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Abstract

We study the joint convergence of independent copies of several patterned matrices
in the non-commutative probability setup. In particular, joint convergence holds for
the well known Wigner, Toeplitz, Hankel, Reverse Circulant and Symmetric Circulant
matrices. We also study some properties of the limits. In particular, we show that
copies of Wigner becomes asymptotically free with copies of any of the above other
matrices.
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1 Introduction

The spectrum of large N limit of random matrices has played a crucial role in vari-
ous disciplines, for example, in the description of excitation of large nuclei, in statistical
inference and in telecommunications. The two most important random matrices studied
in the literature are the Wigner and the Sample Covariance matrices. Various proper-
ties of these matrices are now well known. In particular, for the Wigner matrix, the
empirical spectral distribution of the eigenvalues converges to the semi-circular distri-
bution, whereas the local behavior at the edge is governed by the Tracy-Widom law and
the bulk by the Dyson Sine Kernel. Similar features of the Sample Covariance matrix
are also known.

Another aspect of random matrices which has found applications in operator alge-
bras and telecommunications is the trace of non-commutative polynomials of random
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Joint convergence

matrices. The limit behavior of these for Wigner matrices may be described by the
notion of freeness introduced by Voiculescu. This notion also helped in the descrip-
tion of the limiting spectrum of the product and of the sum of random matrices. It
is also helpful in understanding the spectrum of block random matrices. The combi-
natorial properties of freeness have been extended to operator valued freeness (also
called freeness with amalgamation) and in particular this is useful in describing the be-
havior of polynomials of random band matrices and rectangular random matrices (see
Shlyakhtenko [34] and Benaych-Georges [4, 5]).

In comparison to the theory of Wigner and Sample Covariance matrices not much is
known about the limit behavior of other patterned matrices such as the Toeplitz and the
Hankel. The study of polynomials of independent copies of a single patterned matrix
was initiated in Bose et al. [9]. In this case the description of the asymptotic eigenvalue
distribution of the polynomials depend on some “typical” positions of the random ma-
trices in the polynomial. These positions are described in an appropriate manner by
freeness for the Wigner matrices, freeness with amalgamation for the band matrices
and the rectangular matrices, half independence for the reverse circulant matrices and
independence for the symmetric circulant matrices.

In this article we extend the study of traces of non-commutative polynomials to mul-
tiple copies of different patterned matrices. In the next subsection we discuss some of
the existing results and the main contribution of the present article.

1.1 Overview

A non-commutative probability space is a pair (A, ϕ), where A is a unital algebra
over C and ϕ : A → C is a linear functional such that ϕ(1) = 1; ϕ is a state if for a ≥ 0

we have ϕ(a) ≥ 0 and it is tracial if ϕ(ab) = ϕ(ba) for all a, b. Elements of A will be
called variables.

The connection between large dimensional random matrices (matrices whose ele-
ments are random variables) and non-commutative probability spaces is well known
and deep. Let (X,B, µ) be a probability space. Let L(µ) :=

⋂
p≥1

Lp(X,µ) be the algebra

of random variables with finite moments of all orders. Set

An := Matn(L(µ)) (1.1)

as the space of n × n complex random matrices with entries coming from L(µ). Then
(An, ϕj), j = 1, 2 are non-commutative probability spaces where

ϕ1(A) =
1

n
Tr(A) and ϕ2(A) =

1

n
E[Tr(A)]. (1.2)

The joint distribution of a family (ai)i∈I of variables in (A, ϕ) is the collection of joint
moments {ϕ(ai1 · · · aik)}, k ∈ N and i1, · · · , ik ∈ I. Let (An, ϕn)n≥1 and (A, ϕ) be non-
commutative probability spaces and let (ai,n; i ∈ I) ⊂ An for each n, (ai; i ∈ I) ⊂ A.
Then (ai,n; i ∈ I) converges in distribution to (ai; i ∈ I) if all joint moments converge.
Equivalently, for all p ∈ C[Xi, i ∈ I],

lim
n
ϕn(p({ai,n}i∈I)) = ϕ(p({ai}i∈I)). (1.3)

Convergence of an n× n real symmetric matrix An with respect to ϕ1 and ϕ2 demands
convergence for each non-negative integer k, respectively of ϕ1(Akn) (almost surely) and
ϕ2(Akn).

A related notion of convergence is that of the spectral distribution. If the eigenvalues
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of An are {λi}, then the spectral measure of An is defined as

Ln =
1

n

n∑
i=1

δλi . (1.4)

If as n → ∞, Ln converges weakly (almost surely) to a measure µ with distribution
function F say, then F (or µ) is called the limiting spectral distribution (LSD) of {An}.
In his pioneering work, Wigner [42] showed that the GUE (Gaussian Unitary Ensemble,
Hermitian matrices with i.i.d. complex Gaussian entries with variance 1/n) converges
with respect to ϕ2 to the semi-circular variable s characterized by the limit moments

ϕ(sk) =

∫
tk

1

2π

√
4− t2 1|t|≤2dt.

The probability law with density (2π)−1
√

4− t21|t|≤2 having the above moments is called
the semi-circle law. This result was extended in many directions for Gaussian Orthog-
onal Ensemble (GOE) and Gaussian Symplectic Ensemble (GSE) and in fact for i.i.d.
entries with finite second moment. See Bai and Silverstein [2] for a detailed treatment.

Voiculescu [39] introduced the notion of freeness in the context of free groups. It
played the role of independence in non-commutative probability spaces. Unital subal-
gebras {Ai}i∈I ⊂ A are said to be free if ϕ(a1 · · · an) = 0 whenever ϕ(aj) = 0, aj ∈ Aij
and ij 6= ij+1 for all j.

The notions of freeness and of convergence as in (1.3) together yield an obvious
and natural notion of asymptotically free. Voiculescu [40] showed that if we take k

independent Hermitian random matrices {Wi,n}1≤i≤k distributed as GUE then they are
asymptotically free. In other words, for any polynomial P in k variables,

E

[
1

n
Tr(P(W1,n, . . . ,Wk,n))

]
→ τ(P(s1, . . . , sk)) as n→∞,

where (s1, . . . , sk) is a collection of free (and semi-circular) variables in some non-
commutative probability space (A, τ). Asymptotic freeness of GUE has been a key fea-
ture in the development of free probability and its various applications. Voiculescu [40]
also showed the asymptotic freeness of GUE and diagonal constant matrices. Later,
Voiculescu [41] improved the result to asymptotic freeness of GUE and general n × n
deterministic matrices {Di,n} (having LSD) and satisfying

sup
n
‖Di,n‖ <∞ for each i, (1.5)

where ‖·‖ denotes the operator norm. This inclusion of constant matrices had important
implications in the factor theory of von Neumann algebras. Dykema [20] established a
similar result for a family of independent Wigner matrices

(symmetric matrices with i.i.d. real entries having uniformly bounded moments) and
block-diagonal constant matrices with bounded block size. The results were also shown
to hold with respect to ϕ1 almost surely (see Hiai and Petz [24, 25] for details). For
general results on freeness between Wigner and deterministic matrices we refer to
Anderson et al. [1]. Various other extensions to Wishart ensembles, GOE, GSE are also
available. See Capitaine and Casalis [14], Capitaine and Donati-Martin [15], Collins
et al. [18], Ryan [32], Schultz [33] and Voiculescu [41].

Freeness is present elsewhere too and one important place is the Haar distributed
matrices. It is well known that any unitary invariant matrix (in particular GUE) can be
written as UDU∗ where D is a diagonal matrix and U is Haar distributed on the space
of unitary matrices and independent of D. Voiculescu [40] showed that {U,U∗} and D

are asymptotically free.
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Hiai and Petz [24] showed that the Haar unitaries and general deterministic matrices
satisfying

(1.5) are almost surely asymptotically free. Collins [16] showed that general deter-
ministic matrices and Haar measure on unitary group are asymptotically free almost
surely provided the deterministic matrices jointly converge. The case for orthogonal
and symplectic groups were dealt with in Collins and Śniady [17].

An operator valued extension of freeness is freeness with amalgamation and may
be described by replacing the base field C and the state ϕ : A → C respectively by a
subalgebra B ⊂ A and a linear map E : A → B (satisfying certain properties). See Spe-
icher [36] for the description of operator valued free probability and its combinatorial
properties. This notion was used by Shlyakhtenko [34] to describe the spectrum of non-
commutative polynomials of band Winger matrices. It may also be used to characterize
singular values of polynomials of rectangular random matrices (see Benaych-Georges
[4, 5]) and spectrum of block matrices (see Rashidi Far et al. [31]).

One of the important applications of these in random matrix theory was the study
of the spectrum of Wn + Pn where Wn is a Wigner matrix and Pn is another suitable
matrix, independent of Wn. The spectrum of this perturbation has been of interest for
a long time (see Fulton [22]). Suppose the spectral measure of Pn weakly converges
to µP . Then the spectral measure of Wn + Pn converges weakly, almost surely and in
expectation, to the free convolution of µP and the semicircular law whenever µP has
compact support or Pn satisfy (1.5). These results were derived using asymptotic free-
ness results between deterministic (or random) matrices and Wigner matrix. Pastur and
Vasilchuk [30] extended these results for unbounded perturbations (possibly random)
using the analytic machinery of Stieltjes transform. It is to be noted that this result on
the sum does not yield asymptotic freeness between the matrices.

The special case where Pn has finite rank has received considerable amount of inter-
est recently. In this case, the limit measure is still the semi-circular law but the behavior
at the edge has some interesting properties. See Benaych-Georges et al. [6], Capitaine
et al. [12, 13], Féral and Péché [21] and Péché [29].

One relevant question is whether this asymptotic freeness persists for some other
types of matrices. Consider the class of patterned matrices. These are matrices where,
along with symmetry, some other assumptions are imposed on the structure. Important
examples are the Toeplitz, Hankel, Symmetric Circulant and Reverse Circulant. The
spectrum of these matrices were studied in Bose and Sen [8], Bryc et al. [11], Ham-
mond and Miller [23]. Generally speaking the Stieltjes transform does not seem to be a
convenient tool to study these matrices due to the strong dependence among the rows
and columns. Bose et al. [9] showed that under suitable assumptions on the pattern,
there is joint convergence of i.i.d. copies of a single pattern matrix as dimension goes
to infinity. One important consequence is that in the limit other kinds of non-free inde-
pendence may arise. In particular, Symmetric Circulants are commutative and Reverse
Circulants are asymptotically half independent. As yet, no description of independence
is available for the Toeplitz and Hankel matrices.

As a more general goal, we investigate the joint convergence of multiple indepen-
dent copies of these matrices, including the Wigner. Inter alia, we address the asymp-
totic freeness of the Wigner matrices and patterned matrices.

In Theorem 3.1, we provide sufficient conditions for the joint convergence holds.
We deal with only real symmetric matrices as the structure of many of these matrices
change if one takes complex entries. One of the basic necessary assumptions on the
pattern matrices is Property B, which states that the maximum number of times any
entry is repeated in a row remains uniformly bounded across all rows as n → ∞. All
the above five matrices satisfy Property B. Under Property B and some moment as-
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sumptions on the entries, we show that if a criteria (Condition 3.1) holds for one copy
each of any subcollection of matrices, then the joint convergence holds for multiple
copies. This Condition 3.1 is satisfied by all the five matrices. We use the method of
moments and the so called volume method to prove these results. See Bose and Sen
[8], Bryc et al. [11] for the use of volume method for convergence of spectral measure
of patterned matrices. As an application of Theorem 3.1, the following holds: if P is
a symmetric polynomial in any two of the following scaled matrices: Wigner, Toeplitz,
Hankel, Reverse Circulant and Symmetric Circulant with uniformly bounded entries
then the spectral measure Ln of the matrix P converges to a non-random measure µ on
R weakly almost surely.

In Theorem 3.5, we show that any collection of Wigner matrices is free of the other
four matrices. As already discussed, Wigner and deterministic matrices are asymptoti-
cally free. By the results of Collins [16] and Collins and Śniady [17] the results are true
for general deterministic matrices which converge jointly. To the best of our knowledge
these results directly do not imply the freeness result Theorem 3.5. This is because,
the existing results need some conditions on the behavior of the trace of the matrices
as pointed out in Remark 3.6 of Collins [16]. The condition in Collins [16] (equation
(3.4) therein) was studied in Capitaine and Casalis [14]. It was shown that under the
technical condition on the random matrices (see Condition C and C ′ in Capitaine and
Casalis [14]) there is asymptotic freeness between Wigner and other random matrices.
Although the Theorems of Capitaine and Casalis [14] are for GUE, it is expected that the
results would be true for real entries or GOE. In other available criteria for freeness,
condition (1.5) appears (see Anderson et al. [1] and Theorem 22.2.4 of Speicher [37]).
This is not applicable in our situation as it is known from the works of Bose and Sen
[8], Bryc et al. [11] that the spectral norms of

random Toeplitz, Hankel, Reverse Circulant and Symmetric Circulant are unbounded.

Instead of attempting to check/modify the technical sufficient condition of Capitaine
and Casalis [14] we extend the volume method to derive Theorem 3.5. This technique is
similar in spirit to those in Chapter 22 of Nica and Speicher [27]. However, we bypass
the detailed properties of the permutation group and the Weingarten functions. It is
quite feasible that the techniques of Collins [16] and Capitaine and Casalis [14] may be
extended to prove Theorem 3.5. Incidentally, if we take the Wigner with complex entries
then Theorem 3.5 holds for any patterned matrix satisfying Property B and having an
LSD.

The use of random matrix theory and free probability in CDMA (Code Division Multi-
ple Access) and MIMO (multiple input and multiple output) systems was shown in many
articles.

See Couillet et al. [19], Oraby [28], Rashidi Far et al. [31] and Tulino and Verdú
[38]. For a MIMO system with n1 transmitter antennae and n2 receiver antennae, the
received signal is represented in terms of equation Yn = HAn +Bn where An is an n1-
dimensional vector depending on n and Bn is a noise signal and H is the channel matrix
which generally has a block structure as below and Yn is an n2 dimensional vector.

H =



C1 C2 . . . CL 0 . . . . . . 0

0 C1 C2 . . . CL 0
...

... 0 C1 C2 . . . CL 0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . . . . 0 C1 C2 . . . CL


.
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One of the main issues in the study of a MIMO system is the eigenvalue distribution
of HH∗ since this is linked to the capacity of the channel. Here {Ci} can be Wigner
matrices or more general matrices. It may also happen that some of the blocks are
Toeplitz or Hankel or any other structured matrices. Studying the spectral properties
of such matrices boils down to studying the joint convergence of different patterned
matrices. The results of this article can be used for studying such systems. We refer
the readers to the recent article by Male [26] which applies similar results for the
MIMO system.

Finally we point out that we could not obtain full characterization of the joint limits
if one of the matrices is not Wigner. It is known that in a complex unital algebra only
two notions of independence of subalgebras may arise: freeness and classical indepen-
dence (see Speicher [35]). Although Reverse Circulant limit shows half independence,
this notion is only for variables of an algebra and not for subalgebras (see Bose et al.
[10]). For other matrices like Toeplitz and Hankel nothing is known yet about the joint
convergence.

In Section 2 we recall definitions of pattern matrices and express the trace in terms
of circuits and words (equivalently pair-partitions). In Section 3 we state our main
results on joint convergence of patterned matrices including those mentioned earlier
as well as Theorem 3.4 on the contribution of certain monomials depending on the
structure of the matrices. We also discuss the properties of the sum of two random
matrices in the limit. The final Section 4 is dedicated to the proofs.

2 Some basic definitions and notation

2.1 Patterned matrices, link function, trace formula and words

Patterned matrices are defined via

link functions. A link function L is defined as a function L : {1, 2, .., n}2 → Zd, n ≥ 1.
For our purposes d = 1 or 2. Although L depends on n, to avoid complexity of notation
we suppress the n and consider N2 as the common domain. We also assume that L is
symmetric in its arguments, that is, L(i, j) = L(j, i).

Let {x(i)} and {x(i, j)} be a sequence of real random variables, referred to as the
input sequence. The sequence of matrices {An} under consideration will be defined by

An ≡ ((ai,j))1≤i,j,≤n ≡ ((x(L(i, j)))).

Some important matrices we shall discuss in this article are:

(Wn) Wigner matrix: L : N2 → Z2 where L(i, j) = (min(i, j),max(i, j)).

(Tn) Toeplitz matrix: L : N2 → Z where L(i, j) = |i− j|.

(Hn) Hankel matrix: L : N2 → Z where L(i, j) = i+ j.

(RCn) Reverse Circulant: L : N2 → Z where L(i, j) = (i+ j) mod n.

(SCn) Symmetric Circulant: L : N2 → Z where L(i, j) = n/2− |n/2− |i− j||.

It is now well known that the limiting spectral distribution (LSD) of the above matrices
exist. Bose et al. [9] reviewed the results on LSD of the above matrices. For various
results on Wigner matrices we refer to the excellent exposition by Anderson et al. [1].

The L function for all the five matrices defined above satisfy the following property.
This property was introduced by Bose and Sen [8] and shall be crucial to us. (For any
set S, #S or |S| will denote the number of elements in S).
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Property B : We say a link function L satisfies Property B if,

∆(L) = sup
n

sup
t∈Zd

≥

sup
1≤k≤n

#{l : 1 ≤ l ≤ n,L(k, l) = t} <∞. (2.1)

In particular, ∆(L) = 2 for Tn, SCn and ∆(L) = 1 for Wn, Hn and RCn.

Consider h different type of patterned matrices where type j has pj independent
copies, 1 ≤ j ≤ h. The different link functions shall be referred to as colors and
different independent copies of the matrices of any given color shall be referred to as
indices. Let {Xj

i,n, 1 ≤ i ≤ pj} be n×n symmetric patterned matrices with link functions

Lj , j = 1, 2, · · · , h. Let Xj
i (Lj(p, q)) denote the (p, q)-th entry of Xj

i,n. We suppress the
dependence on n to simplify notation. Two natural assumptions on the link function and
the input sequence are:

A1. All link functions {Lj , j = 1, 2, · · · , h} satisfy Property B, that is,

max
1≤j≤h

sup
n≥1

sup
t

sup
1≤p≤n

#{q : 1 ≤ q ≤ n,Lj(p, q) = t} ≤ ∆ <∞.

A2. Input sequences {Xj
i (k) : k ∈ Z or Z2} are real random variables independent

across i, j and k with mean zero and variance 1 and the moments are uniformly
bounded, that is,

sup
1≤j≤h

sup
1≤i≤pj

sup
n≥1

sup
1≤p,q≤n

E
[
|Xj

i (Lj(p, q))|k
]
≤ ck <∞.

We consider { 1√
n
Xj
i,n, 1 ≤ i ≤ pj}1≤j≤h as elements of An given in (1.1) and investi-

gate the joint convergence with respect to the normalized tracial states ϕ1 or ϕ2 (as in
(1.2)). The sequence of matrices jointly converge if and only if for all monomials q,

ϕd

(
q

(
1√
n
{Xj

i,n, 1 ≤ i ≤ pj}1≤j≤h
))

converge to a limit as n → ∞ for either d = 1 or d = 2. For d = 1, the convergence
is in the almost sure sense. The case of h = 1 and p1 = 1 (a single patterned matrix)
was dealt in Bose and Sen [8] and h = 1 and p1 > 1 (i.i.d. copies of a single patterned
matrix) was dealt in Bose et al. [9]. In particular, convergence holds for i.i.d. copies of
any one of the five patterned matrices. The starting point in showing this was the trace
formula. The related concepts of circuits, matchings and words will be extended below
to multiple copies of several matrices.

Since our primary aim is to show convergence for every monomial, we shall from
now on, fix an arbitrary monomial q of length k. We generally denote the colors and
indices present in q by (c1, c2, · · · , ck) and (t1, t2, · · · , tk) respectively. Then we may
write,

q

(
1√
n
{Xj

i,n, 1 ≤ i ≤ pj}1≤j≤h
)

=
1

nk/2
Zc1,t1Zc2,t2 · · ·Zck,tk , (2.2)

where Zcm,tm = Xcm
tm for 1 ≤ m ≤ k.
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From (2.2) we get,

µ̃n(q) :=
1

n
Tr

[
1

nk/2
Zc1,t1Zc2,t2 · · ·Zck,tk

]
=

1

n1+k/2

∑
j1,j2,··· ,jk

[Zc1,t1(Lc1(j1, j2))Zc2,t2(Lc2(j2, j3)) · · ·Zck,tk(Lck(jk, j1))]

=
1

n1+k/2

∑
π:{1,··· ,k}→{1,··· ,n}

π(0)=π(k)

k∏
i=1

Zci,ti(Lci(π(i− 1), π(i)))

=
1

n1+k/2

∑
π:{1,··· ,k}→{1,··· ,n}

π(0)=π(k)

Zπ say. (2.3)

Also define,
µn = E[µ̃n]. (2.4)

Keeping in mind that we seek to show the existence of the limits in (2.3) and (2.4) as
n→∞, we now develop some appropriate notions. In particular these help us to show
that certain terms in these sums are negligible in the limit.

Any map π : {0, · · · , k} → {1, · · · , n} with π(0) = π(k) will be called a circuit. Its
dependence on k and n will be suppressed. Observe that µ̃n and µn involve sums over
circuits. Any value Lci(π(i− 1), π(i)) is called an L-value of π. If an L-value is repeated
e times in π then π is said to have an edge of order e. Due to independence and mean
zero of the input sequences,

E[Zπ] = 0 if π has any edge of order one. (2.5)

If all L-values appear more than once then we say the circuit is matched and only these
circuits are relevant due to the above.

A circuit is said to be color matched if all the L-values are repeated within the same
color. A circuit is said to be color and index matched if in addition, all the L-values are
also repeated within the same index.

We can define an equivalence relation on the set of color and index matched circuits,
extending the ideas of Bose et al. [9] and Bose and Sen [8]. We say π1 ∼ π2 if and only
if their matches take place at the same colors and at the same indices. Or,

ci = cj , ti = tj and Lci(π1(i− 1), π1(i)) = Lcj (π1(j − 1), π1(j))

⇐⇒
ci = cj , ti = tj and Lci(π2(i− 1), π2(i))) = Lcj (π2(j − 1), π2(j)).

An equivalence class can be expressed as a colored and indexed word w: each word is
a string of letters in alphabetic order of their first occurrence with a subscript and a
superscript to distinguish the index and the color respectively. The i-th position of w is
denoted by w[i]. Any i is a vertex and it is generating (or independent) if either i = 0 or
w[i] is the position of the first occurrence of a letter. By abuse of notation we also use
π(i) to denote a vertex.

For example, if

q = X1
1X

1
2X

2
1X

2
1X

2
2X

2
2X

1
2X

1
1 = Z1,1Z1,2Z2,1Z2,1Z2,2Z2,2Z1,2Z1,1,

then a1
1b

1
2c

2
1c

2
1d

2
2d

2
2b

1
2a

1
1 is one colored and indexed word corresponding to q. Any colored

and indexed word uniquely determines the monomial it corresponds to. A colored and
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indexed (matched) word is pair-matched if all its letters appear exactly twice. We shall
see later that under Property B, only such circuits and words survive in the limits of
(2.3) and (2.4).

Now we define some useful subsets of the circuits. For a colored and indexed word
w, let

ΠCI(w) = {π : w[i] = w[j]⇔ (ci, ti, Lci(π(i−1), π(i))) = (cj , tj , Lcj (π(j−1), π(j))}. (2.6)

Also define

Π∗CI(w) = {π : w[i] = w[j]⇒ (ci, ti, Lci(π(i− 1), π(i)) = (cj , tj , Lcj (π(j − 1), π(j))}. (2.7)

Every colored and indexed word has a corresponding non-indexed version which is
obtained by dropping the indices from the letters (i.e. the subscripts). For exam-
ple, a1

1b
1
2c

2
1c

2
1d

2
2d

2
2b

1
2a

1
1 yields a1b1c2c2d2d2b1a1. For any monomial q, dropping the indices

amounts to replacing, for every j, the independent copies Xj
i by a single Xj with link

function Lj . In other words it corresponds to the case where pj = 1 for 1 ≤ j ≤ h.
Let ψ(q) be the monomial obtained by dropping the indices from q. For example,

if q = Z1,1Z1,2Z2,1Z2,1Z2,2Z2,2Z1,2Z1,1 then ψ(q) = Z1Z1Z2Z2Z2Z2Z1Z1.

(2.6) and (2.7) get mapped to the following subsets of non-indexed colored word w′ via
ψ:

ΠC(w) = {π : w[i] = w[j]⇔ ci = cj and Lci(π(i− 1), π(i)) = Lcj (π(j − 1), π(j))},

Π∗C(w) = {π : w[i] = w[j]⇒ ci = cj and Lci(π(i− 1), π(i)) = Lcj (π(j − 1), π(j))}.

Since pair-matched words are going to be crucial, let us define:

CIW (2) = {w : w is indexed and colored pair-matched corresponding to q}
CW (2) = {w : w is non-indexed colored pair-matched corresponding to ψ(q)}.

For w ∈ CIW (2), let us consider the word obtained by dropping the indices of w. This
defines an injective mapping into CW (2) and we continue to denote this mapping by ψ.

For any w ∈ CW (2) and w′ ∈ CIW (2), we define (whenever the limits exist),

pC(w) = lim
n→∞

1

n1+k/2
|Π∗C(w)| and pCI(w

′) = lim
n→∞

1

n1+k/2
|Π∗CI(w′)|.

3 Main results

Our first result is on the joint convergence of several patterned random matrices and
is analogous to Proposition 1 of Bose et al. [9] who considered the case h = 1. Recall
the quantity ∆ introduced in Assumption (A1).

Theorem 3.1. Let { 1√
n
Xj
i,n, 1 ≤ i ≤ pj}1≤j≤h be a sequence of real symmetric pat-

terned random matrices satisfying Assumptions (A1) and (A2). Fix a monomial q of
length k and assume that, for all

w ∈ CW (2),

pC(w) = lim
n→∞

1

n1+k/2
|Π∗C(w)| exists. (3.1)

Then,

1. for all w ∈ CIW (2), pCI(w) exists and pCI(w) = pC(ψ(w)),
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2. we have

lim
n→∞

µn(q) =
∑

w∈CIW (2)

pCI(w) = α(q)(say) (3.2)

with

|α(q)| ≤

{
k!∆k/2

(k/2)!2k/2 if k is even and each index appears even number of times

0 otherwise.

3. limn→∞ µ̃n(q) = α(q) almost surely.

As a consequence if (3.1) holds for every q then { 1√
n
Xj
i,n, 1 ≤ i ≤ pj}1≤j≤h converges

jointly in both the states ϕ1 and ϕ2 and the limit is independent of the input sequence.

Remark 3.2. (i) Theorem 3.1 asserts that if the joint convergence holds for pj = 1, j =

1, 2, · · · , h (that is if condition (3.1) holds), then the joint convergence continues to hold
for pj ≥ 1. There is no general way of checking (3.1). However, see the next theorem.

(ii) Under the conditions of Theorem 3.1, if the monomial q yields a symmetric ma-
trix, then the corresponding LSD exists almost surely and is symmetric. This is easy
to see since we have almost sure convergence of the empirical moments of q. These
moments determine a unique distribution due to the bound on α(q) given in Theorem
3.1. The limit distribution is symmetric since all its odd moments are zero.

The moment conditions may be reduced to some extent depending on the mono-
mial when the input sequences are independent and identically distributed. The proof
would use truncation coupled with an application of the bounded Lipschitz metric and
Hoffman-Wielandt inequality. For such truncation arguments we refer to Bose and Sen
[8] or Section 2.1.5 of Anderson et al. [1]. Sometimes the rank inequality can also be
used, for example, see Bai and Silverstein [2]. In particular, if we consider a sum of
two random matrices with i.i.d. input sequences it is enough to assume that the second
moment is finite. The arguments are exactly similar to the proof of Theorem 2 of Bose
and Sen [8] and are omitted. Detailed result on sum of random matrices is discussed
later in Corollary 3.7.

Theorem 3.3. Suppose Assumption (A2) holds. Then pC(w) exists for all monomials q
and for all w ∈ CW (2), for any two of the following matrices at a time: Wigner, Toeplitz,
Hankel, Symmetric Circulant and Reverse Circulant.

Theorem 3.1 and Theorem 3.3 shows that if P is a symmetric polynomial in any of
the two matrices Wigner, Toeplitz, Hankel, Symmetric Circulant and Reverse Circulant
then the spectral measure of P converges almost surely

if the input sequence satisfies Assumption (A2).
In general the value of pC(w) cannot be computed for arbitrary pair-matched word.

In the two tables, we provide some examples. As seen in the two tables, pC(w) equals
one for certain words. We now identify a class of such words. This has ramifications
later in the study of freeness.

If for a w ∈ CW (2), sequentially deleting all double letters of the same color each
time leads to the empty word then we call w a colored Catalan word. Just as

the set of Catalan words of length m are in bijection with the
set of non-crossing pair partitions NC2(m), the colored Catalan words are in bijec-

tion will the following
set of pair partitions (denoted by NC(p)

2 (m))and this correspondence will be useful
in
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Table 1: pC(w) for colored words corresponding to monomials q = q(T,H)
Monomial Word pC(w)

TTHH aabb 1
THTH abab 2/3

TTTTHH aabbcc 1
abbacc 1
ababcc 2/3

HHHHTT aabbcc 1
abbacc 1
ababcc 0

TTHTTH aabccb 1
abcbac 1/2
abcabc 1/2

HHTHHT aabccb 1
abcbac 1/2
abcabc 0

Table 2: pC(w) for colored words corresponding to monomials q = q(H,R) and q(H,S)
Monomial Word pC(w) Monomial Word pC(w)

RRHH aabb 1 SSHH aabb 1
RHRH abab 0 SHSH abab 2/3

RRRRHH aabbcc 1 SSSSHH aabbcc 1
abbacc 1 abbacc 1
ababcc 0 ababcc 1

HHHHRR aabbcc 1 HHHHSS aabbcc 1
abbacc 1 abbacc 1
ababcc 0 ababcc 0

RRHRRH aabccb 1 HHHSHS aabcbc 1/2
abcbac 0 abbcac 1/2
abcabc 2/3 abcabc 0

HHRHHR aabccb 1 HHSHHS aabccb 1
abcbac 0 abcbac 1/2
abcabc 1/2 abcabc 0

Section 4.4. For p = (p(1), p(2), . . . , p(m)) integers (colors), denote

NC
(p)
2 (m) = {π ∈ NC2(m) : p(π(r)) = p(r) for all r = 1, . . . ,m}.

In the non-colored and non-indexed situation, Bose and Sen [8] established that
p(w) = 1 for the five matrices for all Catalan words w. Banerjee and Bose [3] introduced
the following condition

on the link function which guarantees this.
Consider the following boundedness property of the number of matches between

rows across all pairs of columns.

Property P: A link function L satisfies Property P if

M∗ = sup
n

sup
i,j

#{1 ≤ k ≤ n : L(k, i) = L(k, j)} <∞. (3.3)

Note that the five matrices satisfy Property P.

It is not hard to see that colored Catalan words are in one-one correspondence with
non-crossing colored pair-partitions. Thus freeness and semi-circularity may be de-
scribed for our limits in the language of words: if the limit satisfies pC(w) = 0 for all
words which are not colored Catalan, then the limit is free. In addition, if pC(w) = 1 for
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all colored Catalan words, then the limits are also semicircular, which is precisely what
happens for Wigner matrices. For the other four matrices, the limit is neither semicir-
cular nor free but pC(w) = 1 for all colored Catalan words as Theorem 3.4 shows. This
extends the main result of Banerjee and Bose [3] to multiple copies of colored matrices.

Theorem 3.4. (i) Suppose X and Y satisfy Assumption (A1) and Assumption (A2).
Consider any monomial in X and Y of length 2k. Then

|Π∗C(w)| ≥ n1+k for any colored Catalan word w.

As a consequence, pC(w) ≥ 1 for any colored Catalan word w.

(ii) Suppose the link functions satisfy Property B and Property P and the input satisfies
Assumption (A2). Then for any colored Catalan word, pC(w) = 1.

It is well known that independent Wigner matrices are asymptotically free and also
they are asymptotically free of any class of deterministic matrices {Di,n}1≤i≤p which
satisfy (1.5) (see Theorem 5.4.5 of Anderson et al. [1]). Moreover, the deterministic
matrices can be replaced by random matrices {An} when supn ‖An‖ <∞ (see Speicher
[37]) or when they satisfy the sufficient condition (Condition C) of Capitaine and Casalis
[14].

These results cannot be used here since the spectral norm of Toeplitz, Hankel, Re-
verse Circulant and Symmetric Circulant are unbounded as n → ∞. Nevertheless,
using the notions of circuits and words we are able to show freeness in a relatively
simple way.

Theorem 3.5. Suppose {Wi,n, 1 ≤ i ≤ p,Ai,n, 1 ≤ i ≤ p} are independent matri-
ces satisfying assumptions (A2) where Wi,n are Wigner matrices and Ai,n are any of
Toeplitz, Hankel, Symmetric Circulant or Reverse Circulant matrices. Then the collec-
tion {Wi,n, 1 ≤ i ≤ p} is asymptotically free of the collection {Ai,n, 1 ≤ i ≤ p}.

Remark 3.6. Incidentally, the freeness between GUE and other patterned matrices is
much easier to establish. Indeed, it can be shown that GUE and any patterned matrices
(having Property B, satisfying (A2) and having LSD) are asymptotically free. We provide
a brief proof of this assertion at the end of Section 4.

3.1 Sum of patterned random matrices

The following result on sum of two patterned matrices essentially follows from The-
orem 3.1.

Corollary 3.7. Let A and B be two independent patterned matrices satisfying Assump-
tions (A1) and (A2). Suppose pC(w) exists for every q and every w. Then LSD for A+B√

n

exists in the almost sure sense, is symmetric and does not depend on the underlying
distribution of the input sequences of A and B. Moreover, if either LSD of A√

n
or LSD of

B√
n

has unbounded support then LSD of A+B√
n

also has unbounded support.

Proof. The assumptions imply that LSDs of
of A√

n
and B√

n
exist. By Theorem 3.1, { A√

n
, B√

n
} converge jointly and hence limn→∞

1
nk/2+1E(Tr(A+

B)k = βk exists for all k > 0. Now let us fix k. Let Qk be the set of monomials such that
(A+B)k =

∑
q∈Qk

q(A,B). Hence

1

n
Tr(

A+B√
n

)k =
1

n1+k/2

∑
q∈Qk

Tr(q(A,B)) =
∑
q∈Qk

µn(q)
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where µn(q) is as in Section 2. By (3) of Theorem 3.1, µn(q) → α(q), almost surely and
hence,

βk = lim
n→∞

1

n
Tr(

A+B√
n

)k =
∑
q∈Qk

α(q) almost surely.

Using (2) of Theorem 3.1, we have

β2k =
∑
q∈Q2k

α(q) ≤ |Q2k|
(2k)!

k!2k
∆k = 22k (2k)!

k!2k
∆k.

Now by using Stirling’s formula, β2k ≤ (Ck)k for some constant C. Hence
∑
k β
−1/2k
2k =

∞ and Carleman’s Condition is satisfied implying that the LSD exists.

To prove symmetry of the limit, let q ∈ Q2k+1. Then from (2) of Theorem 3.1, it fol-
lows that α(q) = 0. Hence β2k+1 =

∑
q∈Q2k+1

α(q) = 0 and the distribution is symmetric.

To prove unboundedness, without loss of generality let us assume that LSD LA of
A√
n

has unbounded support. Let us denote by β2k(A) the (2k)th moment of LA. Since

Lp norm converges to essential supremum as p → ∞, it follows that (β2k(A))1/2k → ∞
as k → ∞. Also, β2k(A) = α(q2k) where q2k(A,B) = A2k and q2k ∈ Q2k. Since α(q) is
non-negative for all q, it implies β2k ≥ β2k(A). So limk→∞(β2k)1/2k = ∞ and hence the
LSD of A+B√

n
has unbounded support.

As pointed out earlier in Remark 3.2 (ii), the above result continues to hold if the two
input sequences are i.i.d. with finite second moments. Also, in particular, all conclusions
in Proposition 3.7 hold when A and B are any two of Toeplitz, Hankel, Reverse Circulant
and Symmetric Circulant matrices. It does not seem easy to identify the LSD for these
sums. Some simulation results are given below.

When one of the matrix is Wigner, Theorem 3.5 implies that the limit is the free
convolution of the semicircular law and the corresponding LSD. This result about the
sum when one of them is Wigner also follows from the results of Pastur and Vasilchuk
[30]. It also follows from the work of Biane [7] that any free convolution with the
semi-circular law is continuous and the density can be expressed in terms of Stieltjes
transform of the LSD. Unfortunately, the Stieltjes transform of the LSD of the Toeplitz
and Hankel are not known.
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Figure 1: (i) (left) Histogram plot of empirical distribution of Reverse Circulant+ Symmetric Circulant (n =
500) with entries N(0, 1) (ii) (right) Histogram plot of empirical distribution of Reverse Circulant+Hankel
(n = 500) with N(0, 1) entries.
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Figure 2: (i) (left) Histogram plot of empirical distribution of Toeplitz+Hankel(n = 1000) with entries
N(0, 1) (ii) (right) Histogram plot of empirical distribution of Toeplitz+Symmetric Circulant (n = 500) with
N(0, 1) entries.

4 Proofs

To simplify the notational aspects in all our proofs we restrict ourselves to h = 2.

4.1 Proof of Theorem 3.1

(1) We first show that

Π∗C(w) = Π∗CI(w) for all w ∈ CIW (2). (4.1)

Let π ∈ Π∗CI(w). As q is fixed,

ψ(w)[i] = ψ(w)[j] ⇒ w[i] = w[j]

⇒ (ci, ti, Lci(π(i− 1), π(i))) = (cj , tj , Lcj (π(j − 1), π(j))) (as π ∈ Π∗CI(w)).

This implies Lci(π(i− 1), π(i)) = Lcj (π(j − 1), π(j)). Hence π ∈ Π∗C(ψ(w)).
Now conversely, let π ∈ Π∗C(ψ(w)). Then we have

w[i] = w[j]

⇒ ψ(w)[i] = ψ(w)[j]

⇒ Lci(π(i− 1), π(i)) = Lcj (π(j − 1), π(j))

⇒ Zci,ti(Lci(π(i− 1), π(i))) = Zcj ,tj (Lcj (π(j − 1), π(j))).

as w[i] = w[j]⇒ ci = cj and ti = tj . Hence π ∈ Π∗CI(w).
So (4.1) is established. As a consequence,

pCI(w) = lim
n→∞

1

n1+k/2
|Π∗CI(w)| = pC(ψ(w)).

Hence by (4.1) pCI(w) exists for all w ∈ CIW (2) and pCI(w) = pC(ψ(w)), proving (1).

(2) Recall that Zπ =
∏k
j=1 Zcj ,tj (Lci(π(j − 1), π(j)) and using (2.4) and (2.5)

µn(q) =
1

n1+k/2

∑
w: w matched

∑
π∈ΠCI(w)

E(Zπ). (4.2)
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By using Assumption (A2)

sup
π

E |Zπ| < K <∞. (4.3)

By using often used arguments of Bose and Sen [8] and of Bryc et al. [11], for any
colored and indexed matched word w which is matched but is not pair-matched,

lim
n→∞

1

n1+k/2

∣∣ ∑
π∈ΠCI(w)

E(Zπ)
∣∣ ≤ K

n1+k/2
|ΠCI(w)| → 0. (4.4)

By using (4.4), and the fact that E(Zπ) = 1 for every color index pair-matched word (use
Assumption (A2)), calculating the limit in (4.2) reduces to calculating

lim 1
n1+k/2

∑
w: w∈CIW (2) |ΠCI(w)|.

Now consider any w ∈ CIW (2). Observe that any circuit in Π∗CI(w) − ΠCI(w) must
have an edge of order four. Hence by (4.4),

lim
n→∞

|Π∗CI(w)−ΠCI(w)|
n1+k/2

= 0.

As a consequence, since there are finitely many words,

lim
n→∞

µn(q) = lim
n→∞

∑
w∈CIW (2)

|ΠCI(w)|
n1+k/2

= lim
n→∞

∑
w∈CIW (2)

|Π∗CI(w)|
n1+k/2

=
∑

w∈CIW (2)

pCI(w) = α(q).

(4.5)
To complete the proof of (2), we note that, if either k is odd or some index appears an
odd number of times in q then for that q, CIW (2) is empty and hence, α(q) = 0. Now
suppose that k is even and every index appears an even number of times. Then

|CIW (2)| ≤ |CW (2)| ≤ k!

(k/2)!2k/2
.

The first inequality above follows from the fact mentioned earlier that ψ is an injective
map from CIW (2) to CW (2).

The second inequality follows by observing that the total number of colored pair
matched word of length k is less than the number of pair matched words of length k.

Now note that pCI(w) ≤ ∆k/2. Combining all these, we get |α(q)| ≤ k!∆k/2

(k/2)!2k/2 .

(3) Now we claim that

E[(µ̃n(q)− µn(q))4] = O(n−2).

Observe that,

E[(µ̃n(q)− µn(q))4] =
1

n2k+4

∑
π1,π2,π3,π4

E(

4∏
j=1

(Zπj
− E(Zπj

)). (4.6)

We say (π1, π2, π3, π4) are “jointly matched" if each L-value occurs at least twice across
all circuits (among same color) and they are said to be “cross matched" if each circuit
has at least one L∗ value which occurs in some other circuit.

If (π1, π2, π3, π4) are not jointly matched then without loss of generality there
exists at least one L-value in π1 which does not occur anywhere else. Using E(Zπ1

) =

0 and independence,

E(

4∏
j=1

(Zπj
− E(Zπj

)) = E(Zπ1

4∏
j=2

(Zπj
− E(Zπj

)) = 0. (4.7)
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Again, if (π1, π2, π3, π4) are jointly matched but not cross matched, then without loss of
generality, assume π1 is only self matched. Then by independence,

E(

4∏
j=1

(Zπj − E(Zπj )) = E[Zπ1 − E(Zπ1)] E[

4∏
j=2

(Zπj − E(Zπj ))] = 0. (4.8)

So we are left with circuits that are jointly matched and cross matched with respect to
q. Let Qq be the number of such circuits.

We claim that Qq = O(n2k+2). Since the circuits are jointly matched there are at
most 2k distinct L values among all the four circuits. Let u be the number of distinct
L values (of a single color) in the circuits. Clearly, for a fixed choice of matches among
those distinct L values (number of such choices is bounded in n), the number of jointly
matched and cross matched circuits are O(nu+4), so the number of such circuits with
u ≤ 2k − 2 is O(n2k+2). Hence it suffices to prove that for a fixed choice of matches
among u = 2k − 1 or u = 2k distinct L-values occurring across all four circuits, the
number of jointly matched and cross matched circuits is O(n2k+2).

We consider only the case u = 2k − 1 and the other case is dealt in a similar way.
Since u = 2k − 1, it follows that every L-value occurs exactly twice across all four
circuits. Since π1 is not self matched, there is an L value in π1 which does not occur
anywhere else in π1. We consider the following dynamic construction of (π1, π2, π3, π4).
Since the circuit is cross matched, there exists an L value which is assigned to a single
edge, say L(π1(i∗ − 1), π(i∗)). First choose one of the n possible values for the initial
value π1(0), and continue filling in the values of π1(i), i = 1, 2, ..., i∗ − 1. Then, starting
at π1(k) = π1(0), sequentially choose the values of π1(k − 1), π1(k − 2), ..., π1(i∗), thus
completing the entire circuit π1. At every stage there are n ways to choose a vertex
if there is no L-match of the edge being constructed with the previously constructed
edges, otherwise there are at most ∆(L1, L2) choices. So there are O(n) choices for
at most 2k − 2 distinct L values and hence the number of jointly matched and cross
matched circuits for u = 2k − 1 is O(n2k−2+4), as required.

By Assumption (A2), E[
∏4
j=1(Zπj

−E(Zπj
))] is uniformly bounded over all (π1, π2, π3, π4)

by K, say. By this and (4.6)–(4.8), it follows that

E[(µ̃n(q)− µn(q))4] = O(
n2k+2

n2k+4
) = O(n−2). (4.9)

Now using Borel-Cantelli Lemma, µ̃n(q) − µn(q) → 0 almost surely as n → ∞ and this
completes the proof.

4.2 Proof of Theorem 3.3

Condition (3.1) which needs to be verified (only for even degree monomials), cru-
cially depends on the type of the link function and hence we need to deal with every
example differently. Since we are dealing with only two link functions, we simplify the
notation. Let X and Y be patterned matrices with link function L1 and L2 respectively
with independent input sequences satisfying Assumptions (A1) and (A2). Let q(X,Y )

be any monomial such that both X and Y occur an even number of times in q. Let
deg(q) = 2k and let the number of times X and Y occurs in the monomial be k1 and k2

respectively. Note that we have k = k1 + k2. Then it is enough to show that (3.1) holds
for every pair-matched colored word w of length 2k corresponding to q.

LetX and Y be any of the two following matrices: Wigner (Wn), Toeplitz (Tn), Hankel
(Hn), Reverse Circulant (RCn) and Symmetric Circulant (SCn). The case when both X

and Y are of the same pattern was dealt in Bose et al. [9].
Proof of Theorem 3.3 is immediate once we establish the following Lemma.
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Lemma 4.1. Let X and Y be any of the matrices, Wn, Tn, Hn, RCn and SCn, satisfying
Assumption (A2). Let w ∈ CW (2) corresponding to a monomial q of length 2k. Then
there exists a (finite) index set I independent of n and {Π∗C,l(w) : l ∈ I} ⊂ Π∗C(w) such
that

(1) Π∗C(w) = ∪l∈IΠ∗C,l(w), and pC,l(w) := limn→∞
|Π∗C,l(w)|
n1+k exists for all l ∈ I,

(2) for l 6= l′ we have,

|Π∗C,l(w) ∩Π∗C,l′(w)| = o(n1+k). (4.10)

Assuming Lemma 4.1, |Π∗C(w)| = | ∪l∈I Π∗C,l(w)| for some finite index set I and

pC(w) = lim
n→∞

1

n1+k
|Π∗C(w)| =

∑
l∈I

lim
n→∞

1

n1+k
|Π∗C,l(w)| =

∑
l∈I

pC,l(w). (4.11)

The proof of this lemma treats each pair of matrices separately. Since the arguments
are similar for the different pairs, we do not provide the detailed proof for each case
but only a selection of the arguments in most cases.

The set S of all generating vertices of w is split into the three classes {0} ∪ SX ∪ SY
where

SX = {i ∧ j : ci = cj = X, w[i] = w[j]}, SY = {i ∧ j : ci = cj = Y, w[i] = w[j]}.

For every i ∈ S − {0}, let ji denote the index such that w[ji] = w[i]. Let π ∈ Π∗C(w).

(i) Toeplitz and Hankel: Let X and Y be respectively the Toeplitz (T ) and the Hankel
(H) matrix. Observe that,

|π(i− 1)− π(i)| = |π(ji − 1)− π(ji)| for all i ∈ ST

π(i− 1) + π(i) = π(ji − 1) + π(ji) for all i ∈ SH .

Let I be {−1, 1}k1 and l = (l1, ..., lk1) ∈ I. Let Π∗C,l(w) be the subset of Π∗C(w) such that,

π(i− 1)− π(i) = li(π(ji − 1)− π(ji)) for all i ∈ ST ,

π(i− 1) + π(i) = π(ji − 1) + π(ji) for all i ∈ SH .

Now clearly,

Π∗C(w) =
⋃
l

Π∗C,l(w) (not a disjoint union).

Now let us define,

vi =
π(i)

n
and Un = {0, 1

n
, ...,

n− 1

n
}. (4.12)

Then,

|Π∗C,l(w)| = #{(v0, ..., v2k) : vi ∈ Un ∀0 ≤ i ≤ 2k, vi−1 − vi = li(vji−1 − vji) ∀i ∈ ST
and vi−1 + vi = vji−1 + vji ∀i ∈ SH , v0 = v2k}.

Let us denote {vi : i ∈ S} by vS . It can easily be seen from the above equations (other
than v0 = v2k) that each of the {vi : i /∈ S} can be written uniquely as an integer linear
combination Lli(vS). Moreover, Lli(vS) only contains {vj : j ∈ S, j < i} with non-zero
coefficients. Clearly,

|Π∗C,l(w)| = #{(v0, ..., v2k) : vi ∈ Un ∀0 ≤ i ≤ 2k, v0 = v2k, vi = Lli(vS) ∀i /∈ S}. (4.13)
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Any integer linear combinations of elements of Un is again in Un if and only if it is
between 0 and 1. Hence,

|Π∗C,l(w)| = #{vS : vi ∈ Un ∀i ∈ S, v0 = Ll2k(vS), 0 ≤ Lli(vS) < 1 ∀i /∈ S}. (4.14)

From (4.14) it follows that,
|Π∗C,l(w)|
n1+k is nothing but the Riemann sum for the function

I(0 ≤ Lli(vS) < 1, i /∈ S, v0 = Ll2k(vS)) over [0, 1]k+1 and converges to the integral and
hence

pC,l(w) = lim
n→∞

1

n1+k
|Π∗C,l(w)| =

∫
[0,1]k+1

I
(
0 ≤ Lli(vS) < 1, i /∈ S, v0 = Ll2k(vS)

)
dvS .

(4.15)
This shows part (1) of Lemma 4.1. For part (2) let l 6= l′. Without loss of generality, let
us assume that, li1 = −l′i1 . Let π ∈ Π∗C,l(w)

⋂
Π∗C,l′(w). Then π(i1 − 1) = π(i1) and hence

Lli1−1(vS) = vi1 . It now follows along the lines of the preceding arguments that

lim
n→∞

1

n1+k
|Π∗C,l(w)

⋂
Π∗C,l′(w)| ≤

∫
· · ·
∫

[0,1]k+1

I(vi = Lli1−1(vS))dvS . (4.16)

Lli1−1(vS) contains {vj : j ∈ S, j < i1} and hence {Lli1−1(vS) = vi} is a k-dimensional
subspace of [0, 1]k+1 and hence has Lebesgue measure 0.

(ii) Hankel and Reverse Circulant: Let X and Y be Hankel (H) and Reverse Circulant
(RC) respectively. Then

π(i− 1) + π(i) = π(ji − 1) + π(ji) for all i ∈ SH , (4.17)

(π(i− 1) + π(i)) mod n = (π(ji − 1) + π(ji)) mod n for all i ∈ SRC . (4.18)

Clearly, as all the π(i) are between 1 and n, relation (4.18) implies (π(i − 1) + π(i)) −
(π(ji − 1) + π(ji)) = ain where ai ∈ {0, 1,−1}

Let a = (a1, ..., ak2) ∈ I = {−1, 0, 1}k2 . Let Π∗C,a(w) be the subset of Π∗C(w) such that,

π(i− 1) + π(i) = π(ji − 1) + π(ji) ∀i ∈ SH and

(π(i− 1) + π(i))− (π(ji − 1) + π(ji)) = ain ∀i ∈ SRC .

Now clearly,
Π∗C(w) =

⋃
a

Π∗C,a(w) (a disjoint union).

Now we get that,

|Π∗C,a(w)| = #{(v0, ..., v2k) : vi ∈ Un ∀0 ≤ i ≤ 2k, vi−1 + vi = (vji−1 + vji) + ai ∀i ∈ SRC
and vi−1 + vi = vji−1 + vji ∀i ∈ SH , v0 = v2k}.

Other than v0 = v2k, each {vi : i /∈ S} can be written uniquely as an affine linear

combination Lai (vS) + b
(a)
i for some integer b(a)

i . Moreover, Lai (vS) only contains {vj :

j ∈ S, j < i} with non-zero coefficients. Arguing as in the previous case,

|Π∗C,a(w)| = #{vS : vi ∈ Un ∀i ∈ S, v0 = La2k(vS) + b
(a)
2k , 0 ≤ L

a
i (vS) + b

(a)
i < 1∀i /∈ S}.

(4.19)
This is again a Riemann sum and hence as before,

pC,a(w) = lim
n→∞

1

n1+k
|Π∗C,a(w)| =

∫
[0,1]k+1

I
(

0 ≤ Lai (vS) + b
(a)
i < 1, i /∈ S, v0 = La2k(vS) + b

(a)
2k

)
dvS
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and the proof of this case is complete.

(iii) Hankel and Symmetric Circulant: Let X and Y be Hankel (H) and Symmetric Cir-
culant (SC) respectively. Note that

π(i− 1) + π(i) = π(ji − 1) + π(ji) ∀i ∈ SH and

n/2− |n/2− |π(i− 1)− π(i)|| = n/2− |n/2− |π(ji − 1)− π(ji)|| ∀i ∈ SS .

It can be easily seen from the second equation above that either |π(i − 1) − π(i)| =

|π(ji− 1)− π(ji)| or |π(i− 1)− π(i)|+ |π(ji− 1)− π(ji)| = n. There are six cases for each
Symmetric Circulant match [i, ji], and with vi = π(i)/n, these are:

1. vi−1 − vi − vji−1 + vji = 0.

2. vi−1 − vi + vji−1 − vji = 0.

3. vi−1 − vi + vji−1 − vji = 1.

4. vi−1 − vi − vji−1 + vji = 1.

5. vi − vi−1 + vji−1 − vji = 1.

6. vi − vi−1 + vji − vji−1 = 1.

Now we can write Π∗C(w) as the (not disjoint) union of 6k2 possible Π∗C,l(w) where l

denotes the combination of cases (1)–(6) above that is satisfied in the k2 matches of
Symmetric Circulant. For each π ∈ Π∗C,l(w), each {vi : i /∈ S} can be written uniquely as
an affine integer combination of vS . As in the previous two pairs of matrices in (i) and
(ii), limn→∞

1
n1+k |Π∗C,l(w)| exists as an integral.

Now (4.10) can be checked case by case. As a typical case suppose Case 1 and Case
3 hold. Then π(i − 1) − π(i) = n/2 and vi−1 − vi = 1/2. Since i is generating and vi−1

is a linear combination of {vj : j ∈ S, j < i}, this implies a non-trivial linear relation
between the independent vertices vS . This, in turn implies that the number of circuits
π satisfying the above conditions is o(n1+k).

(iv) Toeplitz and Symmetric Circulant: Let X and Y be Toeplitz (T ) and Symmetric
Circulant (SC) respectively. Again note that,

|π(i− 1)− π(i)| = |π(ji − 1)− π(ji)| ∀i ∈ ST and

n/2− |n/2− |π(i− 1)− π(i)|| = n/2− |n/2− |π(ji − 1)− π(ji)|| ∀i ∈ SSC . (4.20)

Now, (4.20) implies either |π(i− 1)−π(i)| = |π(ji− 1)−π(ji)| or |π(i− 1)−π(i)|+ |π(ji−
1)− π(ji)| = n.

There are six cases for each Symmetric Circulant match as in Case (iii) above and
two cases for each Toeplitz match.

As before we can write Π∗C(w) as the (not disjoint) union of 2k1 ×6k2 possible Π∗C,l(w)

where l denotes a combination of cases (1)–(6) for all SC matches (as in Case (iii)) and
a combination of cases (1)–(2) for all T matches. As before, for each π ∈ Π∗C,l(w), each
of the {vi : i /∈ S} can be written uniquely as an affine integer combination of vS . As
earlier, limn→∞

1
n1+k |Π∗C,l(w)| exists as an integral.

Now, (4.10) is again checked case by case. Suppose l 6= l′ and π ∈ Π∗C,l(w)
⋂

Π∗C,l′(w).
For l 6= l′, there must be one Toeplitz or Symmetric Circulant match such that two of the
possible cases in (1)–(2) or in (1)–(6) occur simultaneously. Here we just deal with a typ-
ical pair Case (1) and Case (2) for the Toeplitz match. Then we have π(i− 1)− π(i) = 0

and hence vi−1 − vi = 0. Since i is generating and vi−1 is a linear combination of
{vj : j ∈ S, j < i}, this implies there exist a non-trivial relation between the indepen-
dent vertices vS . This, in turn implies that the number of circuits π satisfying the above
conditions in o(n1+k). Now suppose the Symmetric Circulant match happens for both
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case (1) and case (2). Then again we have vi = vi−1 and we can argue as before to
conclude that (4.10) holds.

(v) Toeplitz and Reverse Circulant: Let X and Y be Toeplitz (T ) and Reverse Circulant
(RC) respectively. Note,

|π(i− 1)− π(i)| = |π(ji − 1)− π(ji)| for all i ∈ ST ,

(π(i− 1) + π(i)) mod n = (π(ji − 1) + π(ji)) mod n for all i ∈ SRC .

Clearly, as all the π(i) are between 1 and n, (π(i− 1) +π(i)) mod n = (π(ji− 1) +π(ji))

mod n implies (π(i− 1) + π(i))− (π(ji − 1) + π(ji)) = ain where ai ∈ {0, 1,−1}
Let the number of Toeplitz and Reverse Circulant matches be k1, and k2 respectively

and let us denote ST = {i1, i2, ..., ik1}, SRC = {ik1+1, ik1+2, ..., ik1+k2}.
Let l = (c, a) = (ci1 , ..., cik1

, aik1+1
, ..., aik1+k3

) ∈ I = {−1, 1}k1 × {−1, 0, 1}k3 .
Let Π∗C,l(w) be the subset of Π∗C(w) such that,

π(i− 1)− π(i) = ci(π(ji − 1)− π(ji)) ∀i ∈ ST

π(i− 1) + π(i) = π(ji − 1) + π(ji) + ain ∀i ∈ SRC .

Now clearly,
Π∗C(w) =

⋃
l∈I

Π∗C,l(w),

and translating this in the language of vi’s, we get

|Π∗C,l(w)| = #{(v0, ..., v2k) : vi ∈ Un ∀0 ≤ i ≤ 2k, vi−1 + vi = (vji−1 + vji) + ai ∀i ∈ SRC
and vi−1 − vi = ci(vji−1 − vji) ∀i ∈ ST , v0 = v2k}.

As in the previous cases, limn→∞
|Π∗C,l(w)|
n1+k exists. It remains to show that, limn→∞

|Π∗C,l(w)
⋂

Π∗
C,l′ (w)|

n1+k =

0 for l 6= l′. If l = (c, a) 6= l′ = (c′, a′), then either c 6= c′ or a 6= a′. If c = c′, then clearly
Π∗C,l(w) and Π∗C,l′(w) are disjoint. Let c 6= c′. Without loss of generality, we assume
ci1 = −ci1 . Then clearly, for every π ∈ Π∗C,l(w)

⋂
Π∗C,l′(w) we have vi1−1 = vi, which

gives a non-trivial relation between {vj : j ∈ S}. That in turn implies the required limit
is 0.

(vi) Reverse Circulant and Symmetric Circulant: Let X and Y be Reverse Circulant
(RC) and Symmetric Circulant (SC) respectively. Then

π(i− 1) + π(i) mod n = π(ji − 1) + π(ji) mod n ∀i ∈ SRC and

n/2− |n/2− |π(i− 1)− π(i)|| = n/2− |n/2− |π(ji − 1)− π(ji)|| ∀i ∈ SSC .

As before, the latter equation implies either |π(i − 1) − π(i)| = |π(ji − 1) − π(ji)| or
|π(i− 1)− π(i)|+ |π(ji − 1)− π(ji)| = n.

There are now three cases for each Reverse Circulant match:

1. vi−1 + vi − vji−1 − vji = 0.

2. vi−1 + vi − vji−1 − vji = 1.

3. vi−1 + vi − vji−1 − vji = −1.

Also, there are six cases for each Symmetric Circulant match as in Case (iii).
As before we can write Π∗C(w) as the union of 3k1 × 6k2 possible Π∗C,l(w). Hence

arguing in a similar manner, limn→∞
1

n1+k |Π∗C,l(w)| exists as an integral. Now, to check
(4.10), case by case. Suppose l 6= l′ and π ∈ Π∗C,l(w)

⋂
Π∗C,l′(w). Since l 6= l′, there must

be one Reverse Circulant or Symmetric Circulant match such that two of the possible
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cases (1)–(3) or (1)–(6) (which appear in Case (iii)) occur simultaneously. It is easily
seen that such an occurrence is impossible for a Reverse Circulant match.

So we assume there is a Symmetric Circulant match and deal with one such typical
match. Suppose then we have both case (1) and case (2). Then again we have vi = vi−1

and as a consequence (4.10) holds.

(vii) Wigner and Hankel: Let X and Y be Wigner (W ) and Hankel (H) respectively.
Observe that,

(π(i− 1), π(i)) =

{
(π(ji − 1), π(ji)) (Constraint C1)

(π(ji), π(ji − 1)) (Constraint C2, for all i ∈ SW ).
(4.21)

Also, π(i − 1) + π(i) = π(ji − 1) + π(ji) for all i ∈ SH . So for each Wigner match there
are two constraints and hence there are 2k1 choices. Let λ be a typical choice of k1

constraints and Π∗C,λ(w) be the subset of Π∗C(w) where the above relations hold. Hence

Π∗C(w) =
⋃
λ

Π∗C,λ(w) (not a disjoint union).

Now using equation (4.12) we have,

|Π∗C,λ(w)| = #{(v0, v1 . . . v2k) : 0 ≤ vi ≤ 1, v0 = v2k, vi−1 + vi = vji−1 + vji , i ∈ SH
vi−1 = vji−1, vi = vji , (C1), vi−1 = vji , vi = vji−1(C2), i ∈ SW }.

It can be seen from the above equations that each vj , j /∈ S can be written (not uniquely)
as a linear combination Lλj of elements in vS . Hence as before,

|Π∗C,λ(w)| = #{vS : vi = Lλi (vS), v0 = v2k, for i /∈ S, , vi−1 + vi = vji−1 + vji , i ∈ SH
vi−1 = vji−1, vi = vji , (C1), vi−1 = vji , vi = vji−1(C2), i ∈ SW }.

So the limit of |Π∗C,λ(w)|/n1+k exists and can be expressed as an appropriate Riemann
integral.

Now we show (4.10). Without loss of generality assume λ1 is a C1 constraint and λ2

is a C2 constraint. For any π ∈ Π∗C,λ1
(w)

⋂
Π∗C,λ2

(w) we note that for i ∈ S,

(π(ji), π(ji − 1)) = (π(i− 1), π(i)) = (π(ji − 1), π(ji)),

which implies π(i) = π(i − 1). Now i is a generating vertex. But π(i) = π(i − 1) and
hence is fixed, having chosen the first i − 1 vertices. This lowers the order by a power
of n and hence the claim follows.

(vii) Wigner and other matrices: Since the other cases such as Wigner and Toeplitz and
Wigner and Reverse Circulant follow by similar and repetitive arguments we refrain
from presenting a proof for them.

4.3 Proof of Theorem 3.4

Let w be a colored word of length 2k for a monomial q = q(X,Y ). Let w′ be obtained
from w by a cyclic permutation, that is, there exists l such that w′[i] = w[(i+ l) mod 2k].
Note that w′ is a colored word for the monomial q′ obtained from q by the same cyclic
permutation. We have the following lemma.

Lemma 4.2. |Π∗C(w)| = |Π∗C(w′)| and pC(w) = pC(w′).

Proof of Lemma 4.2. Let π ∈ Π∗C(w). Let π′(i) = π((i + l)mod 2k)). Clearly, π′(0) =

π′(2k). Also
w′[i] = w′[j]⇒ L∗(π′(i− 1), π′(i)) = L∗(π′(j − 1), π′(j))
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where L∗ is equal to L1 or L2 according as w′[i] = w′[j] is an X match or a Y match.
Hence, π′ ∈ Π∗C(w′).

As w can also be obtained from w′ by another cyclic permutation, it follows that the
map π → π′ is a bijection between Π∗C(w) and Π∗C(w′). Hence |Π∗C(w)| = |Π∗C(w′)| and
pC(w) = pC(w′).

Proof of Theorem 3.4. (i) We use induction on the length of the word.
If k = 1 then q = XX or q = Y Y . The only colored Catalan word is aa (drop

superscript for ease). In either case, π(0) = i, π(1) = j, π(2) = i is a circuit in Π∗C(w)

for1 ≤ i ≤ n, 1 ≤ j ≤ n. Hence, |Π∗C(w)| ≥ n2 and the result is true for k = 1.
Now let us assume that the claim holds for all monomials q of length less than 2k

and all Catalan words corresponding to q. By Lemma 4.2, without loss of generality
we assume that w = aaw1 where w1 is a Catalan word of length (2k − 2). Now let
π′ ∈ Π∗C(w1). For fixed j, 1 ≤ j ≤ n, define π by

π(0) = π′(0) (4.22)

π(1) = j (4.23)

π(j) = π′(j − 2), j ≥ 2. (4.24)

Clearly π is a circuit and π(0) = π(2) implies L(π(0), π(1)) = L(π(1), π(2)). Hence π ∈
|Π∗C(w)| and so, |Π∗C(w)| ≥ n|Π∗C(w1)| ≥ nk+1 and hence (i) is proved.

(ii) We shall now show that pC(w) ≤ 1 for matrices whose link functions satisfy Property
B and Property P. The proof is same as the proof of Theorem 2(ii) of Banerjee and Bose
[3], with appropriate changes to add color and index. We indicate the changes while
keeping the notation similar to theirs for easy comparison. The proof uses (2k+1)-tuple
π which are not necessarily

circuits, that is, π(0) = π(2k) is not assumed. Let w be a colored Catalan word.
Define

C ′(w) = {π : w[i] = w[j]⇒ ci = cj and Lci(π(i− 1), π(i)) = Lcj (π(j − 1), π(j))}
Γi,j(w) = {π ∈ C(w) : π(0) = i, π(2k) = j}, (1 ≤ i, j ≤ n), γi,j(w) = |Γi,j(w)|.

Clearly, |Π∗C(w)| =
∑n
i=1 γi,i(w). Now consider the following statement S′k for all k ≥ 1:

S′k: For any colored Catalan w of length (2k), there exists Mk > 0 such that

γi,j(w) ≤Mkn
k−1 for all i 6= j and

1

n

n∑
i=1

∣∣∣∣γi,i(w)

nk
− 1

∣∣∣∣ = O(1/n).

The proof of S′k easily follows by repeating the steps of the proof of Theorem 2(ii) of
Banerjee and Bose [3] and changing the set C(w) there by C ′(w) and using Property B
and Property P. To avoid repetitive arguments we skip the details. Once the validity of
S′k is asserted, one gets pC(w) ≤ 1 and the result now follows using

part (i).

4.4 Proof of Theorem 3.5

We need the following development for describing freeness.
Let Sn be the group of permutations of (1, 2, . . . n).

Definition 4.3. Let A be an algebra. Let ψk : Ak −→ C k > 0 be multi linear functions.
For α ∈ Sn, let c1, c2, . . . cr be the cycles of α. Then define

ψα[A1, A2, . . . , An] = ψc1 [A1, A2, . . . , An]ψc2 [A1, A2, . . . , An] . . . ψcr [A1, A2, . . . , An]
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where
ψc[A1, A2, . . . , An] = ψp

(
Ai1Ai2 . . . Aip

)
if c = (i1, i2 . . . ip).

Freeness is intimately tied to non-crossing partitions. We describe the relevant por-
tion of this relation in brief below. See Theorem 14.4 of Nica and Speicher [27] for
more details. Let NC2(m) be the set of non-crossing pair-partitions of {1, 2, . . . ,m}. A
typical pair-partition π will be written in the form {(r, π(r)), r = 1, 2, . . . ,m}. Recall
that, p = (p(1), p(2), . . . , p(m)) integers (also can be referred to as colors), let

NC
(p)
2 (m) = {π ∈ NC2(m) : p(π(r)) = p(r) for all r = 1, . . . ,m}.

Suppose d1, d2, . . . , dm, s1, s2, . . . sm are elements in some non-commutative probability
space (B, ϕ). Suppose {s1, s2, . . . sm} are free and each si follows the semicircular law.
Then the collections {s1, s2, . . . sm} and {d1, d2, . . . dm} are free if and only if,

ϕ(sp(1)d1 . . . sp(m)dm) =
∑

π∈NC(m)

kπ[sp(1), . . . sp(m)]. ϕπγ [d1, . . . , dm]

=
∑

π∈NC(p)
2 (m)

ϕπγ [d1, . . . , dm], (4.25)

where γ ∈ Sm is the cyclic permutation with one cycle and γ = (1, 2, . . . ,m−1,m). Here
kn denotes the free cumulants and kπ for a partition π is defined along the same lines
as Definition 4.3.

We shall also drop the suffix C from pC(w), ΠC(w), Π∗C(w) etc. for simplicity. Fix a
monomial q of Wigner (W ) and any other patterned matrix (A) of length 2k. To prove
freeness we show that the limiting variables satisfy the relation (4.25). We have already
remarked that freeness is intimately tied to non-crossing partitions but freeness in the
limit can also be roughly described in terms of colored words in the following manner.

1. If for a colored word the pair-partitions corresponding to the Wigner matrix cross,
then p(w) = 0.

2. If the pair-partition corresponding to the letters of matrix A cross with any pair-
partition of W then also p(w) = 0.

For example, p(w1w2w1w2a1a1) = 0 and p(w1a1w1a1) = 0. This is essentially the main
content of Lemma 4.4 given below.

We will discuss in detail the proof of Theorem 3.5 for p = 1 and indicate how the
results continue to hold for p ≥ 1.

We need a few preliminary Lemmata to prove the main result. We first use these
Lemmata to prove Theorem 3.5 and then provide the proofs of the Lemmata.

We now concentrate only on (colored) pair-matched words. For a word w the pair
(i, j) 1 ≤ i < j ≤ 2k is said to be a match if w[i] = w[j]. A match (i, j) is said to be a W
match or an A match according as w[i] = w[j] is a Wigner or an A letter.

We define w(i,j) to be the word of length j − i+ 1 as

w(i,j)[k] = w[i− 1 + k] for all 1 ≤ k ≤ j − i+ 1.

Let w(i,j)c be the word of length t+ i− j− 1 obtained by removing w(i,j) from w, that
is,

w(i,j)c [r] =

{
w[r] if r < i,

w[r + j − i+ 1] if r ≥ i.

Note that in general these subwords may not be matched. If (i, j) is a W match, we
will call w(i,j) a Wigner string of length (j − i + 1). For instance, for the monomial
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WAAAAWWW , w = abbccadd is a word and abbcca and dd are Wigner strings of length
six and two respectively. For any word w, we define the following two classes:

Π∗(C2)(w) = {π ∈ Π∗(w) : (i, j) W match⇒ (π(i− 1), π(i)) = (π(j), π(j − 1))},(4.26)

Π∗(i,j)(w) = {π ∈ Π∗(w) : (π(i− 1), π(i)) = (π(j), π(j − 1))}. (4.27)

Note that the condition appearing above involves C2 constraint defined in (4.21) and

Π∗(C2)(w) =
⋂

(i,j):Wmatch

Π∗(i,j)(w). (4.28)

It is well known that if we have a collection of only Wigner matrices then p(w) 6= 0 if
and only if all the constraints in the word are C2 constraints. See for example Bose and
Sen [8]. We need the following crucial extension in the present setup.

Lemma 4.4. For a colored pair-matched word w of length 2k with p(w) 6= 0 we have:

(a) Every Wigner string is a colored pair-matched word;

(b) For any (i, j) which is a W match we have

lim
n−→∞

|Π∗(w)−Π∗(i,j)(w)|
n1+k

= 0. (4.29)

(c)

lim
n−→∞

|Π∗(w)−Π∗(C2)(w)|
n1+k

= 0. (4.30)

Note that (c) and (b) are equivalent by (4.28) and as the number of pairs (i, j) is
finite.

Lemma 4.5. Suppose Xn has LSD and they satisfy Assumption A1 and A2, then for any
l ≥ 1 and integers (k1, k2, . . . , kl), we have

E

[
l∏
i=1

(
1

n
Tr(

(
Xn√
n

)ki
))

]
−

l∏
i=1

E

[
1

n
Tr(

(
Xn√
n

)ki
)

]
→ 0 as n→∞.

Assuming the above lemmas we now prove Theorem 3.5.

Proof of Theorem 3.5. We take a single copy ofW andA to show the result. For multiple
copies the proof is essentially remains same modulo some notation. Let q be a typical
monomial, q = WAq(1)WAq(2) . . .WAq(m) of length 2k, where the q(i)’s may equal 0. So,
k = m/2 + (q(1) + q(2) + . . . + q(m))/2. From Theorem 3.3, for every such monomial q,

1
nk+1 Tr(q) converges to say ϕ(saq(1) . . . saq(m)), where s follows the semicircular law and
a is the marginal limit of A, and ϕ is the appropriate functional defined on the space of
non-commutative polynomial algebra generated by a and s. It is enough to prove that ϕ
satisfies (4.25).
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Let us expand the expression for

lim
n→∞

1

n1+k
E[Tr(WAq(1)WAq(2) . . .WAq(m))]

= lim
n→∞

1

n1+k

n∑
i(1),i(2),...i(m)

j(1),j(2),...j(m)=1

E[wi(1)j(1)a
q(1)
j(1)i(2)wi(2)j(2)a

q(2)
j(2)i(3) . . . wi(m)j(m)a

q(m)
j(m)i(1)]

(4.31)

= lim
n→∞

1

n1+k

∑
w∈CW (2)

∑
π∈Π∗(w)

E[Xπ]

= lim
n→∞

1

n1+k

∑
w∈CW (2)

∑
π∈Π∗

(C2)
(w)

E[Xπ] (by Lemma 4.4 (c) and Assumption (A2)). (4.32)

Colored pair-matched words of length 2k are in bijection with the set of pair-partitions
on {1, 2, . . . , 2k} (denoted by P2(2k)). Now each such word w induces σw a pair-partition
of {1, 2, . . .m} that is induced by only the Wigner matches i.e (a, b) ∈ σw iff (a, b) is
a Wigner match. So given any pair-partition σ of {1, 2, . . . ,m}, we denote by [σ]W the
class of all w which induce the partition σ. So the sum in (4.32) can be written as,

lim
n→∞

1

n1+k

∑
σ∈P2(m)

∑
w∈[σ]W

∑
π∈Π∗

(C2)
(w)

E[Xπ]. (4.33)

By C2 constraint imposed on the class Π∗(C2)(w), if (r, s) is a W match then (i(r), j(r)) =

(j(s), i(s)) (or, equivalently in terms of π we have, (π(r − 1), π(r)) = (π(s), π(s− 1))).

Therefore, we have the following string of equalities. Let tr be the normalized
trace. The equality in (4.34) follows from (4.31) and (4.32). The steps in (4.35), (4.36)
and (4.37) follow easily from calculations similar to Proposition 22.32 of Nica and Spe-
icher [27]. The last step follows from the fact that the number of cycles of σγ is equal
to 1 +m/2 if and only if σ ∈ NC2(m). The notation trσγ is given in Definition 4.3.

lim
n→∞

1

nk+1
E[Tr(WAq(1)WAq(2) . . .WAq(m))]

= lim
n→∞

1

nk+1

∑
σ∈P2(m)

n∑
i(1),i(2),...i(m)

j(1),j(2),...j(m)=1

∏
(r,s)∈σ

δi(r)j(s)δi(s)j(r) E[a
q(1)
j(1)i(2) . . . a

q(m)
j(m)i(1)] (4.34)

= lim
n→∞

1

nk+1

∑
σ∈P2(m)

n∑
i(1),i(2),...i(m)

j(1),j(2),...j(m)=1

∏
(r,s)∈σ

δi(r)j(s)δi(s)j(r) E[a
q(1)
j(1)i(γ(1)) . . . a

q(m)
j(m)i(γ(m))]

(4.35)

= lim
n→∞

1

nk+1

∑
σ∈P2(m)

n∑
i(1),i(2),...i(m)

j(1),j(2),...j(m)=1

m∏
r=1

δi(r)j(σ(r)) E[a
q(1)
j(1)i(γ(1)) . . . a

q(m)
j(m)i(γ(m))] (4.36)

= lim
n→∞

1

nk+1

∑
σ∈P2(m)

n∑
j(1),j(2),...j(m)=1

E[a
q(1)
j(1)j(σγ(1)) . . . a

q(m)
j(m)j(σγ(m))] (4.37)

=
∑

σ∈NC2(m)

lim
n→∞

E
(

trσγ [A(q1), A(q2), . . . , A(qm))]
)
.
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Now it follows from Lemma 4.5 that,∑
σ∈NC2(m)

lim
n→∞

E
(

trσγ [A(q1), A(q2), . . . , A(qm))]
)

=
∑

σ∈NC2(m)

lim
n→∞

(E tr)σγ [A(q1), A(q2), . . . , A(qm))]

=
∑

σ∈NC2(m)

ϕσγ [a(q1), a(q2), . . . , a(qm))].

This shows ( 4.25) and hence freeness in the limit.
The above method can be easily extended to plug in more independent copies of W

and A. The following details will be necessary.

1. The extension of Lemmata 4.4 and 4.5. Note that these extensions can be easily
obtained using the injective mapping ψ described in Section 3 and used in Theo-
rem 3.1.

2. When we consider several independent copies of the Wigner matrix the product
in (4.36) gets replaced by

m∏
r=1

δi(r)j(σ(r))δp(r)p(σ(r)).

Here (p(1), p(2), . . . , p(m)) denotes the colors corresponding to the independent
Wigner matrices. The calculations are similar to Theorem 22.35 of Nica and Spe-
icher [27].

The rest are some algebraic details, which we skip.

Having proved the Theorem we now come back to the proof of Lemma 4.4 and 4.5.
The next Lemma turns out to be the most essential ingredient in proving Lemma 4.4
and it points out the behavior of a colored pair-matched word which contains a Wigner
string inside it.

Lemma 4.6. For any colored pair-matched word w and a Wigner string w(i,j) which is
a pair-matched word and satisfies equation (4.29)

p(w) = p(w(i,j))p(w(i,j)c). (4.38)

Further, if w(i+1,j−1) and w(i,j)c satisfy (4.30) then so does w.

Proof. Given any π1 ∈ Π∗(w(i+1,j−1)) and π2 ∈ Π∗(w(i,j)c) construct π as:

π = (π2(0), . . . π2(i−1), π1(0), . . . π1(j−i−1) = π1(0), π2(i−1), . . . (2k−j+i−1)) ∈ Π∗(i,j)(w).

Conversely, from any π ∈ Π∗(i,j)(w) one can construct π1 and π2 by reversing the above
construction.

So we have
|Π∗(i,j)(w)| = |Π∗(w(i+1,j−1))||Π∗(w(i,j)c)|. (4.39)

Let |w(i+1,j−1)| = 2l1 and |w(i,j)c | = 2l2 and note that (1 + l1) + (1 + l2) = k + 1.
Now using the fact that w(i,j) satisfies (4.29) and dividing equation (4.39) by nk+1

we get in the limit,
p(w) = p(w(i+1,j−1))p(w

c
(i,j)).

Now we claim that
|Π∗(w(i,j))| = n|Π∗(w(i+1,j−1))|. (4.40)
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Now given π ∈ Π∗(w(i,j)), one can always get a π′ ∈ Π∗(w(i+1,j−1)), where the π(i − 1)

is arbitrary and hence
|Π∗(w(i,j))|

n ≤ |Π∗(w(i+1,j−1))|. Also given a π′ ∈ Π∗(w(i+1,j−1))

one can choose π(i − 1) in n ways and also assign π(j) = π(i − 1) or π(i), making j a
dependent vertex. So we get that, |Π∗(w(i,j))| ≥ n|Π∗(w(i+1,j−1))|. This shows (4.40). So
from (4.40) it follows that

p(w(i,j)) = p(w(i+1,j−1)),

whenever w(i,j) is a Wigner string.
Also note that from the first construction,

|Π∗(C2)(w)| = |Π∗(C2)(w(i+1,j−1))||Π∗(C2)(w(i,j)c)|.

Now suppose w(i+1,j−1) and w(i,j)c satisfy (4.30). So we have that

|Π∗(w(i+1,j−1))| = |Π∗(C2)(w(i+1,j−1))|+o(nl1+1) and |Π∗(w(i,j)c)| = |Π∗(C2)(w(i,j)c)|+o(nl2+1).

Multiplying these and using the fact (from (4.39))
|Π∗(w)| = |Π∗(w(i+1,j−1))||Π∗(w(i,j)c)|+ o(nk+1), the result follows.

We now give a proof of Lemma 4.4.

Proof of Lemma 4.4. We use induction on the length l of the Wigner string. Let w be a
pair-matched colored word of length 2k with p(w) 6= 0. First suppose the Wigner string
is of length 2, that is, l = 2. We may without loss of generality assume them in the
starting position. So we for any π ∈ Π∗(w) with above property we have

(π(0), π(1)) =

{
(π(1), π(2))

(π(2), π(1)).

In the first case π(0) = π(1) = π(2) and so π(1) is not
a generating vertex and this lowers the number of generating vertices (which is not

possible as p(w) 6= 0). Hence, the only possibility is (π(0), π(1)) = (π(2), π(1)) and the
circuit is complete for the Wigner string and so it is a pair-matched word, proving part
(a). Also, as a result of the above arguments only C2 constraints survive, which shows
(b).

Now suppose the result holds for all Wigner strings of length strictly less than l.
Consider a Wigner string of length l, say w(1,l) (we assume it to start from the first
position). We break the proof into two cases I and II. In case I, we suppose that the
Wigner string has a Wigner string of smaller order and use induction hypothesis and
Lemma 4.6 to show the result. In Case II, we assume that there is no Wigner string
inside. So there is a string of letters coming from matrix A after a Wigner letter. We
show that this string is pair-matched and the last Wigner letter before the l-th position
is essentially at the first position. This also implies that the string within a Wigner string
do not cross a Wigner letter.

Case I: Suppose that w(1,l) contains a Wigner string of length less than l at the
position (p, q) with 1 ≤ p < q ≤ l. Since w(p,q) is a Wigner string, by Lemma 4.6 we have,

p(w) = p(w(p,q))p(w(p,q)c) 6= 0.

So by induction hypothesis and the fact that both p(w(p,q)) and p(w(p,q)c) are not equal
to zero we have, w(p,q) and w(p,q)c are pair-matched words and they also satisfy (4.29).
So w(1,l) is a pair-matched word, as it is made up of w(p,q) and w(p,q)c which are pair-
matched. Also from second part of Lemma 4.6, we have w(1,l) satisfies part (b) and
(c).
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Case II: Suppose there is no Wigner string in the first l positions. Consider the
last Wigner letter in the first l− 1 positions, say at position j0. Since there is no Wigner
string of smaller length, π(j0) is a generating vertex. Also, as j0 is the last Wigner letter,
the positions from j0 to l − 1 are all letters coming from the matrix A.

Now we use the structure of the matrix A.

Subcase II(i): Suppose A is a Toeplitz matrix. Let si = (π(j0 + i) − π(j0 + i − 1))

with i = 1, 2, . . . , l − 1− j0. Now consider the following equation

s1 + s2 . . .+ sl−1−j0 = (π(l − 1)− π(j0)). (4.41)

If for any j, w[j] is the first appearance of that letter, then consider sj to be an in-
dependent variable (can be chosen freely). Then due to the Toeplitz link function, if
w[k] = w[j], where k > j, then sk = ±sj . Since (1, l) is a W match, π(l − 1) is either π(0)

or π(1) and hence π(l− 1) is not a generating vertex. Note that (4.41) is a constraint on
the independent variables unless s1 + . . .+sl−1−j0 = 0. If this is non-zero, this non-trivial
constraint lowers the number of independent variables and hence the limit contribution
will be zero, which is not possible as p(w) 6= 0. So we must have,

π(l − 1) = π(j0) and j0 = 1.

This also shows (π(l), π(l − 1)) = (π(0), π(1)) and hence w(1,l) is a colored word. As
s1 + . . . + sl−1−j0 = 0, all the independent variables occur twice with different signs in
the left side, since otherwise it would again mean a non-trivial relation among them and
thus would lower the order. Hence we conclude that the Toeplitz letters inside the first
l positions are also pair-matched. Since the C2 constraint is satisfied at the position
(1, l), part (b) also holds.

Subcase II(ii): Suppose A is a Hankel matrix. We write, ti = (π(j0 +i)+π(j0 +i−1))

and consider

− t1 + t2 − t3 . . . (−1)l−j0−1tl−j0−1 = (−1)l−j0−1(π(l − 1)− π(j0)). (4.42)

Now again as earlier, the ti’s are independent variables, and so this implies that again
to avoid a non-trivial constraint which would lower the order, both sides of the

equation (4.42) have to vanish, which automatically leads to the conclusion that
π(l − 1) = π(j0) = π(1). So j0 = 1 and again the Wigner paired string of length l is
pair-matched. Part (b) also follows as the C2 constraint holds.

Subcase II(iii): A is Symmetric or Reverse Circulant. Note that they have link
functions which are quite similar to Toeplitz and Hankel respectively, the proofs are
very similar to the above two cases and hence we skip them.

Proof of Lemma 4.5. We first show that,

E

[
l∏
i=1

(
tr

Xki
n

nki/2
− E

[
tr

Xki
n

nki/2

])]
= O(

1

n
) as n→∞, (4.43)

where tr denotes the normalized trace. To prove (4.43), we see that,

E

[
l∏
i=1

(
tr

Xki
n

nki/2
− E

[
tr

Xki
n

nki/2

])]
=

1

n
∑l

i=1 ki/2+l

∑
π1,π2,..πl

E[(

l∏
j=1

(Xπi − E(Xπi)))]. (4.44)

If the circuit πi is not jointly matched with the other circuits then EXπi
= 0 and

E[(

l∏
j=1

(Xπi − E(Xπi)))] = E[Xπi(
∏
j 6=i

(Xπi − E(Xπi)))] = 0.
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If any of the circuits is self matched i.e. it has no cross matched edge then

E[(

l∏
j=1

(Xπi − E(Xπi)))] = E[Xπi − E(Xπi)] E[(
∏
j 6=i

(Xπi − E(Xπi)))] = 0.

Now total number of circuits {π1, π2, . . . πl} where each edge appears at least twice

and one edge at least thrice is ≤ Cn
∑l

i=1 ki/2+l−1, by Property B. Hence using Assump-
tion (A2) such terms in (4.44) are of the order O( 1

n ). Now consider rest of

the terms where all the edges appear exactly twice. As a consequence
∑l
i=1 ki is

even. Also number of partitions of 1
2

∑l
i=1 ki into l circuits is independent of n. We need

to consider only {π1, π2, . . . πl} which are jointly matched but not self matched.

If we prove that for such a partition the number of circuits is less than Cn
∑l

i=1 ki+l−1

we are done since the number of such partitions is independent of n and (4.3).
Since π1 is not self matched we can without loss of generality assume that the edge

value for (π(0), π(1)) occurs exactly once in π1. So construct π1 as follows. First choose
π1(0) = π1(k1) and then choose the remaining vertices in the order π1(k1), π1(k1 − 1) . . . π1(1).
One sees that we loose one degree of freedom as in this way the edge (π(0), π(1)) is de-
termined and we cannot choose it arbitrarily.

The result now follows from (4.43) by using induction. For l = 2 expanding and using
the fact that expected normalized trace of the powers of Xn/

√
n converges we get,

E

[
2∏
i=1

(
tr

Xki
n

nki/2
− E

[
tr

Xki
n

nki/2

])]

= E

[(
tr

Xk1
n

nk1/2
− E

[
tr

Xk1
n

nk1/2

])(
tr

Xk2
n

nk2/2
− E

[
tr

Xk2
n

nk2/2

])]
= E

[
tr

Xk1
n

nk1/2
tr

Xk2
n

nk2/2

]
− E

[
tr
Xk1
n

nk1

]
E

[
tr
Xk2
n

nk2

]
→ 0 as n→∞.

So the result holds for l = 2. Now suppose it is true for all 2 ≤ m < l. We expand

lim
n→∞

E[

l∏
i=1

(tr((
Xn√
n

)ki)− E(tr((
Xn√
n

)ki)))] = 0

to get

lim
n→∞

l∑
m=1

(−1)m
∑

i1<i2...<im

E[

m∏
j=1

tr((
Xn√
n

)kij )]
∏

i/∈{i1,i2,...im}

E[tr((
Xn√
n

)ki)] = 0.

Now using the result for products of smaller order successively,

lim
n→∞

(−1)l E[

l∏
j=1

tr((
Xn√
n

)kj )] = lim
n→∞

∑
m<l

(−1)m
∑

i1<i2...<im

E[

m∏
j=1

tr((
Xn√
n

)kij )]
∏

i/∈{i1,i2,...im}

E[tr((
Xn√
n

)ki)].

Now every term in right side is by induction hypothesis limn→∞
∏l
i=1 E[tr((Xn√

n
)ki)] and

from this the Lemma follows.

Proof Remark 3.6. We just briefly sketch the arguments as the proof is quite similar to
the previous section but much easier. Note that if W is
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a centered GUE with variance 1/n then,

E[WijWkl] =
1

n
δilδjk. (4.45)

This equation (4.45) provides the C2 constraint in the proof of Theorem 3.5. So follow-
ing the steps in the proof of Theorem 3.5 we have

lim
n→∞

1

nk+1
E[Tr(WAq(1)WAq(2) . . .WAq(m))]

= lim
n→∞

1

nk+1

∑
σ∈P2(m)

n∑
i(1),i(2),...i(m)

j(1),j(2),...j(m)=1

∏
(r,s)∈σ

δi(r)j(s)δi(s)j(r) E[a
q(1)
j(1)i(2) . . . a

q(m)
j(m)i(1)]

=
∑

σ∈NC2(m)

lim
n→∞

E
(

trσγ [A(q1), A(q2), . . . , A(qm))]
)
.

Now the result follows by applying Lemma 4.5 which holds under Property B and exis-
tence of LSD.
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