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Abstract

We construct a two-dimensional counterexample of a random walk in random envi-
ronment (RWRE). The environment is stationary, mixing and ε–perturbative, and the
corresponding RWRE has non-trivial probability to wander off to the upper right. This
is in contrast to the 0-1-law that holds for i.i.d. environments.

Keywords: Random Walk in Random Environment ; 0-1-law ; Counterexample.
AMS MSC 2010: 60K37; 60F20.
Submitted to EJP on March 14, 2012, final version accepted on January 4, 2013.
Supersedes arXiv:1203.3121.

1 Random walk in random environment

We start by fixing the notation and the basic notions of the model.
We work in the d-dimensional space Zd, d ≥ 1. N0 := {0, 1, 2, . . . } and N := {1, 2, . . . }

stand for the natural numbers.
We will count dimensions from 0 to d − 1; so, we write u = (u0, u1, . . . , ud−1) ∈ Zd,

and denote by e0, . . . ed−1 the canonical unit vectors in Zd. This nonstandard–notation
will simplify things later. For two vectors v, w ∈ Zd, v · w denotes the scalar product.

For any real number r ∈ R, we will be using the floor function brc := max{m ∈ N0 :

m ≤ r} and for any natural number l ∈ N0 the modulo operation l mod 2 := 1l is impair ∈
{0, 1}.

If P is a probability measure, with the convenient notational abuse common in math-
ematical physics, we write “P” for the expectation operator as well.

Define
Sd :=

{
$ ∈ [0, 1]{±ej ,0≤j<d} :

∑
e∈{±ej ,0≤j<d}

$(e) = 1
}
, d ∈ N,

the set of nearest neighbour transition probabilities on Zd. We call a family ω = (ωu)u∈Zd

of Sd-valued random variables on an appropriate probability space (Ω,A, P ) a random
environment on Zd.
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A stationary, mixing counterexample

One might ask for a random environment to satisfy, with 0 ≤ κ < 1/2 some ellipticity
constant, the condition

P
(
ωu(e) ∈ (κ, 1− κ)

)
= 1 for all u ∈ Zd, e ∈ {±ej , 0 ≤ j < d}. (1.1)

If (1.1) is satisfied with κ = 0, the environment is called elliptic, and if it is even satisfied
with some κ > 0, uniformly elliptic.

A morally even stronger notion of homogeneity is reached when one pushes κ to-
wards 1

2d . For ε > 0, ω is called ε–perturbative if

P
(
ωu(e) ∈ [1/2d− ε, 1/2d+ ε]

)
= 1 for all u ∈ Zd, e ∈ {±ej , 0 ≤ j < d}.

We use the term totally ergodic for “ergodic with respect to any shift”.
Take a starting point v ∈ Zd. To a random environment ω on (Ω,A, P ), we associate

the random probability measure Pωv , which, together with the Zd-valued random vari-
ables (Xt)t∈N0

, establishes the random walk in random environment (P, Pωv , (Xt)t∈N0
).

It is defined to satisfy the Markov-property and

Pωv (X0 = v) = 1, (1.2)

Pωv (Xt+1 = Xt + e|Xt = u) = ωu(e), e ∈ {±ej , 0 ≤ j ≤ d− 1}, u ∈ Zd.

In [5], Kalikow considered questions of recurrence and transience of this model, and
proved that for uniformly elliptic i.i.d.–environments,

PPω0 (Xt · v changes sign infinitely often) ∈ {0, 1}, v ∈ Zd. (1.3)

He also raised the question whether in d = 2, it holds that

PPω0 (Xt · v −−−→
t→∞

∞) ∈ {0, 1}, v ∈ Rd \ {0}. (1.4)

Sznitman and Zerner highlighted in [6] that Kalikow’s question (1.4) is valid in any
dimension d ≥ 2. They also pointed out that (1.3) implies

P
(
Pω0 (Xt · v is transient)

)
∈ {0, 1}, v ∈ Zd.

The term Kalikow’s 0–1–law has since been established for this assertion.
For d = 2, Zerner and Merkl answer Kalikow’s question (positively) for elliptic i.i.d.–

environments in [8]; an improved version of the proof is given in [7]. Holmes and
Salisbury treat the same questions without the assumption of ellipticity in [4].

The necessity of the i.i.d.–assumption is assessed in [8] by means of an example for
d = 2 of an elliptic, ergodic and stationary environment that features

PPω0 (Xt · v −−−→
t→∞

∞) 6∈ {0, 1} for some v ∈ Zd. (1.5)

[7] gives a similar example with an even totally ergodic environment.
As for d ≥ 3, Bramson, Zeitouni and Zerner [1] have a uniformly elliptic, stationary,

totally ergodic, and even mixing example of an environment satisfying (1.5).
In the present article, we construct an environment with similar properties for di-

mension d = 2. Our main theorem is indeed:

Theorem 1.1. For any ε > 0, there is an ε–perturbative, stationary, mixing random
environment ω = (ωu)u∈Z2 with associated probability measure P such that for the
associated random walk ((Xt), P

ω
0 ), it holds that

PPω0
(
Xt ·~1 −−−→

t→∞
∞
)
> 0 as well as PPω0

(
Xt ·~1 −−−→

t→∞
−∞

)
> 0.

Here, ~1 denotes the vector (1, 1).
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A stationary, mixing counterexample

A preprint by Guo [2] is concerned with the limiting velocity of the random walk in
random environment on the events {Xt · v −−−→

t→∞
†∞}, † ∈ {+,−}, v ∈ Rd, in dimensions

d ≥ 2, in the case where the random environment satisfies uniform ellipticity and a
certain strong mixing condition which holds in Gibbsian environments, for instance.

Proof of Theorem 1.1, and organisation of the article. In Section 2, we construct an ob-
ject called streetgrid which we use to define the actual random environment in Subsec-
tion 2.3. We prove the streetgrid to be stationary and mixing in the Subsections 3.3 and
3.4. These properties are inherited in the definition of the random environment.

In Subsection 3.2, we show that there are areas growing in the direction of ~1 that
are in some sense large. This has the consequence, via the placement of the transition
probabilities, that the random walk has positive probability of never leaving these areas,
while wandering off to infinity in the direction of ~1. This is shown in Subsection 4. The
same arguments could be repeated for −~1, which finishes the proof.

We should want to indicate some of the sources of inspiration that contributed to this
article. The ideas of conducting the random walk to infinity on a “treelike structure” of
“not too slowly growing roads leading to infinity” has been applied in [1]. As for how
to construct such a structure in dimension d = 2, Häggström and Mester [3] had the
idea of ever larger, ever rarer streets joining each other. By using Poisson processes
of different intensities as the underlying structure instead of their“windows” of fixed
length, we were able to avoid some of the rigidity of their model and to make assertions
on mixing, at the price of developing a completely new construction.

2 Construction of a random environment

2.1 Notation

2.1.1 Boxes

Recall the convention to write u = (u0, u1) ∈ Z2. We call a box any subset B of Z2 that
can be expressed as

B = {b0, . . . , b′0} × {b1, . . . , b′1} for some bj , b
′
j ∈ Z with bj ≤ b′j , j ∈ {0, 1}. (2.1)

For a box B, we define the emplacement of the faces of B as

bj(B) := bj , b′j(B) := b′j , j ∈ {0, 1}, (2.2)

where bj , b′j , j ∈ {0, 1}, are taken from (2.1).
For v, w ∈ Z2 we define the box between v and w as

B’twn(v, w) :=
{

min{v0, w0}, . . . ,max{v0, w0}
}
×
{

min{v1, w1}, . . . ,max{v1, w1}
}
.

The (outer) boundary of a box B may be defined as

∂B := {u ∈ Z2 : d(u,B) = 1};

here, d(·, ·) means the 1-metric. It is convenient to define as well the closure of B, which
is

B := B ∪ ∂B;

the upper right corner �B of a box B is

�B := (b′0(B), b′1(B)).
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2.1.2 Streets and streetgrid, and blocks

We call a number m ∈ N0 a superlevel, and k ∈ {0, 1} a sublevel. The mapping (m, k) 7→
2m+k : N0×{0, 1} → N0 is bijective, and this number is called the corresponding level.
Given any level l ∈ N0, we can obviously reconstitute superlevel and sublevel using the
inverse function, (b l2c, l mod 2).

If a level has somehow been assigned to some object, we will speak of the superlevel
and the sublevel of that object as well.

Given a level l ∈ N0 and a function F ∈ N0
D, D ⊆ Z2, a box B ⊆ D is called a street

of level l w.r.t. F if

Fu = l for all u ∈ B, and Fu 6= l for all u ∈ ∂B ∩D.

We call it a field w.r.t. F if it is a street of level 0 w.r.t. F . When it is obvious or not
important which level and function are meant, we will simply speak of “street” and
“field”.

We say F is a streetgrid if D is the union of streets and fields with respect to F , i.e.

D = ∪·
l∈N0

∪·
B street of

level l w.r.t. F

B. (2.3)

Given a box B contained in the domain of a streetgrid F , we define the level of the
box B w.r.t. F as

`(B) = `F (B) := max
u∈B

Fu.

Note that if the box B is a street, the two definitions of “level of the box B” and “level
of the street B” coincide.

For B ⊆ Z2 a box such that B ⊆ D the domain of F , we say B is a block w.r.t. F if
all points u ∈ ∂B are elements of exactly four different streets w.r.t. F , which are all of
level greater than `F (B).

The upper and lower levels of the block B are defined respectively as

`
F

(B) := max
u∈∂B

Fu and `F (B) := min
u∈∂B

Fu.

`·(B) will be crucial in determining streets of which levels might be present if we have
only information about ∂B the boundary of B, and `

·
(B) will constitute a lower bound

to all levels that are not present in B.
Given a streetgrid F and u ∈ Z2, we define S’rndFu to be the street or field around u;

to be precise,

S’rndFu is defined to be the unique street or field B w.r.t. F such that u ∈ B.

2.2 Construction of the streetgrid

2.2.1 Parameters and randomness used in the construction

λm := (m+ 1)!−2 and βm := m!2, m ∈ N0, (2.4)

are called the rate of occurrence of streets at superlevel m and the planned widths of
the streets at superlevel m, respectively.

We define
Z := Z×N0 × Z2,

and, on some appropriate probability space (Ω,F , P ), a family of independent random
variables

X :=
(
X(x, l, w)

)
(x,l,w)∈Z ,
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which are to be Bernoulli-distributed with parameters λb l2 c.
To understand the meaning of the index-set Z, we need to read it backwards. Every

point in Z2 gets for every level in N0 a Bernoulli-process {0, 1}Z.
Having the necessary terms and definitions as well as the random ingredients at

hand, we can start constructing the environment, beginning with a streetgrid. This will
be done in two steps. Starting at the origin, we begin with narrow streets and make our
way towards infinity by ever wider ones. This leaves wide areas of fields that will then
be filled in the opposite direction with ever narrowing streets.

2.2.2 The initial grid

We could put the random ingredient X directly into our construction, which will be built
gradually in several definitions. We prefer however to write down these definitions as
functions on {0, 1}Z , and to finally evaluate them at the random place X. Notationwise,
we will drop the dependence on x ∈ {0, 1}Z after the first appearence, though. Please
note that the definitions may, for some x ∈ {0, 1}Z , not make any sense; whenever there
is some doubt about what x should look like, any typical realization x of X will do.

In a first step, we define processes that, roughly speaking, show where streets would
be if each coordinate existed on its own. For each coordinate direction j ∈ {0, 1} and
every superlevel m ∈ N0, we attach to the left of every point highlighted as 1 by the
process x(·, 2m + j, 0) an interval with the width βm of the respective superlevel m.
Then, for any point, we take the maximum level of all streets the point lies in; that is, in
the case of overlapping intervals of different levels, the higher level prevails:

W j
x(x) := 2 max

{
m ∈ N0 : ∃y ∈ Z : x ≤ y < x+ βm, x(y, 2m+ j, 0) = 1

}
+ j, (2.5)

j ∈ {0, 1}, x ∈ Z, x ∈ {0, 1}Z .

We need to make sure W j
x(X) is P –a.s. finite for all j ∈ {0, 1} and all x ∈ Z. For m ∈ N,

x ∈ Z, it holds that

P
(
∃ y ∈ Z : 0 ≤ y − x < βm, X(y, 2m+ j, 0) = 1

)
= P

(
#{y ∈ Z : 0 ≤ y − x < βm, X(y, 2m+ j, 0) = 1} ≥ 1

)
≤ P

(
#{y ∈ Z : 0 ≤ y − x < βm, X(y, 2m+ j, 0) = 1}

)
=

x+βm−1∑
y=x

P
(
X(y, 2m+ j, 0) = 1

)
= βmλm =

m!2

(m+ 1)!2
=

1

(m+ 1)2
.

With the Borel–Cantelli–lemma, we conclude that there are P –a.s. only finitely many
m ∈ N satisfying the condition of the maximum in (2.5), which hence is P –a.s. finite.

The dependence on x will be dropped for the next few definitions, even though it of
course persists.

The function W j
x will be further transformed by removing the outer intervals of

smaller value in

V jx := W j
x1W j

x=(max0≤y≤xW
j
y∨maxx≤y≤0W

j
y ), j ∈ {0, 1}, x ∈ Z.

Note that the maximum over an empty set is to be read as −∞.
The transition from W 0

· to V 0
· is visualized in Figure 1.

Remark 2.1. A monotonically increasing function f : N0 → R satifies fx = max0≤y≤x fy,
x ∈ N0. (V jx )x∈N0 , j ∈ {0, 1} are not monotonically increasing, but “weakly monotoni-
cally increasing, seen from 0” in the sense that they still satisfy

V jx ∈
{

0, max
0≤y≤x

V jy

}
, x ∈ N0, j ∈ {0, 1},
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Figure 1: Simulation of a realization of W 0
x (X) and V 0

x , x ∈ Z, represented by the thick
line. The rectangles indicate the intervals attached to the points highlighted by the
Bernoulli-processes of different intensities. Although in this picture the domain of the

two functions looks continuous, they are defined to have domain Z.

and a similar assertion for negative x.

With the following definition, we begin our two–dimensional construction. Any point
u = (u0, u1) ∈ Z2 gets assigned a level by

InitGridx(u) :=
(
V 0
u0
∨ V 1

u1

)
1V 0

u0
∨V 1

u1
≥maxj∈{0,1}(max0≤x<uj V

j
x∨maxuj<x≤0 V

j
x ).

In words, the point u gets assigned the maximum of the two V 0
u0

and V 1
u1

provided
this maximum is larger than any of the V jx for x between 0 and uj , with j ∈ {0, 1}.
Thus, InitGrid satisfies a two-dimensional analogue of the heuristical notion of “weakly
monotonically increasing seen from 0” mentioned in Remark 2.1.

Note that InitGrid is only the initial streetgrid, and w.r.t. this InitGrid, large fields
remain.

We write InitGrid(u) := InitGridX(u); a simulation of InitGrid is shown in Figure 2.

Lemma 2.2. InitGridX(·) is P –a.s. a streetgrid.

Proof. We need to show that Z2 is a patchwork of streets and fields w.r.t. InitGridX(·)
as in (2.3). We will concentrate on the first quadrant, referring to analogy for the other
ones.

Define

Y jm := min{x ∈ N0|V jx > m}, m ∈ N0, j ∈ {0, 1}.
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Figure 2: Simulation of InitGrid = InitGridX. Again, the domain of InitGrid is not
continuous, but Z2. V 0

· is the same as in Figure 1.
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On the coordinate axes, we have that

InitGrid(0) = max
j∈{0,1}

V j0 ,

InitGrid(xe0) = InitGrid(0) for all 0 ≤ x < Y 0

b InitGrid(0)
2 c,

InitGrid(ye1) = InitGrid(0) for all 0 ≤ y < Y 1

b InitGrid(0)
2 c,

InitGrid(xe0) = V 0
x for all x ≥ Y 0

b InitGrid(0)
2 c,

InitGrid(ye1) = V 1
y for all y ≥ Y 1

b InitGrid(0)
2 c.

On the first quadrant, it holds that

InitGrid
(
(x, y)

)
= InitGrid(0) for all 0 ≤ x < Y 0

b InitGrid(0)
2 c, 0 ≤ y < Y 1

b InitGrid(0)
2 c,

and more generally,

InitGrid
(
(x, y)

)
=


V 0
x if V 0

x > V 1
z for all 0 ≤ z ≤ y,

V 1
y if V 1

y > V 0
z for all 0 ≤ z ≤ x,

0 else.

If one takes this equation for fixed, say, xwith V 0
x 6= 0 and lets run y from 0 to infinity, one

gets the value InitGrid((x, y)) = V 0
x = InitGrid(xe0) for all y < min{y ∈ N0|V 1

y > V 0
x };

in other words, until from the other coordinate, one gets blocked. Because V 0
· and V 1

·
have disjoint codomains (except for 0, which they have in common), these blockings are
sharp in the sense that one can always tell whether a point has got its value (different
from 0) from V 0

· or V 1
· .

Also, the other way around, if some point (x, y) ∈ Z2 has got its initial–grid–value
from, say, V 0

x , then fixing x and letting z run from y to 0 yields

InitGrid
(
(x, z)

)
= InitGrid

(
(x, y)

)
for all y ≥ z ≥ 0.

Combining the arguments of the last two paragraphs, one can see that all points u ∈ Z2

satisfying InitGrid(u) = 2m + j 6= 0 lie in areas of constant InitGrid-value outgoing
perpendicularily from the j-th coordinate axis. Each such area continues until it gets
blocked by some area coming from the other coordinate axis. The areas are of rectan-
gular shape, and P –a.s. finite.

This applies as well to the areas where the initial grid equals 0. These are indeed
surrounded by four streets of different levels, so that they are fields.

Finally, we need not only to pay attention at the the four quadrants individually, but
at the transition between them as well. Indeed, the streetgrid–property holds because
between adjacent quadrants, the same V j· , j ∈ {0, 1} influences the construction of the
streets.

Remark 2.3. We will be saying “ 0 is responsible in InitGrid for the emplacement of
streets of level l on D” for any block D w.r.t. InitGrid containing the origin and any level
`InitGrid(D) ≤ l < `InitGrid(D).

`InitGrid(D) is the highest level of any streets placed on D. The emplacement of these
streets has been provided by the random ingredient X evaluated at points (·, l, 0), so it
is sound to say 0 is responsible.

How about the levels `InitGrid(D) < l < `InitGrid(D)? No street of these levels exists
in D. But this absence of streets was stipulated by an absence of 1s in the random
ingredient X at points (·, l, 0), `InitGrid(D) < l < `InitGrid(D). So it is legitimate to say 0

is responsible for those levels as well.
We will extend the notion of responsibility in Definition 2.5.
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2.2.3 Asphalting of the remaining fields

After constructing InitGridx(u), we continue by iteratively putting the missing streets
on the remaining fields. Let us describe informally how we proceed.

The streets that are not fields w.r.t. InitGridx are to remain untouched. We want to
work exclusively on the fields.

By Lemma 2.2, any field B w.r.t. InitGridx is surrounded by four streets. The min-
imum of their level minus one is the level of the first streets that should be put on B.
Determining the level of the streets to put is hence the first step.

Then, we need to know the place where we put these streets. To each field B will
be assigned its own process resembling the one in (2.5); this time however, only one
level at a time is taken into account. The random ingredient of this process will be the
Bernoulli process associated to the upper right corner of B and the respective level.

Now, when the streets are put on the fields, smaller fields are created; on these, we
put streets of the next lower level, and so on.

Now, back to rigid definitions. First, we define a dummy and the starting point of
the iteration,

L0
u :≡ 0, L1

u := InitGridx(u), u ∈ Z2.

For i ≥ 1, and B a field with respect to the i-th iteration step Li· , we associate a level to
B by

li(B) :=

{
minv∈∂B L

i
v − 1 if B is not a field with respect to Li−1

·

li−1(B)− 1 if it is.

This is the level of the streets that are going to be placed on B. The first line of the
definition is used at the first iteration step, and also the default for the following steps;
only if there has no street been put on a field in the last step, the second line makes
sure that in the current step, the same level is not used again.

We provide the emplacement in B for the new streets of level l (we exceptionally
remind the dependence on x) by

W l,B
x (x) := l1∃y∈Z: x≤y<x+βb l

2
c,x(y,l,�B)=1, l ∈ N0, x ∈ Z.

Given l, the indicator function checks whether at the point x, there is a street of level l
induced by the Bernoulli process at the upper right corner of the field.

The streets are placed on the field B using

Ll,Bu := W l,B
ul mod 2

1u∈B , u ∈ Z2.

The sublevel l mod 2 is taking care of the (vertical or horizontal) orientation of the
streets.

We need to do this setting of streets in every field, and set the whole iteration step
as

Liu := Li−1
u +

∑
B field

w.r.t. Li−1
·

Ll
i(B),B
u .

We have put, on every field w.r.t. Li−1
· , streets of “one level lower”.

The process Li· = Li·(x) converges pointwise with i→∞ for P –almost any realization
x of X: for any field w.r.t. InitGridx(·), at some iteration, the level 1 (with superlevel
0) is reached and the remaining sub-fields are entirely filled with streets of level 1.
Another way of seeing the convergence is by remarking that for every point u ∈ Z2, the
sequence (Liu)i∈N is monotonically increasing and bounded. The limes will be called the
final streetgrid SG(x) = (SG(x)u)u∈Z2 and we write SG = (SGu)u∈Z2 := (SG(X)u)u∈Z2 .

Based on the earlier simulation of the initial grid, a simulation of the final streetgrid
can be found in Figure 3.
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Figure 3: Simulation of the final street grid SG. Where was the origin again?
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Lemma 2.4. SG(X) is P –a.s. a streetgrid.

Proof. Each iteration step Li is: to obtain Li, only the fields of Li−1 are changed, and on
these fields are placed streets extending in one coordinate direction up to the bound-
ary of the field they are placed on. These streets are of strictly lower level than all
surrounding streets.

Because the passage to the limit is of the type where for any finite region, the se-
quence is from some point on constant and equal to the limiting object, SG is a street-
grid as well.

We turn again towards the concept of responsibility. This time, we give a precise
definition, and then explain how it relates to our construction of the streetgrid.

Definition 2.5. Take a streetgrid g. For any block D w.r.t. g and any `g(D) ≤ l < `g(D),
there is a unique w ∈ Z2 of which we say that it is responsible in g for the emplacement
of streets of level l in D. It is given by w = 0 if 0 ∈ D, and w = �D if 0 6∈ D.

For g = InitGrid, this definition exactly reflects Remark 2.3. The streets already
present in InitGrid are carried over to SG, so it is reasonable to say 0 is responsible for
these in SG as well.

The responsibility of points w 6= 0 can be understood as follows: Any field D w.r.t.
InitGrid does not contain the origin. It is also a block and will remain a block in the
course of the construction.

The first iteration step is about placing streets of level l = `InitGrid(D)− 1 on D. The
randomness for their emplacement comes from the Bernoulli process X((·, l, �D)). This
is why �D should be considered responsible for this block and level.

If no streets of level l are placed (because the Bernoulli process is 0 in the relevant
range), �D is responsible for the subsequent lower levels as well, until streets is placed.
The level of these streets will later turn out to be the level `SG(D) of the block D.

By the placement of these streets, smaller fields are created, and it is their upper
right corner that provides the randomness via X. These upper right corners are hence
the places that are responsible for the streets of these lower levels, on these smaller
fields (which again are and remain blocks).

The next result shows that there is no conflict of responsibility.

Lemma 2.6. Take a streetgrid g. If w ∈ Z2 is responsible in g for the emplacement of
streets of level l in D, where l ∈ N is a level and D some block w.r.t. g, then w is not
responsible in g for the emplacement of streets of level l in B, where B 6= D is some
other block w.r.t. g.

Proof. Suppose w is responsible in g for the emplacement of streets of level l in both
D and B, where both D and B are blocks w.r.t. g, but D 6= B. A first deduction is that
either both B and D must contain the origin, or share the same upper right corner
w = �B = �D. In either case, B ∩D 6= ∅.

As B 6= D, this implies that, without loss of generality, ∂B ∩D 6= ∅. Hence, `g(D) ≥
`g(B). This is a contradiction to that w was to be responsible for the same level in B

and D.

2.3 Transition probabilities for the random environment

In order to determine what transition probabilities will be placed where, we cut
down the streets of the streetgrid to lanes using the following definition:
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Definition 2.7. For ♦,♥ ∈ {+,−}, B a street w.r.t. SG(X) of superlevel m := b `
SG(B)

2 c ≥
2 and sublevel k := `SG(B) mod 2, we define the lanes

LaneSG
♦,♥(B) :=


{u ∈ B : bk(B) ≤ uk < bk(B) + βm

4 } if ♦ = +,♥ = +;

{u ∈ B : bk(B) + βm
4 ≤ uk < bk(B) + βm

2 } if ♦ = +,♥ = −;

{u ∈ B : b′k(B)− βm
2 < uk ≤ b′k(B)− βm

4 } if ♦ = −,♥ = −;

{u ∈ B : b′k(B)− βm
4 < uk ≤ b′k(B)} if ♦ = −,♥ = +.

The definition of b·(B) and b′·(B) was given in (2.2).

Note that there might be some non–empty space between the two middle lanes
LaneSG

+,−(B) and LaneSG
−,−(B).

We want to place the transition probabilities in a way that on the lanes with “+” as
first index, the random walk feels a drift northwards or eastwards (if the sublevel of the
street is 0 or 1, respectively), and on the lanes with “−” as first index, it feels a drift
to the south or the west. The distinction between + and − in the second index is then
used to provide a drift to the area where two lanes of the same street with the same
first index meet.

Definition 2.8. With ♦,♥ ∈ {+,−}, we define

ω♦,♥ : {±e0,±e1} → [
1

4
− ε, 1

4
+ ε],

ω♦,♥(†e0) :=
1

4
+ (†(♦(♥ε))),

ω♦,♥(†e1) :=
1

4
+ (†(♦ε)), † ∈ {+,−},

and

ω 1
4
(e) :=

1

4
, e ∈ {±e0,±e1}.

We will also be using the notation ω↗ = ω+,+ and visualize this local transition
probability either by or↗. See also Figure 4.

ω+,+ ω+,− ω−,− ω−,+ ω 1
4

Figure 4: The transition probability kernels ωj·,·. The lengths of the arrows are not to
scale.

We will need a reflection matrix, namely

R :=

(
0 1

1 0

)
,

to place the transition probabilities we just defined on the streets.

Definition 2.9. Given the streetgrid SG(X), the transition probability kernels of the
environment at place u ∈ Z2 will be defined as follows. If u ∈ B a street w.r.t. SG(X)

such that b `(B)
2 c ≥ 2 and b′`(B) mod 2(B)− b`(B) mod 2(B) + 1 ≥ βb `(B)

2 c
, set

ωu = ωu(X) :=


ω♦,♥ if u ∈ LaneSG

♦,♥(B), ♦,♥ ∈ {+,−}, `(B) mod 2 = 0,

ω♦,♥ ◦R if u ∈ LaneSG
♦,♥(B), ♦,♥ ∈ {+,−}, `(B) mod 2 = 1,

ω 1
4
, else.
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If u ∈ B any other street, set ωu := ω 1
4
.

Here, ω♦,♥ ◦R(e) = ω♦,♥(Re), e ∈ {±e0,±e1}.

A visualization of the lanes and the different corresponding transition probabilities
can be found in Figure 5; the bigger picture can be seen in Figure 6.

LaneSG
+,+(B)

LaneSG
+,−(B)

LaneSG
−,−(B)

LaneSG
−,+(B)

LaneSG
+,+(B′) LaneSG

+,−(B′) LaneSG
−,−(B′) LaneSG

−,+(B′)

Sublevel 1 Sublevel 0

B B′

Figure 5: The horizontal streetB (of sublevel 1) joining the vertical streetB′ (of sublevel
0). The street B to the left is wider than its planned width, so that there is some space
between the lanes LaneSG

+,−(B) and LaneSG
−,−(B). The width of the streets is not to scale:

B′ ought to be much wider.

3 Properties of InitGrid and SG

3.1 Heuristical approach

Let us describe a very simple model of a random walk in a non–random environment.
Define the environment $ by setting

$u

{
ω↘ for all u ∈ Z2 such that u1 ≥ 0,

ω↗ for all u ∈ Z2 such that u1 < 0.

That is, the random walk is subject to a uniform drift in direction of e0 and towards
the zeroth coordinate axis. It is easy to prove by standard martingale methods and the
Borel–Cantelli–Lemma that the associated random walk in random environment (Xn)n
starting at 0 has positive probability never to leave the set {x ∈ Z2|x0 ≥ 0, |x1| ≤

√
x0},

while following the first coordinate axis to infinity.
The moral of this example is that a random walk with uniform drift along a line and

with a drift pushing it back towards that line has positive probability to never be further
away from the line than the square root of the travelled length.

We will prove that P –almost surely, somewhere, there is a street w.r.t. InitGridX on
the first coordinate axis satisfying the following: if one walks down that street (north-
wards) until one hits a perpendicular street, walks eastwards on that new one until the
next perpendicular street, starts walking northwards again, and so on; if one does so,
then:

• at the end of one street, one always encounters one of the next higher level;

• the width of these streets grows nicely,
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Figure 6: Artists rendering of the environment, and of the drift a particle would feel.
The drift pushing it “towards the middle” of each tinted part of the street is not shown.

• the streets are not too long.

Also, there will always be a drift pushing forward and to the middle of the two lanes
with first index “+” in these streets.

The idea is that, when walking like described above, the width of the street the
walker is in as a function of the distance travelled is larger than the square root (·)1/2;
this is in analogy to the above example.

An average–case–analysis shows heuristically why this is the case.
The streets of superlevel m have a planned width of βm and, on average, a length of

less than 1
λm+1

. The somewhat worst case for the random walk is if it has to go through
the whole length of every street. The width of the n–th street the random walk visits is
βn = n!2. The distance travelled is of the order of

n∑
i=1

1

λi+1
=

n∑
i=1

(i+ 2)!2 ≤ 2(n+ 2)!2.

This shows that the square root of the travelled distance is of slower growth than the
width of the streets, leaving enough room to the random walk for fluctuations without
leaving the sequence of streets.

The exact proof stretches over the whole subsection, but the most pertinent state-
ments can be found in Corollaries 3.5, 3.9 and 3.10.

Remark 3.1. The statements above are even true with any root (·)1/α, α > 1, instead
of the square root (·)1/2. Hence we need to fix the exponent.

Definition 3.2.
Set α > 1 for the rest of the article.

3.2 The way to infinity is eventually large

We start the proof of the above claims with a seemingly technical Definition and
Lemma.
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Definition 3.3. The point inducing the (lowest part of the) first street of superlevel
m ∈ N0 on the j-th coordinate axis is defined as

Gjm := min{x ∈ N0 : X(x, 2m+ j, 0) = 1}, j ∈ {0, 1}.

In view of the following Lemma, let us recall from (2.4) the parameters λm := (m +

1)!−2 and βm := m!2, m ∈ N0.

Lemma 3.4. The following events all happen P –almost surely only finitely often (in m):

{G0
m−1 ≥ G0

m − βm + 1}; {G1
m−1 − βm−1 + βm ≥ G1

m − βm + 1};
{Gjm > (λm)−α}, j ∈ {0, 1}.

Proof. The Gjm, m ∈ N0, j ∈ {0, 1}, are geometrically distributed, independent random
variables with success probability λm = 1

(m+1)!2 . We can calculate, for the first event,

P (G0
m−1 ≥ G0

m − βm + 1)

=
∑
x∈N0

P (G0
m−1 ≥ x− βm + 1)P (G0

m = x)

=
∑
x∈N0

(1− λm−1)x−βm+1(1− λm)xλm

= (1− λm−1)−βm+1λm
∑
x∈N0

[(1− λm−1)(1− λm)]x

= (1− λm−1)−βm+1 λm
λm−1 + λm − λm−1λm

= (1− λm−1)−βm+1
(λm−1

λm
+ 1− λm−1

)−1

= (1− λm−1)−βm+1
(
(m+ 1)2 + 1− λm−1

)−1
, m ∈ N.

We see that the first term converges, while the second one is summable, so that we can
conclude using the Borel-Cantelli-Lemma.

The probability of the second event computes just the same way, only the limit of the
leading term is some other constant.

For the last event, we observe that

P
(
Gjm > (λm)−α

)
= (1−λm)bλ

−α
m +1c =

[(
1− 1

(m+ 1)!2

)(m+1)!2] b(m+1)!2αc+1

(m+1)!2 ∼ e−(m+1)!2α−2

is indeed summable as well.

Corollary 3.5. The event{
G0
m−1 + βm ≤ G0

m ≤ (λm)−α
}
∩
{
G1
m−1 + 2βm − βm−1 ≤ G1

m ≤ (λm)−α
}

(3.1)

holds P –a.s. eventually. Hence, P –a.s.,

M(X) := min

{
m′ ≥ 5

∣∣ω ∈ ∞⋂
m=m′

{G0
m−1 + βm ≤ G0

m ≤ λ−αm }
∩ {G1

m−1 + 2βm − βm−1 ≤ G1
m ≤ λ−αm }

}
<∞. (3.2)

M = M(X) is the superlevel from which the event defined in (3.1) always holds.
The restriction to m′ ≥ 5 is made so that we do not have to worry about whether we
can divide streets into four lanes, and subdivide lanes in four equal parts: already
β4 = 576 = 36 ∗ 16.

There is a picture relating the terms of the event (3.1) in Figure 7.
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0
G0
m−1 G0

m

G1
m−1

G1
m

≥ 0

≥ 0

≤ (λm)−α

≤ (λm)−α

βm

βm

βm−1

βm

Figure 7: The implications of the event in (3.1).

Lemma 3.6. It holds P –a.s. that for all x ∈ N and all m′ > m ≥M ,

InitGridX(xe0) 6= 2m+ 1 and InitGridX(G0
me0) 6= 2m′.

Proof. Take any m ≥M . We have

G1
m ≥ G1

m−1 + 2βm − βm−1 ≥ 2βm − βm−1 ≥ βm.

X(G1
m, 2m + 1, 0) = 1 induces a (part of a) street of superlevel m, with planned width

βm. Thus, this street of sublevel 1 does not reach the zeroth axis.
Now take m′ > m. We know that G0

m′ ≥ G0
m′−1 + βm′ ≥ G0

m + βm′ . This shows that
any vertical street of higher level does not reach G0

me0.

Lemma 3.7.
SGGjmej

= 2m+ j, m ≥M, j ∈ {0, 1}.

Proof. We prove the case j = 0.
Take m ≥ M . As G0

m is a natural number such that X
(
G0
m, 2m, 0

)
= 1, we have

W 0
G0
m

(X) ≥ 2m. (G0
n)n≥M is an increasing sequence. Thus, it holds that V 0

G0
m
≥ 2m. This

implies that

InitGridX(G0
me0) ≥ 2m. (3.3)

The case “>” subdivides into the two

• InitGridX(G0
me0) = 2m′ + 1 for some m′ ≥ m,

• InitGridX(G0
me0) = 2m′ for some m′ > m,
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which both are excluded by Lemma 3.6. Hence, equality holds in (3.3). Gjm depends
only on X(·, ·, 0). As all streets that are not fields w.r.t. InitGrid remain untouched in the
construction of the final streetgrid, the equality holds for SGG0

me0
as well.

Similar observations can be made for points of the form G1
me1, m ≥ M , using an

adapted version of Lemma 3.6.

Definition 3.8. Set

Bjm := S’rndInitGrid(Gjmej) = S’rndSG(Gjmej), m ≥M, j ∈ {0, 1}.

Corollary 3.9. For all m ≥ M ,the width b′j(B
j
m) − bj(Bjm) + 1 of Bjm is larger than or

equal to βm, while the length of the intersection of Bjm and the first quadrant, (�Bjm)i,
i 6= j, i, j ∈ {0, 1}, satisfies

λ−αm+1 ≥

{
(�B0

m)1

(�B1
m)0.

Proof. Both assertions follow from the same type of arguments as in the proof of the
Lemmata 3.6 and 3.7; the second one makes also use of the upper bounds provided by
(3.1).

Corollary 3.10. It holds for all m ≥M that

S’rnd(�B0
m + e1) = B1

m and S’rnd(�B1
m + e0) = B0

m+1.

Proof. We prove only the first assertion.
Let m ≥M . As we have seen in Lemma 3.7, `(B0

m) = 2m.
By definition, the street B0

m extends vertically until it is blocked by some horizontal
higher–level–street. The superlevel of this street is greater as or equal to m, otherwise
there would be no blocking. Any horizontal street B1

m′ of levelm′ > m does not interfere
with B1

m, because the G1
· all keep their distance from each other (see (3.1)). So, the

blocking indeed happens by B1
m.

3.3 Stationarity

Notation 3.11. Take F : {0, 1}Z → N0
Z

2

a function. Note that the values F (x) : Z2 →
N0 of this function are themselves functions u 7→ F (x)u. Let I ⊆ Z, D ⊆ Z

2. For
x̄ ∈ {0, 1}I , g ∈ N0

D, by the notation

F (x̄)|D = g, (3.4)

we shall express that

for all x ∈ {0, 1}Z such that x|I = x̄, it holds that F (x)u = gu for all u ∈ D.

Here, x|I : I → {0, 1} denotes the usual restriction of the function x : Z → {0, 1} on
I. Notation (3.4) however is more restrictive than a mere restriction, because it is
understood that on D, F (·) does not depend on the values at places in Z \ I.

Also define 0|I to be the constant mapping that assigns 0 to any element in I.

Lemma 3.12. For any box B 3 0, there is P –a.s. a block w.r.t. SG(X) containing B:

P
( ⋃
D⊆Z2:
B⊆D

{D is block w.r.t. SG(X)}
)

= 1.
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Proof. Take B a box containing the origin. For j ∈ {0, 1}, define the random variables

dj := max{x ≤ bj(B)|V jx−1 > `SG(B)} and d′j := min{x ≥ b′j(B)|V jx+1 > `SG(B)}.

These are P –almost surely finite, and B ⊆ D := {d0, . . . , d
′
0}×{d1, . . . , d

′
1}. D is a random

set and a block w.r.t. InitGrid(·). The streets placed on D by the iterative construction
leading to SG are all of lower level than the minimum of the levels present in ∂D, so
that the block-property is preserved.

Definition 3.13. Let D be a block w.r.t. g ∈ N0
D such that 0 ∈ D. Note that this is

more a condition on g than on D. Define the two subsets of Z

Jg :=
{

(y, 2m+ j, 0)
∣∣ m > b`

g
(D)

2
c, j ∈ {0, 1}, bj(D)− 1 ≤ y ≤ b′j(D) + βm

}
and

Ig :=
{

(y, 2m+ j, u)
∣∣ j ∈ {0, 1}, 0 ≤ m ≤ b`

g
(D)

2
c, bj(D)− 1 ≤ y ≤ b′j(D) + βm, u ∈ D

}
.

The dependence of Ig and Jg on D is omitted because it can be considered implicit
via g.

To explain the meaning of these two sets, we need to go into greater detail.
Take a realization of X. It is an element of {0, 1}Z , and leads to SG = SG(X). One

can ask at which points in Z the values of X may be changed without changing the
outcome of SG, or SG |D for some fixed D ⊆ Z.

The other way around, given a certain realization g ∈ N0
D of SG(X)|D, where D ⊆

Z
2 is a box, one can ask about the set of realizations of X such that

SG(X)|D = g.

It turns out it is enough to look at the outcome of X on the two subsets Ig and Jg of Z in
order to decide whether the last equation is true or not. All points that are responsible
in the sense of Definition 2.5 are contained in Ig, and X(·) being equal to 0 at all points
in Jg stipulates the absence of big streets that are not supposed to be on D.

Lemma 3.14. Under the hypotheses of Definition 3.13, Ig is finite, and Ig ∩ Jg = ∅. Let
x ∈ {0, 1}Z . If SG(x)|D = g, then it holds that SG(x|Ig∪Jg )|D = g, in the notation of (3.4).
In other words, SG(x)|D = g does not depend on x|Z\(Ig∪Jg). Also, SG(x)|D = g implies
x|Jg = 0|Jg . Finally, P (X|Jg ≡ 0) > 0.

Proof of Lemma 3.14. The first two assertions are obvious. SG(x)|D = g does hold or
not no matter what the values of x at the points (y, 2m+ j, u) with

• u ∈ Z2 \D, m ∈ N, y ∈ Z, j ∈ {0, 1},
• u ∈ D \ {0}, m ≥ b `

g(D)
2 c, y ∈ Z, j ∈ {0, 1},

• u ∈ D, m < b `
g(D)

2 c, y ≤ bj(D)− 1 or y ≥ b′j(D) + βm, j ∈ {0, 1},
• u = 0, m ≥ b `

g(D)
2 c, y ≤ bj(D)− 2 or y ≥ b′j(D) + βm + 1, j ∈ {0, 1}.

Let us look at the lines one at a time.
As D is a block w.r.t. g, and 0 ∈ D, all four streets in ∂D are already present in

InitGridx. InitGridx is only influenced by the values of x at points (·, ·, 0). The streets
w.r.t. g in D are either streets w.r.t. InitGridx or are influenced by the values of x at
the upper right corners of fields w.r.t. InitGridx or the subsequent iteration steps in the
construction. These fields are entirely contained in D, again because D is a block w.r.t.
g. This is why points (·, ·, u) with u 6∈ D have no influence.
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We just looked at the influence of points in the upper right corners of fields lying
entirely in D. The streets they induce are all of lower level than the minimum level
present in ∂D; higher levels are not even considered, and thus the values of x at the
points in the second line have no influence on the equation.

The values of points with lower level do have an influence, but only if the index of
the Bernoulli–process is not too far from D; to be precice, neither left to the lower end
in the j–th coordinate–direction of D, nor farther than one street–width to the right of
the upper end of D.

Similarily, the values at the origin do not have any influence if the index of the
Bernoulli–process is too far from D; this translates as slightly loosened boundaries in
the last line.

All remaining points are contained in Ig and Jg, which contain however some of the
cases above as well. This proves that SG(x)|D = g does not depend on x|Z\(Ig∪Jg).

The superlevels of the streets in D are per definitionem bounded by b `
g
(D)
2 c. If the

equation SG(x)|D = g is to hold, it is trivially true that

there is no street w.r.t. SG(x) of higher superlevel than b`
g
(D)

2
c in D. (3.5)

This condition (3.5) is equivalent to

x
(
y, 2m+ j, 0

)
= 0 for all bj(D)− 1 ≤ y ≤ b′j(D) + βm,m > b`

g
(D)

2
c, j ∈ {0, 1}. (3.6)

(3.6) can be written as x|Jg ≡ 0, which can hence be seen as an equivalent to (3.5).
Finally, we have, with some non-trivial, non-random constant c,

P (X|Jg ≡ 0) =
∏

m>b`
g(B)
2 c

∏
j∈{0,1}

(1− λm)b
′
j(D)−bj(D)+βm+2

≥ c
∏
m≥1

∏
j∈{0,1}

(1− λm)βm = c
∏
m≥1

(1− λm)2βm .

This value to be larger than zero is equivalent to∑
m≥1

βm ln(1− λm) > −∞.

But

βm ln(1− λm) ∼ βm(−λm) = − m!2

(m+ 1)!2
= − 1

(m+ 1)2
,

and we can, by the finiteness of the sum, confirm positive PX|Jg -measure for 0|Jg .

Definition 3.15. We need to define some shift operators and related notations. Let
v ∈ Z2 be the vector we want to shift by.

For D ⊆ Z2, we write D + v := {u+ v | u ∈ D}.
For D ⊆ Z2, f ∈ N0

D, we define the shifted θvf ∈ N0
D+v by

(θvf)u := fu−v for all u ∈ D + v.

We also can shift elements (x, l, u) ∈ Z by

θv(x, l, u) := (x+ vl mod 2, l, u+ v).

A slightly different shift will sometimes be needed for elements of the form (x, l, 0) ∈
Z, namely one that preserves the special role of the origin:

ϑv(x, l, 0) := (x+ vl mod 2, l, 0).
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With these last two definitions at hand, we can shift the two Ig and Jg from Definition
3.13 in the standard way by

θvIg := {θv(x, l, u) | (x, l, u) ∈ Ig},
ϑvJg := {ϑv(x, l, 0) | (x, l, 0) ∈ Jg}.

Finally, we shift whole configurations x̄ ∈ {0, 1}I , I ⊆ Z by defining

θvx̄
(
(x, l, u)

)
:= x̄

(
θ−v(x, l, u)

)
, (x, l, u) ∈ θvI.

Lemma 3.16. Let D 3 0 be a block w.r.t. g ∈ N0
D, Ig, Jg from Definition 3.13. Also

take any v such that −v ∈ D. Then, Iθvg = θvIg and Jθvg = ϑvJg, and for any x ∈ {0, 1}Z ,
SG(x)|D+v = θvg implies SG(x|θvIg∪ϑvJg )|D+v = θvg.

Proof. The first two equalities are easy exercises; an important point is how ϑ· pre-
serves the special role of the origin, but at a different position relative to the shifted
box.

The second assertion then follows directly frome Lemma 3.14, which tells us that
SG(x)|D+v = θvg implies SG(x|Iθvg∪Jθvg )|D+v = θvg.

Figure 8 gives an idea of how the responsibility changes when the point of reference
(the origin) is changed. This sort of changing will be employed in Definition 3.17 in
order to create a configuration of {0, 1}Ig that yields the same outcome of the final
streetgrid’s construction, only shifted.

0

−v
0

v

Figure 8: Responsibility. If the base of some arrow is at w and the tip points to some
street of level l, then w is responsible for the emplacement of the streets of level l in D,
where D is the smallest block containing the street. The colours indicate how different

points are responsible for the same street in the shifted setting.

Definition 3.17. Take the hypotheses of Lemma 3.16. We define yet another operator
on configurations on {0, 1}Ig ,

x̄ 7→ ↗↙ x̄ :
{
ȳ ∈ {0, 1}Ig

∣∣SG(ȳ, 0|Jg )|D = g
}
→
{
ȳ ∈ {0, 1}θvIg

∣∣ SG(ȳ, 0|ϑvJg )|D+v = θvg
}
.

So, we need to define the object
(
↗↙ x̄

)
(·) for all (y, l, w) ∈ Iθvg. We do this first for a

special case of pairs (l, w), and then for the rest.
Take any block B w.r.t. g, and `g(B) ≤ l < `g(B). Recall that B + v is a block w.r.t.

θvg, and that `g(B) = `θvg(B + v) and `g(B) = `θvg(B + v). So, we can apply Definition
2.5 and obtain w ∈ D and w̃ ∈ D + v such that

• w̃ responsible in θvg for the emplacement of streets of level l in B + v, and
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• w responsible in g for the emplacement of the streets of level l in B,

which are both the only points to satisfy these conditions.
Write m := b l2c and j := l mod 2, and define, for bj(D + v)− 1 ≤ y ≤ b′j(D + v) + βm,(
↗↙ x̄

)(
(y, l, w̃)

)
:= x̄

(
(y−vj , l, w)

)
, and

(
↗↙ x̄

)(
(y, l, w+v)

)
:= x̄

(
(y−vj , l, w̃−v)

)
. (3.7)

For any other case that has not yet been covered, take l < `g(D) and w̃ ∈ D + v such
that

• w̃ is not in θvg responsible for the emplacement of the streets of level l in B̃ for
any block B̃ w.r.t. θvg, and

• w̃ − v is not responsible in g for the emplacement of the streets of level l in B for
any block B w.r.t. g;

then, with m := b l2c, j := l mod 2, we define, for bj(D + v)− 1 ≤ y ≤ b′j(D + v) + βm,(
↗↙ x̄

)(
(y, l, w̃)

)
:= x̄

(
(y − vj , l, w̃ − v)

)
.

This last definition shows that the operator↗↙ is for most of the points really just the
shift operator applied to the function x̄; only at the few points that are responsible, and
at their counterparts in the shifted set, the special definition takes effect.
↗↙does not differentiate between the streets of the initial grid and those coming from

the second step of the construction. It cares only about the responsible points for these
streets, and for the points that are resonsible once the origin has been shifted. Then,
the randomness for these streets is switched between their two responsible points.

Note that↗↙depends strongly on v and g, which gives again an implicit dependence
on D. It also depends on our choice of Ig and Jg.

Lemma 3.18. ↗↙ is well-defined, and takes indeed values in the specified codomain. It
is bijective, and probability–preserving in the sense that

P (X|Ig = x̄) = P (X|θvIg =↗↙ x̄) for all x̄ ∈ {0, 1}Ig .

Also, the following equivalence holds:

SG(x̄, 0|Jg )|D = g ⇐⇒ SG(↗↙ x̄, 0|ϑvJg )|D+v = θvg.

Proof. For the first part of the definition, we remark that if w̃ = w+v, the two definitions
in (3.7) coincide: w = w̃−v. So, the two do not contradict each other immediately. Also,
given any l, w and w̃ are, respectively, responsible for l only in B and B + v. This was
shown in Lemma 2.6. In the second part, the two bullets make sure that only cases not
yet covered by the first part are defined. So, we indeed did not commit the error of
multiply defining things.

The verification of ↗↙ x̄ ∈ {0, 1}θvIg consists in checking that the domain of ↗↙ x̄ is
contained in θvIg. Indeed, the indices y are chosen in the correct range. Also, l <
`g(B) < `g(D). Finally, w̃, w + v ∈ B + v ⊆ D + v. The same applies to the second part
of the definition.

To prove the bijectivity of↗↙=↗↙(v, g), we consider the inverse function, which is↗↙
(−v, θvg). To check that this is true, remark that the two parts of the definition of↗↙can
be inverted separately; the responsible points are just reversed, and the responsibilities
switched back. The points which are not responsible being identical, the values there
get shifted back as well.

For the preservation of probability, note that ↗↙ leaves the levels intact, and repli-
cates the same number of zeros and ones, just at different places. Then, the stationarity
of the Bernoulli–processes takes effect.
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The last statement is a consequence of the concept of switching responsibilities
described above. The operator moves the values of x̄ at any point responsible in g for
the emplacement of streets of level l in B to the point which is in θvg responsible for the
emplacement of streets of level l on B+v. If one translates the concept of responsibility
into the construcion of the streetgrid, one sees that SG(↗↙, 0|Jθvg ) reconstitutes indeed
the shifted g on the shifted domain.

The opposite inclusion follows from the above considerations on bijectivity.

Theorem 3.19. SG(X) is stationary.

Proof. We need to show the invariance of SG(X)’s finite-dimensional marginal distribu-
tions under the arbitrary shifts in Z2. Fortunately, we can restrict ourselves to distribu-
tions on boxes and shift-vectors inside these boxes: if we need a farther shift, we just
take a bigger box.

Let B 3 0 be a box, v ∈ Z2 such that −v ∈ B, and g ∈ N0
B.

In the following calculations, the first equality is due to Lemma 3.12, the second one
is true because the smallest (w.r.t. the semi-order established by the subset-relation)
block aroundB is unique. The fourth equality holds because the block property depends
only on D, and for the sixth one we apply Lemma 3.14 for one inclusion, the other one
following directly from Notation 3.11. Lemma 3.14 also implies the disjointness of Iĝ
and Jĝ leading to the independence used for the seventh equality. For the last equality,
we apply Lemma 3.18.

P
(

SG(X)|B = g
)

= P
( ⋃
D⊇B

box

{
SG(X)|B = g, D block w.r.t. SG(X)

})
=
∑
D⊇B

box

P
(

SG(X)|B = g, D is the smallest block w.r.t. SG(X) containing B
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

P
(

SG(X)|D = ĝ, D is the smallest block w.r.t. SG(X) containing B
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

P
(

SG(X)|D = ĝ, D is the smallest block w.r.t. ĝ containing B
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D is the smallest block w.r.t. ĝ containing BP
(

SG(X)|D = ĝ
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
x̄∈{0,1}Iĝ

P
(

SG(x̄, 0|Jĝ )|D = ĝ, X|Iĝ = x̄, X|Jĝ ≡ 0
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
x̄∈{0,1}Iĝ

P (X|Iĝ = x̄)P
(
X|Jĝ ≡ 0

)
1SG(x̄,0|Jĝ )|D=ĝ

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
x̄∈{0,1}Iĝ

P
(
X|θvIĝ =↗↙ x̄

)
P
(
X|ϑvJĝ ≡ 0

)
1SG(↗↙x̄,0|ϑvJĝ )|D+v=θv ĝ
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We continue by applying the bijectivity of ↗↙, and reverting the steps which lead here,
but with respect to the shifted sets.

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
ȳ∈{0,1}θvIĝ

P
(
X|θvIĝ = ȳ

)
P
(
X|ϑvJĝ ≡ 0

)
1SG(ȳ,0|ϑvJĝ )|D+v=θv ĝ

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
ȳ∈{0,1}θvIĝ

P
(

SG(ȳ, 0|ϑvJĝ )|D+v = θv ĝ,X|θvIĝ = ȳ,X|ϑvJĝ ≡ 0
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block w.r.t. ĝ containing BP
(

SG(X)|D+v = θv ĝ
)

At this point, we need to adjust the summation. We perform some trivial shift operations
and change the indices of the sums:

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D+v smallest block w.r.t. θv ĝ containing B+vP
(

SG(X)|D+v = θv ĝ
)

=
∑
D⊇B

box

∑
g̃∈N0

D+v:
g̃|B+v=θvg

1D+v smallest block w.r.t. g̃ containing B+vP
(

SG(X)|D+v = g̃
)

=
∑

D′⊇B+v
box

∑
g̃∈N0

D′ :
g̃|B+v=θvg

1D′ smallest block w.r.t. g̃ containing B+vP
(

SG(X)|D′ = g̃
)
. (3.8)

On the other hand, because −v ∈ B implies 0 ∈ B + v, we can apply Lemma 3.12 to
the following (with subsequent steps similar to the ones just performed):

P
(

SG(X)|B+v = θvg
)

= P
( ⋃
D′⊇B+v

box

{
SG(X)|B+v = θvg, D

′ block w.r.t. SG(X)
})

=
∑

D′⊇B+v
box

P
(

SG(X)|B+v = θvg, D
′ is the smallest block w.r.t. SG(X) cont. B + v

)

=
∑

D′⊇B+v
box

∑
g̃∈N0

D′ :
g̃|B+v=θvg

P
(

SG(X)|D′ = g̃, D′ is the smallest block w.r.t. SG(X) cont. B + v
)

=
∑

D′⊇B+v
box

∑
g̃∈N0

D′ :
g̃|B+v=θvg

P
(

SG(X)|D′ = g̃, D′ is the smallest block w.r.t. g̃ cont. B + v
)
,

which is equal to (3.8).

3.4 Mixing and ergodic properties

Definition 3.20. We say a family (Fu)u∈Z2 of discrete random variables on the proba-
bility space (Ω,F ,P) is mixing w.r.t. P if for any v ∈ Z2 \ 0, any finite box B ⊆ Z2, and
any realizations f1, f2 : B → R, it holds that∣∣P(F |B = f1, F |B+nv = θnvf2)−P(F |B = f1)P(F |B+nv = θnvf2)

∣∣ −−−−→
n→∞

0.
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Theorem 3.21. The streetgrid SG(X) is mixing w.r.t. P .

Proof. Take B a box. Because of the stationarity of the process SG(X), we can suppose
0 ∈ B without loss of generality. Let g ∈ N0

B. As for the shift, take v ∈ Z2 such that
v0 > 0. The case v1 > 0 can be proven analogously.

Define the cutting–event Cn as

{
∃m > b`

SG(B)

2
c∨b`

SG(B + nv)

2
c, ∃ b′0(B)+βm ≤ x ≤ b0(B+nv)−1 : X(x, 2m, 0) = 1

}
.

The meaning of this event is that between B and B + nv, there is a vertical street of
higher level than any of the streets in g and h.

The event Cn satisfies, for n ∈ N large enough,

P (Cn) = P
( ⋃
m>b `

SG(B)
2 c∨b `

SG(B+nv)
2 c

⋃
b′0(B)+βm≤x≤b0(B+nv)−1

{
X
(
x, 2m, 0

)
= 1
})

=
∑
m̂∈N0

P
( ⋃
m>m̂

⋃
b′0(B)+βm≤x≤b0(B+nv)−1

{
X
(
x, 2m, 0

)
= 1
})

P
(
b`

SG(B)

2
c ∨ b`

SG(B + nv)

2
c = m̂

)
≥
∑
m̂∈N

P
( ⋃
b′0(B)+βm̂≤x≤b0(B+nv)−1

{
X
(
x, 2m̂, 0

)
= 1
})

P
(
b`

SG(B)

2
c ∨ b`

SG(B + nv)

2
c = m̂− 1

)
=
∑
m̂∈N

(
1− (1− λm̂)nv0+b0(B)−b′0(B)−βm̂

)
P
(
b`

SG(B)

2
c ∨ b`

SG(B + nv)

2
c = m̂− 1

)
−−−−→
n→∞

1.

Cn also has the property to render independent events happening on B and B + nv:
it implies that the smallest block around B w.r.t. SG(X) and the smallest block around
B + nv w.r.t. SG(X) are disjoint, which means that different points are responsible for
the two. We hence have, with the events

G := {SG(X)|B = g} and Hv := {SG(X)|B+v = θvh},

and if we denote by Ccn the complement of Cn,

P (SG(X)|B = g,SG(X)|B+nv = θnvh)

= P (G ∩Hnv)

= P (G ∩Hnv ∩ Ccn) + P (G ∩Hnv ∩ Cn)

= P (G ∩Hnv ∩ Ccn) + P (G ∩Hnv|Cn)P (Cn)

= P (G ∩Hnv ∩ Ccn) + P (G|Cn)P (Hnv|Cn)P (Cn)

= P (G ∩Hnv ∩ Ccn) + P (G ∩ Cn)P (Hnv ∩ Cn)/P (Cn)

−−−−→
n→∞

P (G)P (H0).

Corollary 3.22. The streetgrid SG(X) is totally ergodic.
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3.5 Consequences

Corollary 3.23. The environment ω is stationary.

Proof. This is true because in order to determine every point ω(u), u ∈ Z2, the same
function is applied to the SG–values around u in a local and stationary manner, and
because SG(X) is stationary.

Corollary 3.24. The environment ω is mixing.

Proof. To prove this, we would like to carry over the arguments from the proof of Theo-
rem 3.21. However there is an issue about ω (as a function of SG) not being completely
localized in the sense that in order to determine ω on a box B, one needs to know the
width of the streets present in B. Recall that only if a street has its full planned width
the biased transition probabilities are placed on it; else, the transition probabilities of
a simple random walk are used.

Fortunately, it is possible to determine what ω looks like on B by knowing SG on a
box

B
β`SG(B) := {b0(B)−β`SG(B), . . . , b1(B)−β`SG(B)}×{b′0(B)−β`SG(B), . . . , b

′
1(B)+β`SG(B)};

one migth want to think of this box as a thicker closure, with thickness β`SG(B). In other
words, ω|B is SG(B)|

B
β
`SG(B)

–measurable.

We will use this fact in the following calculations. Take g̃, h̃ ∈ (S2)B.

P
(
ω|B = g̃, ω|B+nv = θnvh̃

)
=
∑
k,l∈N

P
(
ω|B = g̃, ω|B+nv = θnvh̃, `

SG(B) = k, `SG(B + nv) = l
)

=
∑
k,l∈N

∑
g∈NBβk , h∈NBβl

P
(
ω|B = g̃, ω|B+nv = θnvh̃, `

SG(B) = k, `SG(B + nv) = l,

SG |
B
βk = g, SG |

B
βl+nv

= θnvh
)

=
∑
k,l∈N

∑
g∈NB

βk

h∈NB
βl

P

(
ω|B = g̃,

ω|B+nv = θnvh̃,

`SG(B) = k,

`SG(B + nv) = l

∣∣∣∣SG |
B
βk = g,

SG |
B
βl+nv

= θnvh

)

P
(

SG |
B
βk = g, SG |

B
βl+nv

= θnvh
)

=
∑
k,l∈N

∑
g∈NBβk , h∈NBβl

1ω(g)|B=g̃, ω(θnvh)|B+nv=θnvh̃, `g(B)=k, `θnvh(B+nv)=l

P
(

SG |
B
βk = g, SG |

B
βl+nv

= θnvh
)

−−−−→
n→∞

∑
k,l∈N

∑
g∈NB

βk

h∈NB
βl

1ω(g)|B=g̃, `g(B)=k1ω(h)|B=h̃, `h(B)=lP
(

SG |
B
βk = g

)
P
(

SG |
B
βl = h

)

= P
(
ω|B = g̃

)
P
(
ω|B = h̃

)

4 Properties of the random walk

4.1 The main theorem and the idea of its proof

Theorem 4.1.
PPω0 (Xt ·~1 −−−→

t→∞
∞) > 0,
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where ω is the environment from Definition 2.8 with its corresponding probability mea-
sure P , and (Xt, P

ω
0 ) the random walk from (1.2).

A similar assertion holds with ~1 replaced by −~1. The two together imply Theorem
1.1.

Recall the heuristical description at the beginning of Subsection 3.2. The idea of
the proof of the Theorem is that the random walk Xt has positive probability to follow
the streets in the initial grid InitGrid, at least from some starting point onwards. The
starting point has positive probability to be reached directly from the origin. From there
the random walk proceeds exactly like described, except for the “going straight” part:
as it is a random walk, we have to take care of some fluctuations; but this is possible
thanks to the streets growing nicely, see Corollary 3.9.

A complete proof of Theorem 4.1 will be given later. We start with a few technical

4.2 Definitions and Lemmata

Definition 4.2. We define the hitting time of the random walk (Xt)t of the set B ⊆ Z2

as

τB := inf{t ≥ 0|Xt ∈ B},

and the hitting time of the set B′ ⊆ Z2 after hitting B as

τB,B′ = τ(B,B′) := inf{t ≥ τB |Xt ∈ B′}.

τB and τB,B′ are of course stopping times w.r.t. Gt := σ(Xs, s ≤ t) the natural filtration.

Definition 4.3. We define sequences of sets, some of which depend on the parameter
n ∈ N:

Bam(n) := {−βm
16

+ 1, . . . ,
βm
16
} × {−βm−1

16
, . . . , n},

Sam := B’twn
(
0,
βm
2
e1

)
,

Eam(n) := {u ∈ ∂Bam(n)|u1 ≤ n}, m ≥ 5.

“S” and “E” stand for “Start” and “Escape”. Furthermore, define the “Target”-set

T a
m(n) := ∂Bam(n) \ Eam(n) = B’twn

(
(−βm

16
+ 1, n+ 1), (

βm
16
, n+ 1)

)
, m ≥ 5.

The reason for the restriction to m ≥ 5 is the same as in (3.2).

Lemma 4.4. Take some sequence (nm)m≥5 such that βm
2 ≤ nm ≤ βαm+2, m ≥ 5. Also

take a sequence of starting points vm ∈ Sam, m ≥ 5. We consider the (non-random)
environment defined by setting

$a(u) :=

{
ω0
↗ if u0 ≤ 0,

ω0
↖ if u0 > 0

for all u ∈ Z2. It engenders the random walk (Xt)t≥0 in the environment $a, starting in
vm, given by the measure P$

a

vm . It now holds that P$
a

vm (τEam(nm) < τT a
m(nm)) is summable

in m, where τ· is from Definition 4.2.

A picture of the sets from Definition 4.3 and the environment of Lemma 4.4 can be
found in Figure 9.
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0

−βm−1

16

βm
2

n

−βm16 + 1 βm
16

Sam

T a
m(n)

Eam(n)

0

−βm16

βm
16 − 1

−βm8 + 1

−βm16 + 1 βm
16

3βm
16

Sbm

T b
m

Ebm

0 11βm
16

3βm
16

7βm
16 − 1

βm
4 − 2

βm
16 Scm

T c
m

Ecm

Figure 9: Escape and target sets used in Lemmata 4.4, 4.6 and 4.7, together with their
corresponding environment. Nothing is to scale.

Proof. We split the movement of Xt into its two coordinates Xt = (Xt,0, Xt,1). Xt,1 is
stochastically minorated by a random walk on Z with uniform drift to the right (and
possibility to sometimes stand still). The probability of this random walk to hit some
negative −a before wandering off towards infinity decays exponentially in a.

Also, the time to reach some positive b grows linearily in b, in the sense that there
is a positive, non-random constant c1 such that the probability of not reaching b up to
time c1b decays exponentially fast in b.

As the probabilities set in $a to go left or right are uniformly bounded away from 1,
the random walk X· will spend a nontrivial fraction of its time going left and right. This
means that there is some positive, non-random constant c2 < 1 such that the probability
that the number of times X· goes left or right up to time t is greater than c2t decays
exponentially in t.
|Xt,0| is stochastically dominated by a random walk reflected at 0 with negative drift.

Each excursion from 0 of such a reflected random walk is stochastically dominated
by a geometric random variable, and the excursions are independent; recall that the
probability of a geometric random variable to be larger than a decays exponentially in
a.

The number of excursions of |Xt,0| up to some time can be estimated very crudely
by the number of steps to the left or right up to that time.

If we put the pieces together, we find that the probability of escape to the left or right
is for large m bounded by the probability of at least one out of c2c1(βm+2)α ≥ c2c1nm
independent geometric random variables being larger than βm

16 , which can be verified
to be still exponentially small in m.

As we did not care to keep track of exact rates, we settle for a much weaker state-
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ment of summability.

Definition 4.5. We need many more similar objects as the ones in Definition 4.3:

Bbm := {−βm
8

+ 1, . . . ,
3βm
16
} × {−βm

16
, . . . ,

βm
16
− 1},

Sbm := B’twn
(
(−βm

16
+ 1)e0,

βm
16
e0

)
,

Ebm := {u ∈ ∂Bbm|u0 ≤ −
βm
16

or u1 ≤
βm
16
− 1},

Bcm := {0, . . . , 11βm
16
} × {0, . . . , βm

4
− 2},

Scm := B’twn
(
(
3βm
16

,
βm
16

), (
7βm
16
− 1,

βm
16

)
)
,

Ecm := {u ∈ ∂Bcm|u0 ≤
3βm
16
− 1 or u1 ≤

βm
4
− 2},

BAm(n) := {−βm
16
, . . . , n} × {−βm

16
+ 1, . . . ,

βm
16
},

SAm := B’twn
(
0,
βm
2
e0

)
,

EAm(n) := {u ∈ ∂BAm(n)|u0 ≤ n},

BBm := {−βm
16
, . . . ,

βm
16
− 1} × {−βm

8
+ 1, . . . ,

3βm
16
},

SBm := B’twn
(
(−βm

16
+ 1)e1,

βm
16
e1

)
,

EBm := {u ∈ ∂BBm|u0 ≤
βm
16
− 1 or u1 ≤ −

βm
16
},

BCm := {0, . . . , βm+1

4
− 2} × {0, . . . , βm+1

2
+

3βm
16
},

SCm := B’twn
(
(
βm
16
,

3βm
16

), (
βm
16
,

7βm
16
− 1)

)
,

ECm := {u ∈ ∂BCm|u0 ≤
βm+1

4
− 2 or u1 ≤

3βm
16
− 1}, m ≥ 5.

The target sets are

T †m := ∂B†m \ E†m, † ∈ {“ b”,“ c”,“ B”,“ C”},
T A
m(n) := ∂BAm(n) \ EAm(n), m ≥ 5, n ∈ N,

and they compute as

T b
m = B’twn

(
(−βm

16
+ 1,

βm
16

), (
3βm
16

,
βm
16

)
)
,

T c
m = B’twn

(
(
3βm
16

,
βm
4
− 1), (

11βm
16

,
βm
4
− 1)

)
,

T A
m(n) = B’twn

(
(n+ 1,−βm

16
+ 1), (n+ 1,

βm
16

)
)
,

T B
m = B’twn

(
(
βm
16
,−βm

16
+ 1), (

βm
16
,

3βm
16

)
)
,

T C
m = B’twn

(
(
βm+1

4
− 1,

3βm
16

), (
βm+1

4
− 1,

βm+1

2
+

3βm
16

)
)
, m ≥ 5, n ∈ N.
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Visualizations of these sets can be found in Figures 9 and 10. There, also the events of
interest and the environments in the following Lemmata are shown.

Lemma 4.6. Define an environment by setting, for u ∈ Z2,

$b(u) :=

{
ω↖ if u1 < 0, u0 > 0,

ω↗ else

which engenders the random walk (Xt) starting in v under P$
b

v , v ∈ Z2. Let vm ∈ Sbm,
m ≥ 5, be an arbitrary sequence. It then holds that P$

b

vm (τEbm < τT b
m

) is summable in m.

Proof. The arguments will be quite the same as in the proof of the last Lemma.
There are four possibilities of escape to Ebm, namely

• to the south, which is exponentially becoming unlikely as the box grows with m,
because of the uniform drift to the north.

• to the west, which is exponentially becoming unlikely because of the uniform drift
pushing in the opposite direction on the western half–plane.

• to the east, which is exponentially becoming unlikely because the drift to the north
is in the eastern half–plane at least as strong as the drift to the east, which means
that the linear speed of X·,1 is at least the same as the one of X·,0. With the box
growing large, even if X· starts at the easternmost possible point βm

16 e0, by the

time X·,1 reaches βm
16 , X·,0 will not have reached 3βm

16 + 1.

• to the horizontal piece of ∂Ba in the northern west, which is exponentially be-
coming unlikely because the drift to the north provides that the probability of X·,1
being smaller than 0 at the time X·,0 hits βm

16 is decaying fast.

Lemma 4.7. P
ω↗
vm (τEcm < τT c

m
) is summable in m for any arbitrary sequence vm ∈ Scm,

m ≥ 5.

Lemma 4.8. Take some sequence (nm)m≥5 such that βm
2 ≤ nm ≤ βαm+2, m ≥ 5. Also

take a sequence of starting points vm ∈ SAm, m ≥ 5. Define the environment by setting

$A(u) :=

{
ω↘ if u1 > 0,

ω↗ if u1 ≤ 0, u ∈ Z2.

It now holds that P$
A

vm (τEAm(nm) < τT A
m(nm)) is summable in m.

Lemma 4.9. Define an environment by setting, for u ∈ Z2,

$B(u) :=

{
ω↘ if u0 < 0, u1 > 0,

ω↗ else,

which engenders the random walk (Xt) starting in v under P$
B

v , v ∈ Z2. Let vm ∈ SBm be
an arbitrary sequence. It then holds that P$

B

vm (τEBm < τT B
m

) is summable in m.

Lemma 4.10. P
ω↗
vm (τECm < τT C

m
) is summable in m for any arbitrary sequence vm ∈ SCm.

The arguments needed for the proofs of these last four Lemmata are the same as in
the two preceeding proofs, which is why we omit them here.

EJP 18 (2013), paper 1.
Page 29/33

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1880
http://ejp.ejpecp.org/


A stationary, mixing counterexample

0 SAm−βm16
βm
2

n

−βm16 + 1

βm
16

T A
m(n)

EAm(n)

0−βm16
βm
16 − 1

−βm8 + 1

−βm16 + 1

βm
16

3βm
16

SBm T B
mEBm

0

SCm

βm
16

3βm
16

7βm
16 − 1

βm+1

4 − 2

βm+1

2 + 3βm
16

T C
m

ECm

Figure 10: Escape and target sets used in Lemmata 4.8, 4.9 and 4.10.

4.3 Proof of the Theorem

We prove Theorem 4.1 by showing that the random walk has positive probability to
hit a certain sequence of target sets leading to infinity in a prescribed order, while not
hitting the succession of escape–sets we define at the same time. The sets will be based
on the ones who have just been treated in the Lemmata 4.4, 4.6, 4.7, 4.8, 4.9 and 4.10.

Definition 4.11. We will shift the sets defined in Definition 4.3 by the vectors

Oa
m := �Lane+,+(B1

m−1) + (
βm
4
,−βm−1

16
+ 1),

Ob
m := �Lane+,+(B0

m) + e1,

Oc
m := �Lane+,+(B0

m) + (−βm
4

+ 1, 1),

OA
m := �Lane+,+(B0

m) + (−βm
16

+ 1,
βm
4

),

OB
m := �Lane+,+(B1

m) + e0,

OC
m := �Lane+,+(B1

m) + (1,−βm
4

+ 1),m ≥ 5;
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“O” stands for the shifted “Origin”.
Also define

nam := (�Lane+,+(B0
m))1 − (�Lane+,+(B1

m−1))1 +
βm−1

16
− 1,

nAm := (�Lane+,+(B1
m))0 − (�Lane+,+(B0

m))0 +
βm
16
− 1, m ≥ 5.

The next lemma shows how each shifted target set coincides with the next shifted
starting set.

Lemma 4.12.

T a
m(nam) +Oa

m = Sbm +Ob
m,

T b
m +Ob

m = Scm +Oc
m,

T c
m +Oc

m = SAm +OA
m,

T A
m(nAm) +OA

m = SBm +OB
m,

T B
m +OB

m = SCm +OC
m,

T C
m +OC

m = Sam+1 +Oa
m+1.

Proof. We prove the first line, the others being similar.

T a
m(nam) +Oa

m

= B’twn
(
(−βm

16
+ 1, nam + 1), (

βm
16
, nam + 1)

)
+ �Lane+,+(B1

m−1) + (
βm
4
,−βm−1

16
+ 1)

= B’twn
(
(−βm

16
+ 1, (�Lane+,+(B0

m))1 − (�Lane+,+(B1
m−1))1 +

βm−1

16
),

(
βm
16
, (�Lane+,+(B0

m))1 − (�Lane+,+(B1
m−1))1 +

βm−1

16
)
)

+ �Lane+,+(B1
m−1) + (

βm
4
,−βm−116

8
+ 1)

= B’twn
(
((�Lane+,+(B1

m−1))0 +
βm
4
− βm

16
+ 1, (�Lane+,+(B0

m))1 + 1),

((�Lane+,+(B1
m−1))0 +

βm
4

+
βm
16
, (�Lane+,+(B0

m))1 + 1)
)

= B’twn
((

(�Lane+,+(B0
m))0 −

βm
16

+ 1, (�Lane+,+(B0
m))1 + 1

)
,(

(�Lane+,+(B0
m))0 +

βm
16
, (�Lane+,+(B0

m))1 + 1
))

= B’twn
(
(−βm

16
+ 1)e0,

βm
16
e0

)
+ �Lane+,+(B0

m) + e1 = Sbm +Ob
m.

Proof of Theorem 4.1. Out of convenience, we set

T †m := T †m(n†m), E†m := E†m(n†m), B†m := B†m(n†m), † ∈ {“a”,“A”}, m ≥ 5,

and ABC := {“a”,“b”,“c”,“A”,“B”,“C”}. Also define the initial target– and escape–sets

T 0 := SaM+1Oa
M+1 and E0 :=

(
∂ B’twn(0, �T 0 − e0)

)
\ T 0.

The event

{τT 0 < τE0} ∩
⋂

m≥M+1

⋂
†∈ABC

{
τ(S†m +O†m, T †m +O†m) < τ(S†m +O†m, E†m +O†m)

}
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implies Xt · ~1 → ∞, t → ∞: it describes the path of a random walk that hits a target
set, from this target set moves to the next target set, and so on. As, roughly speaking,
these target sets “lead to infinity in the direction of the vector ~1 = (1, 1)”, they help
describing a path of a random walk the scalar product with ~1 of which is diverging to
+∞. A picture of a piece of such a path with the corresponding target sets is available
in Figure 11.

T a
m +Oa

m
T b
m +Ob

m

T c
m +Oc

m

T A
m+1 +OA

m

T B
m+1 +OB

m

T C
m+1 +OC

m

Figure 11: Target areas. The path has positive probability to hit them in that order.

With the help of Lemma 4.12, we can successively apply the strong Markov property
for X·, and see that P –a.s.,

Pω0 (Xt ·~1 −−−→
t→∞

∞)

≥ Pω0
(
{τT 0 < τE0} ∩

⋂
m≥M+1

⋂
†∈ABC

{
τ(S†m +O†m, T †m +O†m) < τ(S†m +O†m, E†m +O†m)

})

= Pω0
(
τT 0 < τE0

) ∏
m≥M+1

∏
†∈ABC

Pω0

(
τ
(
S†m +O†m, T †m +O†m

)
< τ

(
S†m +O†m, E†m +O†m

))
.

Because of the ellipticity of the random environment, and because M from (3.2) is P –
a.s. finite, the first probability on the right hand side is strictly larger than 0.

The product being larger than 0 is thus equivalent to∑
†∈ABC

∑
m≥M+1

Pω0

(
τ
(
S†m +O†m, T †m +O†m

)
> τ

(
S†m +O†m, E†m +O†m

))
<∞.

The case “=” cannot occur because the target– and escape–sets are disjoint. Hence,
what we need to show is the P –almost sure summability in m of

Pω0

(
τ
(
S†m +O†m, E†m +O†m

)
< τ

(
S†m +O†m, T †m +O†m

))
, † ∈ ABC .

Let us look at the case † = “b”. Note that Xt ∈ Bbm +Ob
m for all

t ∈
{
τ
(
Sbm +Ob

m

)
, . . . ,

[
τ
(
Sbm +Ob

m, T b
m +Ob

m

)
∧ τ
(
Sbm +Ob

m, Ebm +Ob
m

)]
− 1
}
.
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Also, ω(u) = (θOb
m
$b)(u) for all u ∈ Bbm + Ob

m, where $b is the one defined in Lemma
4.6. This is true because of the placements of Ob

m, and Corollary 3.9.
So, the probability is the same as the one in Lemma 4.6, which yields summability.
The other cases in ABC can be treated the same way using Lemmata 4.4, 4.7, 4.8,

4.9 and 4.10; for “a” and “A”, we need to remark that (nam)m and (nAm)m satisfy the
necessary conditions.
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