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Abstract

This paper considers a class of entropy functionals defined for random matrices, and
it demonstrates that these functionals satisfy a subadditivity property. Several matrix
concentration inequalities are derived as an application of this result.
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1 Introduction and Related Work

Entropy and related functions quantify the uncertainty inherent in a probability dis-
tribution. Measures of entropy have the property that the total entropy of a “product”
is bounded by the sum of the entropies of the “factors.” This fundamental fact is called
subadditivity of entropy, or sometimes tensorization, and it drives many applications of
entropy. The survey [Lie75] contains a discussion of subadditivity in statistical mechan-
ics, and the monograph [RS13] describes examples in information theory. In this work,
we focus on the role of subadditivity of entropy in probability.

1.1 Subadditivity and Concentration

A concentration inequality states that a random variable is unlikely to exhibit a
significant deviation from its mean value. The current intuition holds that a random
variable concentrates whenever it depends smoothly on many independent random
variables [Tal96]. Ledoux [Led97, Led01] and Bobkov & Ledoux [BL98] initiated a
line of research that uses methods based on entropy to derive concentration inequal-
ities. A few of the many authors who have contributed include Massart [Mas00a,
Mas00b], Rio [Rio01], Bousquet [Bou02], and Boucheron et al. [BLMO03, BLM09]. See
the book [BLM13] for a comprehensive treatment of this theory and its bibliography.
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Subadditivity of matrix ¢-entropy

Let us summarize the ideas that lead from entropy to concentration. In this setting,
we define the entropy functional for each nonnegative, real random variable Z:

H(Z) =TE(Zlog Z) — (E Z)log(E Z). (1.1)

Heuristically, H(Z) quantifies our uncertainty about the precise value of Z. We typically
consider the situation where Z = ¢?¥ for a zero-mean random variable Y. In this case,
we have the identity
1 E OY_H HH(eﬁY) d/@ 1.2
Oge_OEeIBY'E' (1.2)

Through Markov’s inequality, bounds on the left-hand side imply that Y takes a large
value with exponentially small probability. Therefore, we might hope to invoke inequal-
ities for the entropy functional H to analyze the fluctuations of Y.

Indeed, the entropy functional exhibits a subadditivity property that allows us to
implement this program. Suppose that Z is a function of mutually independent random
variables X, ..., X,,. We can define conditional entropy functionals

Hi(Z) == Ei(Zlog Z) — (E; Z)log(E; Z)

where [E; denotes the expectation with respect to X;, holding X; fixed for j # ¢. The
conditional entropy H; reflects the uncertainty about Z that is attributable to our lack
of knowledge about X;. Subadditivity is the nontrivial result that

H(Z) < Z;l E[H,(Z)]. (1.3)

In other words, our uncertainty about Z does not exceed the total (average) uncer-
tainty due to each X; individually. Combining the identity (1.2) and the subadditivity
property (1.3) with bounds for the conditional entropy, we can establish exponential
concentration inequalities for functions of independent random variables.

The idea of considering alternative forms of entropy can be traced at least as far
as the work of Rényi [Rén61], Bregman [Bré66], and Csiszar [Csi72]. In the early
2000s, researchers [LO00, Cha04, BBLMO05, Cha06] recognized that generalized en-
tropy functionals can exhibit subadditivity properties similar with those of the entropy
functional (1.1). Let ¢ : Ry — R be a convex function. The ¢-entropy functional is
defined for each nonnegative random variable Z by the formula

Hy(Z) =Ep(Z) — p(EZ).

The functional (1.1) derives from the choice ¢ : t — tlogt. Under stringent conditions
on ¢, it can be shown that the g-entropy functional satisfies a subadditivity property
analogous with (1.3). In particular, the function ¢ : ¢t — t? yields a subadditive p-entropy
when 1 < p < 2, a fact that leads to polynomial concentration inequalities [BBLMO05].

1.2 Subadditivity of Matrix Entropies

The purpose of this paper is to explore the subadditivity properties of entropy func-
tionals defined on matrix-valued random variables. Let ¢ : Ry — R be a convex func-
tion. For a positive-semidefinite (psd) random matrix Z, we can consider the matrix
p-entropy functional

Hy(Z) :=Etrp(Z) —tro(EZ)

where ¢ refers to a standard matrix function and tr denotes the normalized trace. See
Section 2.1 for definitions. It may be helpful to note some alternative presentations
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of the matrix p-entropy. First, the expression has the same structure as the scalar
entropy (1.1) because

H,(Z)=E®(Z)—- ®(EZ) where ® := tr¢ is convex.
Second, we can decompose the matrix entropy as
H,(Z) = [Etro(Z) — p(Etr Z)] + [p(tr E Z) — tro(E Z)].

In other words, the matrix entropy quantifies the total loss in two different averaging
operations on the matrix.
This work contains two main contributions:

1. We develop conditions on ¢ which ensure that the matrix ¢-entropy is subadditive.

2. We verify these conditions for the functions ¢ : ¢t — tlogt and ¢ : t — t? where
p € L,2].

The arguments parallel the analysis of scalar (-entropies in Boucheron et al. [BBLMO05],
but the technical difficulties are more formidable in the matrix setting.
There are several areas that may benefit from this investigation.

Random matrix theory In the scalar setting, subadditivity of p-entropy leads to pow-
erful concentration inequalities. The subadditivity of matrix ¢-entropy allows us
to adapt these arguments to obtain some concentration inequalities for random
matrices. See Section 1.3 for more information.

Convex analysis We derive subadditivity of the matrix ¢-entropy functional H, from
its convexity properties; see Lemma 4.1 et seq. These results may be useful in
other contexts. For example, the convexity of scalar ¢-entropy plays a role in
machine learning [RW11, Sec. 2.5 et seq.].

Operator theory To prove that specific examples of matrix p-entropy are subadditive,
we rely on sophisticated methods from operator theory. In return, the results here
may be relevant for problems in operator theory.

Quantum theory In quantum statistical mechanics and quantum information theory,
entropies are defined for positive-definite matrices. Subadditivity of the quantum
relative entropy function plays an important role in these fields, and this same
result is closely connected with subadditivity of the matrix entropy H, where ¢ :
t — tlogt. As such, subadditivity of other matrix ¢-entropies may be relevant for
quantum theory.

1.2.1 Related Work

After this paper was written, we learned about a contemporary paper [Han13] of Hansen
that contains subadditivity results like the ones here. We also mention the subsequent
paper [HZ14], which builds on our work. Detailed references appear below.

For the function ¢ : t — tlogt, we are aware of other precedents for our subad-
ditivity results. In this special case, the subadditivity of H, follows from a classical
result [Lin73] after a moderate amount of argument. In quantum statistical mechanics,
subadditivity of entropy refers to a specific type of inequality for partitioned quantum
systems [LR73]; see the lecture notes [Carl0] for a recent presentation of these ideas.
The paper [HOZ01] contains another type of subadditivity bound.
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Finally, we mention the concept of free entropy, which is the appropriate gener-
alization of entropy in noncommutative probability. As with other entropy measures,
free entropy is subadditive. Arguments based on free entropy can be used to study
extremely large matrices that are unitarily invariant. See the survey [Voi02] for further
details and references.

1.3 Matrix Concentration Inequalities

A matrix concentration inequality provides a bound on the spectral-norm devia-
tion of a random matrix from its mean [AW02, 0li09, Trol1, Trol12b, Minl12, MJC*12,
PMT13]; see the survey [Trol2c] for an annotated bibliography. These results have
already found applications in a wide range of areas, including random graph theory
[Oli09, CCT12], randomized linear algebra [DZ11, Trol2a, BG12], and least-squares
approximation [CDL13]. There is also a separate line of work that leads to remarkable
concentration inequalities for the spectral measure of a random Hermitian matrix; see
for example [AGZ10, Sec. 4.4].

In spite of these successes, one frequently encounters random matrices that do not
submit to existing techniques. Therefore, the study of matrix concentration remains
an active area of investigation. As discussed in Section 1.1, subadditivity of scalar
p-entropy leads to a variety of concentration inequalities [BLMO03, BBLMO05]. It is natu-
ral to ask whether subadditivity of matrix p-entropy leads to new concentration inequal-
ities for random matrices.

We show that it is indeed possible to adapt scalar arguments based on subadditivity
of entropy to the matrix setting, and we obtain some interesting matrix concentration in-
equalities. On the other hand, this method is not as satisfying as some other approaches
to matrix concentration because the resulting bounds involve artificial assumptions. In
fact, the matrix concentration inequalities in this work are dominated by the results we
can obtain using arguments based on exchangeable pairs [PMT13]. This fact suggests
that the subadditivity properties of matrix ¢-entropy do not fully capture the behavior
of a random matrix.

2 Main Results

In this section, we lay out detailed definitions and statements of our main results on
subadditivity of matrix (p-entropy and its application to prove concentration inequalities
for random matrices.

2.1 Notation and Background

Let us instate some notation. The set R, contains the nonnegative real numbers,
and R, consists of all positive real numbers. We write IM? for the complex Banach
space of d x d complex matrices, equipped with the usual ¢, operator norm ||-||. The
normalized trace is the function

_ 1 —d 4
MB:EELﬂ@jﬁmBGM.

The theory can be developed using the standard trace, but additional complications
arise.

The set H? refers to the real-linear subspace of d x d Hermitian matrices in IM¢. For a
matrix A € H¢, we write Apin(A) and A\yax(A) for the algebraic minimum and maximum
eigenvalues. For each interval I C R, we define the set of Hermitian matrices whose
eigenvalues fall in that interval:

HY(I) := {A € H : Anin(A), Amax (A)] C I}.
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We also introduce the set ]Hi of d x d positive-semidefinite matrices and the set ]Hi "
of d x d positive-definite matrices. Curly inequalities refer to the positive-semidefinite
order. For example, A < B means that B — A is positive semidefinite.

Next, let us explain how to extend scalar functions to matrices. Recall that each
Hermitian matrix A € H? has a spectral resolution

d
A=) AP, (2.1)

where Aq,..., \q are the eigenvalues of A. The matrices P,,..., P; are orthogonal pro-
jectors that satisfy the orthogonality relations

d
Pllaj = (Sijpj and 22:1 PL = I7

where J;; is the Kronecker delta and I is the identity matrix. One obtains a standard
matrix function by applying a scalar function to the spectrum of a Hermitian matrix.

Definition 2.1 (Standard Matrix Function). Let f : [ — R be a function on an interval
I of the real line. Suppose that A € H%(I) has the spectral decomposition (2.1). Then

F(4):=3" FO0P.

We use lowercase Roman and Greek letters to refer to standard matrix functions. When
we apply a familiar real-valued function to an Hermitian matrix, we are referring to the
associated standard matrix function. Bold capital letters such as Y, Z denote general
matrix functions that are not necessarily standard.

2.2 Subadditivity of Matrix Entropies

In this section, we provide an overview of the theory of matrix p-entropies. At a high
level, our approach has a strong parallel with the work of Boucheron et al. [BBLMO05].
Nevertheless, there are interesting differences between the scalar and the matrix set-
ting.

2.2.1 The Class of Matrix Entropies

First, we carve out a class of standard matrix functions that we can use to construct
matrix entropies with the same subadditivity properties as their scalar counterparts.

Definition 2.2 (®,; Function Class). Let d be a natural number. The class ®,; contains
each function ¢ : Ry — R that is either affine or else satisfies the following three
conditions.

1. ¢ is convex and continuous at zero.
2. ¢ has two continuous derivatives on R, 4.

3. Define ¥(t) = ¢'(t) for t € Ry4. The derivative Dy of the standard matrix
function v : HY, — H? is an invertible linear operator on H? ,, and the map
A — [Dy(A)]~! is concave with respect to the semidefinite order on operators.

The technical definitions that support requirement (3) appear in Section 3. For now,
we just remark that the scalar equivalent of (3) is the statement that ¢t — [¢o”(¢)] 7! is
concave on R, .
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The class ®; coincides with the ® function class considered in [BBLMO05]. It can be
shown that ®4,; C ®, for each natural number d, so it is appropriate to introduce the
class of matrix entropies:

o0
Po = ﬂdzl o

This class consists of scalar functions that satisfy the conditions of Definition 2.2 for an
arbitrary choice of dimension d. Note that ®., is a convex cone: it contains all positive
multiples and all finite sums of its elements.

In contrast to the scalar setting, it is quite hard to determine what functions are
contained in ®,,. The main technical achievement of this paper is to demonstrate that
the standard entropy and certain power functions belong to the matrix entropy class.

Theorem 2.3 (Elements of the Matrix Entropy Class). The following functions are
members of the ®, class.

1. The standard entropy t — tlogt.
2. The power function t — t? for each p € [1,2].

The proof of Theorem 2.3 appears in Section 6. The statement about classical entropy
can be obtained from standard results in matrix theory after some argument, but the
result for power functions demands new effort. In fact, the claim about the classi-
cal entropy follows from the result for power functions because of the representation
tlogt =lim, 1 (t? —t)/(p — 1).

See the independent work [Han13, Sec. 4] for closely related material. Very recently,
Hansen and Zhang have developed an elegant characterization of the matrix entropy
class [HZ14].

2.2.2 Matrix p-Entropy

For each function in the matrix entropy class, we can introduce a generalized entropy
functional that measures the amount of fluctuation in a random matrix.

Definition 2.4 (Matrix @-Entropy). Let ¢ € ®.,. Consider a random matrix Z taking
values in H%, and assume that E | Z|| < oo and E ||¢(Z)| < co. The matrix p-entropy
functional H, is

Hy(Z):=Etro(Z) —tro(EZ). (2.2)

Similarly, the conditional matrix p-entropy functional is
H,(Z|Z)=E[tro(Z)| 7] —tro(E[Z|Z]),
where .7 is a subalgebra of the master sigma algebra.

For each convex function ¢, the trace function tr ¢ : ]H‘fr — R is also convex [Car10,
Sec. 2.2]. Therefore, Jensen’s inequality implies that the matrix p-entropy is nonnega-
tive:

H,(Z)>0.

For concreteness, here are some basic examples of matrix ¢-entropy functionals.

H,(Z)=tr[E(ZlogZ) — (EZ)log(E Z)] when ¢(t) = tlogt.
H,(Z) = tr [E(ZP) — (E Z)"] when o(t) = t* for p € [1,2).
H,(Z)=0 when ¢ is affine.
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2.2.3 Subadditivity of Matrix p-Entropy

The key fact about matrix p-entropies is that they satisfy a subadditivity property. Let
x := (Xi,...,X,) denote a vector of independent random variables taking values in a
Polish space, and write x_; for the random vector obtained by deleting the ith entry of
x.

r_; = ()(17 NN >Xi717Xi+17 ey Xn)

Consider a positive-semidefinite random matrix Z that can be expressed as a measur-
able function of the random vector x.

Z:=2Z(X1,....X,)eHL.
We instate the integrability conditions IE || Z|| < oo and E ||p(Z)]| < oc.

Theorem 2.5 (Subadditivity of Matrix p-Entropy). Fix a function ¢ € ®,,. Under the
prevailing assumptions,

Hy(Z) < Z; E[H,(Z|z_;)]. (2.3)

Typically, we apply Theorem 2.5 by way of a corollary. Let X7, ..., X/ denote inde-
pendent copies of X;,..., X, and form the random matrix

Z:=Z(X1,. .., Xi-1, X}, Xiy1,-..,Xpn) € HL.

Then Z; and Z are independent and identically distributed, conditional on the sigma
algebra generated by x_;. In particular, these two random matrices are exchangeable
counterparts.

Corollary 2.6 (Entropy Bounds via Exchangeability). Fix a function ¢ € ®.,, and write
1 = ¢'. With the prevailing notation,

Ho(Z)< 33 B [(Z - Z)w(zZ) - u(z)].

Theorem 2.5 and Corollary 2.6 are matrix counterparts of the foundational results
from Boucheron et al. [BBLMO05, Sec. 3], which establish that scalar (-entropies satisfy
a similar subadditivity property. We devote Section 4 to the proof of these results.

2.3 Some Matrix Concentration Inequalities

Using Corollary 2.6, we can derive concentration inequalities for random matrices.
In contrast to some previous approaches to matrix concentration, we need to place
some significant restrictions on the type of random matrices we consider.

Definition 2.7 (Invariance under Signed Permutation). A random matrix Y € HY is
invariant under signed permutation if we have the equality of distribution

Y ~II*YII for each signed permutation II.

A signed permutation I € M¢ is a matrix with the properties that (i) each row and each
column contains exactly one nonzero entry and (ii) the nonzero entries only take values
+1 and —1.

In particular, consider a random matrix that is invariant under orthogonal conjuga-
tion:
Y ~U*YU for each orthogonal matrix U.

A matrix that satisfies this condition always verifies the requirement of Definition 2.7.
Many classical ensembles, such as the GOE, satisfy this orthogonal invariance condi-
tion. Similar remarks apply to random matrices that are invariant under unitary conju-
gation.
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2.3.1 A Bounded Difference Inequality

Let us present an exponential tail bound for a random matrix whose distribution is
invariant under signed permutation.

Theorem 2.8 (Bounded Differences). Letx := (X3,...,X,,) be a vector of independent
random variables, and let ' := (X{,...,X]) be an independent copy of x. Consider
random matrices

Y =Y(Xy,...,X;,...,X,) e HY and
Y/ =Y(Xy,...,X],....X,) e H? fori=1,...,n.

7

Assume that Y is invariant under signed permutation and that |Y || is bounded almost
surely. Introduce the variance measure

b sl [S o3 ]

where the supremum occurs over all possible values of . For eacht > 0,

’ : (2.4)

P DY —EY) >t} <d-e /@™ and
P{O\uwin(Y —EY) < —t} <d- e*tQ/(QVY)‘

Theorem 2.8 follows from Corollary 2.6 with the choice p(t) = tlogt. See Section 7
for the proof. This result can be viewed as a type of matrix bounded difference in-
equality. Closely related inequalities already appear in the literature; see [Trol2b,
Cor. 7.5], [MJCT12, Cor. 11.1], and [PMT13, Cor. 4.1]. In fact, Theorem 2.8 is dominated
by [PMT13, Cor. 4.1], which is not restricted to random matrices that are invariant un-
der signed permutation.

2.3.2 Example: Sample covariance matrices

It may be helpful to sketch a short example that indicates the scope of Theorem 2.8.
Consider a random vector of the form

w = (e1W1,89Wa, ..., e,Wp)"

where (W) is an exchangeable family of random variables and (¢;) is a sequence of
independent Rademacher random variables. We also require that the random vector is
bounded: |w|® < B.

Let wyq, ..., w, be iid copies of w, and consider the sample covariance matrix

1 .
Y =— E w;w; .
n =1

Our assumptions on w ensure that Y is invariant under signed permutation and that
|IY'|| is bounded. Note that EY = cI for a positive number c. It is also easy to check
that the variance measure (2.4) satisfies Vy < 282 /n. An application of Theorem 2.8
delivers

P{Y —cI|| >t} < 2d-e ™ /4B,

The bound is informative when ¢? > t?> > 4B?log(2d)/n. In other words, the number n
of samples should satisfy n > 4B2log(2d)/c?. Modulo constants, this estimate cannot
be improved when w has the uniform distribution on {£e;,...,+e,}, the set of signed
standard basis vectors.

The main result of Rudelson’s paper [Rud99] is a concentration bound for sam-
ple covariance matrices based on the noncommutative Khintchine inequality [LP86].
Rudelson allows any bounded random vector w with a scalar covariance matrix, and he
achieves the same result derived here.
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2.3.3 Matrix Moment Bounds

We can also establish moment inequalities for a random matrix whose distribution is
invariant under signed permutation.

Theorem 2.9 (Matrix Moment Bound). Fixa numberq € {2,3,4,...}. Letx := (X1,..., X,,)
be a vector of independent random variables, and let ' := (X1,...,X,) be an indepen-
dent copy of . Consider positive-semidefinite random matrices

Y =Y (Xy,...,X;,...,X,) e HL and
Y =Y (X1,....X},....X,) e HY fori=1,...,n.

7

Assume that 'Y is invariant under signed permutation and that E(||Y||?) < co. Suppose
that there is a constant ¢ > 0 with the property

— " _v\2
Vy = E [Zizl(y Y/) M <cY. (2.5)
Then the random matrix Y satisfies the moment inequality
(Y )1/ a o -1
[Etr(Y9)] §EtrY+?~c.

Theorem 2.9 follows from Corollary 2.6 with the choice o(t) = t%/(¢=1), See Section 8
for the proof. This result can be regarded as a matrix extension of a moment inequal-
ity for real random variables [BBLMO05, Cor. 1]. The paper [PMT13] contains similar
moment inequalities for random matrices that need not satisfy the condition of signed
permutation invariance. See also [JX03, JX08, JZ11, MJC*12].

2.4 Generalized Subadditivity of Matrix ¢-Entropy

Theorem 2.5 is the shadow of a more sophisticated subadditivity property. We out-
line the simplest form of this more general result. See the lecture notes of Carlen [Carl0]
for more background on the topics in this section.

We work in the x-algebra IM? of d x d complex matrices, equipped with the conjugate
transpose operation * and the normalized trace inner product (A, B) := tr(A*B). We
say that a subspace 2 C M¢? is a *-subalgebra when 2 contains the identity matrix, 2
is closed under matrix multiplication, and 2 is closed under conjugate transposition. In
other terms, I € 2 and AB € 2 and A* € 2 whenever A, B € 2.

In this setting, there is an elegant notion of conditional expectation. The orthogonal
projector Eg : IM? — 2 onto the x-subalgebra 2 is called the conditional expectation
with respect to the x-subalgebra. For x-subalgebras 2( and 28, we say that the conditional
expectations [Eg and Ess commute when

(Eg Eg)(M) = (Eg Eg)(M) for every M € M<.

This construction generalizes the concept of independence in a probability space.
We can define the matrix p-entropy conditional on a *-subalgebra 2:

Hy(A|) == tr[p(A) — p(Ey A)] for A € HY.

Note that tr(Ey A) = tr A for each matrix A in H%, so we do not need to include a
conditional expectation in the leading term. Let 2(;,...,2, be x-subalgebras whose
conditional expectations commute. Then we can extend the definition of the matrix
p-entropy to read

Hy(A|Aq,...,2,) = tr[p(A) — p(Eq, ---Eg, A)] for A e HL.
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Because of commutativity, the order of the conditional expectations has no effect on
the calculation. It turns out that matrix ¢-entropy admits the following subadditivity
property.

Theorem 2.10 (Subaddivity of Matrix ¢-Entropy II). Fix a function ¢ € ®,,. Let
A, ..., 2, be x-subalgebras of M? whose conditional expectations commute. Then

H (A, %Ay < Z; H,(A|2) for AcHL.

We omit the proof of this result. The argument involves considerations similar with
Theorem 2.5, but it requires an extra dose of operator theory. The work in this pa-
per already addresses the more challenging aspects of the proof. Note that the case
p :t+— tlogt is essentially a consequence of the classical results in [Lin73].

Theorem 2.10 can be seen as a formal extension of the subadditivity of matrix
p-entropy expressed in Theorem 2.5. To see why, let 2 := Q; x --- x ,, be a prod-
uct probability space. The space Lo(£2; ]Md) of random matrices is a x-algebra with the
normalized trace functional Etr. For each : = 1,...,n, we can form a x-subalgebra 2l;
consisting of the random matrices that do not depend on the ith factor 2; of the prod-
uct. The conditional expectation g, simply integrates out the ith random variable. By
independence, the family of conditional expectations Eq,,...,Ey, commutes. Using
this dictionary, compare the statement of Theorem 2.10 with Theorem 2.5.

3 Operators and Functions acting on Matrices

This work involves a substantial amount of operator theory. This section contains a
short treatment of the basic facts. See [Bha97, Bha07] for a more complete introduc-
tion.

3.1 Linear Operators on Matrices

Let C? be the complex Hilbert space of dimension d, equipped with the standard
inner product (a, b) := a*b. We usually identify M? with B(C¢), the complex Banach
space of linear operators acting on C¢, equipped with the {5 operator norm ||-|.

We can also endow IM? with the normalized trace inner product (A, B) := tr(A*B)
to form a Hilbert space. As a Hilbert space, IM¢ is isometrically isomorphic with C?. Let
IB(IMd) denote the complex Banach space of linear operators that map the Hilbert space
IM¢ into itself, equipped with the induced operator norm. The Banach space B(IM?) is
isometrically isomorphic with the Banach space MY

As a consequence of this construction, every concept from matrix analysis has an
immediate analog for linear operators on matrices. An operator T € B(M¢?) is self-
adjoint when

(A, T(B)) = (T(A), B) forall A, B € B(M?).
A self-adjoint operator T € B(IM?) is positive semidefinite when
(A, T(A) >0 forall Ac M

For self-adjoint operators S, T € B(IM?), the notation S < T means that T — S is positive
semidefinite.

Each self-adjoint matrix operator T € B(IM?) has a spectral resolution of the form
d2
T=) AP (3.1)
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where \q,..., ;2 are the eigenvalues of T and the spectral projectors Pq,...,Pg4 are
positive-semidefinite operators that satisfy

d2
PP, =6;;P; and Z-qpi:l’

where 0;; is the Kronecker delta and | is the identity operator. As in the matrix case,
a self-adjoint operator with nonnegative eigenvalues is the same thing as a positive-
semidefinite operator.

We can extend a scalar function f : I — R on an interval I of the real line to obtain
a standard operator function. Indeed, if T has the spectral resolution (3.1) and the
eigenvalues of T fall in the interval I, we define

d2
M=) JO0P.
This definition, of course, parallels the definition for matrices.

3.2 Monotonicity and Convexity

Let X and Y be sets of self-adjoint operators, such as H?(I) or the set of self-adjoint
operators in B(IM?). We can introduce notions of monotonicity and convexity for a
general function W : X — Y using the semidefinite order on the spaces of operators.

Definition 3.1 (Monotone Operator-Valued Function). The function ¥V : X — Y is
monotone when
ST = VW(S)xWV(T) forallS,Te X.

Definition 3.2 (Convex Operator-Valued Function). The function V : X — Y is convex
when X is a convex set and

V(aS+aT)ga-V(S)+a-V(T) forallac[0,1] and allS,T € X.
We have written & := 1 — «. The function V is concave when —V is convex.

The convexity of an operator-valued function V¥ is equivalent with a Jensen-type relation:
V(EX) < EW(X) (3.2)

whenever X is an integrable random operator taking values in X.

In particular, we can apply these definitions to standard matrix and operator func-
tions. Let I be an interval of the real line. We say that the function f : I — R is operator
monotone when the lifted map f : HY(I) — H? is monotone for each natural number d.
Likewise, the function f : I — R is operator convex when the lifted map f : H¥(1) — H¢
is convex for each natural number d.

Although scalar monotonicity and convexity are quite common, they are much rarer
in the matrix setting [Bha97, Chap. 4]. For present purposes, we note that the power
functions ¢ — t? with p € [0, 1] are operator monotone and operator concave. The power
functions ¢ — t? with p € [1,2] and the standard entropy ¢ — tlog¢ are all operator
convex.

3.3 The Derivative of a Vector-Valued Function

The definition of the ®., function class involves a requirement that a certain stan-
dard matrix function is differentiable. For completeness, we include the background
needed to interpret this condition.
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Definition 3.3 (Derivative of a Vector-Valued Function). Let X and Y be Banach spaces,
and let U be an open subset of X. A function F : U — Y is differentiable at a point
A € U if there exists a bounded linear operator T : X — Y for which

.y IF(A+B) - F(A) -T(B)lly _

li
B-0 1Bl x

When F is differentiable at A, the operator T is called the derivative of F' at A, and we
define DF(A) :=T.

The derivative and the directional derivative have the following relationship:

d
L F(A+sB)|  =DF(A)(B). (3.3)

In Section 6.2, we present an explicit formula for the derivative of a standard matrix
function.

4 Subadditivity of Matrix p-Entropy

In this section, we establish Theorem 2.5, which states that the matrix p-entropy is
subadditive for every function in the &, class. This result depends on a variational rep-
resentation for the matrix ¢p-entropy that appears in Section 4.1. We use the variational
formula to derive a Jensen-type inequality in Section 4.2. The proof of Theorem 2.5
appears in Section 4.3.

4.1 Representation of Matrix ¢-Entropy as a Supremum

The fundamental fact behind the subadditivity theorem is a representation of the
matrix p-entropy as a supremum of affine functions.

Lemma 4.1 (Supremum Representation for Entropy). Fix a function ¢ € ®,, and in-
troduce the scalar derivative ¢ = ¢’. Suppose that Z is a random positive-semidefinite
matrix for which || Z|| and ||¢(Z)|| are integrable. Then

H,(2) = sup B [(0(T) ~ $(ET))(Z ~ T) + ¢(T) — ¢(ET)]. 1)

The range of the supremum contains each random positive-definite matrix T for which
|T|| and ||¢(T)| are integrable. In particular, the matrix p-entropy H, can be written
in the dual form

H,(Z)= Sl%p Etr [X1(T)- Z + Y5(T)], (4.2)

where Y; : H? — H? fori=1,2.

This result implies that H, is a convex function on the space of random positive-
semidefinite matrices. The dual representation of H, is well suited for establishing
a form of Jensen’s inequality, Lemma 4.3, which is the main ingredient in the proof of
the subadditivity property, Theorem 2.5.

It may be valuable to see some particular instances of the dual representation of the
matrix p-entropy:

H,(Z) =sup Etr [(logT —log(ET)) - Z] when p(t) = tlogt.
T

H,(Z) = sup Etr [p(T* ' = (ET)"")- (p—1)(T? — (ET)?)] when ¢(t) = t* for p € [1,2].

The first formula is the matrix version of a well-known variational principle for the
classical entropy, cf. [BBLMO05, p. 525]. In the matrix setting, this result can be derived
from the joint convexity of quantum relative entropy [Lin73].
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4.1.1 The Convexity Lemma

To establish the variational formula, we require a convexity result for a quadratic form
connected with the function ¢.

Lemma 4.2. Fix a function ¢ € ®,, and let ) = ¢’. Suppose thatY is a random matrix
taking values in H?, and let K be a random matrix taking values in IM?. Assume that
IY|| and || K| are integrable. Then

E(K, Dy(Y)(K)) > (EK), DY(EY)(E K))

Proof. The proof hinges on a basic convexity property of quadratic forms. Define a map
that takes a matrix A in H? and a positive-definite operator T on IM¢ to a nonnegative
number:

2:(AT)— (A T 1(A).

We assert that the function 2 is convex. Indeed, the same result is well known when
A and T are replaced by a vector and a positive-definite matrix [Bha07, Exer. 1.5.1],
and the extension is immediate from the isometric isomorphism between operators and
matrices.

Recall that the ®, class requires A — [Dy)(A)]~! to be a concave map on H? , . With
these observations at hand, we can make the following calculation:

E(K, Dy(Y)(K)) = E(K, ([Dy(Y)]™) ' (K))
> ((EK), (BDy(Y)]") " (EK))
> ((EK), (Dy(BY)") " (EK))
= ((EK), DY(EY)(EK)).

We obtain the second relation when we apply Jensen’s inequality to the convex func-
tion 2. The third relation depends on the semidefinite Jensen inequality (3.2) for the
concave function A — [Dy(A)]~!, coupled with the fact [Bha97, Prop. V.1.6] that the
operator inverse reverses the semidefinite order. O

4.1.2 Proof of Lemma 4.1

The argument parallels the proof of [BBLMO05, Lem. 1]. We begin with some reductions.
The case where ¢ is an affine function is immediate, so we may require the derivative
1 = ¢’ to be non-constant. By approximation, we may also assume that the random
matrix Z is strictly positive definite.

[Indeed, since ¢ is continuous on R, the Dominated Convergence Theorem im-
plies that the matrix ¢-entropy I, is continuous on the set containing each positive-
semidefinite random matrix Y where ||Y'|| and ||¢(Y)| are integrable. Therefore, we can
approximate a positive-semidefinite random matrix Z by a sequence {Y,,} of positive-
definite random matrices where Y,, — Z and be confident that H,(Y,,) = H,(Z).]

When T = Z, the argument of the supremum in (4.1) equals H,(Z). Therefore, our
burden is to verify the inequality

H,(Z) > Bt [(4(T) - $(ET))(Z — T) + Eo(T) — p(ET)] 4.3)

for each random positive-definite matrix 7" that satisfies the same integrability require-
ments as Z. For simplicity, we assume that the eigenvalues of both Z and T are
bounded and bounded away from zero. See Appendix A for the extension to the general
case.
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We use an interpolation argument to establish (4.3). Define the family of random
matrices

Ts:=(1—-s)-Z+s-T forsel01].

Introduce the real-valued function
F(s) := Btr [(¢(Ty) —¢(BETy)) - (Z — Ts)| + Hy(T).

Observe that F(0) = H,(Z), while F(1) coincides with the right-hand side of (4.3).
Therefore, to establish (4.3), it suffices to show that the function F(s) is weakly de-
creasing on the interval [0, 1].

We intend to prove that F’(s) < 0 for s € [0,1]. Since Z — T, = —s - (T' — Z), we can
rewrite the function F' in the form

F(s) = —s - Bitr [(W(T) - ¥(ETy)) - (T — Z)] + Efr [p(T) — ¢(ETy))]. (4.4)

We differentiate the function F' to obtain

F'(s) = —s - Bt [DY(T.)(T — Z) - (T — Z)] + s - tr [DY(ET)(E(T — Z)) - (B(T — Z))]
~Ef [(W(T) — $(ET)) - (T - 2)] + Bt [(4(T,) - $(ETL)) - (T — Z)]. (4.5)

To handle the first term in (4.4), we applied the product rule, the rule (3.3) for direc-
tional derivatives, and the expression d7/ds = T'—Z. We used the identity D tr ¢(A) = ¥ (A)
to differentiate the second term. We also relied on the Dominated Convergence The-
orem to pass derivatives through expectations, which is justified because ¢ and 1) are
continuously differentiable on ]Hi . and the eigenvalues of the random matrices are
bounded and bounded away from zero. Now, the last two terms in (4.5) cancel, and we
can rewrite the first two terms using the trace inner product:

F'(s) = s [{(B(T - 2)), DY(ET,)(B(T — 2))) — E((T - 2), DY(T)(T - Z)) ].
Invoke Lemma 4.2 to conclude that F'(s) < 0 for s € [0, 1].

4.2 A Conditional Jensen Inequality

The variational inequality in Lemma 4.1 leads directly to a Jensen inequality for the
matrix ¢-entropy.

Lemma 4.3 (Conditional Jensen Inequality). Fix a function ¢ € ®.,. Suppose that
(X1, X>) is a pair of independent random variables taking values in a Polish space, and
let Z = Z (X1, X>) be a random positive-semidefinite matrix for which ||Z|| and ||¢(Z)||
are integrable. Then

H, (E1Z) <E1H, (Z | X4),
where IE; is the expectation with respect to the first variable X;.

Proof. Let IE; denote the expectation with respect to the second variable X5. The result
is a simple consequence of the dual representation (4.2) of the matrix ¢-entropy:

We have written T'(X>) to emphasize that this matrix depends only on the randomness
in X5. To control (4.6), we apply Fubini’s theorem to interchange the order of I£; and
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2, and then we exploit the convexity of the supremum to draw out the expectation ;.
H, (B, Z) = sup E; By tr [X1(T(X2)) - Z + Y2(T(X2))]
<E4 sup Ey tr [Y1(T(X2)) - Z + Yo(T(X2)]
= Eisup E [6[Y1(T(X2)) - Z + Y2(T(X2)] | X1]
=E, H,(Z|Xy).
The last relation is the duality formula (4.2), applied conditionally. O

4.3 Proof of Theorem 2.5

We are now prepared to establish the main result on subadditivity of matrix ¢-entropy.
This theorem is a direct consequence of the conditional Jensen inequality, Lemma 4.3.
In this argument, we write IE; for the expectation with respect to the variable X;. Using
the notation from Section 2.2.3, we see that E;, = E[- | x_,].

First, separate the matrix p-entropy into two parts by adding and subtracting terms:

Hy(Z)=Etr[p(Z) — p(E1 Z) + p(E; Z) — o(E Z)].
=E[E:itr[p(Z) — p(E1 Z)]] + Etr [p(E1 Z) — p(EE; Z)]. (4.7)

We can rewrite this expression as

Hy(Z) =EH,(Z |z_1) + H,(E1 Z)

The inequality follows from Lemma 4.3 because Z = Z(X;,x_1) where X; and x_; are
independent random variables.

The first term on the right-hand side of (4.8) coincides with the first summand on the
right-hand side of the subadditivity inequality (2.3). We must argue that the remaining
summands are contained in the second term on the right-hand side of (4.8). Repeating
the argument in the previous paragraph, conditioning on X;, we obtain

H@(Z | Xl) S E [HQD(Z | ZB_Q) ‘Xl] =+ EQ H[P(Z | Xl,Xg).
Substituting this expression into (4.8), we obtain
2
H,(Z) < Zi:l EH,(Z|x_;)+ B Ey Hy(Z | X1, Xa).
Continuing in this fashion, we arrive at the subadditivity inequality (2.3):
n
Hy(Z) <Y BH(Z|2 ).

This completes the proof of Theorem 2.5.

5 Entropy Bounds via Exchangeability

In this section, we derive Corollary 2.6, which uses exchangeable pairs to bound
the conditional entropies that appear in Theorem 2.5. This result follows from another
variational representation of the matrix ¢-entropy.
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5.1 Representation of the Matrix po-Entropy as an Infimum

In this section, we present another formula for the matrix p-entropy.

Lemma 5.1 (Infimum Representation for Entropy). Fix a function ¢ € ®., and let
¥ = ¢'. Assume that Z is a random positive-semidefinite matrix where || Z|| and ||¢(Z)||
are integrable. Then

Ho(Z) = inf Bit[p(2) = ¢(4)— (Z - A)-v(A). (5.1)

Let Z' be an independent copy of Z. Then

H,(2) < < -Et((Z - 2')(0(2Z) - ¥(2"))]. (5.2)

We require a familiar trace inequality [Car10, Thm. 2.11]. This bound simply restates
the fact that a convex function lies above its tangents.

Proposition 5.2 (Klein’s Inequality). Let f : I — R be a differentiable convex function
on an interval I of the real line. Then

tr [f(B) — f(A)— (B—A)- f/(A)] >0 forall A,B € HY(I).

With Klein’s inequality at hand, the variational inequality follows quickly.

Proof of Lemma 5.1. Every function ¢ € ®., is convex and differentiable, so Proposi-
tion 5.2 with B = IE Z implies that

it [~p(E 2)] < &t [-p(A) — (EZ — A) - $(A)]

for each fixed matrix A € IHi. Substitute this bound into the definition (2.2) of the
matrix ¢-entropy, and draw the expectation out of the trace to reach

H,(2) < Bt [p(Z) — p(A) — (Z — A) - ¥(A)). (5.3)

The inequality (5.3) becomes an equality when A = IE Z, which establishes the varia-
tional representation (5.1).

The symmetrized bound (5.2) follows from an exchangeability argument. Select
A = Z' in the expression (5.3), and apply the fact that Ep(Z) = E ¢p(Z’) to obtain

H,(Z)<-Etr|(Z-Z") -y(Z")). (5.4)
Since Z and Z’ are exchangeable, we can also bound the matrix ¢-entropy as
H,(Z)< -Etr[(Z' - Z)-¢(Z)]. (5.5)

Take the average of the two bounds (5.4) and (5.5) to reach the desired inequality
(5.2). O

In the scalar case, stronger bounds are available. For a function ¢ € &4,
o(b) = pla) = (b —a)¢(a) < (b—a)(¢'(b) — ¢(a)) foralla,b>0.

See [Cha06, Lem. 4.2] for details.
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5.2 Proof of Corollary 2.6

Lemma 5.1 leads to a succinct proof of Corollary 2.6. We continue to use the notation
from Section 2.2.3. Apply the inequality (5.2) conditionally to control the conditional
matrix p-entropy:

Ho(Z|2) < 5 B[(Z ~ Z)(b(2) — v(Z))| 2] (5.6)

DN =

because Z] and Z are conditionally iid, given «_;. Take the expectation on both sides
of (5.6), and invoke the tower property of conditional expectation:

EH,(Z|x_) < % B [(Z - Z)((2) - $(Z))]. (5.7)

K3

To complete the proof, substitute (5.7) into the right-hand side of the bound (2.3) from
the subadditivity result, Theorem 2.5.

6 Members of the ¢, function class

In this section, we demonstrate that the classical entropy and certain power func-
tions belong to the @, function class. The main challenge is to verify that A — [Diy(A)]~*
is a concave operator-valued map. We establish this result for the classical entropy in
Section 6.4 and for the power function in Section 6.5. See the independent work [Han13,
Sec. 4] for closely related results.

6.1 Tensor Product Operators

First, we explain the tensor product construction of an operator. The tensor product
will allow us to represent the derivative of a standard matrix function compactly.

Definition 6.1 (Tensor Product). Let A, B € HY. The operator A ® B € B(MY) is
defined by the relation

(A® B)(M)= AMB for each M € M?. (6.1)

The operator A ® B is self-adjoint because we assume the factors are Hermitian matri-
ces.

Suppose that A, B € H? are Hermitian matrices with spectral resolutions

d d
A= Zi:l )\sz and B = Zj:1 /,Lij. (6.2)

Then the tensor product A ® B has the spectral resolution

d
A X B = Zi i1 )\Z,UJR X Qj‘

In particular, the tensor product of two positive-definite matrices is a positive-definite
operator.

6.2 The Derivative of a Standard Matrix Function

Next, we present some classical results on the derivative of a standard matrix func-
tion. See [Bha97, Sec. V.3] for further details.

Definition 6.2 (Divided Difference). Let f : I — R be a continuously differentiable
function on an interval I of the real line. The first divided difference is the map f!! :
R? — R defined by

" ', A= p.
S =3 fO) - f
10y,
— 1
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We also require the Hermite representation of the divided difference:

1
PO ) = / /(A + 7y dr, (6.3)
0

where we have written 7 :=1 — 7.

The following result gives an explicit expression for the derivative of a standard
matrix function in terms of a divided difference.

Proposition 6.3 (Daleckii-Krein Formula). Let f : I — R be a continuously differen-
tiable function of an interval I of the real line. Suppose that A € H%(I) is a diagonal
matrix with A = diag(ay,...,aq). The derivative Df(A) € B(IM?), and

Df(A)(H) = fl(A)o H for H € M,

where ® denotes the Schur (i.e., componentwise) product and f[1] (A) refers to the
matrix of divided differences:

[f[”(A)L_j = fW(as,a;) fori,j=1,...,d.

6.3 Operator Means

Our approach also relies on the concept of an operator mean. The following defini-
tion is due to Kubo & Ando [KA80].

Definition 6.4 (Operator Mean). Let f : R,y — R, be an operator concave function
that satisfies f(1) = 1. Fix a natural numberd. LetS and T be positive-definite operators
in B(M?). We define the mean of the operators:

Mf(S,T) := T2 f(T~Y25T-1/2) . T1/2 ¢ B(IMY).
When S and T commute, the formula simplifies to
My(S,T)=T- F(ST™H.

A few examples may be helpful. The function f(s) = (1 + s)/2 represents the usual
arithmetic mean, the function f(s) = s'/2 gives the geometric mean, and the function
f(s) = 2s/(1+ s) yields the harmonic mean. Operator means have a concavity property,
which was established in the paper [KA80].

Proposition 6.5 (Operator Means are Concave). Let f : Ry — Ry, be an operator
monotone function with f(1) = 1. Fix a natural number d. Suppose that S1,S2,T1, T
are positive-definite operators in B(IM?). Then

- Mf(sl,T1) +a- Mf(Sg,TQ) < Mf(OéSl + aSq, aTq +6¢T2)
forae[0,1]anda=1-a.

6.4 Entropy

In this section, we demonstrate that the standard entropy function is a member of
the &, function class.

Theorem 6.6. The function ¢ : t — tlogt —t is a member of the ¢, class.
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This result immediately implies Theorem 2.3(1), which states that ¢ — tlogt belongs to
® .. Indeed, the matrix entropy class contains all affine functions and all finite sums of
its elements.

Theorem 6.6 follows easily from (deep) classical results because the variational rep-
resentation of the standard entropy from Lemma 4.1 is equivalent with the joint con-
vexity of quantum relative entropy [Lin73]. Instead of pursuing this idea, we present an
argument that parallels the approach we use to study the power function. Some of the
calculations below also appear in [Lie73, Proof of Cor. 2.1], albeit in compressed form.

Proof. Fix a positive integer d. We plan to show that the function ¢ : ¢ — tlogt — ¢
is a member of the class ®,. Evidently, ¢ is continuous and convex on R, and it has
two continuous derivatives on R ;. It remains to verify the concavity condition for the
second derivative.

Write 9(t) = ¢/(t) = logt, and let A € H% . Without loss of generality, we may
choose a basis where A = diag(ay,...,aq). The Daleckii-Krein formula, Proposition 6.3,
tells us

Dy(A)(H) =y (A) o H = [w[l](ai’aj) . hij]ij'

As an operator, the derivative acts by Schur multiplication. This formula also makes it
clear that the inverse of this operator acts by Schur multiplication:

1

[Dy(A)] (H) = bm(aa) ' ’“jL'

Using the Hermite representation (6.3) of the first divided difference of t — ef, we find

1 A ' log A+7 log /1 g
— — T 10 T 10 d — )\T Td.
P (,n) ~ logA—logp /oe e

The latter calculation assumes that u # ); it extends to the case u = )\ because both
sides of the identity are continuous. As a consequence,

Dy(A)] " HH) = /01 {azhija;] dr= /01 ATHA™ dr = /Ol(AT ® AT)(H)dr.

L)

We discover the expression
1 —
Dy (A)] ! = / AT ® ATdrT. (6.4)
0

This formula is correct for every positive-definite matrix.

For each 7 € [0,1], consider the operator monotone function f : ¢ — ¢” defined
on R;. Since f(1) = 1, we can construct the operator mean M associated with the
function f. Note that A ® I and I ® A are commuting positive operators. Thus,

M/(ARLI® A) =12 A) f(ADI®A) )=A"x A".

The map A — (A® I I® A) is linear, so Proposition 6.5 guarantees that A — A™ @ A7
is concave for each 7 € [0,1]. This result is usually called the Lieb Concavity Theo-
rem [Bha97, Thm. IX.6.1]. Combine this fact with the integral representation (6.4) to
reach the conclusion that A — [Dy)(A)]~! is a concave map on the cone H? | of positive-
definite matrices. O
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6.5 Power Functions

In this section, we prove that certain power functions belong to the ., function
class.

Theorem 6.7. For each p € [0,1], the function ¢ : t — tP*1/(p + 1) is a member of the
d, class.

This result immediately implies Theorem 2.3(2), which states that ¢ — Pl belongs to
the class ®,,. Indeed, the matrix entropy class contains all positive multiples of its
elements.

The proof of Theorem 6.7 follows the same path as Theorem 6.6, but it is somewhat
more involved. First, we derive an expression for the function A — [Dy(A)]~! where
Y=

Lemma 6.8. Fix p € (0,1], and let ¢(t) = t? fort > 0. For each matrix A € H?,

1
[Dy(A)] " = %/ (r- AP @I +7 -1 AP)(1-P)/P 47, (6.5)
0

where7:=1— 7.

Proof. As before, we may assume without loss of generality that the matrix A = diag(ay, ...

Using the Daleckii-Krein formula, Proposition 6.3, we see that
1

— Ry |-

Yl(a;, a;) j]

The Hermite representation (6.3) of the first divided difference of ¢ — ti/p gives

Dy(A) ! (H) = [

1 p—X 1!
= = - NP 47 pP)AP)/P g = A, ).
PO, A) = p/o ( ) g w)
We use continuity to verify that the latter calculation remains valid when y = A. Using
this function g, we can identify a compact representation of the operator:

VAN (E) = 37, oosas iy = | 32, olas o) (B 5| 80

where we write E;; for the matrix with a one in the (¢, j) position and zeros elsewhere.
It remains to verify that the bracket coincides with the expression (6.5). Indeed,

e -
> g(ai’aj)(En‘@Ejj):fo/o Zij(T'a?—i—T'a?)(l PP (Bi © Ejj)dr

i
1 (1-p)/p

1
= 7/0 {Zij(r-af+7-a§)(Eii®Ejj) dr

p

1 /!

= 7/ (T.AP®I+7:.I®AP)(1—IJ)/pdT_

PJo

The second relation follows from the definition of the standard operator function as-
sociated with ¢t — t(1=P)/P_ To confirm that the third line equals the second, expand
the matrices A = Zi a;E; and I = > j E;; and invoke the bilinearity of the tensor
product. O

Proof of Theorem 6.7. We are now prepared to prove that certain power functions be-

long to the &, function class. Fix an exponent p € [0,1], and let d be a fixed positive
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integer. We intend to show that the function ¢(¢) = tP*! /(p + 1) belongs to the ®, class.
When p = 0, the function ¢ is affine, so we may assume that p > 0. It is clear that ¢ is
continuous and convex on R, and ¢ has two continuous derivatives on R ;. It remains
to verify that the second derivative has the required concavity property.

Let ¢(t) = ¢/(t) = t* for t > 0, and consider a matrix A € H¢,. Lemma 6.8
demonstrates that

1 1
Dy(A)]~! = f/ (r- AP @ T+ 7 1o AP)I/P0-D) g7, 6.6)
PJo

where we maintain the usage 7 := 1 — 7. For each 7 € [0,1], the scalar function
a — Ta + T is operator monotone because it is affine and increasing. On account of
the result [And79, Cor. 4.3], the function

fram (r-af +7)1/P

is also operator monotone. A short calculation shows that f(1) = 1. Therefore, we can
use f to construct an operator mean M;. Since A ®I and I ® A are commuting positive
operators, we have

Mi(ARLI®A) =12 A) f(AeD)(I® A)™) = (T~A”®I+?-I®AP)1/Z).
The map A — (A®I,I® A) is linear, so Proposition 6.5 ensures that
A (1-AP Q14 7-1® AP)V/P (6.7)

is a concave map.

We are now prepared to check that (6.6) defines a concave operator. Let S,T be
arbitrary positive-definite matrices, and choose « € [0, 1]. Suppose that Z is the random
matrix that takes value S with probability « and value T with probability 1 —«. For each
7 € [0, 1], we compute

E[(r-2"0l+7 10 2°)/?)' P 3 [E(r- 2P @1+7 -1 ZP)/P]' 77
< [(T-(BEZPeI+7-1® (Ez)p)l/p]l—”.
The first relation holds because ¢t — t!~? is operator concave [Bha97, Thm. V.1.9 and
Thm. V.2.5]. To obtain the second relation, we apply the concavity property of the

map (6.7), followed by the fact that ¢ — ¢! =7 is operator monotone [Bha97, Thm. V.1.9].
This calculation establishes the claim that

A (1 AP @T+7 T A7) PP

is concave on ]Hi 4 for each 7 € [0,1]. In view of the integral representation (6.6),
we may conclude that A — [Di(A)]~! is concave on the cone HY , of positive-definite
matrices. O

7 A Bounded Difference Inequality for Random Matrices

In this section, we prove Theorem 2.8, a bounded difference inequality for a random
matrix whose distribution is invariant under signed permutation. We begin with some
preliminaries that support the proof, and we establish the main result in Section 7.2.
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7.1 Preliminaries

First, we describe how to compute the expectation of a function of a random ma-
trix whose distribution is invariant under signed permutation. See Definition 2.7 for a
reminder of what this requirement means.

Lemma 7.1. Let f : I — R be a function on an interval I of the real line. Assume that
X € H4(I) is a random matrix whose distribution is invariant under signed permutation.
Then

E f(X) = G[E f(X)]- L

Proof. Let IT € H? be an arbitrary signed permutation matrix. Observe that
E f(X)=E f(IT" XTII) = IT*[E f(X)|II. (7.1)

The first relation holds because the distribution of X is invariant under conjugation by
II. The second relation follows from the definition of a standard matrix function and the
fact that Il is unitary. We may average (7.1) over Il drawn from the uniform distribution
on the set of signed permutation matrices. A direct calculation shows that the resulting
matrix is diagonal, and its diagonal entries are identically equal to tr[E f(X)]. O

We also require a trace inequality that is related to the mean value theorem. This
result specializes [MJCt12, Lem. 3.4].

Proposition 7.2 (Mean Value Trace Inequality). Let f : I — R be a function on an
interval I of the real line whose derivative f' is convex. For all A, B € H%(I),

tr[(A - B)(f(A) - f(B))] < 5 tr[(A - B)*- (f'(A) + f'(B))].

DO | =

7.2 Proof of Theorem 2.8

The argument proceeds in three steps. First, we present some elements of the
matrix Laplace transform method. Second, we use the subaddivity of matrix p-entropy
to deduce a differential inequality for the trace moment generating function of the
random matrix. Finally, we explain how to integrate the differential inequality to obtain
the concentration result.

7.2.1 The Matrix Laplace Transform Method

We begin with a matrix extension of the moment generating function (mgf), which has
played a major role in recent work on matrix concentration.

Definition 7.3 (Trace Mgf). Let Y be a random Hermitian matrix. The normalized
trace moment generating function of Y is defined as

m(f) := my () :=Etre’Y forf cR.
The expectation need not exist for all values of 6.

The following proposition explains how the trace mgf can be used to study the max-
imum eigenvalue of a random Hermitian matrix [Trol1, Prop. 3.1].

Proposition 7.4 (Matrix Laplace Transform Method). LetY € H¢ be a random matrix
with normalized trace mgf m(f) := tre’Y . For eacht € R,

P { A (Y) >t} < d - inf e 0tHogm(®)
Pmax(Y) >t} < d Inf e
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7.2.2 A Differential Inequality for the Trace Mgf

Suppose that Y € H? is a random Hermitian matrix that depends on a random vector
x := (X1,...,X,). We require the distribution of Y to be invariant under signed per-
mutations, and we insist that ||Y|| is bounded. Without loss of generality, assume that
Y has zero mean. Throughout the argument, we let the notation of Section 2.2.3 and
Theorem 2.8 prevail.

Let us explain how to use the subadditivity of matrix ¢-entropy to derive a differen-
tial inequality for the trace mgf. Consider the function ¢(t) = tlogt, which belongs to
the &, class because of Theorem 2.3(1). Introduce the random positive-definite matrix
Z = e, where 6 > 0. We write out an expression for the matrix ¢-entropy of Z:

Hy(Z) = Btrp(Z) — o(E Z)]
=Etr [(0Y)e”Y — Y logEe’Y ]
=0 -Etr [Ye] — (Etre?”)log(Etre’)
= 0m/(0) — m(0) logm(0). (7.2)

In the third line, we have applied Lemma 7.1 to the logarithm in the second term,
relying on the fact that Y is invariant under signed permutations. To reach the last
line, we recognize that m'(f) = Etr(Ye’Y). We have used the boundedness of ||Y|| to
justify this derivative calculation.

Corollary 2.6 provides an upper bound for the matrix p-entropy. Define the deriva-
tive ¥(t) = ¢'(t) = 1 + logt. Then

Hy(Z)< 33 Bt [(Z - Z)(0(Z) ~ w(2)
9 n

=32 B[ ) (¥ -v).

Consider the function f : t — €. Its derivative f’ : t — et is convex because 6 > 0, so
Proposition 7.2 delivers the bound

=Y B [ B - ¥ |a].

The second relation follows from the fact that Y and Y, are exchangeable, conditional
on x_;. The last line is just the tower property of conditional expectation, combined
with the observation that Y is a function of . To continue, we simplify the expression
and make some additional bounds.

" e HZ Y;)2|x1H

2
<9Vy.
-2

H,(Z) < %Efr S B - YR

m(6). (7.3)

The second relation follows from a standard trace inequality and the observation that
Y is positive definite. Last, we identify the variance measure V3 defined in (2.4) and
the trace mgf m(9).
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Combine the expression (7.2) with the inequality (7.3) to arrive at the estimate

2
<9Vy

Om’(0) — m(0)logm(0) < 5 -m(0) for 6 > 0. (7.4)

We can use this differential inequality to obtain bounds on the trace mgf m(0).

7.2.3 Solving the Differential Inequality

Rearrange the differential inequality (7.4) to obtain

d {bgm(e)] _ m'(0) logm(f) _ Vy (7.5)

— = < —.
dé 0 Om(0) 02— 2
The 1’'Hépital rule allows us to calculate the value of 6~ logm(6) at zero. Since m(0) =1,

. logm(9) .. m'(9) . Etr(ye?™)
B0 ) 4B Boey LY =0

This is where we use the hypothesis that Y has mean zero. Now, we integrate (7.5)
from zero to some positive value 6 to find that the trace mgf satisfies

% < 9% when 0 > 0. (7.6)

The approach in this section is usually referred to as the Herbst argument [Led99].

7.2.4 The Laplace Transform Argument

We are now prepared to finish the argument. Combine the matrix Laplace transform
method, Proposition 7.4, with the trace mgf bound (7.6) to reach

P {dmax(Y) >t} < d - inf e 00H08mO) < g inf ¢ 00V /2 — g o=*/@)  (7.7)
6>0 6>0

To obtain the result for the minimum eigenvalue, we note that
P {/\min(Y) < _t} =P {)‘max(_Y) > t} < d- e—t2/(2VY).

The inequality follows when we apply (7.7) to the random matrix —Y . This completes
the proof of Theorem 2.8.

8 Moment Inequalities for Random Matrices with Bounded Dif-
ferences

In this section, we prove Theorem 2.9, which gives information about the moments
of a random matrix that satisfies a kind of self-bounding property.

Proof of Theorem 2.9. Fix a number ¢ € {2,3,4,...}. Suppose that Y € ]Hi is a random
positive-semidefinite matrix that depends on a random vector = := (X1,...,X,). We
require the distribution of Y to be invariant under signed permutations, and we assume
that E(|[Y||?) < oo. The notation of Section 2.2.3 and Theorem 2.9 remains in force.
Let us explain how the subadditivity of matrix ¢-entropy leads to a bound on the gth
trace moment of Y. Consider the power function ¢(t) = t%/(2=1) Theorem 6.7 ensures
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that ¢ € @, because ¢/(¢ — 1) € (1,2]. Introduce the random positive-semidefinite
matrix Z := Y9~!. Then

H,(Z) =Etr[p(Z) — ¢(E Z)]
=Etr(Y?
=Etr(Y*

) — tr [( (Y- 1))!1/((1—1)}
) — [Er(ye)] Y, (8.1)
The transition to the last line requires Lemma 7.1.

Corollary 2.6 provides an upper bound for the matrix (p-entropy. Define the deriva-
tive ¢(t) = ¢'(t) = (¢/(q¢ — 1)) - t/@=1), We have

H(Z) <33 BE[(Z - Z)(2) - 6(Z)]
— L " r q—1 _ 1\g—1 _ v
= 30g 1) i B LY = ()TN - YY)

The function f : ¢t — t9~! has the derivative f’ : ¢ +— (¢— 1)t?~2, which is convex because
q € {2,3,4,...}. Therefore, the mean value trace inequality, Proposition 7.2, delivers
the bound

Ho(2) < 437" Ba[(Y2+ (V) 2)(Y - V)7
q n o q—2 "2
:izizlE“[Y (Y - Y/)?]
q n o q— !
= §Zi:1E“ [YI2E[(Y - Y/)?|=]].

The second identity holds because Y and Y, are exchangeable, conditional on «_;. The
last line follows from the tower property of conditional expectation. We simplify this
expression as follows.

H,(2) < JEf [Y‘Z 2.3 B(Y - Y))?|a]
< IEG (Y77 Y]
_ %th’r(Yqﬂ). (8.2)

The second inequality derives from the hypothesis (2.5) that V3~ < ¢Y. Note that this
bound requires the fact that Y972 is positive semidefinite.

Combine the expression (8.1) for the matrix p-entropy with the upper bound (8.2) to
achieve the estimate

Efr(Y?) - [Efr(Ye )YV < 2 fr(y L),

Rewrite this bound, and invoke the numerical fact 1 4+ ag < (1 + a)? to obtain

Ei(Y?) < [Bir(ye )7 <1+ a2 __ )
[Etr(Yae-1)]

r(ye! q/(q—1) c/2 )q.
< [ ) <1+ [Efr(YQ—l)]l/q—l

Extract the gth root from both sides to reach

[Et(y")]"” < [Ba(ye )]V 4 g
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We have compared the gth trace moment of Y with the (¢ — 1)th trace moment. Pro-
ceeding by iteration, we arrive at

_ _ -1
[Et(Y)] <E&rY + qT e
This observation completes the proof of Theorem 2.9. O

A Lemma 4.1, The General Case

In this appendix, we explain how to prove Lemma 4.1 in full generality. The ar-
gument calls for a simple but powerful result, known as the generalized Klein inequal-
ity [Pet94, Prop. 3], which allows us to lift a large class of scalar inequalities to matrices.

Proposition A.1 (Generalized Klein Inequality). For each k = 1,...,n, suppose that
ft : [ — R and g, : I — R are functions on intervals I; and I, of the real line. Suppose
that "

Zk_l fr(a) gr(d) >0 forallae I, andb € Is.

Then, for each natural number d,

Z:ﬂ tr[fi(A) gr(B)] >0 forall A€ H(I,) and B € H(I).
Proof of Lemma 4.1, General Case. We retain the notation from Lemma 4.1. In partic-
ular, we assume that Z is a random positive-definite matrix for which ||Z|| and ||¢(Z)|
are both integrable. We also assume that 7" is a random positive-definite matrix with
IIT|| and ||¢(T')| integrable.

For n € NN, define the function /,,(a) := (a V 1/n) A n, where V denotes the maxi-
mum operator and A denotes the minimum operator. Consider the random matrices
Z, :=1,(T) and Ty := lx(T) for each k,n € IN. These matrices have eigenvalues that
are bounded and bounded away from zero, so these entities satisfy the inequality (4.3)
we have already established.

Hy(Zy) 2 Btr [(W(Tk) — Y(ETk))(Zn — Ti) + E(Tr — ¢(ET)].
Rearrange the terms in this inequality to obtain
EtrI(Z,,T) > tr [ - (ET:)(E Z, — ET}) — o(ET:) + o(E Z,)], (A.1)
where we have introduced the function
I'(A,B) = ¢(A) — ¢(B) — (A—B)Y(B) for A,BeH?,.
To complete the proof of Lemma 4.1, we must develop the bound
EtrD(Z,T)>tr [-¢(ET)EZ-ET) - @ET)+ ¢(EZ)] (A.2)

by driving k,n — oo in (A.1).

Let us begin with the right-hand side of (A.1). We have the sure limit Z,, — Z.
Therefore, the Dominated Convergence Theorem guarantees that £ Z,, — IE Z because
I|Z] is integrable and || Z,| < ||Z]|. Likewise, ET, — ET. The functions ¢ and ¢ are
continuous, so the limit of the right-hand side of (A.1) satisfies

tr [~ Y(ET)(EZ, — BTy) — o(BT}) + (E Z,,)]
—tr [ —¢YET)EZ-ET) - ¢(ET)+¢EZ)]. (A3)
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This expression coincides with the right-hand side of (A.2).

Taking the limit of the left-hand side of (A.1) is more involved because the function
1) may grow quickly at zero and infinity. We accomplish our goal in two steps. First, we
take the limit as n — oco. Afterward, we take the limit as k — oo.

Introduce the nonnegative function

Y(z,t) == (z) — p(t) — (z —t)p(t) for z,t > 0.

Boucheron et al. [BBLMO05, p. 525] establish that

V(1 (2), k(1) < (1,1k(2)) + (2, lk(t)) for z,t > 0. (A.4)

The generalized Klein inequality, Proposition A.1, can be applied (with due diligence) to
extend (A.4) to matrices. In particular,

trI(Z,, Ti,) = tr T(1,(2), 1(T)) < tr[D(L (T)) + T(Z, 1x(T))] = tr[L(L, T;) + T'(Z, Tj,)].

Observe that the right-hand side of this inequality is integrable. Indeed, all of the
quantities involving T} are uniformly bounded because the eigenvalues of T}, fall in the
range [k~!, k] and the functions ¢ and @ are continuous on this interval. The terms
involving Z may not be bounded, but they are integrable because || Z|| and ||¢(Z)| are
integrable. We may now apply the Dominated Convergence Theorem to take the limit:

EtrT(Z,,T,) —» Bt T(Z,T,) asn — oo, (A.5)

where we rely again on the sure limit Z,, - Z as n — oc.
Boucheron et al. also establish that

Y(z, Ik (t)) <~(z,1) + y(z,t) for z,t > 0.
The generalized Klein inequality, Proposition A.1, ensures that
trT(Z,Ty) < tr[l(Z,1) + T'(Z,T)].

We may assume that the second term on the right-hand side is integrable or else the
desired inequality (A.2) would be vacuous. The first term is integrable because || Z|| and
llp(Z)] are integrable. Therefore, we may apply the Dominated Convergence Theorem:

EtT(Z,T,) » EtT(Z,T) ask — oo, (A.6)

where we rely again on the sure limit T, — T as k — oc.
In summary, the limits (A.5) and (A.6) provide that EtrT'(Z,,T;) — EtrT'(Z,T) as
k,n — oo. In view of the limit (A.3), we have completed the proof of (A.2). O
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