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Abstract

We consider the nonlinear stochastic heat equation in one dimension. Under some
conditions on the nonlinearity, we show that the "peaks" of the solution are rare,
almost fractal like. We also provide an upper bound on the length of the "islands",
the regions of large values. These results are obtained by analyzing the correlation
length of the solution.
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1 Introduction

Let Ẇ := {Ẇt(x)}t>0,x∈R denote space-time white noise, and consider the nonlinear
stochastic heat equation,

∂

∂t
ut(x) =

1

2

∂2

∂x2
ut(x) + σ(ut(x))Ẇt(x), (1.1)

for (t , x) ∈ (0 ,∞) × R, subject to u0(x) := 1 for all x ∈ R. Throughout we consider
only the case that σ : R → R is Lipschitz continuous. In that case, the theory of Walsh
[13] explains the meaning of (1.1) and shows that (1.1) has a unique strong solution
that is continuous for all (t , x) ∈ [0 ,∞) × R. The goal of this article is to make some
observations about the geometric structure of the random function x 7→ ut(x) for t > 0

fixed.

Remark 1.1. Since u0(x) is constant, it is possible to prove that the law of ut(x) does
not depend on x [4].

Remark 1.2. We have chosen the initial condition u0(x) := 1 to simplify the exposition.
All of the following results will continue to hold—after we make a few minor modifica-
tions on the assumptions—for measurable functions u0 that are bounded away from 0

and∞; that is 0 < infx∈R u0(x) < supx∈R u0(x) <∞.
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Correlation-length bounds and estimates for islands in SPDEs

Although we will have some results that are valid for (1.1) in general, we are mainly
motivated by the following two special cases of Eq. (1.1):

Case 1. There exists q > 0 such that σ(z) = qz for all z ∈ R. In this case, (1.1) is known
as the parabolic Anderson model ;

Case 2. 0 < infz∈R σ(z) 6 supz∈R σ(z) < ∞. An important special case of this case
occurs when σ is a constant; then (1.1) is the linear SPDE whose solution is a
stationary Gaussian process.

Before we proceed, we mention that the parabolic Anderson model of Case 1 has
been well studied in literature, in part because of its connection to the KPZ equation
[1, 9]. In fact, log u is the “Cole–Hopf solution” to the KPZ equation.

Let log+(x) := log(x ∨ e) and define, for all R,α > 0,

gα(R) :=

{
exp

(
α(log+R)2/3

)
in Case 1,

α(log+R)1/2 in Case 2.
(1.2)

[“g” stands for “gauge.”] Our recent effort [3] implies that, for both Cases 1 and 2, for
all t > 0 fixed there exist α∗, α∗ > 0 such that with probability one,

lim sup
R→∞

ut(R)

gα(R)
=

{
0 if α > α∗,

∞ if α ∈ (0 , α∗).
(1.3)

In other words, the “exceedence set,”

Eα(R) := {x ∈ [0 , R] : ut(x) > gα(R)} , (1.4)

is a.s. empty for all R � 1 if α > α∗; and Eα(R) is a.s. unbounded for all R > 1 if
α ∈ (0 , α∗).

Next, let us observe that the rescaled version R−1Eα(R) of Eα(R) is a random subset
of [0 , 1]. One of our original aims was to show that R−1Eα(R) “converges” to a random
fractal of Hausdorff dimension d(α) ∈ (0 , 1) as R → ∞ when α is sufficiently small. So
far we have not been able to do this, though as we will soon see we are able to furnish
strong evidence in favor of this claim.

If R−1Eα(R) did look like a random fractal subset of [0 , 1] with Hausdorff dimension
d(α) ∈ (0 , 1), then we would expect its Lebesgue measure to behave as R−d(α)+o(1) as
R→∞. Or stated in more precise terms, we would expect that if α is sufficiently small,
then

lim
R→∞

log |Eα(R)|
logR

= 1− d(α) a.s. (1.5)

[This is an example of the so-called “codimension argument” in fractal analysis.] The
first theorem of this paper comes close to proving this last assertion.

Theorem 1.3. If either Case 1 or Case 2 holds, then there exists α0 > 0 such that for
all α ∈ (0 , α0),

0 < lim inf
R→∞

log |Eα(R)|
logR

6 lim sup
R→∞

log |Eα(R)|
logR

< 1 a.s. (1.6)

The results of [3] imply that Eα(R) is eventually empty a.s. when α > α∗. Therefore,
α0 cannot be made to be arbitrarily large.

Choose and fix a time t > 0. Given two numbers 0 < a < b, we say that a closed
interval I ⊂ R+ is an (a , b)-island [at time t] if:
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Correlation-length bounds and estimates for islands in SPDEs

1. ut(inf I) = ut(sup I) = a;

2. ut(x) > a for all x ∈ int(I); and

3. supx∈I ut(x) > b.

Define
Jt(a , b ;R) := the length of the largest (a , b)-island I ⊂ [0 , R]. (1.7)

The following result shows that the relative length of the largest “tall island” in [0 , R]—
also known as “intermittency islands”—is vanishingly small as R → ∞. Let us expand
on the idea of intermittency further.

Speaking informally and merely phenomenologically, we can think of intermittency
in the present context as the appearance of rare and very tall peaks in the space-time
profile of the solution u to the stochastic heat equation. This picture is made more
precise using the concept of mathematical intermittency [1, 7] which is a certain growth
condition on the rate of temporal growth of the moments of the solution. An application
of the ergodic theorem then shows that mathematical intermittency implies that most
of the contribution to successive moments is from decreasingly smaller regions (the
so called intermittency islands) in space [1]. Intermittency is an asymptotic (in time)
property, but the following result implies that (relatively small) islands begin to form at
quite early stages in time. [In physical terms, our work shows that the stochastic heat
equation exhibits a great deal of “hysteresis.”]

Theorem 1.4. Assume that σ(1) 6= 0. Then for every t > 0 and all (a , b) such that
1 < a < b and P{ut(0) > b} > 0,

lim sup
R→∞

Jt(a , b ;R)

|logR|2
<∞ a.s. (1.8)

If Case 2 occurs, then the preceding can be improved to the following:

lim sup
R→∞

Jt(a , b ;R)

logR · |log logR|3/2
<∞ a.s. (1.9)

Let us make a few remarks before we continue our introduction.

Remark 1.5. 1. During the course of the proof of this theorem, we will establish the
existence of numbers b > 1 that satisfy P{ut(0) > b} > 0; therefore, the result
always has content.

2. The condition σ(1) 6= 0 is necessary. Indeed, if σ(1) were zero, then ut(x) = 1 for
all t > 0 and x ∈ R [this is because u0 ≡ 1].

Theorems 1.3 and 1.4 both rely on a fairly good estimation of “correlation length”
for the random field x 7→ ut(x). There are many ways one can understand the loose
term, “correlation length.” The following is a rigorous definition that suits the purposes
of the present work. As far as we know, this definition is new.

Let {Xx}x∈R be a random field on (Ω ,F ,P), and let L(`) denote the collection of all
weakly stationary random fields {Yx}x∈R on (Ω ,F ,P) such that Y has “lag” `; that is,
Yz is independent of (Yxi)

N
i=1 for all z, x1, . . . , xN ∈ R that satisfy min16j6N |z − xj | > `.

Then, the correlation length of X is the function

LX(ε ; δ) := inf

{
` > 0 : inf

Y ∈L(`)
sup
x∈R

P{|Xx − Yx| > δ} < ε

}
, (1.10)

where ε, δ > 0 can be thought of as fidelity parameters. Informally speaking, when
we find LX(ε ; δ), we seek to find the smallest lag-length ` for which there exists a
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coupling of X with a lag-` process Y , such that the coupling is good to within δ units
with probability at least 1− ε.

The following is the main technical result of this paper. It states that the correlation
length of the solution to (1.1) is logarithmic in the fidelity parameter ε; and the fidelity
parameter δ can be as small as exp(−K |log ε|2/3) for a universal constant K = K(t) ∈
(0 ,∞).

Theorem 1.6. For every t > 0, there exists a positive and finite constant K := K(t),
such that as ε ↓ 0,

Lut

(
ε ; e−K|log ε|2/3

)
= O (|log ε|) . (1.11)

If σ is a bounded function, then in fact there exists θ ∈ (0 , 1) such that

Lut

(
ε ;

[
log |log ε|
|log ε|

]θ)
= O

(
[log |log ε|]3/2

)
(ε ↓ 0). (1.12)

Our notion of correlation length can be stronger than other, somewhat simpler, no-
tions of this general type. For instance, consider the following: Let {Xx}x∈R be a
random field, and define L∗X(ε ; δ) to be the smallest ` > 0 for which we can find—on
some probability space—a coupling (X∗ , Y ∗), where X∗ has the same law as X and Y ∗

has lag `, and supx∈R P{|X∗x − Y ∗x | > δ} < ε. Since L∗X(ε ; δ) 6 LX(ε ; δ), Theorem 1.6
readily implies that

L∗ut

(
ε ; e−K|log ε|2/3

)
= O(|log ε|) (ε ↓ 0). (1.13)

Open Problem. Is it true that L∗ut(ε ; 0) = O(|log ε|)? It is easy to see that this is equiv-
alent to asking whether or not x 7→ ut(x) is exponentially mixing.

Although we do not know how to prove that x 7→ ut(x) is exponentially mixing, we
are able to prove that the coupling in Theorem 1.6 is “good on all scales.” In order
to interpret this, note that if ` := Lut(ε; δ) then we can basically approximate ut well
enough by a random field Y in L(`) such that Y replicates ut to within δ units. According
to (1.11) this can be done—with ` = O(|log ε|)—with a value of δ that has the form

exp{−K |log ε|2/3} for some K := K(t). Thus, for example, if we wanted to know how
small x 7→ ut(x) can possibly get, then we could study instead Y provided that “how

small” means “exp{−K |log ε|2/3} or more.” Our next result shows that this notion of
“how small” is generic [and not at all a restriction]. Our proof borrows several important
ideas from a paper by Mueller and Nualart [12].

Theorem 1.7. If σ(0) = 0, then for every t, a > 0 and x ∈ R,

lim
ε↓0

1

|log ε|
log P

{
ut(x) 6 e−a|log ε|2/3

}
= −∞. (1.14)

Throughout this paper, “log” denotes the natural logarithm, pt(x) denotes the stan-
dard heat kernel for (1/2)∆,

pt(x) :=
e−x

2/(2t)

(2πt)1/2
(t > 0 , x ∈ R), (1.15)

and ‖Z‖k := {E(|Z|k)}1/k denotes the Lk(P)-norm of a random variable Z ∈ Lk(P)

(k ∈ [1 ,∞)).
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Let us conclude the Introduction with a brief outline of the paper. In Section 2 we
prove Theorem 1.6, whose corollaries, Theorems 1.3 and 1.4, are proved respectively
in §3 and §4. In a final Section 5 we state and prove an improved version of Theorem
1.7, which might turn out to be a first step in answering the mentioned Open Problem.

2 Proof of Theorem 1.6

First of all, recall that the solution to the stochastic PDE (1.1) is the unique continu-
ous solution to the following random evolution equation [13]:

ut(x) = 1 +

∫
(0,t)×R

pt−s(y − x)σ (us(y)) W (dsdy). (2.1)

For all β > 0, let U (β) solve the following closely-related stochastic evolution equation:

U
(β)
t (x) = 1 +

∫
(0,t)×[x−

√
βt,x+

√
βt]

pt−s(y − x)σ
(
U (β)
s (y)

)
W (dsdy). (2.2)

It has been observed in [3] that the same methods as in [13] can be used to show
that there exists a unique continuous random field U (β) that solves the preceding. The
following result of [3] shows that U (β) ≈ u if β is large.

Lemma 2.1 ([3, Lemma 4.2]). For every T > 0 there exists finite and positive constants
ai [i = 1, 2] such that for all β > 0, and for all real numbers k ∈ [1 ,∞),

sup
t∈(0,T )
x∈R

E

(∣∣∣ut(x)− U (β)
t (x)

∣∣∣k) 6 ak1ea1k[k
2−a2β]. (2.3)

It is easy to adapt the arguments of [3] to improve the preceding in the case that σ
is bounded. Because all of the key steps are already in Ref. [3], we state the end result
without proof.

Lemma 2.2. Suppose that σ is bounded. Then for every T > 0 there exists finite and
positive constants āi [i = 1, 2] such that for all β > 0, and for all real numbers k ∈ [1 ,∞),

sup
t∈(0,T )
x∈R

E

(∣∣∣ut(x)− U (β)
t (x)

∣∣∣k) 6 āk1eā1k[log k−ā2β]. (2.4)

The process U (β) is useful only as a first step in a better coupling, which we describe
next. Define U

(β, 0)
t (x) := 1. Then, once U (β,l) is defined [for some l > 0] we define

U (β,l+1) as follows:

U
(β, l+1)
t (x) := 1 +

∫
(0,t)×[x−

√
βt,x+

√
βt]

pt−s(y − x)σ
(
U (β, l)
s (y)

)
W (dsdy). (2.5)

In other words, U (β,l) is the lth step in the Picard-iteration approximation to U (β). The
following result of [3] tells us that if l is large then U (β,l) ≈ U (β).

Lemma 2.3 ([3, Eq. (4.22) & Lemma 4.4]). For every T > 0 there exists finite and
positive constants b1 and b2 such that for all β > 0, all integers n > 0, and for all real
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numbers k ∈ [1 ,∞),

sup
t∈(0,T )
x∈R

E

(∣∣∣U (β)
t (x)− U (β,n)

t (x)
∣∣∣k) 6 bk1eb1k[k

2−b2n]. (2.6)

Furthermore, U (β,n)
t ∈ L(2n

√
βt) for all β, t > 0 and n > 0.

Once again, we state—without proof—an improvement in the case that σ is bounded.

Lemma 2.4. Suppose that σ is bounded. Then, for every T > 0 there exists finite and
positive constants b̄1 and b̄2 such that for all β > 0, all integers n > 0, and for all real
numbers k ∈ [1 ,∞),

sup
t∈(0,T )
x∈R

E

(∣∣∣U (β)
t (x)− U (β,n)

t (x)
∣∣∣k) 6 b̄k1eb̄1k[log k−b̄2n]. (2.7)

Now we are ready to establish Theorem 1.6.

Proof of Theorem 1.6. Choose and fix t > 0. The final assertion of Lemma 2.3 implies
that the process x 7→ Yx := U

(β,n)
t (x) is in L(2n

√
βt) for every β > 0 and n > 0. There-

fore, we may apply Lemmas 2.1 and 2.3 in conjunction with Chebyshev’s inequality to
see that for all k ∈ [1 ,∞) and δ > 0,

inf
Y ∈L(2n

√
βt)

sup
x∈R

P {|ut(x)− Yx| > δ} 6 (2c1/δ)
kec1k[k2−c2(β∧n)], (2.8)

where c1 := max{a1 , b1}, c2 := min{(a1a2)/c1, (b1b2)/c1} do not depend on (β , n , k , δ).
Now we choose β = n := 1 + b(2/c2)k2c in order to find that there exists c̄ ∈ (1 ,∞) such
that for all k sufficiently large,

inf
Y ∈L(c̄k3)

sup
x∈R

P {|ut(x)− Yx| > δ} 6 δ−ke−2k3/c̄. (2.9)

Because c̄ does not depend on δ, we can set δ := exp(−k2/c̄) to deduce from the preced-
ing that for every ν ∈ (0 , 1) fixed,

Lut

(
e−k

3/c̄ ; e−k
2/c̄
)
6 c̄k3, (2.10)

uniformly for all k sufficiently large. It follows that if ε := exp(−k3/c̄), then

Lut

(
ε ; exp

{
−|log ε|2/3

c̄1/3

})
6 c̄2 |log ε| . (2.11)

In the case that ε is a general positive number, (1.11) follows from the preceding and a
simple monotonicity argument.

In the case that σ is bounded, we proceed similarly as in the general case, but
apply Lemmas 2.2 and 2.4 in place of Lemmas 2.1 and 2.3, and then select the various
parameters accordingly. In this way, we find the following improvement to (2.8) in the
case that σ is bounded:

inf
Y ∈L(2n

√
βt)

sup
x∈R

P {|ut(x)− Yx| > δ} 6 (2c′1/δ)
kec
′
1k[log k−c′2(β∧n)], (2.12)

where c′1, c
′
2 do not depend on (β , n , k , δ). Now we choose β = n := 1 + b(2/c′2) log kc in

order to deduce the existence of a constant c′′ ∈ (1 ,∞) such that for all suffiently large
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k,
inf

Y ∈L(c′′[log k]3/2)
sup
x∈R

P {|ut(x)− Yx| > δ} 6 δ−ke−2k log k/c′′ . (2.13)

This is our improvement to (2.9) in the case that σ is bounded. In particular, for all k
large,

inf
Y ∈L(c′′[log k]3/2)

sup
x∈R

P
{
|ut(x)− Yx| > k−1/c′′

}
6 e−k log k/c′′ . (2.14)

If ε := exp{−(1/c′′)k log k} is small, then k ≈ c′′ |log ε| / log |log ε| and (1.12) follows from
(2.14) for every θ ∈ (0 , 1/c′′). We apply monotonicity in order to deduce (1.12) for
general [small] ε.

3 Proof of Theorem 1.3

Before we proceed with the proof we need a few technical results. Suppose Y ∈ L(`)

for some ` > 0, and define, for all integers n > 1 and real numbers α > 0,

Yα(n) :=

∫ n`

0

1{Yx>Ḡ((n`)−α)} dx, (3.1)

where
Ḡ(a) := sup {b > 0 : P{Y0 > b} > a} . (3.2)

Lemma 3.1. Assume that Y ∈ L(`) for some ` > 1. Then for every integer k > 3 there
exists a universal constant Ck ∈ (0 ,∞) such that for all α ∈ (0 , 1/2) and n > 2,∥∥∥∥ Yα(n)

EYα(n)
− 1

∥∥∥∥
k

6 Ck ·
`α

n
1
2−α

. (3.3)

Proof. We can write

Yα(n) :=

n−1∑
j=0

Zj , where Zj :=

∫ (j+1)`

j`

1{Yx>Ḡ((n`)−α)} dx. (3.4)

Define

S(o)
n :=

∑
062j+16n−1

(Z2j+1 − EZ2j+1) , S(e)
n :=

∑
062j6n−1

(Z2j − EZ2j) . (3.5)

It follows that
Yα(n)− EYα(n) = S(o)

n + S(e)
n . (3.6)

The processes S(o) and S(e) are mean-zero random walks, and hence martingales [in
their respective filtrations]. Define

X
(x)
k := S

(x)
k − S

(x)
k−1 (k > 1) (3.7)

to be the increments of S(x) for x ∈ {o , e}, and G(x)
k the sigma-algebra generated by

{X(x)
j }kj=1. Because Var(Z1) 6 E(Z2

1 ) 6 `E(Z1) 6 `2, |X(x)
j | < ` for every j, and since

` > 1, an application of Burkholder’s inequality [2] (specifically, see Hall and Heyde
[8, Theorem 2.10, p. 23]) implies that for every k > 1 there exists a universal constant
ck ∈ (0 , 1) such that for every k > 2 and n > 2 and x ∈ {o , e},

ckkE
(∣∣S(x)

n

∣∣k) 6 nk/2`k + `k 6 2nk/2`k. (3.8)

EJP 17 (2012), paper 102.
Page 7/15

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2429
http://ejp.ejpecp.org/


Correlation-length bounds and estimates for islands in SPDEs

The lemma follows from the above, (3.6), and Minkowski’s inequality together with the
observation that EYα(n) > (n`)1−α.

Proof of Theorem 1.3. Throughout the demonstration, we choose and fix a time t > 0.

Consider first Case 1. According to [3], there exist constants A1, . . . , A4 ∈ (0 ,∞)

such that for all λ > 1 and x ∈ R,

A1e−A2(log λ)
3/2

6 P {ut(x) > λ} 6 A3e−A4(log λ)
3/2

. (3.9)

The preceding probability does not depend on x ∈ R, thanks to translation invariance
[3].

According to Theorem 1.6, for every m > 1 there exists c ∈ (0 ,∞) such that for all
R large enough, we can find a process Y ∈ L(c logR) such that

P {|ut(x)− Yx| > 1} 6 const ·R−m. (3.10)

In particular, we can choose Yx = U
(β,n)
t (x) for appropriate β and n so that the preceding

probability does not depend on x ∈ R (see the details of the proof of Theorem 1.6). Note,
in particular, that

P

{∫ R

0

1{|ut(x)−Yx|>1} dx > 1

}
6 E

(∫ R

0

1{|ut(x)−Yx|>1} dx

)
6 const ·R1−m.

(3.11)

For all α ∈ (0 , 1) and R large enough,

P
{
Yx > eα(logR)

2/3
}
6 P

{
ut(x) > e(α/2)(logR)

2/3
}

+ const ·R−m

6 A3R
−A4(α/2)

3/2

+ const ·R−m

6 const ·R−A4(α/2)
3/2

,

(3.12)

provided that m > A4. Similarly,

P
{
Yx > eα(logR)

2/3
}
> A1R

−A2(2α)
3/2

− const ·R−m

> const ·R−A2(2α)
3/2

.

(3.13)

provided that m > (2A2)3/2. We combine the preceding two bounds, and then relabel
α to see that there exist B1, B2, B3, B4 ∈ (0 ,∞) and α0 ∈ (0 , 1/4) such that for all α ∈
(0 , α0),

B1eB2(α logR)
2/3

6 −1 + Ḡ(R−α) 6 1 + Ḡ(R−α) 6 B3eB4(α logR)
2/3

, (3.14)

where Ḡ was defined in (3.2). According to (3.11),

P

{∫ R

0

1{ut(x)>1+Ḡ(R−α)} dx > 1 +

∫ R

0

1{Yx>Ḡ(R−α)} dx

}
6 const ·R1−m,

(3.15)
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and

P

{∫ R

0

1{ut(x)>−1+Ḡ(R−α)} dx 6 −1 +

∫ R

0

1{Yx>Ḡ(R−α)} dx

}
6 const ·R1−m.

(3.16)

We emphasize that“const” does not depend on R in the previous two displays. We may
apply Lemma 3.1 with ` := c logR, n := R/` and Yα(n) =

∫ R
0

1{Yx>Ḡ(R−α)} dx to see that
for all k > 2, R sufficiently large,

P

{∣∣∣∣∣
∫ R

0

1{Yx>Ḡ(R−α)}

EYα(n)
dx− 1

∣∣∣∣∣ > R−α

}
6 const · (logR)k/2

Rk(1−4α)/2
. (3.17)

Let us pause and recall that α < α0 < 1/4, so that the right-hand side is at most R−2

provided that we have chosen k sufficiently large. We also note that there exists γ ∈
(0 , 1) such that

R1−α 6 EYα(n) 6 R1−αγ , (3.18)

for all sufficiently large R; see (3.9) and (3.12). Therefore, we can combine (3.14),
(3.15), and (3.16), together with the Borel–Cantelli lemma to see that as long as α0

were selected sufficiently small,

0 < lim inf
R→∞
R∈Z

log |Eα(R)|
logR

6 lim sup
R→∞
R∈Z

log |Eα(R)|
logR

< 1 a.s. (3.19)

A monotonicity argument finishes the proof for Case 1.

Case 2 is proved similarly, but we apply the following estimate [3] in place of (3.9):
C1 exp(−C2λ

2) 6 P{ut(x) > λ} 6 C3 exp(−C4λ
2) (for λ > 1). We omit the details.

4 Proof of Theorem 1.4

First of all, let us note that the conditions of the theorem are non vacuous. In other
words, we need to prove that there exists b > 1 such that P{ut(0) > b} > 0. Because
Eut(0) = 1, it follows that there exists b > 1 such that P{ut(0) > b} > 0. Suppose to
the contrary that P{ut(0) > 1} = 0. Then, ut(0) is a.s. equal to 1. It follows that that
the stochastic integral in (2.1) vanishes a.s. for x = 0. The corresponding quadratic
variation must too; that is,∫ t

0

ds

∫ ∞
−∞

dy [pt−s(y)σ (us(y))]
2

= 0 a.s. (4.1)

Since the heat kernel never vanishes, we find that σ (us(y)) = 0 for almost all (s , y) ∈
(0 , t) ×R, whence for all (s , y) ∈ (0 , t) ×R by continuity. This is a contradiction since
u0 ≡ 1. Therefore, there exists b > 1 such that P{ut(0) > b} > 0. Now we proceed with
our proof of the bulk of Theorem 1.4.

Theorem 1.4 is a simple consequence of Theorem 1.6 together with ideas that are
borrowed from a classical paper by Erdős and Rényi [6] on the length of the longest run
of heads in an infinitely-long sequence of independent coin tosses.

Choose and fix two integers R,m � 1 and a real δ ∈ (0 , 1) small enough that a −
2δ > 1 and P{ut(0) > b + 2δ} > 0. According to Theorem 1.6 we can find a constant
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c ∈ (0 ,∞)—independent of R—and a random field Y ∈ L(c logR) such that

P {|ut(x)− Yx| > δ} 6 const

Rm
. (4.2)

In fact, the field Y can be chosen so that the above probability does not depend on x

(see the proof of Theorem 1.6).
Define xj := cj logR for all non negative integers j, and observe that

P

{
max

06j6bR/(c logR)c

∣∣ut(xj)− Yxj ∣∣ > δ

}
6 const ·R1−m. (4.3)

Let us call the index j “good” if Yxj , Yxj+2 < a − δ and Yxj+1 > b + δ. Otherwise j is
deemed “bad.” Clearly,

p := P {j is good}

= (P {Y0 < a− δ})2 · P {Y0 > b+ δ}

>
(

P{ut(0) < a− 2δ} − c

Rm

)2

·
(

P{ut(0) > b+ 2δ} − c

Rm

)
.

(4.4)

We may observe that p does not depend on j. Moreover, P{ut(0) < a − 2δ} ∧ P{ut(0) >

b+2δ} > 0 because of the choice of (b , δ) and the fact that Eut(0) = 1 < a−2δ. Therefore,
we may choose R large enough to ensure that p > 0. note that we may also choose m
independently of R� 1.

Because
P {j , j + 3 , . . . , j + 3n are all bad} = (1− p)n, (4.5)

it follows that

P

{
∃ 0 6 j 6

⌊
R

c logR

⌋
: j , j + 3 , . . . , j + 3bγ logRc are all bad

}
6 const ·R−2,

(4.6)

provided that γ is a sufficiently-large universal constant. This and the Borel–Cantelli
lemma together imply that a.s. for all sufficiently-large integers R, the maximum dis-
tance between two good points is at most 6γ logR · c logR. Combined with (4.3), we
can conclude that the size of the largest island is at most 6cγ(logR)2. This proves the
theorem for Case 1.

If Case 2 holds, then we proceed exactly as we did above, but can find our random
field Y ∈ L(c[log logR]3/2) instead of L(c logR). The remaining details are omitted.

5 Proof of Theorem 1.7

We conclude by proving Theorem 1.7. Throughout we assume that

σ(0) = 0. (5.1)

[This of course includes Case 1.] In that case Mueller’s comparison principle [3, 11]
guarantees that ut(x) > 0 for all t > 0 and x ∈ R a.s. We offer the following quantitative
improvement, which clearly implies Theorem 1.7:

Theorem 5.1. For every t > 0 there exist A,B ∈ (0 ,∞) such that uniformly for all
ε ∈ (0 , 1) and x ∈ R,

P{ut(x) < ε} 6 A exp
(
−B {|log ε| · log |log ε|}3/2

)
. (5.2)
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Before we prove this result, let us state and prove two corollories to Theorem 5.1.
The corollaries are of independent interest, but also showcase the usefulness of quan-
titative estimates in this area. The first corollary identifies an upper bound for the
exponential growth of the high negative moments of ut(x) when σ(0) = 0. We believe
that the rate provided below is sharp.

Corollary 5.2. For all t > 0 and x ∈ R,

lim sup
k→∞

[(
log k

k

)3

log E
(
|ut(x)|−k

)]
<∞. (5.3)

Proof. Theorem 5.1 implies that ut(x) > 0 a.s., whence X := 1/ut(x) is well defined.
Because E(Xk) = k

∫∞
0
λk−1P{X > λ} dλ, we can divide the integral into two pieces

where: (i) λ < e; and (ii) λ > e. In this way we find that

E(Xk) 6 ek +Ak ·
∫ ∞

1

efk(s) ds, (5.4)

where
fk(s) := ks−B(s log s)

3/2. (5.5)

Laplace’s method [and/or the method of stationary phase] tells us that

log E(Xk) 6 (1 + o(1)) sup
s>1

fk(s) as k →∞. (5.6)

This is a simple maximization problem whose solution can be sketched as follows: fk(s)

is maximized at s = s0, where s0 solves (3B/2)(s0 log s0)1/2{log s0 + 1} = k. When k

is large, (3B/2)s
1/2
0 (log s0)3/2 ≈ k and consequently s0 ≈ (2/(3B))k2(log s0)−2. It then

follows immediately that sups>1 fk(s) = fk(s0) is of order (k/ log k)3, as claimed.

We mention [and verify] the second corollary to Theorem 5.1 next. This corollary
describes a bound for how close ut(x) can come to zero, as x→∞.

Corollary 5.3. For all t > 0 and all ζ > ζ0 for some ζ0 > 0,

lim
x→∞

[
eζ(log x)

2/3

ut(x)
]

=∞ a.s. (5.7)

Proof. Let γ > 0 be fixed, and define, for every n > 1, a set A(n) as the following finite
collection of points in the interval [n , 2n]:

A(n) :=
{
n+ jn−γ

}1+bn1−γc
j=0

. (5.8)

According to Theorem 5.1, for all ζ > 0 large enough,

P

{
inf

x∈A(n)
ut(x) < 3e−ζ(logn)

2/3

}
= O

(
n−2

)
as n→∞. (5.9)

According to [7, Lemma A.3], there exists an c ∈ (0 ,∞) such that for all t > 0,
k ∈ [2 ,∞), and x, y ∈ R,

E
(
|ut(x)− ut(y)|k

)
6 eck

3t|x− y|k/2. (5.10)

Therefore, a suitable form of the Kolmogorov continuity theorem [5, Theorem 4.3, p.
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10] implies that for all k ∈ [2 ,∞), η ∈ (0 , 1), and t > 0

Bk := Bk(t , η) := sup
I

E

 sup
x,y∈I
x 6=y

|ut(x)− ut(y)|k

|x− y|kη/2

 <∞, (5.11)

where “supI” denotes the supremum over all closed intervals I ⊂ R of length one.
We emphasize that we need a suitable quantitative form of Kolmogorov’s continuity
theorem because we will need the fact that because the constant exp(ck3t) in (5.10) is
independent of the interval I, we can add in the quantifier “supI” to the expectation on
the right-hand side of the preceding display.

Next we apply Chebyshev’s inequality to see that for every t > 0, η ∈ (0 , 1), and
k ∈ [2 ,∞),

P

 sup
n6x,y62n
|x−y|6n−γ

|ut(x)− ut(y)| > 2e−ζ(logn)
2/3


6
n−1∑
j=0

P

 sup
j6x,y6j+1
|x−y|6n−γ

|ut(x)− ut(y)| > e−ζ(logn)
2/3


6 Bkn

1−(kγη/2)eζk(logn)
2/3

= O
(
n1−(kγη/2)+o(1)

)
.

(5.12)

Now we choose and fix k > 4/(ηγ) so that the left-hand side of (5.12) sums [in n]. It
follows from (5.9), (5.12), and the triangle inequality that, for every ζ > 0 large enough,

∞∑
n=1

P

{
inf

x∈(n,2n)
ut(x) < e−ζ(logn)

2/3

}
<∞. (5.13)

The Borel–Cantelli lemma completes the proof.

Proof of Theorem 5.1. We are going to prove that for all n > 1,

P

{
inf

x∈(−1,1)
inf

s∈(0,t)
us(x) 6 e−n

}
6 A exp

(
−B(n log n)

3/2
)
. (5.14)

This is a stronger result than the one advertised by the statement of the theorem.
Let vt(x) denote the unique continuous solution to (1.1) subject to v0(x) = 1(−1,1)(x).

Because v0(x) 6 1 = u0(x) for all x, Mueller’s comparison principle [11] tells us that
there exists a null set off which ut(x) > vt(x). Therefore, it suffices to prove that for all
n > 1,

P

{
inf

x∈(−1,1)
inf

s∈(0,t)
vs(x) 6 e−n

}
6 A exp

(
−B(n log n)

3/2
)
. (5.15)

Set T0 := 0, and then define iteratively

Tk+1 := inf

{
s > Tk : inf

x∈(−1,1)
vs(x) 6 e−k−1

}
, (5.16)

where inf ∅ :=∞. Evidently, the Tk’s are {Ft}t>0-stopping times, where Ft denotes the
filtration generated by time t by all the values of the white noise. Without loss of any
generality we may assume that {Ft}t>0 is augmented in the usual way, so that t 7→ vt is
a C(R)-valued strong Markov process.

EJP 17 (2012), paper 102.
Page 12/15

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2429
http://ejp.ejpecp.org/


Correlation-length bounds and estimates for islands in SPDEs

Next we observe that for every k > 1,

ekvTk(x) > 1(−1,1)(x) for all x ∈ R, a.s. on {Tk <∞}. (5.17)

Therefore, we apply first the strong Markov property, and then Mueller’s comparison
principle, in order to see that the following holds a.s. on {Tk < t}:

P

(
Tk+1 − Tk 6

2t

n

∣∣∣∣ FTk)
6 P

{
inf

s∈(0,2t/n)
inf

x∈(−1,1)
v(k+1)
s (x) 6 e−k−1

}
,

(5.18)

where v(k+1) designates the unique continuous solution to (1.1) [for a different white
noise, pathwise], starting at v(k+1)

0 (x) := exp(−k)1(−1,1)(x). Note that

w
(k+1)
t (x) := ekv

(k+1)
t (x) (5.19)

solves the SPDE

∂

∂t
w

(k+1)
t (x) =

1

2

∂2

∂x2
w

(k+1)
t (x) + σk

(
w

(k+1)
t (x)

)
η

(k+1)
t (x), (5.20)

subject to w
(k+1)
0 (x) = 1(−1,1)(x), where η(k+1) is a space-time white noise for every k

and
σk(x) := ekσ

(
e−kx

)
. (5.21)

Therefore, the following holds a.s. on {Tk < t}:

P

(
Tk+1 − Tk 6

2t

n

∣∣∣∣ FTk)

6 P

 sup
x∈(−1,1)
s∈(0,2t/n)

∣∣∣w(k+1)
s (x)− w(k+1)

0 (x)
∣∣∣ > 1− 1

e

 .

(5.22)

Let Lipσ denote the optimal Lipschitz constant of σ. Because σ(0) = 0, it follows that

sup
k>1
|σk(z)| 6 Lipσ|z| for all z ∈ R. (5.23)

It is this important property that allows us to appeal to the estimates of [7, Appendix] ,
and deduce the following: For all η ∈ (0 , 1), there exists a constant Q := Q(η) ∈ (0 ,∞)

such that for all k > 0, m ∈ [2 ,∞), and τ ∈ (0 , 1),

sup
k>0

E

 sup
x∈(−1,1)
s∈(0,τ)

∣∣∣∣∣w(k+1)
s (x)− w(k+1)

0 (x)

sη/4

∣∣∣∣∣
m
 6 QeQm

3τ . (5.24)

In other words,

sup
k>0

E

 sup
x∈(−1,1)
s∈(0,τ)

∣∣∣w(k+1)
s (x)− w(k+1)

0 (x)
∣∣∣m
 6 QeQm

3ττηm/4. (5.25)
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We apply this inequality with τ := 2t/n and optimize over m in order to deduce from
(5.22) that there exists a constant L := L(η, t) ∈ (0 ,∞) such that for all integers n > 2t

the following holds a.s. on {Tk < t}:

P

(
Tk+1 − Tk 6

2t

n

∣∣∣∣ FTk) 6 L exp
(
−Ln1/2(log n)

3/2
)
. (5.26)

Finally, we notice that if Tn < t, then certainly there are at least bn/2c-many distinct
values of k ∈ {0 , . . . , n − 1} such that Tk+1 − Tk 6 2t/n. [This is just an application of
the so-called “pigeonhole principle,” itself a contrapositive formulation of the triangle
inequality.] Therefore, (5.26) implies that for all n > t/2,

P {Tn < t} 6
(

n

bn/2c

)
Lbn/2c exp

(
−L

⌊n
2

⌋
n

1/2(log n)
3/2
)
. (5.27)

This, Stirling’s formula, and monotonicity together imply (5.15).
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