B
νJ

(−1)|J
{|qB(b+ cB − r(νJ )

B )

]
, (3.18)

= q0(a, b, c) +
q1(a, b, c)

ρ
+O

(
1

ρ2

)
,

with q0 and q1 given by (2.1) and (2.2) respectively (and we impose the convention that
the empty summations for λ = 0 have a single term, with (−1)|∅\∅| = 1).

Proof. With respect to the diffusion in the transformed co-ordinate system, the sampling
distribution is

qG(a, b, c) = E

( K∏
i=1

Xai
i

)(
L∏
j=1

Y
bj
j

)(
K∏
i=1

L∏
j=1

[Dij +XiYj ]
cij

) ,
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=

c∑
m=0

∑
r∈Pm

 K∏
i=1

L∏
j=1

(
cij
rij

)E[( K∏
i=1

Xai+ci·−ri·
i

)

×

(
L∏
j=1

Y
bj+c·j−r·j
j

)
E

 K∏
i=1

L∏
j=1

D
rij
ij |X,Y

 ,
=

bc/2c∑
λ=0

∑
r∈P2λ

∑
ξ∈Q2λ

 K∏
i=1

L∏
j=1

(
cij
rij

)E[( K∏
i=1

Xai+ci·−ri·
i

)

×

(
L∏
j=1

Y
bj+c·j−r·j
j

)
λ∏
k=1

E[D
l
(r)
µk

D
l
(r)
νk

|X,Y ]

 ,
=

bc/2c∑
λ=0

1

ρλ

∑
r∈P2λ

∑
ξ∈Q2λ

 K∏
i=1

L∏
j=1

(
cij
rij

)E
( K∏

i=1

Xai+ci·−ri·
i

)(
L∏
j=1

Y
bj+c·j−r·j
j

)

×
λ∏
k=1

X
l
(r)A
µk

Y
l
(r)B
µk

(δ
l
(r)A
µk

l
(r)A
νk

−X
l
(r)A
νk

)(δ
l
(r)B
µk

l
(r)B
νk

− Y
l
(r)B
νk

)

]
,

=

bc/2c∑
λ=0

1

ρλ

∑
r∈P2λ

∑
ξ∈Q2λ

 K∏
i=1

L∏
j=1

(
cij
rij

)
×
∑
I⊆[λ]

(−1)|I
{|δ
l
(r)A
µI

l
(r)A
νI

∑
J⊆[λ]

(−1)|J
{|δ
l
(r)B
µJ

l
(r)B
νJ

× E

( K∏
i=1

X
ai+ci·−r

(νI )

i·
i

)(
L∏
j=1

Y
bj+c·j−r

(νJ )

·j
j

) ,
The second equality follows from the multinomial theorem and the tower property, the
third equality follows from Isserlis’ theorem (Michalowicz et al., 2011), and the fourth
equality follows from (3.17):

E[DijDkl |X,Y ] =
1

ρ
XiYj(δik −Xk)(δjl − Yl).

The fifth equality follows from expanding the final product (using the convention δ∅∅ = 1),
while (3.18) follows from (X,Y ) ∼ πA ⊗ πB. The equalities still hold for λ = 0 provided
we take

∏
∅ = 1.

Extracting the two leading order terms λ = 0 and λ = 1, the expression simplifies to

qG(a, b, c) = E

( K∏
i=1

Xai+ci·
i

)(
L∏
j=1

Y
bj+c·j
j

)
+

1

ρ

K∑
k,u=1

L∑
l,v=1

ckl(cuv − δkuδlv)
2

E

[(
K∏
i=1

Xai+ci·−δiu
i

)

×

(
L∏
j=1

Y
bj+c·j−δjv
j

)
(δku −Xu)(δlv − Yv)

+O

(
1

ρ2

)
,

= q0(a, b, c) +
q1(a, b, c)

ρ
+O

(
1

ρ2

)
,

as required.
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3.5 Accuracy of the diffusion process

A natural question to ask is: to what extent does the process of Theorem 3.6 capture
the dynamics of the full process? To address this we consider the accuracy of the
sampling distribution (3.18) as an approximation to the “true” distribution, q(a, b, c). For
moderate sample sizes it is possible to compute the latter as the solution to a system of
recursive equations (Golding, 1984; Ethier and Griffiths, 1990; Jenkins and Song, 2009).
The number of summands in (3.18) grows rapidly with λ (as long as λ ≤ b c2c), so we

define an approximate sampling distribution q(λ)
G (a, b, c) by truncating the outer sum in

(3.18) at a fixed index λ. This is analogous to the asymptotic sampling formulae for the
full model which are obtained by truncating equation (1.1) (Jenkins and Song, 2012). As
our measure of accuracy we define the relative error,

e̊
(λ)
Gaussian =

∣∣∣∣∣Q(λ)
G (0,0, c)− q(0,0, c)

q(0,0, c)

∣∣∣∣∣× 100%, (3.19)

where Q(λ)
G (0,0, c) is the staircase Padé approximant to q(λ)

G (0,0, c). (The former is used
for its superior convergence properties; see Jenkins and Song, 2012, for details.) We
define e̊(λ)

True analogously, replacing Q
(λ)
G (0,0, c) in (3.19) with the Padé approximant to

the partial sum of (1.1), computed up to O(ρ−(λ+1)) by the method of Jenkins and Song
(2012).

We computed the distribution of e̊(λ)
Gaussian and of e̊(λ)

True across all sample configurations of
size c = 20 for which both alleles are observed at each locus; results are shown in Table 1.
For a collection of this size it was straightforward to compute up to λ = 6 for every
possible sample configuration. Using a partial sum to approximate (1.1) contributes
to both errors; e̊(λ)

Gaussian has additional contributions reflecting its use of an approximate
model. Of course, the two errors agree up to λ = 1. However, Table 1 shows that they
are comparable more broadly, particularly for large recombination rates. As λ increases,
Q

(λ)
G (0,0, c) converges rapidly (even without Padé summation; not shown), and becomes

a reasonable approximation to q(a, b, c). For example, for ρ = 50, Q(6)
G (0,0, c) is within

10% of q(a, b, c) with probability 0.79, though it is within 1% only with probability 0.50.

When we consider the highest levels of accuracy, as in Φ(1) in Table 1, e̊(λ)
Gaussian actually

increases with λ when λ > 1. This suggests that the Gaussian model typically cannot
approximate the true model to the same level of precision as a first order asymptotic
approximation of the true model, though its behaviour as a coarser approximation (as
reflected in the columns for Φ(100), for example) is comparable.

4 Coalescent process

4.1 A coupling argument

In this section we derive a coalescent process which is much simpler than the ARG
but whose sampling distribution agrees with (2.1) and (2.2). We first provide an informal
description. Let C(ρ)

a,b,c(t) denote the standard, neutral, two-locus coalescent process
a time t back from a sample taken at time t = 0, with a, b, and c counting the three
types of sample as defined in Section 2. Recombination occurs at the usual rate of ρc/2,
where ρ = 2Nr. Lineages ancestral to the three types are sometimes referred to as
representing left half-fragments, right half-fragments, and full fragments, respectively.
Our strategy is to define a coupling on a joint probability space for the pair of processes
(C(ρ) = (C(ρ)

a,b,c(t) : t ≥ 0), D(ρ) = (D(ρ)
a,b,c(t)) : t ≥ 0)), where D(ρ) is a simple process closely

related to C(∞) and defined below. C(ρ)(ω) is said to be coupled to D(ρ)(ω) if the two
realizations have the same marginal coalescent tree at locus A and the same marginal
coalescent tree at locus B. Since it is the marginal trees which govern the mutation
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Table 1: Cumulative distribution Φ(x) = P(̊e(λ) < x%) (where e̊(λ) denotes either e̊(λ)
Gaussian

or e̊(λ)
True as defined in the main text), for all samples of size 20 dimorphic at both loci.

ρ = 25 ρ = 50

Type
λ of sum Φ(1) Φ(10) Φ(100) Φ(1) Φ(10) Φ(100)

0 True 0.39 0.58 1.00 0.49 0.63 1.00
Gaussian 0.39 0.58 1.00 0.49 0.63 1.00

1 True 0.51 0.75 0.96 0.59 0.84 0.99
Gaussian 0.51 0.75 0.96 0.59 0.84 0.99

2 True 0.59 0.91 0.97 0.77 0.98 1.00
Gaussian 0.50 0.73 0.97 0.50 0.86 1.00

4 True 0.83 0.99 1.00 0.95 1.00 1.00
Gaussian 0.51 0.72 1.00 0.50 0.80 1.00

6 True 0.89 0.99 1.00 0.99 1.00 1.00
Gaussian 0.49 0.71 0.99 0.50 0.79 1.00

ρ = 100 ρ = 200

Type
λ of sum Φ(1) Φ(10) Φ(100) Φ(1) Φ(10) Φ(100)

0 True 0.50 0.72 1.00 0.54 0.95 1.00
Gaussian 0.50 0.72 1.00 0.54 0.95 1.00

1 True 0.74 0.95 1.00 0.90 0.99 1.00
Gaussian 0.74 0.95 1.00 0.90 0.99 1.00

2 True 0.95 1.00 1.00 1.00 1.00 1.00
Gaussian 0.64 0.99 1.00 0.85 1.00 1.00

4 True 1.00 1.00 1.00 1.00 1.00 1.00
Gaussian 0.64 0.99 1.00 0.83 1.00 1.00

6 True 1.00 1.00 1.00 1.00 1.00 1.00
Gaussian 0.64 0.99 1.00 0.83 1.00 1.00

process at each locus, coupled processes therefore have the same sampling distribution.
(There should be no ambiguity arising from the fact that our coupling is not on pairs
of realizations but on pairs of equivalence classes, where an equivalence class of C(ρ)

or of D(ρ) is a set of realizations with the same marginal tree at locus A and the same
marginal tree at locus B.)

A complete description of a coalescent process is one taking values in partitions of [n],
as introduced by Kingman (1982), with natural extensions to incorporate recombination.
We opt instead to represent C(ρ) only by its ancestral process; that is, as a birth-death
process on the number of each type of lineage. Such a process is studied in depth by
Ethier and Griffiths (1990) and Griffiths (1991). In what follows it is understood implicitly
that for any given realization of the ancestral process one could reconstruct a complete
coalescent process—an ARG—given some additional independent randomness. Provided
the ancestral processes of C(ρ) and D(ρ) remain coupled, then it is also always possible
to couple their respective coalescent processes. For example, a decrease by one in the
ancestral process corresponds to a coalescence event in the coalescent process, which
can be realized by merging two uniformly chosen blocks in the partition of [n]. A coupling
of two ancestral processes lets us couple the corresponding coalescent processes if we
always pick the same pair of blocks to merge in the two processes. With this kept in
mind, it is sufficient for the argument developed below to consider the simpler ancestral
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process representation.
Recall the two-locus ancestral process for the coalescent with recombination: Going

backwards in time, each pair of lineages coalesces independently at rate 1, and each
lineage ancestral at both loci recombines at rate ρ/2. When two lineages coalesce, they
are replaced with a single lineage, and this lineage is ancestral at a given locus if either
of its two progenitors were ancestral at this locus. Thus for example, with a, b, and c

defined as above the total rate of coalescence involving one left-half fragment and one
right-half fragment is ab, resulting in a transition of the form (a, b, c) 7→ (a− 1, b− 1, c+ 1).
The remaining transitions are given in Table 2. We can now make the following concise
definition.

Definition 4.1. The ancestral process C(ρ) = (C(ρ)
a,b,c(t) : t ≥ 0) is a continuous-time

Markov process onN4 such that C(ρ)
a,b,c(0) = (a, b, c, c) a.s., and with infinitesimal generator

L f(a, b, c, c) =
ρc

2
f(a+ 1, b+ 1, c− 1, c− 1) +

(
c

2

)
f(a, b, c− 1, c− 1)

+Ra,b,c,cG f(a, b, c, c)−
[
ρc

2
+

(
c

2

)
+Ra,b,c,c

]
f(a, b, c, c), (4.1)

where

Ra,b,c,d = ab+ ac+ bd+

(
a

2

)
+

(
b

2

)
,

G f(a, b, c, d) =
1

2Ra,b,c,d
[2abf(a− 1, b− 1, c+ 1, d+ 1)

+ a(a+ 2c− 1)f(a− 1, b, c, d) + b(b+ 2d− 1)f(a, b− 1, c, d)],

and f : N4 → R is an appropriate test function.

Regard the third and fourth entries in f as the number of left- and right- halves of full
fragments; these entries are always equal. This representation is seemingly redundant,
but it will make the coupling with the corresponding process D(ρ) (for which we allow
c 6= d) transparent. We will define D(ρ) via the following recipe. First, take C(ρ) and
let ρ → ∞. Ordinarily, C(∞)

a,b,c(0) moves instantaneously to the state C(∞)
a+c,b+c,0(0+) and

evolves thereafter according to L f(a+c, b+c, 0, 0). However, our second step is to make
a notational change: we reuse the third and fourth entries of f by separately tracking
the half-fragment lineages that originated as full fragments: we write it as a process
initiated at (a, b, c, c) and evolving according to the generator

L (∞)f(a, b, c, d) =

(
c

2

)
f(a, b, c− 1, d) +

(
d

2

)
f(a, b, c, d− 1)

+Ra,b,c,dG f(a, b, c, d)−
[(
c

2

)
+

(
d

2

)
+Ra,b,c,d

]
f(a, b, c, d). (4.2)

Third, we introduce an artificial recombination process which induces transitions of the
form (a, b, c, c) 7→ (a+ 1, b+ 1, c− 1, c− 1) at rate ρc/2. This does not reflect any concrete
evolutionary dynamic but merely acts as a mathematical device to facilitate a coupling
between the two processes. (As a minor technical detail, we should like to allow the
process ultimately to reach a state of the form (a, b, 0, 0). We therefore make a minor
adjustment, below, to this artificial process to allow for it to act even if one of c or d is 0.)
We therefore have the following definition.

Definition 4.2. The ancestral process D(ρ) = (D(ρ)
a,b,c(t) : t ≥ 0) is a continuous-time

Markov process on N4 such that D(ρ)
a,b,c(0) = (a, b, c, c) a.s., and with infinitesimal genera-
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Table 2: Transition rates of events in the two ancestral processes C(ρ) and D(ρ).
Transition Rate

Type (a, b, c, d) 7→ C(ρ) D(ρ)

I (a, b, c− 1, d− 1) c(c− 1)/2∗ 0

II (a, b, c− 1, d) 0 c(c− 1)/2

III (a, b, c, d− 1) 0 d(d− 1)/2

IV (a− 1, b, c, d) a(a+ 2c− 1)/2 a(a+ 2c− 1)/2

V (a, b− 1, c, d) b(b+ 2d− 1)/2 b(b+ 2d− 1)/2

VI (a− 1, b− 1, c+ 1, d+ 1) ab ab

VII (a+ I{c > 0}, b+ I{d > 0},
c− I{c > 0}, d− I{d > 0}) ρc/2∗ ρmax{c, d}/2

∗Defined only when c = d.

tor

H f(a, b, c, d) := L (∞)f(a, b, c, d)

+
ρmax{c, d}

2
[f(a+ I{c > 0}, b+ I{d > 0}, c− I{c > 0}, d− I{d > 0})− f(a, b, c, d)],

(4.3)

where f : N4 → R is an appropriate test function.

Transitions of this process are also summarized in Table 2, and henceforth we will
refer to the numberings of each type of transition given in the table. It is important
to keep in mind that although ρ appears as a parameter in (4.3), the process D(ρ) acts
as if the two loci are independent. The process with rate depending on ρ is simply an
artificial relabelling of lineages. A key observation is that this artificial process does not
affect the distribution of the marginal coalescent trees, so C(∞) and D(ρ) have the same
sampling distribution.

To summarize, we have defined two Markov processes on N4, C(ρ) and D(ρ), which
describe two-locus ancestral processes going backwards in time and with respective
generators L and H . L is the generator of a standard process with recombination
parameter ρ. H is the generator of a standard process with recombination parameter∞
and with the additional properties that left half-fragments are recorded in two categories
(of multiplicity a and c), right half-fragments are recorded in two categories (of multiplic-
ity b and d), and there is an artificial movement of pairs from the latter to the former as
if they were still full fragments. This somewhat contrived definition has an important
advantage: it is a simple matter to attempt to couple the two processes by matching
each kind of event in the two generators whenever possible. A recombination event in
C(ρ)
a,b,c(t) can be matched by an artificial recombination event in D(ρ)

a,b,c(t), a coalescence of

type IV in C(ρ)
a,b,c(t) can be matched by a coalescence of type IV in D(ρ)

a,b,c(t), and so on.
The aforementioned description is a probabilistic coupling, which may or may not

succeed since not all events can be paired off in this way. Comparing (4.1) and (4.3), we
see that a coupling will fail if there is a type I transition in C(ρ) or if there is a type II or
type III transition in D(ρ). Define the failure times

T
(1)
a,b,c := inf{t ≥ 0 : C(ρ)

a,b,c(t) = C(ρ)
a,b,c(t−)− (0, 0, 1, 1)},

T
(2)
a,b,c := inf{t ≥ 0 : D(ρ)

a,b,c(t) = D(ρ)
a,b,c(t−)− (0, 0, 1, 0)},

T
(3)
a,b,c := inf{t ≥ 0 : D(ρ)

a,b,c(t) = D(ρ)
a,b,c(t−)− (0, 0, 0, 1)},
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and

T MRCA

a,b,c := inf
{
t ≥ 0 : C(ρ)

a,b,c(s) = D(ρ)
a,b,c(s) ∀s ≤ t, C

(ρ)
a,b,c(t) ∈ {(1, 1, 0, 0), (0, 0, 1, 1)}

}
,

the first time that both loci find a most recent common ancestor in the coupled processes
(with the convention inf ∅ = ∞). If T MRCA

a,b,c < min{T (1)
a,b,c, T

(2)
a,b,c, T

(3)
a,b,c}, we say that the

coupling has been successful. We are now in a position to verify the observation made in
Section 1: that we need consider whether or not a coupling has been successful only as
far back as the first time that no lineages ancestral to both loci survive. For if we reach
this point then, even further back in time, jointly ancestral lineages may arise again
temporarily (with c ≥ 1), but the coupling can fail only in the unlikely [i.e. O(ρ−2)] event
that c ≥ 2. We formalize this argument in the following lemma.

Lemma 4.3. If c ∈ {0, 1}, the coupling between C(ρ) and D(ρ) fails with probability
O(ρ−2), as ρ→∞.

Proof. The three events causing the coupling to fail occur at rates proportional to
(
c
2

)
and thus require c ≥ 2. For the pair (C(ρ)

a,b,1,D
(ρ)
a,b,1), we therefore first need to see a

transition of the form (a′, b′, 1, 1) 7→ (a′ − 1, b′ − 1, 2, 2) for some a′, b′, followed by one of
the transitions causing the coupling to fail. Reading off the rates from the generators,
each of these transitions occurs with probability O(ρ−1). The case c = 0 is similar, first
needing a transition of the form (a′, b′, 0, 0) 7→ (a′ − 1, b′ − 1, 1, 1) whose probability is of
O(1).

Lemma 4.4. The coupling between C(ρ) and D(ρ) fails with the following probabilities:

P(I(k)) =
1

ρ

(
c

2

)
+O

(
1

ρ2

)
as ρ→∞, k = 1, 2, 3, (4.4)

where I(k) := {T (k)
a,b,c < T MRCA

a,b,c}. Moreover, P(I(k1) ∩ I(k2)) = O(ρ−2) for k1 6= k2.

Proof. For k = 1, by Lemma 4.3 it is enough to show that

P(T
(1)
a,b,c < U

(1)
a,b,c) =

1

ρ

(
c

2

)
+O

(
1

ρ2

)
,

where

U
(1)
a,b,c := inf

{
t ≥ 0 : C(ρ)

a,b,c(t) ∈ {(a
′, b′, 0, 0) : a′, b′ ∈ N}

}
is the first time C(ρ) reaches c = 0. We proceed by induction on c; Lemma 4.3 provides
the base cases c ∈ {0, 1}. First note that for any c ≥ 1,

P(T
(1)
a,b,c < U

(1)
a,b,c) = O

(
1

ρ

)
, (4.5)

since this event requires at least one transition that is not a recombination. Reading off
the relevant probabilities from (4.1), we have for c ≥ 2:

P(T
(1)
a,b,c < U

(1)
a,b,c) =

ρc
2

ρc
2 +

(
c
2

)
+Ra,b,c,c

· P(T
(1)
a+1,b+1,c−1 < U

(1)
a+1,b+1,c−1)

+
ab

ρc
2 +

(
c
2

)
+Ra,b,c,c

· P(T
(1)
a−1,b−1,c+1 < U

(1)
a−1,b−1,c+1)

+

(
c
2

)
ρc
2 +

(
c
2

)
+Ra,b,c,c

· 1 +O

(
1

ρ2

)
,

=
1

ρ

(
c

2

)
+O

(
1

ρ2

)
,
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by the inductive hypothesis for the first term on the right and using (4.5) for the second
term. By considering

U
(k)
a,b,c := inf

{
t ≥ 0 : D(ρ)

a,b,c(t) ∈ {(a
′, b′, 0, 0) : a′, b′ ∈ N}

}
, k = 2, 3,

the cases k = 2, 3 are similar. P(I(k1) ∩ I(k2)) = O(ρ−2) also follows from the fact that
this event requires at least two transitions which are not recombinations during the time
that c > 0.

Should the coupling fail, we can say much about the sequence of events prior to U (k)
a,b,c.

Intuitively, the probability that more than one transition other than recombinations
occurs is O(ρ−2). To make this precise we denote by S(k)

a,b,c(t) the jump chain up to time t

of C(ρ) if k = 1 and of D(ρ) if k = 2, 3.

Lemma 4.5. Let Sa,b,c denote the set of jump chains comprising sequences which
start at (a, b, c, c), end at the first entry of the form (a′, b′, 0, 0), a′, b′ ∈ N, and with all
transitions corresponding to recombination events, except for possibly one transition.
Then

P(S(k)
a,b,c(U

(k)
a,b,c) ∈ Sa,b,c | I(k)) = 1−O

(
1

ρ

)
as ρ→∞, k = 1, 2, 3.

Proof. The non-recombination event causing I(k) occurs at time T (k)
a,b,c. Inspection of the

generators (4.1) and (4.3) shows that any further transition other than a recombination
occurs with probability O(ρ−1) during the time that c > 0.

Recall that our purpose is to obtain the sampling distribution for C(ρ). For successful
couplings, this is easy to obtain since it is the same as that of D(ρ) and hence C(∞);
thus C(ρ) | I(1){ has the same sampling distribution as D(ρ) | (I(2) ∪ I(3)){. Even if the
coupling fails, Lemmata 4.3 and 4.5, demonstrate that the behaviour of C(ρ) is still
predictable enough to recover its sampling distribution up to O(ρ−2). Roughly [up to
O(ρ−2)], Lemma 4.5 says: if there is an event that causes the coupling to fail then this is

the only non-recombination event in the failing process before U (k)
a,b,c; by Lemma 4.3, if it

has not failed by U (k)
a,b,c then the coupling will not fail after U (k)

a,b,c.

The following theorem is proven in Jenkins and Song (2009); however, the following
proof gives a coherent, process-level explanation for the result.

Theorem 4.6. Expressing the sampling distribution for (C(ρ)
a,b,c(t) : t ≥ 0) as in (1.1), the

first two terms are given by (2.1) and (2.2).

Proof. Denote by qC(ρ)|I(1)(a, b, c) the sampling distribution of the process C(ρ) | I(1). By
Lemmata 4.3 and 4.5, this sampling distribution is obtained up to O(ρ−1) by picking
a pair of full fragments at random to coalesce, with the remaining c− 1 fragments all
undergoing recombination, and subsequently running the process as D(ρ)

a+c−1,b+c−1,0(
a.s.
=

C(∞)
a+c−1,b+c−1,0). Hence,

qC(ρ)|I(1)(a, b, c) =

K∑
i=1

L∑
j=1

(
cij
2

)(
c
2

) qC(∞)(a, b, c− eij) +O

(
1

ρ

)
,

=

K∑
i=1

L∑
j=1

(
cij
2

)(
c
2

) qA(a+ cA − ei)qB(b+ cB − ej) +O

(
1

ρ

)
. (4.6)
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(We can also ignore the possibility of mutation prior to U (1)
a,b,c since, by the same argument

as in Lemma 4.5, a mutation occurs during this phase with probability O(ρ−1).) Similarly,

qD(ρ)|I(2)(a, b, c) =

K∑
i=1

(
ci·
2

)(
c
2

) qC(∞)(a+ cA − ei, b+ cB ,0) +O

(
1

ρ

)
,

=

K∑
i=1

(
ci·
2

)(
c
2

) qA(a+ cA − ei)qB(b+ cB) +O

(
1

ρ

)
, (4.7)

qD(ρ)|I(3)(a, b, c) =

L∑
j=1

(
c·j
2

)(
c
2

) qC(∞)(a+ cA, b+ cB − ej ,0) +O

(
1

ρ

)
,

=

L∑
j=1

(
c·j
2

)(
c
2

) qA(a+ cA)qB(b+ cB − ej) +O

(
1

ρ

)
, (4.8)

and so, together with Lemma 4.4 and the observation that

P([I(2) ∪ I(3)]{)qD(ρ)|(I(2)∪I(3)){(a, b, c) = qD(ρ)(a, b, c)

− P(I(2))qD(ρ)|I(2)(a, b, c)− P(I(3))qD(ρ)|I(3)(a, b, c) +O(ρ−2),

we obtain

qD(ρ)|(I(2)∪I(3)){(a, b, c) =

[
1 +

2

ρ

(
c

2

)][
qD(ρ)(a, b, c)

− 1

ρ

(
c

2

)
qD(ρ)|I(2)(a, b, c)−

1

ρ

(
c

2

)
qD(ρ)|I(3)(a, b, c)

]
+O

(
1

ρ2

)
. (4.9)

The key decomposition is then

q(a, b, c) = P(I(1))qC(ρ)|I(1)(a, b, c) + P(I(1){)qC(ρ)|I(1){(a, b, c)

= P(I(1))qC(ρ)|I(1)(a, b, c) + P(I(1){)qD(ρ)|(I(2)∪I(3)){(a, b, c) (4.10)

= q0(a, b, c) +
1

ρ
q1(a, b, c) +O

(
1

ρ2

)
,

using (4.4), (4.6), (4.7), (4.8), and (4.9), with q0, q1 given by (2.1) and (2.2), respectively.

Remark 4.7. It may be possible to use similar arguments to obtain a genealogical
interpretation of the second-order term, q2 in (1.1); for example, genealogies with two
events that cause the coupling to fail would surely contribute. However, as is clear
from the expression for q2 given in Jenkins and Song (2009, 2010), this is not a simple
endeavour and it is seems difficult to interpret some of the components of q2.

4.2 A new “loose-linkage” coalescent process

Equation (4.10) tells us that, up to O(ρ−2), we can obtain the correct sampling
distribution using the mixture

α[C(ρ) | I(1)] + (1− α)[D(ρ) | (I(2) ∪ I(3)){], α =
1

ρ

(
c

2

)
,

provided α < 1. The coupling used to prove Theorem 4.6 demonstrates that we can
define a simple stochastic process for weakly correlated loci, E(ρ), as in Algorithm 2,
whose sampling distribution agrees with (2.1) and (2.2) up to O(ρ−2).
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Algorithm 2 Simulate E(ρ), the loose-linkage coalescent.

1. With probability α, choose a pair uniformly at random from the c full fragments
to coalesce, and then choose uniformly from the chains in Sa,b,c compatible with
I(1). Such chains are some permutation of a sequence corresponding to this sole
coalescence and c−1 recombinations. Inter-event times up to U (1)

a,b,c can be sampled
according to the rates specified in (4.1). Go to step 3.

2. Otherwise (w.p. 1− α), sample from D(ρ) | (I(2) ∪ I(3)){ up to time U (2)
a,b,c (= U

(3)
a,b,c),

which can be achieved by running D(ρ) as usual according to (4.3) but banning
transitions of the form (a, b, c, d) 7→ (a, b, c−1, d) and (a, b, c, d) 7→ (a, b, c, d−1). (The
rates of these transitions still contribute to the overall rate governing inter-event
times, however.) Go to step 3.

3. Beyond time U (k)
a,b,c (k = 1 in the first case above and k = 2 in the second), construct

the remainder of the process independently using (C(∞)(t−U (k)
a,b,c) : t ≥ U (k)

a,b,c) (with
the appropriate starting configuration) back to the first time both loci have found a
most recent common ancestor.

An example is shown in Figure 1. Simulation and inference under E(ρ) should
be straightforward, since its dynamics are little more complicated than those of a
coalescent process with ρ = ∞. Unlike our diffusion process of Section 3, it does not
seem easy to write down its sampling distribution to all orders in closed-form, since that
of D(ρ) | (I(2) ∪ I(3)){ is not so obvious.

5 Discussion

We have described two novel stochastic models of evolution for loosely linked, or
weakly correlated, loci, using both diffusion- and coalescent-based arguments. As a
consequence we have obtained deep insight into the simple form of the asymptotic
sampling formula given by (2.1) and (2.2). Our diffusion model is based on a central
limit theorem for density dependent population processes, which may be viewed as a
separation of the timescales Nβ and N (in generations), for 0 < β < 1, and pioneered in
population genetics by Norman (1975). This contrasts with most research in this area,
which focuses on separating the timescales N0 = 1 and N . Indeed, both diffusion (Ethier
and Nagylaki, 1980, 1988) and coalescent (Möhle, 1998; Wakeley, 2008) limits of this
latter regime have been studied in detail. It is also the setting of the “loose linkage” limit
of Ethier and Nagylaki (1989). Our usage of “loose linkage” therefore refers to a scaling
intermediate between the usual Wright-Fisher diffusion and that of Ethier and Nagylaki
(1989). That the pioneering approach of Norman (1975) to investigate recombination
does not seem to have been considered until now supports the observation that his
work is “somewhat neglected” (Wakeley, 2005). It would also be of interest to find a
coalescent-based analogue of these results along the lines of Möhle (1998), or even a
duality relationship in the manner of Etheridge and Griffiths (2009).

For simplicity we have focused on a two-locus, finite-alleles, neutral model. Most
of this article does not hinge heavily on these assumptions, and it should be relatively
straightforward to extend our results to incorporate things like natural selection and
more sophisticated models of mutation.
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Figure 1: Sampling from the loose-linkage coalescent, E(ρ), from an initial configuration
(0, 0, 4). Steps of the algorithm in the main text are denoted by circled numbers. Left :
Commence from step 1 (probability α). Step 1 samples from an approximation to
C(ρ) | I(1) which is correct to O(ρ−2), back as far as time U (1)

0,0,4. The jump chain sampled

here is S(1)
0,0,4(U

(1)
0,0,4) = ((0, 0, 4, 4), (1, 1, 3, 3), (1, 1, 2, 2), (2, 2, 1, 1), (3, 3, 0, 0)). Thereafter

(step 3) the sample is constructed from C(∞)
3,3,0(t− U (1)

0,0,4). Right : Commence from step 2

(probability 1− α). Step 2 samples from D(ρ)
0,0,4(t) | (I(2) ∪ I(3)){; a transition which would

cause I(2) is banned. Thereafter (step 3) the sample is constructed from C(∞)
4,4,0(t− U (2)

0,0,4).
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