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Abstract

We establish a central limit theorem for the number of roots of the equation XN (t) =
u when XN (t) is a Gaussian trigonometric polynomial of degree N . The case u = 0
was studied by Granville and Wigman. We show that for some size of the considered
interval, the asymptotic behavior is different depending on whether u vanishes or not.
Our mains tools are: a) a chaining argument with the stationary Gaussian process
with covariance sin t

t
, b) the use of Wiener chaos decomposition that explains some

singularities that appear in the limit when u 6= 0.
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1 Introduction

Let us consider the random trigonometric polynomial:

XN (t) =
1√
N

N∑
n=1

(an sinnt+ bn cosnt), (1.1)

where the coefficients an and bn are independent standard Gaussian random variables
and N is some integer.

The number of zeroes of such a process on the interval [0, 2π) has been studied in
the paper by Granville and Wigman [5] where a central limit theorem, as N → +∞ is
proved for the first time using the method of Malevich [8].

The aim of this paper is twofold: firstly we extend their result to the number of
crossings of every level and secondly we propose a simpler proof. The key point consist
in proving that after a convenient scaling the processXN (t) converges in a certain sense
to the stationary process X(t) with covariance r(t) = sin t

t . The central limit theorem for
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CLT for crossings of random trigonometric polynomials

the crossings of process XN (t) is then a consequence of the central limit theorem for
the crossings in large time for X(t).

The above idea is outlined in Granville and Wigman [5] but the authors could not
implement this procedure. Let us quoted their words: “While computing the asymptotic
of the variance of the crossings of process XN (t), we determined that the covariance
function rXN

of XN has a scaling limit r(t), which proved useful for the purpose of
computing the asymptotics. Rather than scaling rXN

, one might consider scaling XN .
We realize, that the above should mean, that the distribution of the zeros of XN is
intimately related to the distribution of the number of the zeros on (roughly) [0, N ] of
a certain Gaussian stationary process X(t), defined on the real line R, with covariance
function r....Unfortunately, this approach seems to be difficult to make rigorous, due to
the different scales of the processes involved”.

Our method can roughly be described as follows. In the first time in Section 3 we
defined the two process XN (or rather its normalization YN , see its definition in the
next section) and X in the same probability space. This fact allows us to compute
the covariance between these two processes. Afterwards we get a representation of
the crossings of both processes in the Wiener’s Chaos. These representations and the
Mehler formula for non-linear functions of four dimensional Gaussian vectors, permit
us to compute the L2 distance between the crossings of YN and the crossings of X. The
central limit theorem for the crossings of X can be obtained easily by a modification
of the method of m-dependence approximation, developed firstly by Malevich [8] and
Berman [3] and improved by Cuzick [4]. The hypotheses in this last work are more in
accord with ours. Finally the closeness in L2 (in quadratic mean) of the two numbers
of crossings: those of X(t) and those of the m-dependent approximation gives us the
central limit theorem for the crossings of XN .

The organization of the paper is the following: in Section 2 we present basic cal-
culations; Section 3 is devoted to the presentation of the Wiener chaos decomposition
and to the study of the variance. Section 4 states the central limit theorem. Additional
proofs are given in Section 5 and 6. A table of notation is given in Section 7.

2 Basic results and notation

rXN
(τ) will be the covariance of the process XN (t) given by

rXN
(τ) := E[XN (0)XN (τ)] =

1

N

N∑
n=1

cosnτ =
1

N
cos(

(N + 1)τ

2
)
sin(Nτ2 )

sin τ
2

. (2.1)

We define the process

YN (t) = XN (t/N),

with covariance

rYN
(τ) = rXN

(τ/N).
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We have

r′YN
(τ) =

1

2N sin τ
2N

cos
(2N + 1

2N
τ
)
− sin τ

4N2 sin2 τ
2N

, (2.2)

r′′XN
(τ) = −

sin τ
2

2N sin2 τ
2N

[sin
(N + 1)τ

2N
sin

τ

2N
+ cos

(N + 1)τ

2N
cos

τ

2N
] (2.3)

r′′YN
(τ) =

1

N2
r′′YN

(
τ

N
)

=
cos τ

2N cos (2N+1)
2N τ − 2 (2N+1)

2 sin τ
2N sin (2N+1)

2N τ − cos τ

4N2 sin2 τ
2N

−
(2N sin τ

2N cos( 2N+1
2N τ)− sin τ) cos τ

2N

4N3 sin3 τ
2N

. (2.4)

The convergence of Riemann sums to the integral implies simply that

rYN
(τ)→ r(τ) := sin(τ)/τ, (2.5)

r′YN
(τ)→ r′(τ) = cos(τ)/τ − τ−2 sin(τ), (2.6)

r′′YN
(τ) =

1

N2
r′′N (

τ

N
)→ r′′(τ) = − sin(τ)

τ
− 2

cos(τ)

τ2
+ 2

sin(τ)

τ3
. (2.7)

And these convergences are uniform in every compact interval that does not contains
zero. We will need also the following upper-bounds that are easy
When τ ∈ [0, Nπ]:

|rYN
(τ)| ≤ π/τ ; |r′YN

(τ)| ≤ π

2τ
+
π2

4τ2
; |r′′YN

(τ)| ≤ (const)
(
τ−1 + τ−2 + τ−3

)
. (2.8)

We now compute the ingredients of the Rice formula [2]

EX2
N (t) = 1, and E(X ′N (t))2 =

1

N

N∑
n=1

n2 =
(N + 1)(2N + 1)

6
.

Denoting by NXN

[0,2π)(u) the numbers of crossings of the level u of XN on the interval

[0, 2π), the Rice formula gives

E[NXN

[0,2π)(u)] = 2π.
√
E(X ′N (t))2

√
2/π

e−
u2

2

√
2π

=
2√
3

√
(N + 1)(2N + 1)

2
e−

u2

2 .

Hence

lim
N→∞

E[NXN

[0,2π)(u)]

N
=

2√
3
e−

u2

2 .

When not specified, all limits are taken when N →∞.

3 Spectral representation and Wiener Chaos

This section has as main goal to build both processes X(t) and YN (t) in the same
probability space. This chaining argument is one of our main tools. It makes it possible
to show that the two processes are close in L2 distance and by consequence the same
result holds true for the crossings of both processes.

We have

X(t) =

∫ 1

0

cos(tλ) dB1(λ) +

∫ 1

0

sin(tλ) dB2(λ), (3.1)
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where B1 and B2 are two independent Brownian motions. Using the same Brownian
motions we can write

YN (t) =

∫ 1

0

N∑
n=1

cos(
nt

N
)1[n−1

N , nN )(λ)dB1(λ) +

∫ 1

0

N∑
n=1

sin(
nt

N
)1[n−1

N , nN )(λ)dB2(λ).

It is easy to check, using isometry properties of stochastic integrals that YN (t) has the
desired covariance.
By defining the functions

γ1N (t, λ) =

N∑
n=1

cos(
nt

N
)1[n−1

N , nN )(λ) and γ2N (t, λ) =

N∑
n=1

sin(
nt

N
)1[n−1

N , nN )(λ),

we can write

YN (t) =

∫ 1

0

γ1N (t, λ)dB1(λ) +

∫ 1

0

γ2N (t, λ)dB2(λ). (3.2)

In the sequel we are going to express the representation (3.1) and (3.2) in an isonor-
mal process framework. Let define H2 the Hilbert vector space defined as

{h = (h1, h2) :

∫
R

h21(λ)dλ+

∫
R

h22(λ)dλ <∞},

with scalar product

< h,g >=

∫
R

h1(λ)g1(λ)dλ+

∫
R

h2(λ)g2(λ)dλ.

The transformation

h→W (h) :=

∫
R

h1(λ)dB1(λ) +

∫
R

h2(λ)dB2(λ),

defines an isometry between H2 and a Gaussian subspace of L2(Ω,A, P ) where A is the
σ−field generated by B1(λ) and B2(λ).

Thus W (h)h∈H2 is the isonormal process associated to H2. By using the representa-
tions (3.1) and (3.2), readily we get

X(t) = W (1[0,1](·, ·)(cos t·, sin t·)),
YN (t) = W (1[0,1](·, ·)(γ1N (·, t), γ2N (·, t))),

X̃ ′(t) :=
X ′(t)√

1/3
= W (

1[0,1]√
1/3

(·, ·)(− sin t·, cos t·)),

Ỹ ′N (t) :=
Y ′N (t)√
−r′′YN

(0)
= W (

1[0,1]√
−r′′YN

(0)
(·, ·)((γ1N (·, t))′, (γ2N (·, t))′).

We are going to present now the Wiener’s chaos, it will be our second main tool.
For a general reference about this topic see [9]. Let Hk be the Hermite polynomial of
degree k defined by

Hk(x) = (−1)ke
x2

2
dk

dxk
(e−

x2

2 ).

It is normalized such that for Y a standard Gaussian random variable we haveE(Hk(Y )Hm(Y )) =

δk,mk!. Consider {ei}i∈N an ortonormal basis for H2. Let Λ be the set the sequences
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a = (a1, a2, . . .) ai ∈ N such that all the terms except a finite number vanish. For a ∈ Λ

we set a! =
∏∞
i=1 ai! and |a| =

∑∞
i=1 ai. For any multiindex a ∈ Λ we define

Φa =
1√
a!

∞∏
i=1

Hai(W (ei)).

For each n ≥ 1, we will denote by Hn the closed subspace of L2(Ω,A, P ) spanned
by the random variables {Φa, a ∈ Λ, |a| = n}. The space Hn is the nth Wiener chaos
associated with B1(λ) and B2(λ). If H0 denotes the space of constants we have the
ortogonal decomposition

L2(Ω,A, P ) =

∞⊕
n=0

Hn.

For any Hermite’s polynomial Hq, it holds

Hq(W (h)) =Iq(h) :=

∫ +∞

0

. . .

∫ +∞

0

h1(λ1) . . . h1(λq)dB1(λ1) . . . dB1(λq)

+

∫ +∞

0

. . .

∫ +∞

0

h2(λ1) . . . h2(λq)dB2(λ1) . . . dB2(λq),

with h = (h1, h2). For instance as YN (t) = W (1[0,1](·, ·)(γ1N (·, t), γ2N (·, t))), we obtain

H2(YN (t)) =

∫ 1

0

∫ 1

0

γ1N (λ1, t)γ
1
1,N (λ2, t)dB1(λ1)dB1(λ2)

+

∫ 1

0

∫ 1

0

γ2N (λ1, t)γ
2
N (λ2, t)dB2(λ1)dB2(λ2).

We now write the Wiener Chaos expansion for the number of crossings. As the absolute
value function belongs to L2(R, ϕ(x)dx), where ϕ is the standard Gaussian density, we
have |x| =

∑∞
k=0 a2kH2k(x) with

a2k = 2
(−1)k+1

√
2π2kk!(2k − 1)

.

It is shorter to study first XN (t) on [0, π] (resp. YN (t) and X(t) on [0, Nπ]), the general-
ization to [0, 2π] (resp. to [0, 2Nπ]) will be done in Section 4. The result of Kratz & León
[6] or Th 10.10 in [2] imply

1√
Nπ

(NX
[0,πN ](u)− ENX

[0,πN ](u))

=
√

1/3ϕ(u)

∞∑
q=1

[ q2 ]∑
k=0

Hq−2k(u)

(q − 2k)!

a2k√
Nπ

∫ πN

0

Hq−2k(X(s))H2k(X̃ ′(s)) ds, (3.3)

where [x] is the integer part. We introduce the notation

fq(u, x1, x2) = ϕ(u)

[ q2 ]∑
k=0

Hq−2k(u)

(q − 2k)!
a2kHq−2k(x1)H2k(x2). (3.4)

For each s, the random variable

fq(u,X(s), X̃ ′(s)) = ϕ(u)

[ q2 ]∑
k=0

Hq−2k(u)

(q − 2k)!
a2k

×Hq−2k(W (1[0,1](·, ·)(cos s·, sin s·)))H2k(W (
1[0,1]√

1/3
(·, ·)(− sin s·, cos s·)))
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belongs the q-th chaos as a consequence of linearity and the property of multiplication
of two functionals belonging to different chaos, cf. [9] Proposition 1.1.3. Furthermore
also by linearity the same is true for

Iq
(
[0, t]

)
=

√
1/3√
t

∫ t

0

fq(u,X(s), X̃ ′(s))ds. (3.5)

So that
1√
Nπ

(NX
[0,πN ](u)− ENX

[0,πN ](u)) =

∞∑
q=1

Iq
(
[0, πN ]

)
,

gives the decomposition into the Wiener’s chaos. The same type of expansion is also
true for NYN

[0,πN ](u)

1√
N

(
NYN

[0,πN ](u)− ENYN

[0,πN ](u)
)

=

∞∑
q=1

Iq,N
(
[0, πN ]

)
, (3.6)

where

Iq,N
(
[0, πN ]

)
=

√
−r′′YN

(0)
√
πN

∫ πN

0

fq(u, YN (s), Ỹ ′N (s))ds. (3.7)

Our first goal is to compute the limit variance of (3.6). Our main tool will be the
Arcones inequality. We define the norm

||fq||2 := Ef2q (u, Z1, Z2),

where (Z1, Z2) is a bidimensional standard Gaussian vector. We have

||fq||2 = ϕ2(u)

[ q2 ]∑
k=0

H2
q−2k(u)

(q − 2k)!
a22k(2k)! ≤ (const)

[ q2 ]∑
k=0

a22k(2k)! ≤ (const),

where (const) is some constant that does not depend on q. Now we must introduce a
dependence coefficient that is defined in Arcones [1] (pag. 2245)

ψN (τ) = sup
(∣∣rYN

(τ)
∣∣+
∣∣ r′YN

(τ)√
−r′′YN

(0)

∣∣, ∣∣ r′YN
(τ)√

−r′′YN
(0)

∣∣+
∣∣r′′YN

(τ)

r′′YN
(0)

∣∣).
The Arcones inequality says that if ψN (s′ − s) < 1, it holds∣∣E[fq(u, YN (s), Ỹ ′N (s))fq(u, YN (s′), Ỹ ′N (s′))]

∣∣ ≤ ψqN (s′ − s)||fq||2.

We will use also the following Lemma the proof of which is given in Section 5

Lemma 3.1. For every a > 0, there exists a constant Ka such that

sup
N

Var
(
NYN

[0,a](u)
)
≤ Ka <∞. (3.8)

Choose some ρ < 1 , using the inequality (2.8), we can choose a big enough such
that for τ > a we have ψN (τ) < K

τ ≤ ρ.
Then we partition [0, Nπ] into L = [Nπa ] intervals J1, . . . , JL of length larger than a,

and we set for short
N` = NYN

J`
(u).

We have

Var(NYN

[0,Nπ](u)) = Var(N1 + · · ·+NL) =
∑

`,`′,|`−`′|≤1

Cov (N`, N
′
`) +

∑
`,`′,|`−`′|>1

Cov (N`, N
′
`).
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The first sum is easily shown to be O(N) by applying Lemma 3.1 and the Cauchy-
Schwarz inequality.

Let us look at a term of the second sum. Using the expansion (3.6) we set

N` − E(N`)√
πN

=

∞∑
q=1

Iq,N (J`),

where Iq,N (J`) =

√
−r′′YN

(0)
√
πN

∫
J`

fq(u, YN (s), Ỹ ′N (s))ds. Let us consider the terms corre-

sponding to q > 1. The Arcones inequality implies that∣∣Cov (Iq,N (J`), Iq,N (J`′))
∣∣ ≤ (const)

∫
J`×J`′

1

Nπ
(−r′′YN

(0))(K/τ)qdsdt

≤ (const)

N

∫
J`×J`′

ρq−2τ−2dsdt, (3.9)

where τ = s − t. Summing over all pairs of intervals and over q ≥ 2 it is easy to check
that this sum is bounded.

It remains to study the case q = 1. Since H1(x) = x

I1,N (J`) = (Nπ)−1/2
√
−r′′YN

(0)uφ(u)

∫
J`

YN (s)ds.

So that∣∣ ∑
`,`′,|`−`′|>1

Cov (I1,N (J`), I1,N (J`′))
∣∣ ≤ (const)

∣∣ 1

N

∫ πN

0

∫ πN

0

rYN
(s− s′)dsds′

∣∣,
which is bounded because of the following result

1

N

∫ πN

0

∫ πN

0

rYN
(s− s′)dsds′ =

2

N

∫ πN

0

(πN − τ)rYN
(τ)dτ

= 2

N∑
n=1

∫ πN

0

(π − τ

N
)

1

N
cosn

τ

N
dτ

= 2

N∑
n=1

1− cosnπ

n2

= 4

N∑
j=0

1

(2j + 1)2

→ 4

∞∑
j=0

1

(2j + 1)2
= 4

π2

8
=
π2

2
. (3.10)

Define σ2
q := lim

N→∞
Var

(
Iq([0, πN ])

)
<∞.

Proposition 3.2. For q > 1 we have

Var
(
Iq,N ([0, πN ])

)
→ σ2

q as N → +∞.

For q = 1

Var
(
I1,N ([0, πN ])

)
→ 1

3
u2φ2(u)π.
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In the case u 6= 0 this limit is different from

lim
N→∞

Var
(
I1([0, πN ])

)
=

2

3
u2φ2(u)π.

Remark 3.3. This different behavior depending on whether or not the variable belongs
to the chaos of order one, is explicit thanks to the decomposition of the crossings into
Wiener’s chaos.

Proof. Firstly we consider the case q > 2 :

E
(
I2q,N ([0, Nπ]

)
= −r′′YN

(0)ϕ2(u)

[ q2 ]∑
k1=0

[ q2 ]∑
k2=0

Hq−2k1(u)

(q − 2k1)!
a2k1

Hq−2k2(u)

(q − 2k2)!
a2k2

1

Nπ

∫ Nπ

0

∫ Nπ

0

E[Hq−2k(YN (s))H2k(
Y ′N (s′)√
−r′′YN

(0)
)Hq−2k(YN (s′))H2k(

Y ′N (s)√
−r′′YN

(0)
)] ds′ds

= −r′′YN
(0)ϕ2(u)

[ q2 ]∑
k1=0

[ q2 ]∑
k2=0

Hq−2k1(u)

(q − 2k1)!
a2k1

Hq−2k2(u)

(q − 2k2)!
a2k2

2

∫ πN

0

(1− s

Nπ
)E[Hq−2k1(YN (0))H2k1(

Y ′N (0)√
−r′′YN

(0)
)Hq−2k2(YN (s))H2k2(

Y ′N (s)√
−r′′YN

(0)
)] ds.

We now use the generalized Mehler formula (Lemma 10.7 page 270 of [2]).

Lemma 3.4. Let (X1, X2, X3, X4) be a centered Gaussian vector with variance matrix

Σ =


1 0 ρ13 ρ14
0 1 ρ23 ρ24
ρ13 ρ23 1 0

ρ14 ρ24 0 1


Then, if r1 + r2 = r3 + r4,

E
(
Hr1(X1)Hr2(X2)Hr3(X3)Hr4(X4)

)
=

∑
(d1,d2,d3,d4)∈J

r1!r2!r3!r4!

d1!d2!d3!d4!
ρd113ρ

d2
14ρ

d3
23ρ

d4
24,

where J is the set of di’s satisfying : di ≥ 0;

d1 + d2 = r1 ; d3 + d4 = r2 ; d1 + d3 = r3 ; d2 + d4 = r4. (3.11)

If r1 + r2 6= r3 + r4 the expectation is equal to zero.

Using this lemma, there exist a finite set Jq and constants Cq,k1,k2 such that

E[Hq−2k1(YN (0))H2k1(Ỹ ′N (0))Hq−2k2(YN (τ))H2k2(Ỹ ′N (τ))]

=
∑
Jq

Cq,k1,k2 |rYN
(τ)|2q−(2k1+2k1)−h1 |

r′YN
( τN )√

−r′′YN
(0)
|2h1 |

r′′YN
(τ)√

−r′′YN
(0)
|2k1+2k2−h1

:= G̃q,k1,k2,N (τ). (3.12)

This clearly proves that

E[Hq−2k1(YN (0))H2k1(Ỹ ′N (0))Hq−2k2(YN (τ))H2k2(Ỹ ′N (τ))]

→ E[Hq−2k1(X(0))H2k1(X̃ ′(0))Hq−2k2(X(τ))H2k2(X̃ ′(τ))],
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and Formula (3.9) gives a domination proving the convergence of the integral and the
fact that σ2

q is finite.

Let us look to the case q = 1. In one hand by using (3.10), it holds

E
(
I21,N ([0, Nπ]

)
= −r′′YN

(0)ϕ2(u)(ua0)2
1

Nπ

∫ Nπ

0

∫ Nπ

0

E(YN (s)YN (s′))ds′ds

→ 1/3ϕ2(u)
2u2

π2
π2/2 =

1

3
u2φ2(u). (3.13)

On the other hand we have

E
(
I21 ([0, Nπ]

)
=

1

3
ϕ2(u)(ua0)2

1

Nπ

∫ Nπ

0

∫ Nπ

0

sin(s− s′)
s− s′

ds′ds

=
1

3
ϕ2(u)

2u2

π2
2

∫ Nπ

0

(π − τ/N)
sin(τ)

τ
dτ → 2

3
u2φ2(u). (3.14)

4 Central limit Theorem with a chaining argument

In this section we first establish a central limit theorem for the crossings of the
process X(t), Theorem 4.1. Secondly, we show that this theorem implies our main
result: Theorem 4.2, central limit theorem for the crossings of the process XN (t).

The covariance r(t) of the limit process X(t) is not a summable in the sense that∫ +∞

0

|r(t)|dt = +∞,

but it satisfies ∫ N

0

r(t)dt converges as N →∞,

for q > 1 ∫ +∞

0

|r(t)|q dt < +∞.

The following theorem is a direct adaptation of Theorem 1 in [7] or of Theorem 10.11
of [2]. Its proof is given in Section 6 for completeness.

Theorem 4.1. As t→ +∞,

1√
t

(
NX

[0,t](u)− E(NX
[0,t](u))

)
⇒ N(0,

2

3
u2φ2(u) +

∞∑
q=2

σ2
q (u)),

where⇒ is the convergence in distribution.

The main idea is to use this result to extend it to the crossings of YN (t). Our main
result is the following:

Theorem 4.2. As N → +∞,

1.
1√
Nπ

(
NYN

[0,Nπ](u)− E(NYN

[0,Nπ](u))
)
⇒ N(0,

1

3
u2φ2(u) +

∞∑
q=2

σ2
q (u)),

2.
1√

2Nπ

(
NYN

[0,2Nπ](u)− E(NYN

[0,2Nπ](u))
)
⇒ N(0,

2

3
u2φ2(u) +

∞∑
q=2

σ2
q (u)),
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Remark 4.3. We point out that in the case u = 0 the two limit variances are the same
and this is the result of Granville and Wigman [5], but in the other cases this is a new
result. The chaos method permits an easy interpretation of the difference between
these two behaviors.

Proof. Let us introduce the cross correlation:

ρN (s, t) = E(X(s)YN (t)) =

N∑
n=1

∫ n
N

n−1
N

cos(sλ− t n
N

) dλ

=

N∑
n=1

∫ 1
N

0

cos((s− t) n
N
− sv) dv = <{

∫ 1
N

0

e−isvdv

N∑
n=1

ei(s−t)
n
N }

=
sin s

N
s
N

1

N

N∑
n=1

cos(s− t) n
N

+
1− cos s

N
s2

2N2

s

2N2

N∑
n=1

sin(s− t) n
N
,

where < is the real part. So we can write

ρN (s, t) =
sin(s/N)

s/N
rYN

(t− s) +
1− cos(s/N)

s2/(2N2)

s

2N

1

N

N∑
n=1

sin(s− t) n
N
.

The two functions sin(z)
z and 1−cos(z)

z2/2 are bounded, with bounded derivatives and sin(z)
z

tend to 1 as z tends to 0. We have also

| 1

N

N∑
n=1

sin(s− t) n
N
| = | 2

s− t
sin (s−t)

2
2N
s−t

sin(N+1
2N (s− t))

sin (s−t)
2N

| ≤ (const)|s− t|−1,

whenever |s− t| < πN .
We have already proved that rYN

(s− t) = 1
N

∑N
n=1 cos

(
(s− t) nN

)
, converges to r(s− t)

uniformly on every compact that does not contains zero. The same result is true for
the first two derivatives that converge respectively to the corresponding derivative of
r(s− t). In addition for large values of |s− t| these functions are bounded by K|s− t|−1
and for each fixed s, s

2N2

∑N
n=1 sin(s − t) nN → 0. Using the derivation rules it is easy to

see that this is enough to have

ρN (s, t)→ r(s− t)
∂ρN (s, t)

∂s
= E(X ′(s)YN (t))→ r′(s− t)

∂ρN (s, t)

∂t
= E(X(s)Y ′N (t))→ −r′(s− t)

∂2ρN (s, t)

∂s∂t
= E(X ′(s)Y ′N (t))→ −r′′(s− t),

again the convergence being uniform on every compact that does not contains zero. In
additions these function are bounded by (const)(s− t)−1.

Before beginning the proofs, we present two results that were established in Pec-
cati & Tudor [10] (Theorem 1 and Proposition 2) and we state as a theorem for later
reference.

We will denote as ζq,r a generic element of the q-th chaos depending of a parameter
r that tends to infinity. For instance in our cases we will have ζq,t = Iq([0, t]) and
ζq,N = Iq,N ([0, πN ]) respectively.
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Theorem 4.4.

(i) Assume that for every q1 ≤ q2, . . . ≤ qm, it holds that lim
t→∞

E[ζqi,t]
2 = σ2

ii and that

for i 6= j lim
t→∞

E[ζqi,tζqj ,t] = 0.

Then, if Dm is the diagonal matrix with entries σ2
ii, Theorem 1 of [10] says that the

random vector

(ζq1,t, . . . , ζqm,t)⇒ N(0, Dm),

if and only if each ζqi,t converges in distribution towards N(0, σ2
ii) when t→∞.

(ii) Considering now d functionals of the q-th chaos {ζlq,r}dl=1, Proposition 2 of [10]
says that

(ζ1q,r, ζ
2
q,r, . . . , ζ

d
q,r)⇒ N(0, C)

if an only if ζiq,t ⇒ N(0, cii) and E[ζiq,tζ
j
q,t]→ cij when t→∞, where cij is the entry

i, j of the matrix C.

We are now ready to prove the following lemma.

Lemma 4.5. For q ≥ 2

lim
N→∞

E
[
Iq,N ([0, Nπ])− Iq([0, Nπ])

]2
= 0.

Proof.

E
[
Iq,N ([0, Nπ])− Iq([0, Nπ])

]2
= E

[
Iq,N ([0, Nπ])

]2
+ E

[
Iq([0, Nπ])

]2
− 2E

[
Iq,N ([0, Nπ])Iq([0, Nπ])

]
.

We have already shown that the first two terms tend to σ2
q (u). It only remains to prove

that the third also does. But, since the cross correlation ρN (s, t) shares all the properties
of rYN

(s− t), the same proof as in Section 3 shows that the limit is again σ2
q (u).

We now finish the proof of Theorem 4.2.

Proof of Theorem 4.2.
Proof of 1. The case of I1,N ([0, Nπ]) is easy to handle since it is already a Gaussian
variable and that its limit variance is easy to compute using (3.10). By Lemma 4.5, for
q ≥ 2, Iq,N ([0, Nπ]) inherits the asymptotic Gaussian behavior of Iq([0, Nπ]) . By using
(i) of Theorem 4.4, this is enough to obtain the normality of the sum.
Proof of 2. We have already proved that

χN (1) :=
1√
Nπ

(
NYN

[0,Nπ](u)− E(NYN

[0,Nπ](u))
)
⇒ N(0,

1

3
u2φ2(u) +

∞∑
q=2

σ2
q (u)),

the same result holds by stationarity for the sequence

χN (2) :=
1√
Nπ

(
NYN

[Nπ,2Nπ](u)− E(NYN

[Nπ,2Nπ](u))
)
,

and given that

1√
2Nπ

(
NYN

[0,2Nπ](u)− E(NYN

[0,2Nπ](u))
)

=
1√
2

(χN (1) + χN (2)).
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It only remains to show that the limit of the vector (χN (1), χN (2)) is jointly Gaussian
and that the variance of the sum converges to the corresponding one. Defining

Iq,N ([πN, 2πN ]) =

√
−r′′YN

(0)
√
πN

∫ 2πN

πN

fq(u, YN (s), Ỹ ′N (s)ds,

we can write the sum above as

1√
2

(χN (1) + χN (2)) =
1√
2

(

∞∑
q=1

Iq,N ([0, πN ]) +

∞∑
q=1

Iq,N ([πN, 2πN ])),

and given that the limit variance is finite we have

1√
2

(χN (1) + χN (2)) =
1√
2

(

Q∑
q=1

Iq,N ([0, πN ]) +

Q∑
q=1

Iq,N ([πN, 2πN ])) + oP(1),

where oP(1) denotes a term that tends to zero in probability when Q→∞ uniformly in
N . Let us consider first the term corresponding to the first chaos (q = 1). We have

E := E
(
I1,N ([0, Nπ])I1,N ([Nπ, 2Nπ])

)
= −r′′YN

(0)ϕ2(u)(ua0)2
1

Nπ

∫ Nπ

0

∫ 2Nπ

Nπ

E(YN (s)YN (s′))ds′ds

= −r′′YN
(0)ϕ2(u)(ua0)2

1

Nπ

∫ Nπ

0

∫ 2Nπ

Nπ

rYN
(s′ − s)ds′ds,

making the change of variable s′ − s = τ we get

= −r′′YN
(0)ϕ2(u)(ua0)2

1

Nπ
(

∫ πN

0

τrYN
(τ)dτ +

∫ 2πN

πN

(2πN − τ)rYN
(τ)dτ).

Since rYN
is periodic with period 2πN :

E = −r′′YN
(0)ϕ2(u)(ua0)2

1

Nπ
(

∫ πN

0

τrYN
(τ)dτ −

∫ 0

−πN
τrYN

(τ)dτ)

= −r′′YN
(0)ϕ2(u)(ua0)2

2

Nπ

∫ πN

0

τrYN
(τ)dτ → 1

3
ϕ2(u)u2,

using the same computation as for getting (3.10).
This implies that 1

2E
(
I1,N ([0, Nπ]) + I1,N ([Nπ, 2Nπ])

)2 → 2
3ϕ

2(u)u2. Since the two
random variables I1,N ([0, Nπ]) and I1,N ([Nπ, 2Nπ]) are jointly Gaussian this implies the
convergence of 1√

2
(I1,N ([0, Nπ]) + I1,N ([Nπ, 2Nπ])) in distribution.

Let us consider the term in the other chaos (q ≥ 2).

E
(
Iq,N ([0, Nπ])Iq,N ([Nπ, 2Nπ])

)
= −r′′YN

(0)ϕ2(u)

[ q2 ]∑
k1=0

[ q2 ]∑
k2=0

Hq−2k1(u)

(q − 2k1)!
a2k1

Hq−2k2(u)

(q − 2k2)!
a2k2

1

πN

∫ πN

0

∫ 2πN

πN

Gq,k1,k2,N (s−s′)dsds′,

where we have put

Gq,k1,k2,N (s− s′) = E[Hq−2k1(YN (0))H2k1(Ỹ ′N (0))Hq−2k2(YN (s− s′))H2k2(Ỹ ′N (s− s′))].
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A change of variables and Fubini’s Theorem give

1

πN

∫ πN

0

∫ 2πN

πN

Gq,k1,k2,N (s− s′)dsds′

=
1

Nπ
(

∫ πN

0

τGq,k1,k2,N (τ)dτ −
∫ 2πN

πN

(2πN − τ)Gq,k1,k2,N (τ)dτ)

=
1

Nπ
(

∫ πN

0

τGq,k1,k2,N (τ)dτ +

∫ πN

0

τGq,k1,k2,N (−τ)dτ),

where this last equality is a consequence of periodicity and the change of variable
τ = v + 2πN in the second integral. In this form we get

| 1

πN

∫ πN

0

∫ πN

πN

Gq,k1,k2,N (s− s′)dsds′| ≤ 2

Nπ

∫ πN

0

τG̃q,k1,k2,N (τ)dτ.

G̃q,k1,k2,N (τ) has been defined in (3.12) and we also recall that this function is even.
Moreover, it is plain that over any compact interval [0, a] it holds

lim
N→∞

2

Nπ

∫ a

0

τG̃q,k1,k2,N (τ)dτ = 0,

for the integral over [a, πN ] we use the bound (2.8) and Arcones’ inequality. Thereby

lim
N→∞

| 2

Nπ

∫ πN

0

τGq,k1,k2,N (τ)dτ | = 0.

By using (ii) of Theorem 4.4, we get for q ≥ 2

(Iq,N ([0, Nπ]), Iq,N ([Nπ, 2Nπ]))⇒ N(0, σ2
qI),

where I is the identity matrix in R2.
Defining

Iq,N ([0, 2Nπ]) =
1√
2

(Iq,N ([0, Nπ]) + Iq,N ([Nπ, 2Nπ]),

it holds for each q that Iq,N ([0, 2Nπ]) ⇒ N(0, σ2
q ), this asymptotic normality holds true

also for q = 1. The theorem now follows applying again (i) of Theorem 4.4 and the
expansion (3.3).

5 Proof of Lemma 3.1

It suffices to prove that NYN

[0,a](u) has a second moment which is bounded uniformly

in N . Let UYN

[0,a](u) be the number of up-crossings of the level u by YN (t) in the interval

[0, a] i.e. the number of instants t such that YN (t) = u;Y ′N (t) > 0. The Rolle theorem
implies

NYN

[0,a](u) ≤ 2UYN

[0,a](u) + 1.

So it suffices to give a bound for the second moment of the number up-crossings. Writ-
ing U for UYN

[0,a](u) for short, we have

E(U2) = E(U(U − 1)) + E(U).

We have already proven that the last term gives a finite contribution after normalization.
For studying the first one we define the function θN (t) by

rYN
(τ) = 1 +

r′′YN
(0)

2
τ2 + θN (τ).
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and we use the order two Rice formula and relation (4.14) of [2] to get

E(U(U − 1)) = 2

∫ a

0

(a− τ)E[|Y ′N (0)Y ′N (τ)| |YN (0) = YN (τ) = u]pYN (0),YN (τ)(u, u)dτ

≤ (const)a

∫ a

0

θ′N (τ)

τ2
dτ.

By a Taylor-Lagange expansion we obtain

r′YN
(τ) = r′YN

(0) +
1

6N5

N∑
n=1

n4τ3 cos(θ(n,N)),

with θ(n,N) ≤ τ/N . We obtain that |θ′N (τ)| ≤ (const)τ3, the constant being uniform in
N . This gives the result.

6 Proof of Theorem 4.1

Let Dm be a diagonal matrix with diagonal terms dii = lim
t→∞

Var(Iqi([0, t])), where

Iq([0, t]) has been defined in (3.5). Theorem 4.4 part (i), says that the random vector

(Iq1([0, t]), . . . , Iqm([0, t]))⇒ N(0, Dm), when t→∞

if an only if each Iqi([0, t]) converges in distribution towards N(0, dii). We will prove this
last assertion.

Let us begin with the term corresponding to the first chaos (q = 1).

I1([0, t]) =
√

1/3ϕ(u)u a0
1√
t

∫ t

0

X(s)ds =
√

1/3
e−

u2

2 u

π

1√
t

∫ t

0

X(s)ds,

the random variable I1([0, t]) is Gaussian and we have already proven that its variance
converge thus we get

I1([0, t]) ⇒ N
(

0,
e−u

2

u2

3π2
2

∫ ∞
0

sin τ

τ
dτ
)

= N
(

0, e−u
2 u2

3

)
= N

(
0,

2

3
u2φ2(u)π

)
, (6.1)

when t→∞.
For the other chaos (q > 1) we can adapt the proof of the cited references, [2] and

[7], those proofs are inspired in the seminal work of Malevich [8] see also [3] and [4].
Furthermore the hypothesis of this last work consist in demanding the convergence of
integrals of the covariances, thus they are similar to those used in our work.

The process X(t) has f(λ) = 1
21[−1,1](λ) as spectral density, if we symmetrize the

spectrum. Let β be an even function with
∫∞
−∞ |λ|

j |β(λ)|dλ < ∞ , j = 1, 2 and such

that its Fourier Transform has support in [−1, 1]. By defining βε = 1
εβ( ·ε ) and putting

fε(λ) = f ∗ βε(λ) the following process

Xε(t) =

∫ ∞
0

cos(tλ)
√
fε(λ)dB1(λ) +

∫ ∞
0

sin(tλ)
√
fε(λ)dB2(λ), (6.2)

satisfies

rε(τ) := E
[
Xε(τ)Xε(0)

]
=

∫ ∞
0

cos(τλ)fε(λ)dλ

=
1

2

∫ ∞
−∞

cos(tλ)fε(λ)dλ =
1

2
r(τ)β̂(ετ). (6.3)
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Thus Xε is a Gaussian 1
ε -dependent process, this process has variance one if β̂(0) = 2,

which is always possible. Moreover,

r′ε(τ) =
1

2
(r′(τ)β̂(ετ) + r(τ)εβ̂′(ετ))

and

r′′ε (τ) =
1

2
(r′′(τ)β̂(ετ) + 2r′(τ)εβ̂′(ετ) + r(τ)ε2β̂′′(ετ)).

These functions have bounded support and converge to r, r′ and r′′ respectively, func-
tions that belong to L2(R). Recalling the set of indexes Jq of Lemma 3.4, we get by
using Dominate Convergence Theorem

lim
ε→0

∑
Jq

∫ 1
ε

0

∣∣∣rε(τ)
∣∣∣2q−(2k1+2k1)−h1

∣∣∣ r′ε(τ)√
−r′′ε (0)

∣∣∣2h1
∣∣∣r′′ε (τ)

r′′ε (0)

∣∣∣2k1+2k2−h1

dτ

=
∑
Jq

∫ ∞
0

∣∣∣r(τ)
∣∣∣2q−(2k1+2k1)−h1

∣∣∣ r′(τ)√
−r′′(0)

∣∣∣2h1

|r
′′(τ)

r′′(0)

∣∣∣2k1+2k2−h1

dτ.

The same result holds dropping the absolute value in the integrant. Let us define

Iq,ε([0, t]) =
√
−r′′Xε

(0)
1√
t

∫ t

0

fq(u,Xε(s),
X ′ε(s)√
−r′′Xε

(0)
)ds. (6.4)

The above result and Lemma 3.4, allow us to conclude that

lim
t→∞

E[Iq,ε([0, t])]
2 =

1

π
σ2
q (u).

We shall now to consider the convergence for the covariances.

ρε(τ) = E[Xε(τ)X(0)] =

∫ 1

0

cos(τλ)
√
fε(λ)dλ→ r(τ), (6.5)

ρ′ε(τ) = E[X ′ε(τ)X(0)] = −
∫ 1

0

λ sin(τλ)
√
fε(λ)dλ→ −r′(τ), (6.6)

ρ′′ε (τ) = E[X ′ε(τ)X ′(0)] = −
∫ 1

0

λ2 cos(τλ)
√
fε(λ)dλ→ −r′′(τ), (6.7)

when ε→ 0. Moreover,

ρε(τ) =
1

2

∫ ∞
−∞

cos(τλ)
√
fε(λ)1[−1,1](λ)dλ

=
1√
2

∫ ∞
−∞

cos(τλ)
√
fε(λ)

√
1

2
1[−1,1](λ)dλ.

By using Fatou, Parseval equality and, the fact that fε(λ) → 2f(λ) in L2(R), we
obtain easily∫ ∞

0

|r(τ)|2dτ ≤ lim sup
ε→0

∫ ∞
0

|ρε(τ)|2dτ = lim sup
ε→0

1

2

∫ ∞
−∞
|ρε(τ)|2dτ

= lim sup
ε→0

1

4π

∫ ∞
−∞
|
√
fε(λ)

√
1

4
1[−1,1](λ)|2dλ =

∫ ∞
0

|r(τ)|2dτ.
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Thus

lim
ε→0

∫ ∞
0

|ρε(τ)|2dτ =

∫ ∞
0

|r(τ)|2dτ. (6.8)

In the same form we get

lim
ε→0

∫ ∞
0

|ρ′ε(τ)|2dτ =

∫ ∞
0

|r(τ)|2dτ and lim
ε→0

∫ ∞
0

|ρ′′ε (τ)|2dτ =

∫ ∞
0

|r′′(τ)|2dτ. (6.9)

We will compute now

lim sup
ε→0

lim sup
t→∞

E[Iq,ε([0, t])− Iq([0, t])]2 =
2

π
σ2
q (u)− 2 lim

ε→0
lim
t→∞

E[Iq,ε([0, t])Iq([0, t])].

This limit vanish if we can prove that the third term tends to 2
π σ

2
q (u) also. But this

is a consequence again of Lemma 3.4, (6.8) and (6.9) cf. [7]. Let us sketch the proof.
Defining

dq,2k(u) =
Hq−2k(u)

(q − 2k)!
a2k,

we have

E
[
Iq,ε([0, t]), Iq([0, t])

]
= −r′′X(0)ϕ2(u)

∑
k1,k2

dq,2k1(u)dq,2k1(u)

× 1

t

∫ t

0

∫ t

0

E[Hq−2k1(Xε(s))H2k1(
X ′ε(s)√
−r′′Xε(0)

)Hq−2k1(X(s′))H2k1(X̃ ′(s′))]dsds′.

The integral is by Lemma 3.4 equal to

∑
Lq

Vq,2k1,2k2
1

t

∫ t

0

∫ t

0

(1{s>s′}[
−ρ′ε(s− s′)√
−ρ′′ε (0)

]2h1 + 1{s′>s}[
−ρ′ε(s′ − s)√
−r′′X(0)

]2h1)

× ρε(|s− s′|)2q−(2k1+2k1)−h1 [
−ρ′′ε (|s− s′|)√
−ρ′′ε (0)

√
−r′′(0)

]2k1+2k2−h1dsds′, (6.10)

where Lq is a set of indexes and Vq,2k1,2k2 are fixed constant. Given that q > 1 and by
using that the functions ρε and its derivatives converge in L2 towards their pointwise
limit, it yields that this sum converges towards

2

∫ ∞
0

E[Hq−2k1(X(0))H2k1(
X ′(0)√
−r′′X(0)

)Hq−2k1(X(τ))H2k1(
X ′(τ)√
−r′′X(0)

)]dτ.

Thus the result follows.

The 1
ε -dependence entails that Iq,ε([0, t]) is asymptotically Gaussian and the proved

proximity in L2 allows concluding the same for Iq,ε([0, t]), with asymptotic variance
1
π σ

2
q (u). The CLT for the crossings of X follows from the expansion

NX
[0,t](u)− E[NX

[0,t](u)] =

∞∑
q=1

Iq
(
[0, t]

)
,

the asymptotic independence of the Gaussian limit in each chaos and the convergence
of the variance.
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7 Notation table

XN (t) see (1.1)
rXN

covariance of XN (t)

X(t) stat. process with cov. r(t) = sin(t)/t

YN (t) XN (t/N)

rYN
covariance of YN (t)

NXN

[0,t](u) Number of crossings of level u by XN (t) on [0, t].

UXN

[0,t](u) Number of up-crossings of level u by XN (t) on [0, t]

X̃(t) X ′(t)/(
√

1/3)

ỸN (t) Y ′N (t)/(
√
−r′′YN

(0))

fq([0, t]) see (3.4)
Iq([0, t]) see (3.5)

Iq,N ([0, t]) see (3.7)
Xε(t) see (6.2)
rε(τ) see (6.3)

Iq,ε([0, t]) see (6.4)
ρε(τ) ; ρ′ε(τ) ; ρ′′ε (τ) see (6.5) ; (6.6) ; (6.7)
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