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Random walks generated by
equilibrium contact processes
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Abstract

We consider dynamic random walks where the nearest neighbour jump rates are
determined by an underlying supercritical contact process in equilibrium. This has
previously been studied by den Hollander and dos Santos (arXiv:1209.1511). We show
the CLT for such a random walk, valid for all supercritical infection rates for the
contact process environment.
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1 Introduction

In this note we consider a random motion (Xt)t≥0 in Z generated by a supercritical one
dimensional contact process (ξt)t≥0 in upper equilibrium ν̄. We suppose that the motion
(Xt)t≥0 performs nearest neighbour jumps with rate depending on the local values of ξt:
there exist r0 <∞ and functions g1 and g−1 that depend only on the spins within r0 of
the origin so that for all t, i = ±1,

P (Xt+h = Xt + i|Xs, ξs, s ≤ t) = hgi(θXtoξt) + o(h)

as h→ 0, where (θyoξ)(x) = ξ(y + x) for all x, y. By contrast, the evolution of process X
does not affect that of the contact process ξ.

Remark: For simplicity we take X to be a nearest neighbour random walk and also ξ
to be a nearest neighbour symmetric contact process. The approach and result given
here extend without difficulty to random walks whose jumps are finite range (with all
jump rates being appropriate shifts of cylinder functions of ξ). Equally with a bit more
care the arguments can be adapted to deal with finite range contact processes.
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Dynamic random walks

Using the standard notation (see Section 2), with λ standing for the infection rate and
λc ∈ (0,∞) for the critical parameter of the standard one dimensional contact process,
we may state our result as follows:

Theorem 1.1. For all λ > λc and any non trivial (i.e. non identically zero) gi as above,
there exist µ ∈ R and α > 0 so that, as t→ +∞,

Xt − µt
α
√
t

D→ N(0, 1).

This result has already been shown for λ large in the case of r0 = 0, see [6] and [7], by a
nice regeneration argument. We exploit in this article the strong regeneration properties
of (ξt)t≥0 but in a different way, though we also embed an i.i.d. sequence of r.v.s in our
process. To our knowledge the first central limit theorem for the contact process was
due to [5] who considered the position of the rightmost occupied site for a one sided
supercritical contact process. A beautiful alternative proof was produced by [8] (who
wrote his approach explicitly for oriented percolation). The central limit proof of [6] is in
this tradition.
We suppose that the process ξ is generated by a Harris system as is usual. Details will
be supplied in the next section.
The process X is generated by a Poisson process NX of rate M ′ > ‖ g1 ‖∞ + ‖ g−1 ‖∞
and associated i.i.d. uniform [0,1] r.v.s {Ui}i≥1: if t ∈ NX is the i’th Poisson point, then a
jump from Xt− to Xt− − 1 occurs only if Ui ∈ [0, g−1(θXt−oξt−)/M ′] and jumps to Xt− + 1

only if Ui ∈ [1− g1(θXt−oξt−)/M ′, 1].

Thus, irrespective of the behaviour of (ξt)t≥0 over a time interval I, if NX ∩ I = ∅ then
X makes no jumps over time interval I. We now fix throughout the paper M > M ′.

In the following we will use the expression dynamic random walk to denote a pair
(ξ,X) which evolve according to these stipulated rules. We will say that a pair (ξ,X)

is a piecewise dynamic random walk if it evolves according to the given rules on time
intervals [βi, βi+1) with βi increasing to infinity, but may have a global jump in the pair
(ξ,X) at times βi. This will be clear in Section 5.

2 A reminder on the contact process

The contact process with parameter λ > 0 on a connected graph G = (V,E) is a
continuous-time Markov process (ξt)t≥0 with state space {0, 1}V and generator

Ωf(ξ) =
∑
x∈V

(f(φxξ)− f(ξ)) + λ ·
∑
e∈E

(f(φeξ)− f(ξ)) , (2.1)

where f is any local function on {0, 1}V and, given x ∈ V and {y, z} ∈ E, we define
φxξ, φ{y,z}ξ ∈ {0, 1}V by

φxξ(w) =

∣∣∣∣ 0 if w = x;

ξ(w) otherwise;
φ{y,z}ξ(w) =

∣∣∣∣ max(ξ(y), ξ(z)) if w ∈ {y, z};
ξ(w) otherwise.

Given A ⊆ V , we write (ξAt )t≥0 to denote the contact process started from the initial
configuration that is equal to 1 at vertices of A and 0 at other vertices. When we write
(ξt), with no superscript, the initial configuration will either be clear from the context or
unimportant. We often abuse notation and identify configurations ξ ∈ {0, 1}V with the
corresponding sets {x ∈ V : ξ(x) = 1}.

The contact process is a model for the spread of an infection in a population. Vertices
of the graph (sometimes referred to as sites) represent individuals. In a configuration
ξ ∈ {0, 1}V , individuals in state 1 are said to be infected, and individuals in state 0 are
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Dynamic random walks

healthy. Pairs of individuals that are connected by edges in the graph are in proximity to
each other in the population. The generator (2.1) gives two types of transition for the
dynamics. First, infected individuals heal with rate 1. Second, given two individuals
in proximity so that one is infected and the other is not, with rate λ there occurs a
transmission, as a consequence of which both individuals end up infected.

The configuration 0 ∈ {0, 1}V that is equal to zero at all vertices is a trap for (ξt). For
certain choices of the underlying graph G and the parameter λ, it may be the case that
the probability of the event {0 is never reached} is positive even if the process starts
from finitely many infected sites. In fact, whether or not this probability is positive does
not depend on the set of initially infected sites, as long as this set is nonempty and finite.
We say that the process survives if this probability is positive; otherwise we say that the
process dies out. Survival or not depends on the value of the parameter λ. As is intuitive,
there is a value λc (depending on G) so that there is survival above λc and nonsurvival
below. Moreover, 0 < λc <∞ when G is an infinite connected graph of bounded degree.

We now recall the graphical construction of the contact process and its self-duality
property. Fix a graph G = (V,E) and λ > 0. We take the following family of independent
Poisson point processes on (−∞,∞):

(Dx) : x ∈ V with rate 1;

(Ne) : e ∈ E with rate λ.

Let H denote a realization of all these processes. Given x, y ∈ V, s ≤ t, we say that x and
y are connected by an infection path in H (and write (x, s)↔ (y, t) in H) if there exist
times t0 = s < t1 < · · · < tk = t and vertices x0 = x, x1, . . . , xk−1 = y such that

• Dxi ∩ (ti, ti+1) = ∅ for i = 0, . . . , k − 1;

• {xi, xi+1} ∈ E for i = 0, . . . , k − 2;

• ti ∈ Nxi−1,xi for i = 1, . . . , k − 1.

Such a collection will be called a path from (x, s) to (y, t) (here and elsewhere, we drop
the dependence on H if a Harris system is given). Points of the processes (Dx) are called
death marks and points of (Ne) are links; infection paths are thus paths that traverse
links and do not touch death marks. H is called a Harris system; we often omit the
dependence on H. For A,B ⊆ V , we write A× {s} ↔ B × {t} if (x, s)↔ (y, t) for some
x ∈ A, y ∈ B. We analogously write A× {s} ↔ (y, t) and (x, s)↔ B × {t}. Finally, given
set C ⊆ V × (−∞,∞), we write A× {s} ↔ B × {t} inside C if there is an infection path
from a point in A× {s} to a point in B × {t} which is entirely contained in C.

Given A ⊆ V , put

ξAt (x) = 1{A×{0}↔(x,t)} for x ∈ V, t ≥ 0 (2.2)

(here and in the rest of the paper, 1 denotes the indicator function). It is well-known that
the process (ξAt )t≥0 = (ξAt (H))t≥0 thus obtained has the same distribution as that defined
by the infinitesimal generator (2.1). The advantage of (2.2) is that it allows us to construct
in the same probability space versions of the contact processes with all possible initial
distributions. From this joint construction, we also obtain the attractiveness property
of the contact process: if A ⊆ B ⊆ V , then ξAt (H) ⊆ ξBt (H) for all t. From now on,
we always assume that the contact process is constructed from a Harris system. In
discussing dynamic random walks, it will be understood that the Poisson process NX

and associated uniform random variables also are part of the Harris system.
Now fix A ⊆ V, t ∈ R and a Harris system H. Let us define the dual process

(ξ̂A,ts )0≤s<∞ by

ξ̂A,ts (y) = 1{(y,t−s)↔A×{t} in H}.
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If A = {x}, we write (ξ̂x,ts ). This process satisfies two important properties. First, the
distribution of (ξ̂x,ts s ≥ 0) is the same as that of a contact process with same initial
configuration. Second, it satisfies the duality equation

ξAt ∩B 6= ∅ if and only if A ∩ ξ̂B,tt 6= ∅. (2.3)

In particular,
ξ
1
t (x) = 1 if and only if ξ̂x,tt 6= ∅, (2.4)

where (ξ
1
t ) is the process started from full occupancy.

Also (for λ > λc) if we put ξ0(x) = 1 if and only if ξ̂x,0. never dies out, then
configuration ξ0 has the upper equilibrium distribution ν̄.

We will talk of a contact process {ξt}t≥0 restricted to R ⊆ V ×R to mean the contact
process generated by Harris system paths that are entirely contained in R. This is
interpreted to signify that ξt(x) = 0 for each (x, t) /∈ R. We remark that if R1 and R2 are
disjoint, then conditional upon initial configurations, two contact processes restricted
respectively to R1 and R2 are independent. When necessary we use the notation ξR or
ξA,R to denote contact processes restricted to space time regions R, with A standing for
the initial configuration.

We use the suffix t to denote contact processes run from time t.
From now on we will consider the supercritical contact process (λ > λc) on the

integer lattice, V = Z with E the set of nearest neighbour edges.
We now recall classical results about the contact process on the line. The proposition

below can be found in [2] or Theorem 3.23, chapter VI of [9].

Proposition 2.1. There exists a constant c1 ∈ (0,∞) so that for τ the stopping time
equal to the first hitting time of 0 for the process, we have

(i) P ξ0(τ <∞) <
1

c1
e−c1

∑
x ξ0(x)

and

(ii) P ξ0(t < τ <∞) <
1

c1
e−c1t,

for any configuration ξ0.

One important consequence of (ii) above (indeed of the slightly weaker version when
ξ0 has only one occupied site) is the fact that if instead of considering as occupied (at a
given time) sites whose dual survives forever, we consider sites whose dual survives to
large time t, then the resulting configuration has a distribution very close to equilibrium.

We have that a contact process (ξxt )t≥0 has exponentially small (in t) chance of
surviving until time t but subsequently dying out. Furthermore by considering large
deviations of the rightmost descendant rxt and leftmost descendant lxt (see [4] and
Theorem 3.23, of [9]), we have that

Lemma 2.2. There exists h1 > 0 so that

P (H(t)) <
1

h1
e−h1t

for the event H(t): ξxt 6= ∅ but either |ξxt ∩ (x, x+ t)| < h1t or |ξxt ∩ (x− t, x)| < h1t, where
| · | refers to the cardinality.

Remark: The second statement in Proposition 2.1 follows at once from the first and
the above lemma.

The classical renormalization argument that compares the contact process with
supercritical oriented percolation, see for instance the proof of [9, Corollary VI.3.22]
and classical contour arguments for oriented percolation (see e.g. [1]) give the following
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Lemma 2.3. Given β ∈ [0, 1), γ and η both strictly greater than β, there exists constant
c2 so that for (ξt : t ≥ 0) the contact process restricted to rectangle [0, L] × [0, T ], one
has: if
(i) ξ0 has no gaps of size Lβ

and (ii) the dual ξ̂x,TT−Lγ has cardinality at least Lη,
then the conditional probability that ξT (x) = 1 is at least

1− e−(c2L
η−β)

for L sufficiently large.

Similarly we arrive at

Proposition 2.4. Given finite positive K, there exists a constant c3 = c3(K) ∈ (0,∞) so
that for l sufficiently large if ξR is a contact process restricted to [0,Kl]× [0, l] so that ξR0
has no vacant subinterval of [0,Kl] of length v, then

P (ξRl ≡ 0 on an interval I ⊆ [0,Kl] with |I| ≥ u] ≤ Kl

c3
(e−c3u + e−c3l/v).

In particular we have the following.

Corollary 2.5. There exists a constant c4 ∈ (0,+∞) so that for all n large, if x ∈
(−n22n, n22n) and ξt is a configuration with no n3/2 vacant intervals on [−2n22n, 2n22n],

then outside a set of probability at most n9e−c4 log3/2(n), the configuration ξt+n4 has no
gap of size log3/2(n) within n9 of x.

Simple large deviations estimates for the rightmost particle for a one-sided initial
configuration give the following:

Lemma 2.6. There exists a constant c5 ∈ (0,∞) so that for a given Harris system, the
chance that there is a path from (−∞, 0)× (0, T ) to (RT,∞)× (0, T ) is less than e−c5RT

for all R > 1
c5
, T > 1.

We also state the following general result, which is shown through basic techniques:

Lemma 2.7. There exists a constant c̃ > 0 so that, if the contact process ξ is in upper
equilibrium ν̄, then for all n large

P (∃t ≤ 2.23n, |x| ≤ 3.24n so that ξt ≡ 0 on (x, x+ n3/2) ≤ 1

2
e−c̃n

3/2

.

3 An approximate equilibrium

Consider a Harris system on Z× (−∞, 0) and define ξ′ and ξ as follows:

ξ′(x) = 1 if and only if (ξ̂xs )s≥0 the dual restricted to some space time region Rx satisfies
some condition Cx.

ξ(x) = 1 if and only if ξ̂x survives forever. In particular ξ is in equilibrium ν̄.

Writing px for the probability that ξ′(x) 6= ξ(x), it is clear that if
∑
x px ≤ 1

2 , then ξ′

has a law equal to the equilibrium distribution conditioned on an event of reasonable
probability.

We now get to define Rx and Cx adapted to scale 2n. We first fix h1 the positive
constant of Lemma 2.2.

A) For |x| ≤ n9 :

Rx = Z × (−t(n), 0) where t(n) = log4(n)/2 and Cx is the event that at time t(n),
ξ̂x ∩ [−n9, n9] has size at least h1t(n).

B) For |x| > n9 :
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Rx = Z× (−∞, 0) and Cx the condition of surviving forever.

To verify the condition ∑
x

px < 1/2,

for n large, we first note that the summands for |x| > n9 are zero. Secondly we have by
(i) in Proposition 2.1, and taking c1 the positive constant in that statement:∑

|x|≤n9

P (ξ′(x) = 1, ξ(x) = 0) ≤ 1

c1

(
(2n9 + 1)e−c1h1 log4(n)/2

)
which converges to zero as n tends to infinity.

For the term
∑
x P (ξ′(x) = 0, ξ(x) = 1) summed over |x| ≤ n9, we apply Lemma 2.2 to

get the required bounds.

We now alter this definition for |x| > n9. The objective is to define a configuration
which is essentially the same as above but which is independent of certain rectangles of
the Harris system. The “cost" of losing the global closeness to equilibrium by changing
the values far away is small compared to the independence gained. We replace condition
B) with

B′) for |x| > n9, we set ξ′(x) = 1.

It is to be noted that with this amended definition the configuration ξ′ is independent
of the Harris system on Z× (−∞,−t(n))

We let ν(= ν(n)) be the distribution of the configuration ξ′ with rules given in A)
and B′) above, conditioned on the event that for all x ∈ [−n9, n9], ξ′(x) = 1 whenever ξ̂x

survives till time t(n).

4 A regeneration time

The purpose of this section is to describe a regeneration time σ = σ(n, T ) associated
to a space and time scale 2n and a stopping time T (also called n order regeneration
time). We remark that stopping times in this paper will always refer to the natural
filtration of our Harris system (plus some auxiliary random variables). In this sense also,
the regeneration time will be a stopping time occurring after the stopping time T . The
construction will be such that at time σ a random configuration ξ′σ will be produced so
that
(i) ξ′σ has distribution ν (= ν(n) as in Section 3) relative to Xσ,
(ii) with very high probability ξ′σ(x) = ξσ(x) for |x−Xσ| ≤ n9.

Remark: Of course given ξ′σ(x) ≡ 1 for |x−Xσ| > n9, we cannot have ξ′σ = ξσ. The
idea is that in subsequent evolution of a dynamic random walk (ξ′, X ′) with X ′σ = Xσ

we have X ′s = Xs with very high probability. See Lemma 4.3.

We will suppose n is fixed and drop it from notation for our regeneration time
σ = σ(n, T ).

The time σ is obtained via a series of runs. Each run will probably be aborted before
completion but if it doesn’t then, as far as evolution on a scale of 2n is concerned, the
process will start from a given distribution (which will weakly depend upon n). In the
following T will be a stopping time bounded by 23n. (This can be extended to times in
[0, 2Kn] for K large but fixed.) For notational reasons we take (T,XT ) to be (0, 0). We
begin a run at time t (for the first run t = 0) by considering the joint (ξ,X) process on
time interval (t, t+ n4 + log4(n)). If the run is aborted, then we try a subsequent “run" at
time t+ n4 + log4(n) and so on until a complete run is obtained.
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A run consists of at most five stages. A (complete) run will produce σ = t+n4+log4(n),
either if the first stage is a failure or if all five stages succeed, in which case we say
that the run is successful. The latter case will be good from the point of view of (ii)
above while the first case will be bad (but mercifully of small probability). If the run is
successful, then the distribution of ξt+n4+log4(n) shifted by Xt+n4+log4(n) will be ν at least
on interval (−n9, n9).

As we shall now see: the first stage should succeed with very large probability (for
T,XT not too large as explained below). The second stage will succeed with probability
of order e−M

′ log4(n). The next two will succeed with high probability (for n large), and
the fifth with a reasonable probability, each given the success of the previous stages.
• The first stage consists simply of seeing if there is a vacant gap of size n3/2 for ξt on

(Xt − 2n22n, Xt + 2n22n). If so we conclude the run and designate σ = t+ n4 + log4(n).
We put X ′σ equal to Xσ and ξ′σ to be a random configuration independent of the natural
Harris system for (ξ,X) so that shifted by Xσ, ξ

′
σ has distribution ν. Technically this

gives a complete run (since it has established σ) but of course this case has severed any
link between ξ and ξ′ and will be treated as a “disaster". It is however easy to see that
the chance this occurs for t ∈ [0, 23n] is bounded as e−c̃n

3/2

for some universal positive
constant c̃ if our stopping time T is less than 23n (see Lemma 2.7). Thus the contribution
to the various integrals considered in later sections will be negligible. If there are no
n3/2 gaps we describe the first stage of the run as a success.
• The second stage is a success if (recalling the notation set in the introduction) we

have
1) NX(t+ n4)−NX(t) < Mn4 and
2) NX(t+ n4 + log4(n))−NX(t+ n4) = 0.

We remark that the first condition is satisfied with probability tending to one as n
becomes large, while the second condition has probability exactly e−M

′ log4(n). The first
condition implies that whatever the contact process might be, X moves less than Mn4

on the time interval (t, t+n4) and is constant on the time interval (t+n4, t+n4 + log4(n)).
As with subsequent stages, if this is a failure we let the process run up until time
t+ n4 + log4(n) in order to regain the Markov property.
• Given the second stage is a success, we pass to the next, and require that on the

interval 1 (X(t+ n4)− n9, X(t+ n4) + n9) there be no gaps of size log3/2(n) for ξt+n4 .
We note here that as ξt has no n3/2 gaps the chance of this event, given also a

successful second stage, is close to one by Corollary 2.5.
• For the fourth stage we construct ξ′

t+n4+log4(n)
according to the n level specifications

from the given Harris system shifted spatially by X(t+ n4 + log4(n)) and temporally by
t1 = t+ n4 + log4(n):
For |x| ≤ n9, ξ′

t+n4+log4(n)
(X(t+n4+log4(n))+x) = 1 if and only if the dual ξ̂x+X(t+n4+log4(n)),t1

survives for time t(n) = log4(n)/2 satisfying condition Cx (Sec. 3) suitably displaced.
For |x| > n9 we set ξ′

t+n4+log4(n)
(X(t+ n4 + log4(n)) + x) = 1.

The fourth stage is successful if

ξ′t+n4+log4(n)(x) ≥ ξ̃t+n4+log4(n)(x) for all x,

where ξ̃t+n4+log4(n) is given by ξ̃t+n4+log4(n)(x) = 1 if and only if the dual ξ̂x,t1 survives

for time t(n) = log4(n)/2 (or equivalently ξ̃· is the contact process defined on the Harris
system from time t+ n4 + log4(n)/2, starting with full occupancy). By Lemma 2.2, the
probability of success at the fourth step tends to one as n tends to infinity. Indeed, it
amounts to prove that for all |x| ≤ n9 one has ξ′

t+n4+log4(n)
(X(t+ n4 + log4(n)) + x) = 1

1When the notation would be too clumsy, we write X(t) instead of Xt.
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whenever ξ̂x+X(t+n4+log4(n)),t1 = 1, and the calculation is essentially given in Section 3. It
is to be noted that this condition relies on a Harris system disjoint from (and independent
of) the Harris systems observed in stage 2.
• Finally for the fifth stage we note that, provided that the requisite stages have been

successfully passed, the conditional chance that for every x such that |Xt+n4 − x| ≤ n9
and ξ′

t+n4+log4(n)
(x) = 1 one has

ξ′t+n4+log4(n)(x) = ξt+n4+log4(n)(x)

is at least 3/4 for n large, as an easy calculation using Lemma 2.3 shows. This condi-
tional probability will depend on the random configuration ξ′

t+n4+log4(n)
as well as the

configuration ξt+n4 . Let us denote it by p(ξ′
t+n4+log4(n)

, ξt+n4). Having introduced an
auxiliary independent uniform random variable U associated to the “run" (enlarging the
probability space if necessary), we then say that the run is (globally) a success if

ξ′t+n4+log4(n)(x) = ξt+n4+log4(n)(x) for every x as above

and U ≤ 3/4
p(ξ′

t+n4+log4(n)
,ξt+n4 )

.

Using this randomization procedure we see that, conditionally on success, the dis-
tribution of ξt+n4+log4(n) shifted by Xt+n4+log4(n) and restricted to the interval [−n9, n9]

coincides with ν restricted to [−n9, n9].
Notation: For a stopping time T , we let σT = σ(n, T ) denote the end time of the first

successful run after beginning the runs at time T :
σT = inf{T+k(n4+log4(n)) : a complete run is initiated at time T+(k−1)(n4+log4(n))}.
We say σT is the T regeneration. We say that a disaster occurs at σT if ξ′σT (x) 6= ξσT (x)

for some x within n9 of XσT . The arguments given above imply the following.

Lemma 4.1. There exists a positive constant c so that for any initial configuration ξT at
time T , the probability of a complete run is at least c

ne
−M ′ log4(n).

Proposition 4.2. There exists constant c6 ∈ (0,∞) so that for n large and any stopping
time, T , for the filtration (Ft) determined by the (ξ,X) process, σT , the first time for a
complete run starting at T , satisfies

P (σT > T + n8eM
′ log4(n)|FT ) < e−c6n

3

a.s.

Moreover, the probability that there is a stopping time T ≤ 23n such that the run
completed at σT is not successful is bounded from above by e−c̃n

3/2

.

Proof. Since each run takes an interval of time of length at most n4 + log4(n) ≤ 2n4, the
proof of the first statement follows at once from Lemma 4.1 by repeated application
of the Markov property. The second statement follows from the first and Lemma 2.7,
together with simple estimates on the Poisson process.

The next result is crucial for our regeneration arguments as it implies that replacing
at regeneration times our configuration ξσ by a regenerated ξ′σ does not change the
evolution of X, thus facilitating an i.i.d. structure for X.

Lemma 4.3. Consider two dynamic random walks (ξ,X) and (ξ′, X ′) run with the same
Harris system and so that
(i) X0 = X ′0
(ii) ξ0(x) = ξ′0(x) for |x−X0| ≤ n9, elsewhere ξ0(x) ≤ ξ′0(x).

Then, for a suitable positive constant c8, outside of probability e−c8n
2

we have either
a) ξ0 has an n3/2 gap within 24n of X0, or
b) Xn4 = X ′n4 and ξn4(x) = ξ′n4(x) for |x−Xn4 | ≤ 23n.
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Proof. It is only necessary to show the inequality holding for n sufficiently large, so
in the following we will take n to be large enough that a finite number of asymptotic
inequalities hold. It suffices to consider initial configurations (ξ0, X0) and (ξ′0, X

′
0) as in

(i) and (ii) such that ξ0 has no n3/2 gaps within 24n of X0, and to find two “bad" events B1

and B2, with appropriately small probabilities conditioned on such ξ0, and such that if
neither B1 nor B2 occur, then

ξn4(x) = ξ′n4(x) for all x ∈ [Xn4 − 23n, Xn4 + 23n] (4.1)

and
Xn4 = X ′n4 . (4.2)

The first event, B1, is simply taken as ∪x∈[X0−24n/2,X0+24n/2]B
x
1 , where

Bx1 =
{
ξ̂x,n

4

n4 6= ∅, ξ̂x,n
4

n4 ∩ ξ0 ∩ [X0 − 24n, X0 + 24n] = ∅
}
. (4.3)

We clearly have Bx1 ⊆ Cx1 ∪ Cx2 , where

Cx1 =
{
ξ̂x,n

4

n4/2 6= ∅, |ξ̂x,n
4

n4/2 ∩ (x, x+ n4/2)| ≤ h1n4/2
}

and
Cx2 =

{
|ξ̂x,n

4

n4/2 ∩ (x, x+ n4/2)| > h1n
4/2, ξ̂x,n

4

n4 ∩ ξ0 = ∅
}
.

The event Cx1 is independent of ξ0, and by Lemma 2.2, P (Cx1 ) ≤ 1
h1
e−h1n

4/2. We
now remark that for n large (x, x+ n4/2) ⊆ [X0 − 24n, X0 − 24n] for all x in the range of
interest, and so ξ0 will have no n3/2 vacant intervals in this interval. Also by Lemma 2.3,
P ξ0(Cx2 ) ≤ e−c2h1n

5/2/2, uniformly over x and ξ0 under the given condition of no gaps,
where P ξ0 refers to the conditional probability given ξ0. Therefore uniformly for all such
ξ0

P ξ0(B1) ≤ (24n + 1)

(
e−c2h1n

5/2/2 +
1

h1
e−h1n

4/2

)
which is less than 1

2e
−n2

for n large.
As for the second bad event, its complement Bc2 is given by

Bc2 =
{
X ′n4 = Xn4 ∈ [X0 − n5, X0 + n5]

}
. (4.4)

Before estimating P ξ0(B2) uniformly over ξ0 as above, notice that the desired prop-
erties (4.1), (4.2) hold on Bc1 ∩Bc2. This is automatic for (4.2). On the other hand, (4.1)
follows from (4.3) and (4.4) once we take (ii) into account.

First we have by simple tail estimates for Poisson random variables,

P ξ0( sup
0≤s≤n4

(|Xs −X0| ∨ |X ′s −X ′0|) > n5) ≤ e−cn
5

for some strictly positive c depending on M ′ but not on n. So it remains to argue that
Xn4 and X ′n4 must be equal with very large probability. To do this it will suffice to show
that (outside a set of very small probability),

ξs(x) = ξ′s(x) for all 0 ≤ s ≤ n4, for all x ∈ [X0 − n5 − r0, X0 + n5 + r0] (4.5)

where r0 was defined in the first paragraph. We divide up [X0 − n9, X0 + n9) into disjoint
intervals {Ii}i∈J of cardinality n5. Let the collection of indices of intervals entirely to
the left of [X0 − n5 − r0, X0 + n5 + r0] be Ja, while Jb denotes the collection of indices
for intervals entirely to the right. For any i ∈ J , let Di be the event that there is a path
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from (x, 0) to some (y, n4) entirely contained in space time rectangle Ii × [0, n4] for some
x with ξ0(x) = ξ′0(x) = 1. We note first that the events Di are conditionally independent
given ξ0 and that by our restriction on the size of gaps for ξ0 we have that given ξ0 each
Di has a conditional probability bounded away from zero in a way that depends on λ but
not on n. From this it follows that uniformly over ξ0 without n3/2 gaps as above, we have

P ξ0 (∩i∈JaDc
i ) + P ξ0 (∩i∈JbDc

i ) ≤ e−c
′n4

.

But (4.5) holds at once on the set ∪i∈JaDi ∩ ∪i∈JbDi, and we are done.

5 Existence of normalizing constants

In this section we wish to use our coupling time to establish the existence of µ and α so
that as n→∞

E

(
X2n

2n

)
→ µ and

1

2n
E(X2n − 2nµ)

2 → α2.

Considering (ξ′, X ′) associated to a regeneration time σ = σ(n, T ) for T = 0 as in the
previous section, and ν = ν(n) the measure defined in Section 3 we will need:

Lemma 5.1. There exists a constant c10 <∞ so that for all n,∣∣E (X2n

2n

)
− Eν(n)

(
X2n

2n

) ∣∣ <
c10n

8eM
′ log4(n)

2n
.

Proof. Let σ = σ(n, 0) be the n order regeneration time for time 0 and X ′ the dynamic
random walk resulting from σ. Let D denote the event that either
(i) σ > n8eM

′ log4(n) or
(ii) Xσ+2n −Xσ 6= X ′σ+2n −X ′σ.

By Lemmas 4.3 and 2.7 and Proposition 4.2 we have that P (D) < e−c̃n
3/2

+e−c8n
2

+e−c6n
3

.
But ∣∣E (X2n) − Eν(n) (X2n)

∣∣ =
∣∣E (X2n) − E

(
X ′σ+2n −X ′σ

) ∣∣
≤ E (|X2n − (Xσ+2n −Xσ)|1Dc) + E

(∣∣X2n −
(
X ′σ+2n −X ′σ

) ∣∣1D) .
The first term is bounded by E

(
NX(n8eM log4(n)) +NX(2n + n8eM log4(n))−NX(2n)

)
,

which is 2M ′n8eM
′ log4(n). For the term containing 1D we use the Cauchy Schwarz

inequality to conclude the proof.

Lemma 5.2. There exists a constant c11 <∞ so that for all n,∣∣E (X2n

2n

)
− E

(
X2n+1

2n+1

) ∣∣ <
c11n

8eM
′ log4(n)

2n
.

Proof. We begin by now taking σ̃ = σ(n, 2n) to be the regeneration time after 2n, and
argue as in the proof of Lemma 5.1, where we now take the event D that either
(i) σ̃ − 2n > n8eM

′ log4(n) or
(ii) Xσ̃+2n −Xσ̃ 6= X ′σ̃+2n −X ′σ̃.
As in the proof of Lemma 5.1, D has a very small probability. Proceeding then as in that
proof, and since E(X ′σ̃+2n −X ′σ̃) = Eν(n)(X2n) we can write

EX2n+1 = EX2n + E(Xσ̃ −X2n) + E(Xσ̃+2n −Xσ̃) + E(X2n+1 −Xσ̃+2n)

= 2EX2n +O(n8eM
′ log4(n)) + E(Xσ̃ −X2n) + E(X2n+1 −Xσ̃+2n)

= 2EX2n +O(n8eM
′ log4(n))

where in the second equality, we have also used Lemma 5.1. From this the lemma
follows.
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This immediately begets

Corollary 5.3. There exists µ ∈ (−∞,∞) so that

lim
n→∞

E(X2n)

2n
= µ.

Remark: It is not difficult to see that E(Xt/t) converges to µ, see for instance the
proof of Lemma 5.8.

We now look for a bound for E
(
X22n

22n − µ
)2

.

As we have seen µ = limn→∞
E(X2n )

2n exists. Furthermore by Lemma 5.1 for

µn = Eν(n)(X2n )
2n we have |µn − µ| ≤ c10n

8eM
′ log4(n)

2n .

Given a dynamic random walk (ξ,X) and a scale n, we define a sequence of renewal
points βi, i ≥ 1 as follows: let β1 = σ(0), the regeneration time for the stopping time 0.
Subsequently for i ≥ 1, we define βi+1 so that βi+1 − βi is the regeneration time for the
stopping time 2n for the dynamic random walk (ξi, Xi) so that
(i) (ξi, Xi) is generated by the Harris system temporally shifted by βi;
(ii) for |x−Xi

βi+1−βi | ≤ n
9, ξi+1

0 (x) = (ξi)′βi+1−βi(x); elsewhere ξi+1
0 (x) = 1;

(iii) Xi+1
0 = Xi

βi+1−βi .

We wish to only deal with “good" i, where we say that i is good if all 0 ≤ j < i are
good and if
(a) βi+1 − βi ≤ 2n + n8eM

′ log4(n)

(b) NX(βi)−NX(βi−1) < 2n22n, where for notational completeness, we take β0 = 0 and
(ξ0, X0) to be the original dynamic random walk (ξ,X).

Setting S = inf{i : i is not good}, we define the random variables Zi, i ≥ 1 by
• for j < S, Zj = Xj

βj+1−βj −X
j
0 ,

• for j ≥ S, Zj are taken from an independent i.i.d. sequence of random variables with
the distribution that of Z1 conditioned on 1 being good.

We note that unless a disaster occurs at some stage βj (i.e. ξj0(x) 6= ξj−1βj−βj−1
(x) for

some x within n9 of Xj−1
βj−βj−1

) we have for each i, ξi0 ≥ ξβi . Thus we have via Proposition
4.2 and Lemmas 4.3 and 2.7, and simple estimate with the Poisson distribution, that
outside a set of probability 2n(e−c̃n

3/2

+ e−c8n
2

+ e−cn
2

+ e−c6n
3

), for some c > 0 that
depends on M ′, all i ≤ 2n are good and for such i we have

Xβi −Xβ1
=

i−1∑
k=1

Zk.

Take R to be the integer part of 22n

2n+n8eM′ log4(n)
− 2 and let us define

Y22n = Xβ1
+

R∑
j=1

Zj + (X22n −XβR+1
) ≡

R∑
j=1

Zj + Fn.

As noted, outside probability 2n(e−c̃n
3/2

+ e−c8n
2

+ e−cn
2

+ e−c6n
3

), Y22n = X22n .

Now, by techniques already employed for Lemma 5.1, it is easy to see that for suitable
universal c12, we have

|E(Z1)− 2nµ| ≤ c12n
8eM

′ log4(n)
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and so we may write (with Z ′j equal to Zj minus its expectation)

Y22n − 22nµ =

R∑
j=1

Z ′j + F ′n,

where E((F ′n)2) ≤ cn16e2M
′ log4(n)22n for universal c. From this and the obvious bound

E(Z2
j ) ≤ c̃22n we obtain, for some universal C, that

E(Y22n − 22nµ)2 ≤ C23n.

We finally use the elementary identity

E(X22n − 22nµ)2 = E(Y22n − 22nµ)2 + E
(
((X22n − 22nµ)2 − (Y22n − 22nµ)2)IX22n 6=Y22n

)
and Cauchy Schwarz to conclude

Lemma 5.4. There exists universal constant c13 so that for all positive integer n,
E((X22n − 22nµ)

2
) ≤ c1323n.

We can now prove

Proposition 5.5. For X as defined above, there exists α ∈ (0,∞) so that as n→∞

2nE

(
X2n

2n
− µ

)2

→ α2.

Proof. The proof that the limit is strictly positive is given below in Proposition 5.7. For
the existence, we write as before X2n+1−2n+1µ as (X2n−2nµ)+Y1 +Z1 +Y2, where Y1 is
the increment of X over time [2n, σ] with σ = σ(n, 2n) being the time of the regeneration
after time 2n. Z1 = X ′σ+2n −X ′σ−E(X ′σ+2n −X ′σ) and Y2 is defined via the above equality.
Then we have

E((X2n+1 − 2n+1µ)
2
) = E((X2n − 2nµ)2) + E(Z2

1 ) + 2E((X2n − 2nµ)Z1)

+ E((Y1 + Y2)
2
) + 2E((Y1 + Y2)Z1)

+ 2E((Y1 + Y2)(X2n − 2nµ)).

By our choice of Z1 we have 2E((X2n − 2nµ)Z1) = 0, while by Cauchy Schwarz and
Lemma 5.2 we have, for n large, (and some finite K not depending on n)

|E((Y1 + Y2)
2
) + 2E((Y1 + Y2)Z1) + 2E((Y1 + Y2)(X2n − 2nµ))| ≤ K2

3n
4 n8eM

′ log4(n).

It simply remains to check that (increasing K if necessary) |EZ2
1 − E((X2n − 2nµ)

2
)| ≤

Kn8eM
′ log4(n)2

3n
4 to see that

|E((X2n+1 − 2n+1µ)
2
)− 2E((X2n − 2nµ)

2
)| ≤ c2 3n

4 n8eM
′ log4(n), (5.1)

from which we obtain the existence of limit of 2−nE((X2n − 2nµ)
2
).

We now adapt the previous argument to give bounds on E((X2n+1 − 2n+1µ)
4
).

As before we write

X2n+1 − 2n+1µ = X2n − 2nµ+ Y1 + Z1 + Y2 = X2n − 2nµ+ Z1 + Y.

So we can write (X2n+1 − 2n+1µ)
4

as

(X2n − 2nµ)
4

+ Z4
1 + 6(X2n − 2nµ)

2
Z2
1 + 4Z3

1 (X2n − 2nµ) + 4Z1(X2n − 2nµ)
3

+W,
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where the random variableW is defined by the above equality. Now E(Z1(X2n − 2nµ)
3
) =

0 and E((X2n − 2nµ)
2
Z2
1 ) = E((X2n − 2nµ)

2
)E(Z2

1 ) = 22nα4(1+O(1)), while |E(Z3
1 (X2n−

2nµ))| = |EZ3
1 ||E(X2n − 2nµ)| ≤ (EZ4

1 )
3
4 |E(X2n − 2nµ)| ≤ (EZ4

1 )
3
4Kn8eM

′ log4(n). On
the other hand,

E(W ) = E(Y 4) + 6E(Y 2V 2) + 4E(Y 3V ) + 4E(Y V 3)

for V = X2n − 2nµ+ Z1. Using Holder’s inequality, we see that

E(W ) ≤ K(EY 4)
1
4

(
(E(X2n − 2nµ)4)

3
4 + (EZ4

1 )
3
4 + (EY 4)

3
4

)
.

In the same way we have

E(Z4
1 ) ≤ E

(
(X2n − 2nµ)

4
)(

1 +
K

2n/4

)
for some universal finite K. Putting all together and setting Vn = E[(X2n−2nµ)4]

22n we see
that,

Vn+1 ≤
Vn
2

(1 +
K

2n/4
) + 6

α4

4
(1 +O(1)) +

Vn
3/4

2n/2+2
Kn8eM

′ log4(n) +
Kn32e4M

′ log4(n)

22n+2
,

so that Vn satisfies the simpler recursion

Vn+1 ≤
Vn
2

(1 +
K ′

2n/4
) +K ′,

for suitable constant K ′, and we get

Lemma 5.6. For the process X and µ as in Corollary 5.3

sup
n

E(X2n − 2nµ)
4

22n
<∞.

We now wish to prove that α is strictly positive.

Proposition 5.7. The constant α defined above is strictly positive.

Proof. In the proof of Proposition 5.5 (see (5.1)) we showed that

2n+1E

(
(
X2n+1

2n+1
− µ)2

)
= 2nE

(
(
X2n

2n
− µ)2

)
+ O(n8eM

′ log4(n)2−n/4).

Given this, we see at once that it suffices to show that there exists β < 1/4 so that for
each n0 there exists n1 ≥ n0 so that

E
(
(X2n1 − 2n1µ)2

)
≥ 2n1(1−β).

To do this we introduce a new regeneration time σ′ similar to the regeneration time
of order n but with two additional stages added into the “runs". We first choose a
j ∈ {−1, 1} so that ||gj ||∞ 6= 0. Without loss of generality this will be j = 1. We define
a run beginning at a Markov time t . If the first five stages are successful then at time
t+ n4 + log4(n) the process ξ (relative to X) is in approximate equilibrium, ν(n) at least
close to X. So we have with b2(> 0) probability that g1 > b2 on the configuration ξ shifted
by X.

The sixth and seventh stages are motivated by a desire to create a “regeneration
time" σ′ so that the distribution of ξ relative to position X is (essentially) the same
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irrespective of whether X has advanced by zero or by one during a certain time interval.
This will add uncertainty into the system thus increasing the “variance".

The primary sixth stage event is that on time interval [t+ n4 + log4(n),

t + n4 + log4(n) + 1], we have that either NX is constant or increases by one, and the
uniform random variable associated to the single Poisson point is in [1− b2/M ′, 1].

Thus on this event during time interval [t+n4 + log4(n), t+n4 + log4(n) + 1], X either
advances by one or stays fixed. Our task is to show that the process will forget which.

To this end, we also require that on this time interval there is no point in Nx,y where
one of {x, y} is in [X(t + n4 + log4(n)) − r0, X(t + n4 + log4(n)) + r0] and the other is
outside. We also require that NX is constant on the time interval [t + n4 + log4(n) +

1, t+ n4 + log4(n) + 1 + log4(n)], and that at time t+ n4 + log4(n) + 1, the process ξ has
no log5/4(n) gaps on the interval [X(t̃(t, n)) − n9, X(t̃(t, n)) + n9], where we write (for

shortness) t̃(t, n)
def
= t+ n4 + 2 log4(n) + 1.

Then we define a configuration γ′
t̃(t,n)

as with our definition of σ:

For |x−X(t+ n4 + log4(n) + 1)| ≤ n5 we choose Cx to be the condition that at time
log4(n)/2, the dual ξ̂x,t̃(t,n) has at least h1 log4(n)/2 occupied sites in the spatial interval
[X(t+ n4 + log4(n) + 1)− n9, X(t+ n4 + log4(n) + 1) + n9].

We require that for no x in the above interval do we have ξ̂x,t̃(t,n) survives for time
log4(n)/2 but γ′

t̃(t,n)
(x) = 0.

Finally, for the seventh stage we simply introduce (just as in stage 4 for σ) an auxiliary
uniform random variable U . We can show via simple arguments that γ′

t̃(t,n)
= ξt̃(t,n) on

[X(t̃(t, n)) − n9, X(t̃(t, n)) + n9] with probability q = q(γ′
t̃(t,n)

, ξt̃(t,n)) which will be at

least 3
4 .

The last stage (and hence the “run") will be a success if this occurs and if U ≤ 3
4q .

Then relative to X(t+n4 + log4(n) + 1) = X(t+n4 + 2 log4(n) + 1) (and independently
of X(t + n4 + log4(n) + 1) − X(t + n4 + log4(n)) we have that ξX(t+n4+2 log4(n)+1) has
distribution ν = ν(n).

As before we produce mostly failures but will with high probability produce a success
before time 2n/9. We then let the process restart the series of runs and continue. It is
the easy to see that for n large

E
(
(X2n − 2nµ)2

)
≥ 2n7/8.

By the first paragraph this concludes the proof.

We finish this section with a technical result

Lemma 5.8. There exists a constant c13 so that for all n,

sup
t≤2n

E
(
(Xt − tµ)2

)
≤ c132n.

Proof. We need only consider t ∈ (2n−1, 2n). If t ∈ (2n−1, 2n−1 + 2.2n/4), it is easy to see
that E

(
(Xt − tµ)2

)
≤ K2n for universal K so we need only treat t ∈ (2n−1 + 2.2n/4, 2n).

In this case we can find n− 1 = n1 > n2 > ... > nr so that nr ≥ n/4− 1 and

t−
r∑

k=1

2nk ∈ (2n/4/4, 22n/4).

Given these nk we construct regeneration times σk and processes (ξk, Xk) in the manner
used in the proof of Lemma 5.4 so that
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(i) process (ξ0, X0) is our given dynamic random walk (ξ,X),
(ii) for k ≥ 1, σk is the nk order regeneration for process (ξk−1, Xk−1) after σk−1+2nk−1

(replacing σ0 + 2n0 by 0 if k = 1).
The resulting process ((ξk−1)′s, (X

k−1)′s)s≥σk is written (ξk, Xk).
We introduce the following notation:

Vi = Xi−1(σi)−Xi−1(σi−1 + 2ni−1)− (σi − σi−1 − 2ni−1)µ, i = 1, 2, . . . , r,
Yi = Xi(σi + 2ni)−Xi(σi)− 2niµ, i = 1, 2, . . . , r,
(where we again take σ0 + 2n0 as zero) and
Z = Xt − tµ−

∑r
k=1(Vi + Yi).

It is not necessary in the definition of Z to assume that σnr + 2nr is less than t, though
the probability that it is not will be less than e−c6n

3/43 for n large (see Proposition 4.2).
Further let W =

∑r
k=1 Vi. Then we have that

E
(
(Xt − tµ)2

)
= E

(
(

r∑
k=1

Yi +W + Z)2

)
≤ 3E

(
(

r∑
k=1

Yi)
2

)
+ 3E(W 2) + 3E(Z2).

It is easily seen that for some K universal E(W 2) and E(Z2) are both bounded by K2n/2.
For the other part of the bound, recall that by Proposition 5.5 we have that for n large
(and hence n/4− 1 large), for each i

E(Y 2
i ) ≤ 22niα2.

It then follows by Minkowski inequality

E

(
(

r∑
k=1

Yi)
2

)
≤ 2α2

(
n−1∑
i=1

2i/2

)2

≤ K2n−1.

Corollary 5.9. The statement in Lemma 5.8 applies as well for the dynamic random
walk (ξ,X) assumed to start with ξ distributed as ν(n) and X0 = 0.

Proof. Indeed it remains to notice that the same proof works, while the only difference
regards the process (ξ0, X0) in the first step of the above proof.

Proposition 5.10. Consider a process (Xσ+t −Xσ − tµ)t≤2n where σ is an n order
regeneration time. For each γ > 0, there exists cγ > 0 so that for all n large

P ( sup
s≤2n

|Xσ+s −Xσ − sµ| ≥ 2
n(1+γ)

2 )

≤ 2P (|Xσ+2n −Xσ − 2nµ| ≥ 1

2
2
n
2 (1+γ)) ≤ 1

cγ
2−nγ .

Proof. Let T = inf{s > 0: |Xσ+s −Xσ − sµ| ≥ 2
n(1+γ)

2 } ∧ 2n. This is a stopping time for
the Harris system filtration. If 2n − T < n9eM

′ log4(n), then there is hardly anything to
prove and so we suppose otherwise. At time T we begin runs concluding in an n order
regeneration σ. We put Z = X ′2n −X ′σ − (2n − σ)µ and define random variable W by

X2n − 2nµ = (XT − Tµ) + ((Xσ −XT )− (σ − T )µ) + Z + W,

so
|X2n − 2nµ| ≥ |XT − Tµ| − |(Xσ −XT )− (σ − T )µ| − |Z| − |W |,

≥ 2
n(1+γ)

2 − |(Xσ −XT )− (σ − T )µ| − |Z| − |W |.

EJP 20 (2015), paper 3.
Page 15/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3439
http://ejp.ejpecp.org/


Dynamic random walks

By elementary bounds on regeneration times and Poisson process tail probabilities and
Proposition 4.2, we have that outside probability 2e−c6n

3

for n large

|(Xσ −XT )− (σ − T )µ| ≤ Mn9eM
′ log4(n) << 2

n(1+γ)
2 .

Secondly, given information up to T , the term Z is equal in distribution to Xs − sµ
for s = 2n − σ where the (ξ,X) process begins with ξ in distribution ν(n) at least when
restricted to the sites within n9 of X0 = 0. We may then apply Corollary 5.9 to see that
for suitable universal constant K

P
(
|Z| ≥ 2

n(1+γ)
2 /4

)
≤ K2−nγ . (5.2)

Thus we obtain (at least for large n), using the usual bounds as before for the probability
that the random variable W is zero,

P ( sup
s≤2n

|Xσ+s −Xσ − sµ| ≥ 2
n(1+γ)

2 )

≤ 2P (|X2n − 2nµ| ≥ 2
n(1+γ)

2 /4),

and we are done.

6 Proof of Theorem 1.1

Given this we can establish our invariance principle. We consider 2n ≤ t < 2n+1 and
choose scale 2

n
2 (1+β) = 2n1 for 0 < β < 1. We can apply Proposition 4.2 to show that if

we define n1 order regeneration times σk recursively, as with the proof of Lemma 5.4, so
that σk is the time of the first regeneration for process (ξk−1, Xk−1) after starting runs
at time σk−1 + 2n1 , and

(ξkσk , X
k
σk

) = (ξk−1, Xk−1)′

then we have with high probability that for all σk < t that

Xσk+2n1 −Xσk = Xk
σk+2n1 −Xk

σk
.

We decompose the motion (Xs)s≤t into its increments over an alternating series of
intervals I1, J1, I2, J2, · · · , where Ik = [σk−1 + 2n1 , σk] for n1 regeneration times σk, and
Jk = [σk, σk + 2n1 ].
We have that σk ≥ t for k = k0 =

[
t

2n1

]
and (outside very small probability) σk < t for

k = k1 =
[

t
2n1+n8eM′ log4(n)

]
.

Thus via the usual invariance principle and Berry Esseen bounds (see e.g. [2]) we have

(A)
∑k1
k=1

(Xσk+2n1−Xσk−µ2
n1 )

√
t

D→ N(0, α2),

(B)
∑k0
k=1

(Xσk+2n1−Xσk−µ2
n1 )

√
t

D→ N(0, α2),
and
(C) Wt

def
= supk1≤k′≤k0

∣∣∣∑k′

k=k1

(Xσk+2n1−Xσk−2
n1µ)

√
t

∣∣∣ pr→ 0.

Furthermore we have that with probability tending to 1 at n → ∞ (with the usual
convention for σ0 + 2n1):

W 1
t
def
=

k0∑
k=1

∣∣∣∣ (Xσk −Xσk−1+2k − (σk − σk−1 + 2n1)µ
√
t

∣∣∣∣ ≤ 2Kn8eM
′ log4(n) 2n

(1−β)
2

2
n
2

,

which then tends to zero as n→∞.
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Furthermore by Proposition 5.10 we have for k2 = sup{k : σk < t}, that with probability
that tends to one as n→∞

W 2
t
def
= sup

σk2≤s≤σk2+2n1

∣∣∣∣ (Xs −Xσk2
− (s− σk2)µ
√
t

∣∣∣∣ ≤ 2
n(1+β)(1+γ)

4

2
n
2

< 2−nε

for (1+β)(1+γ)
2 < 1 and ε = 1− (1+β)(1+γ)

2 .
Then we have ∣∣∣∣∣Xt − tµ√

t
−

k1∑
k=1

(Xσk+2n1 −Xσk − 2n1µ)√
t

∣∣∣∣∣ ≤Wt +W 1
t +W 2

t ,

and the desired convergence follows.
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