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Abstract

We consider exclusion process with degenerate rates in a finite torus with size n. This
model is a simplified model for some peculiar phenomena of the "glassy" dynamics.
We prove that the spectral gap is bounded below by Cρ4/n2, where ρ = k/n denotes
the density of particle and C does not depend on n nor ρ.
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1 Introduction

Simple exclusion process with degenerate rates is one of the simplest system called
kinetically constrained lattice gases, which have been introduced in the physical liter-
ature as simplified models for some peculiar phenomena of the "glassy" dynamics (see
[1, 5]).

Simple exclusion process with degenerate rates was discussed by [1]. In [1] they
considered this process with particle reservoirs at boundary. They obtained estimates
of spectral gap and log Sobolev constant and diffusive scaling limit of tagged particle
displacement for the stationary process in infinite volume. Simple exclusion process
with degenerate rates without particle reservoirs was discussed by [3]. They considered
hydrodynamic limit of this process and obtained porous medium equation. In [3] they
considered gradient system.

In the proof of hydrodynamic limit of nongradient systems, a sharp upper bound
on the relaxation time (inverse of the spectral gap) for a generator restricted to finite
cubes is needed (cf. [4]). The proof relies on the characterization of the closed forms
of a state space and the proof of this characterization requires that the spectral gap
shrinks at a rate slower than n−2 where n is a side-length of a finite cube.

One of the difficulty in studying this process without particle reservoirs is that if the
density of particle is less than or equal to 1/3, then the ergodic component is decom-
posed into irreducible component which contains all configurations with at least one
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Lower bound estimate of the spectral gap for SEP with degenerate rates

couple of particles at distance less or equal to two and many blocked configurations (cf.
[3]). Note that if we consider this process with particle reservoir (at boundary), then
this process is irreducible.

Thanks to the irreducibility of the process, in [1] they obtained a lower bound esti-
mate of spectral gap (and log Sobolev constant). However the notation in [1] and that
in this paper are different, in our notation, it shrinks at a rate n−2 if n tends to infinity,
where n is a side-length of a finite cube. Furthermore, it goes to 0 as ρ to 0 as a power
law of exponent between 1 and 2. Here ρ is a parameter which controls the entrance
and exit rates such that in equilibrium, the density is ρ.

In [3], they also obtained a lower bound estimate of spectral gap for ρ > 1/3, where
ρ is the density of particle. It shrinks at a rate n−2 if n tends to infinity, where n is a
side-length of a finite cube or the size of the discrete torus. Furthermore, it shrinks at
a rate ρ− 1/3 as ρ tends to 1/3. (see Proposition 2.1 below.)

In this paper, we obtain a lower bound estimate of spectral gap estimate for all
0 < ρ ≤ 1. It shrinks at a rate n−2 if n tends to infinity. Furthermore, it shrinks at a rate
ρ4 as ρ tends to 0 (Theorem 2.2).

Due to the existence of the blocked configurations, we cannot give suitable mean
field type process for ρ ≤ 1/3. Main idea of the proof is "freeze one pair of coupled
particles" and give usual mean field type process except this pair of coupled particles.

This paper is organized as follows: In section 2, we give our model and state our
main result (Theorem 2.2). In section 3, we give two key lemmas (Lemmas 3.2, 3.3) and
prove our main result by using these two lemmas. In section 4, we estimate variance.
In section 5, we prove Lemma 3.2. In section 6, we define sets Θm, (also Θ0

m and Θ1
m)

and compute some quantities of these sets. In section 7, we prove Lemma 3.3.

2 Model and result

Let us consider discrete torus Tn = {1, 2, . . . n} (n is identified with 0). We define
the set of configurations by Σn := {0, 1}Tn , the set of configurations conditioned by the
number of particles by Σn,k := {η ∈ Σn;

∑
x∈Tn

ηx = k}.
For η ∈ Σn and x, y ∈ Tn, we define the configuration ηx,y ∈ Σn by

(ηx,y)z =


ηy if z = x,

ηx if z = y,

ηz otherwise,

and the operator πx,y by
πx,yf(η) = f(ηx,y)− f(η).

We define
c(η) := η−1 + η2.

A function f is a local function if f : {0, 1}Z → R depends only on {ηx : x ∈ A} for
#A <∞. Then we can regard a local function as a function of Σn as usual manner. Let
τx be a shift operator by

(τxη)z = ηx+z for all x, z ∈ Z,

τxf(η) = f(τxη) for all x ∈ Z and for all local functions f.

Given a local function g, which is strictly positive and does not depend on the value
of η0 nor η1, we define the generator of simple exclusion process with degenerate rate
L = Lg by

Lf(η) =
∑
x∈Tn

τx(c(η)g(η))πx,x+1f(η)
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for all local functions f . If there is at least one particle in the neighboring sites of
{x, x+ 1}, then particle can jump from x to x+ 1 or x+ 1 to x. If there is no particle in
the neighboring sites of {x, x + 1}, then particle cannot jump from x to x + 1 nor x + 1

to x. Note that if g ≡ 1, then this system is gradient system and if g = 1− 1
2η−1η2, then

this system is non-gradient system. In the second case, the function cg takes value 0 if
η−1 = η2 = 0 and 1 otherwise.

The ergodic component of the system is complicated (see [3]). If the density of
the particle is large, precisely if k > n/3, then Σn,k is an ergodic component. If the
density of the particle is small, precisely if k ≤ n/3, then Σn,k is decomposed to blocked
configurations and a component which contains all configurations with at least one
couple of particles at distance at most two. We define

Σ0
n,k := {η ∈ Σn,k;

∑
x∈Tn

(ηxηx+1 + ηxηx+2) > 0},

Σ1
n,k := {η ∈ Σn,k;

∑
x∈Tn

(ηxηx+1 + ηxηx+2) = 0}.

Note that Σ1
n,k is set of all blocked configurations. We also note that if k > n/3 then

Σ0
n,k = Σn,k. It is not difficult to see that Σ0

n,k is an ergodic component of the system.
Let µ = µn,k be a uniform probability measure on Σ0

n,k. Then it is easy to see that L
is reversible with respect to µ. Let Ln,k be the restriction of L on Σ0

n,k. Then we can
consider the spectral gap of −Ln,k, which is defined by

λ = λ(n, k) := inf

{
E[f(−Ln,k)f ]

E[f2]

∣∣∣∣∣E[f ] = 0

}
.

We refer the result for k > n/3 by [3].

Proposition 2.1. [3, Proposition 6.1]. Suppose that k > n/3. Then there exists a
constant C not depending on n nor k such that

λ(n, k) ≥ C ρ− 1/3

n2ρ
,

where ρ = k/n.

We give our main result.

Theorem 2.2. There exists a constant C not depending on n nor k such that

λ(n, k) ≥ C ρ
4

n2

where ρ = k/n.

Remark 2.3. By combinatorial methods, we have

#Σ1
n,k =

n(n− 2k − 1)!

k!(n− 3k)!
.

Therefore if k is large enough, then #Σ1
n,k � #Σn,k ∼= #Σ0

n,k. In this case, µn,k is
approximated by canonical Bernoulli measure. Therefore we set

φn(η) :=
∑
x∈Tn

f(
x

n
)(ηx − ρ),

f(x) :=


x if 0 ≤ x ≤ 1/4,

−x+ 1/2 if 1/4 ≤ x ≤ 3/4,

x− 2 if 3/4 ≤ x ≤ 1.
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Then we have

Eµ[φn] = 0,
Eµ[φn(−Ln,k)φn]

Eµ[φ2
n]

∼= 192
ρ

n2
,

for g ≡ 1. This estimate does not make sense if k is small.

Remark 2.4. We consider simple exclusion process with degenerate rate on the torus.
It is easy to consider this process on finite interval with some boundary conditions.
Then we have the same result.

We can also consider similar process on d-dimensional torus or cube as follows. Let
ei (i = 1, 2, . . . , d) be positive unit vectors along i-th axes. We define

ci(η) = η−ei + η2ei +
∑
j 6=i

{ηej + η−ej + ηei+ej + ηei−ej}.

Given a set of local functions g = {gi : i = 1, 2, . . . , d}, each gi is strictly positive and
does not depend on the value of η0 nor ηei , we define the generator of simple exclusion
process with degenerate rate L = Lg by

Lf(η) =
∑
x∈Td

n

d∑
i=1

τx(ci(η)gi(η))πx,x+eif(η)

for all local functions f . If there is at least one particle in the neighboring sites of
{x, x + ei}, then particle can jump from x to x + ei or x + ei to x. If there is no particle
in the neighboring sites of {x, x + ei}, then particle cannot jump from x to x + ei nor
x + ei to x. Then we have similar results. Namely we consider this process on d-
dimensional torus {1, 2, . . . , n}d. Then there is critical number kd(n), which is at most
nd/(2d + 1) such that if k > kd(n) then this system is irreducible and if k ≤ kd(n)

then the state space is decomposed into blocked configurations and a component which
contains all configurations with at least one couple of particles at distance at most
two. Furthermore our proof below is applicable and we obtain the same lower bound
estimate of the spectral gap;

Remark 2.5. There exists a constant C = Cd not depending on n nor k such that

λ(n, k) ≥ C ρ
4

n2

where ρ = k/nd.

3 Outline of the proof

From now on we use the notation ρ = k/n. We pick and fix ρM with 1/3 < ρM < 1/2.
(For example, we set ρM = 5/12.)

First, we give a simple corollary of Proposition 2.1.

Corollary 3.1. There exists a constant C1 not depending on n nor k such that for any
n and ρ ≥ ρM , we have

λ(n, k) ≥ C1
1

n2
≥ C1

ρ4

n2
.

Second we give two lemmas.

Lemma 3.2. There exists a constant C2 not depending on n nor k such that for any n
and k, we have

λ(n, k) ≥ C2
1

n4
.
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Lemma 3.3. There exists a constant C3 not depending on n nor k such that for any
0 ≤ ρ0 ≤ ρM , n ≥ n0 = 128/ρ2

0 and ρ0 ≤ ρ ≤ ρM , we have

λ(n, k) ≥ C3
ρ4

0

n2
.

Finally, combining these corollary and lemmas we conclude the proof. We have only
to consider three cases as follows; i) ρ ≥ ρM , ii) ρ < ρM and n < 128/ρ2, and iii) ρ < ρM
and n ≥ 128/ρ2. In the case i), we can apply Corollary 3.1. In the case ii), we apply
Lemma 3.2, with n < 128/ρ2. Then we have

λ(n, k) ≥ C2
1

n4
≥ C2

1

(128)2

ρ4

n2
.

In the case iii), we apply Lemma 3.3 as ρ0 = ρ. Then we have

λ(n, k) ≥ C3
ρ4

n2
.

Therefore we set

C = min{C1,
C2

(128)2
, C3},

then we have

λ(n, k) ≥ C ρ
4

n2

for all n, k.

4 Computation of variance

As being mentioned in the Introduction, the main idea of the proof in this paper is
that we "freeze" one pair of coupled particles and give usual mean field type process
except this pair of coupled particles. In this section, in order to "freeze" one pair of par-
ticles, we "search" pairs of particles at distance less or equal to two in the two distinct
configurations and "move" them to the "same point". In sections 5, 7, we "freeze" these
particles and give usual mean field type process.

We set cx(η) := τx(c(η)g(η)). Then we have

Eµ[f(−Ln,k)f ] =
1

2
Eµ[

∑
x∈Tn

cx(η)(πx,x+1f(η))2].

It is standard to see that

2V [f ] := 2Eµ[(f − Eµ[f ])2] =
∑

η∈Σ0
n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2µ(η)µ(ξ).

We define
α(η) = αn(η) :=

∑
x∈Tn

(ηxηx+1 + ηxηx+2).

This quantity describes the number of particles at distance less or equal to two, that is
number of particles that can move according to the dynamics. By the definition of α we
have

2V [f ] =
∑

η∈Σ0
n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2

×
∑
x∈Tn

(ηxηx+1 + ηxηx+2)

α(η)

∑
x∈Tn

(ξxξx+1 + ξxξx+2)

α(ξ)
µ(η)µ(ξ)
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We set

V1 =
∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηxηx+1ξyξy+1
1

α(η)α(ξ)
µ(η)µ(ξ),

V2 =
∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηxηx+2ξyξy+1
1

α(η)α(ξ)
µ(η)µ(ξ),

V3 =
∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηxηx+1ξyξy+2
1

α(η)α(ξ)
µ(η)µ(ξ),

V4 =
∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηxηx+2ξyξy+2
1

α(η)α(ξ)
µ(η)µ(ξ).

Then we have

2V [f ] = V1 + V2 + V3 + V4.

Here we have "searched" pairs of particles at distance less or equal to two in the two
distinct configurations. There are 2 × 2 cases, i.e., for each configurations, there is a
pair of particles at distance one and that at distance two. For each cases, we "move"
them to the "same point".

Usually we exchange the occupancy of particles at the pair of sites (x, y), and denote
it by ηx,y. Here, we exchange the occupancy of particles at two pair of sites (x, y) and
(z, w), and denote it by ηx,y:z,w. Namely, for η ∈ Σn and x, y, z, w ∈ Tn such that x 6= z

and y 6= w, we define the configuration ηx,y;z,w ∈ Σn by

ηx,y;z,w =

{
(ηz,w)x,y if y = z,

(ηx,y)z,w otherwise.

Note that (ηx,y)z,w 6= (ηz,w)x,y in general. We also note that ηxηz = (ηx,y;z,w)y(ηx,y;z,w)w.
We set

V5 =
1

n

∑
z∈Tn

∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ηx,z;x+1,z+1))2

× ηxηx+1ξyξy+1
1

α(η)α(ξ)
µ(η)µ(ξ)

V6 =
1

n

∑
z∈Tn

∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(ηx,z;x+1,z+1)− f(ξy,z;y+1,z+1))2

× ηxηx+1ξyξy+1
1

α(η)α(ξ)
µ(η)µ(ξ)

V7 =
1

n

∑
z∈Tn

∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(ξy,z;y+1,z+1)− f(ξ))2

× ηxηx+1ξyξy+1
1

α(η)α(ξ)
µ(η)µ(ξ).

Since (f(η) − f(ξ))2 ≤ 3(f(η) − f(ηx,z;x+1,z+1))2 + 3(f(ηx,z;x+1,z+1) − f(ξy,z;y+1,z+1))2 +

3(f(ξy,z;y+1,z+1)− f(ξ))2 we have

V1 ≤ 3{V5 + V6 + V7}.
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Similarly, we set

V8 =
1

n

∑
z∈Tn

∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ηx,z;x+2,z+1))2

× ηxηx+2ξyξy+1
1

α(η)α(ξ)
µ(η)µ(ξ),

V9 =
1

n

∑
z∈Tn

∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(ξy,z;y+2,z+1)− f(ξ))2

× ηxηx+1ξyξy+2
1

α(η)α(ξ)
µ(η)µ(ξ).

Then we have

V2 ≤ 3{V8 + V6 + V7}, V3 ≤ 3{V5 + V6 + V9}, V4 ≤ 3{V8 + V6 + V9}.

Therefore we have
V [f ] ≤ 3V5 + 6V6 + 3V7 + 3V8 + 3V9. (4.1)

Since α(η) ≥ 1 and
∑
y∈Tn

ξyξy+1

α(ξ) ≤ 1, we have

V5 =
1

n

∑
z∈Tn

∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ηx,z;x+1,z+1))2

× ηxηx+1ξyξy+1
1

α(η)α(ξ)
µ(η)µ(ξ)

≤ 1

n

∑
z∈Tn

∑
x∈Tn

∑
η∈Σ0

n,k

ηxηx+1(f(η)− f(ηx,z;x+1,z+1))2µ(η).

By using standard moving particle lemma (cf. [1, Lemma 3.3]), there exists a con-
stant C4 not depending on n nor k such that

V5 ≤ C4n
2
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η). (4.2)

By changing the variables η and ξ, we also have

V7 ≤ C4n
2
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η). (4.3)

Similarly, by using standard moving particle lemma and change of variables, there exists
a constant C5 not depending on n nor k such that

V8 ≤ C5n
2
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η), (4.4)

V9 ≤ C5n
2
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η) (4.5)

We recall that ηpηr = (ηp,q;r,s)q(η
p,q;r,s)s. Hence we have

V6 =
1

n

∑
z∈Tn

∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(ηx,z;x+1,z+1)− f(ξy,z;y+1,z+1))2

× (ηx,z;x+1,z+1)z(η
x,z;x+1,z+1)z+1(ξy,z;y+1,z+1)z(ξ

y,z;y+1,z+1)z+1

× 1

α(η)α(ξ)
µ(η)µ(ξ).
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Since µ is uniform measure on Σ0
n,k and (ηp,q;r,s)q,p;s,r = η, change of variable yields

V6 =
1

n

∑
z∈Tn

∑
x∈Tn

∑
y∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηzηz+1ξzξz+1

× 1

α(ηz,x;z+1,x+1)α(ξz,y;z+1,y+1)
µ(η)µ(ξ).

It is not difficult to see that

max
n,k

max
x∈Tn

max
η∈Σ0

n,k

ηzηz+1|α(η)− α(ηz,x;z+1,x+1)| = 6,

since maximum is attained by n ≥ 12, 6 ≤ k ≤ n− 6, |z − x| ≥ 6 and η satisfying

ηz−2 = ηz−1 = ηz = ηz+1 = ηz+2 = ηz+3 = 1,

ηx−2 = ηx−1 = ηx = ηx+1 = ηx+2 = ηx+3 = 0.

By using this and α(ηz,x;z+1,x+1) ≥ 1 for all η such that ηz = ηz+1 = 1, we have

ηzηz+1α(η) ≤ ηzηz+1(α(ηz,x;z+1,x+1) + 6) ≤ 7ηzηz+1α(ηz,x;z+1,x+1).

Since ηzηz+1 only takes 0 or 1, we have∑
x∈Tn

ηzηz+1
1

α(ηz,x;z+1,x+1)
≤ ηzηz+1

7n

α(η)
.

Hence we have

V6 ≤ 49
1

n

∑
z∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

α(η)α(ξ)
µ(η)µ(ξ). (4.6)

5 Proof of Lemma 3.2

We note that if η ∈ Σ0
n,k then α(η) ≥ 1. Plugging this into (4.6), we have

V6 ≤ 49n2 1

n

∑
z∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηzηz+1ξzξz+1µ(η)µ(ξ).

Since Eµ[η0η1] > 0 and µ is shift invariant, we can rewrite right hand side above by

49n2(Eµ[η0η1])2 1

n

∑
z∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2 ηzηz+1µ(η)

Eµ[ηzηz+1]

ξzξz+1µ(ξ)

Eµ[ξzξz+1]
.

We can regard ηzηz+1µ(η)/Eµ[ηzηz+1] as conditional probability with condition ηz =

ηz+1 = 1. Hence we can treat

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2 ηzηz+1µ(η)

Eµ[ηzηz+1]

ξzξz+1µ(ξ)

Eµ[ξzξz+1]

as conditional variance with the same condition. If we assume that ηz = ηz+1 = 1, then
α(η) ≥ 1 and η ∈ Σ0

n,k. Since µ is uniform measure on Σ0
n,k, the conditional prob-

ability ηzηz+1µ(η)/Eµ[ηzηz+1] is uniform probability measure on {0, 1}Tn\{z,z+1} with
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Lower bound estimate of the spectral gap for SEP with degenerate rates

∑
x∈Tn\{z,z+1} ηx = k − 2. Therefore we can apply spectral gap estimate for mean field

type simple exclusion process [2]. We conclude that

V6 ≤ 49n2(Eµ[η0η1])2 1

n

∑
z∈Tn

1

n− 2

∑
x,y∈Tn\{z,z+1}

∑
η∈Σ0

n,k

(πx,yf(η))2ηzηz+1
ηzηz+1µ(η)

Eµ[ηzηz+1]

= 49n2Eµ[η0η1]
1

n

∑
z∈Tn

1

n− 2

∑
x,y∈Tn\{z,z+1}

∑
η∈Σ0

n,k

(πx,yf(η))2ηzηz+1µ(η).

By using standard moving particle lemma, there exists a constant C6 not depending
on n nor k such that

1

n

∑
z∈Tn

1

n− 2

∑
x,y∈Tn\{z,z+1}

∑
η∈Σ0

n,k

(πx,yf(η))2ηzηz+1µ(η)

≤ C6n
2
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η). (5.1)

Therefore we conclude that

V6 ≤ 49C6n
4
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η). (5.2)

Plugging (4.2), (4.3), (4.4), (4.5) and (5.2) into (4.1), we have

V [f ] ≤ 6{C4n
2 + C5n

2 + 49C6n
4}
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η).

We set C2 := 1/(18 max{C4, C5, 49C6}), then we have

λ(n, k) ≥ C2
1

n4
.

6 Combinatorial results

In Section 5, we should estimate n/α(η) by its maximum n. If n is large enough,
then thanks to the law of large numbers, α(η) is approximated by its expectation and
it may be also approximated by 2ρ2n. This implies that the set {η ∈ Σ0

n,k : α(η) < an}
for some small a (which may depend on the density ρ) is negligible. To verify this idea,
in this section, we give a family of sets Θm, (and also Θ0

m and Θ1
m) and compute some

quantities. By using these results, in the next section, we prove Lemma 3.3.
From now on, in order to simplify our notation, we shall omit the symbol [x], the

largest integer which is less than or equal to x.
We have picked and fixed ρM with 1/3 < ρM < 1/2. (For example, we set ρM = 5/12.)

From now on, we also pick and fix ρ0 with 0 < ρ0 < ρM . Furthermore we set a = a(ρ0),
b = b(ρ0) and n0 = n0(ρ0) by

a =
ρ2

0

64
, b =

ρ2
0

32
, n0 =

128

ρ2
0

.

Since ρ0 < 1/2, we have b < ρ0/4. However we do not use n0 in this section (we
need restriction on n in order to estimate W7,m in the next section (Section 7)), it is
convenient to define it here.
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Lower bound estimate of the spectral gap for SEP with degenerate rates

6.1 The definition of Θm

Since the cardinality of the sets {η ∈ Σ0
n,k : α(η) = m} is difficult to treat, we define

sets Θm, for even n and 0 ≤ m ≤ k/2 by

Θm = Θn,k,z,m = {η ∈ Σ0
n,k : ηz = ηz+1 = 1,

(n−2)/2∑
x=1

ηz+2xηz+2x+1 = m},

and Θ0
m, Θ1

m for odd n and 0 ≤ m ≤ k/2 by

Θ0
m = Θ0

n,k,z,m = {η ∈ Σ0
n,k : ηz = ηz+1 = 1, ηz−1 = 0,

(n−2)/2∑
x=1

ηz+2xηz+2x+1 = m},

Θ1
m = Θ1

n,k,z,m = {η ∈ Σ0
n,k : ηz = ηz+1 = ηz−1 = 1,

(n−2)/2∑
x=1

ηz+2xηz+2x+1 = m}.

It is easy to see that if η ∈ Θm, η ∈ Θ0
m or η ∈ Θ1

m then α(η) ≥ 1 +m.
We assume that n is even. For each η ∈ Θm, we regard that there are m "pair of

coupled particles", (k − 2)− 2m "uncoupled particles" and (n− 2)/2− (k − 2) +m "pair
of vacant sites" in Tn \ {z, z + 1}. Namely we have

#{x : 1 ≤ x ≤ n− 2

2
, ηz+2x + ηz+2x+1 = 2} = m,

#{x : 1 ≤ x ≤ n− 2

2
, ηz+2x + ηz+2x+1 = 1} = (k − 2)− 2m, (6.1)

#{x : 1 ≤ x ≤ n− 2

2
, ηz+2x + ηz+2x+1 = 0} =

n− 2

2
− (k − 2) +m,

for η ∈ Θm. By using combinatorial method, we can compute the cardinality of Θm:
First, for each 1 ≤ x ≤ (n − 2)/2, we choose one of "pair of coupled particles (ηz+2x +

ηz+2x+1 = 2)", "uncoupled particles (ηz+2x+ηz+2x+1 = 1)" or "pair of vacant sites (ηz+2x+

ηz+2x+1 = 0)" with the conditions (6.1). Due to the conditions (6.1), there are

{(n− 2)/2}!
m!{(k − 2)− 2m}!{(n− 2)/2− (k − 2) +m}!

possibility. Second, for each x assigned to "uncoupled particles (ηz+2x + ηz+2x+1 = 1)",
we choose one of ηz+2x = 1, ηz+2x+1 = 0 or ηz+2x = 0, ηz+2x+1 = 1. For each x assigned
to "uncoupled particles" there are two possibility. By these procedure, we can pick up
all configurations in Θm without double count. Therefore we conclude that

#Θm =
{(n− 2)/2}!

m!{(k − 2)− 2m}!{(n− 2)/2− (k − 2) +m}!
2(k−2)−2m. (6.2)

Suppose that m+ 1 ≤ bn. Then we have

#Θm

#Θm+1
= 4

(m+ 1){(n− 2)/2− (k − 2) +m}
{(k − 2)− 2m}{(k − 2)− 2m− 1}

.

In our assumption, (k − 2) − m > 0 and k − 2m − 3 ≥ nρ0/2, m + 1 ≤ bn ≤ nρ2
0/16.

Therefore we have
#Θm

#Θm+1
≤ 8

ρ2
0

m+ 1

n
≤ 1

2
. (6.3)

As a corollary of this inequality, we have

#Θan

#Θbn
≤ 1

2(b−a)n
. (6.4)
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Similarly, we assume that n is odd. Then we have

#Θ0
n,k,·,m = #Θn−1,k,·,m, #Θ1

n,k,·,m = #Θn−1,k−1,·,m,

#Θ0
m

#Θ0
m+1

≤ 8

ρ2
0

m+ 1

n
≤ 1

2
,

#Θ1
m

#Θ1
m+1

≤ 8

ρ2
0

m+ 1

n
≤ 1

2
,

#Θ0
an

#Θ0
bn

≤ 1

2(b−a)n
,

#Θ1
an

#Θ1
bn

≤ 1

2(b−a)n
.

6.2 The definition of Ψ+, Ψ−

We define l(η) = lz(η) by

l(η) :=

(n−2)/2∑
x=1

ηz+2xηz+2x+1.

Then it is easy to see that if n is even and ηz = ηz+1 = 1, then η ∈ Θm and l(η) = m are
equivalent. It is also easy to see that if n is odd and ηz = ηz+1 = 1, ηz−1 = 0, then η ∈ Θ0

m

and l(η) = m are equivalent and if n is odd and ηz = ηz+1 = ηz−1 = 1, then η ∈ Θ1
m and

l(η) = m are equivalent.

We assume that n is even. We define Ψ+ and Ψ−, by

Ψ+(η) := {ηx,y ∈ Θl(η)+1 : x, y ∈ Tn \ {z, z + 1}},
Ψ−(η) := {ηx,y ∈ Θl(η)−1 : x, y ∈ Tn \ {z, z + 1}}.

Suppose that η ∈ Θm, then we see that there are m "pair of coupled particles", (k −
2) − 2m "uncoupled particles" and (n − 2)/2 − (k − 2) + m "pair of vacant sites" in
Tn\{z, z+1}. We pick up an "uncoupled particle" and rearrange and couple it to another
"uncoupled particle". This manipulation coincides with the choice of "ηx,y ∈ Θl(η)+1" in
the definition of Ψ+. Also we pick up a "pair of coupled particle" and choose "one of
a particle" there, pick up a "pair of vacant sites" and choose one of "vacant site", and
move "the particle" to the "vacant site". This manipulation coincides with the choice of
"ηx,y ∈ Θl(η)−1" in the definition of Ψ−. Therefore we have

#Ψ+(η) = {(k − 2)− 2l(η)}{(k − 2)− 2l(η)− 1}, (6.5)

#Ψ−(η) = 4l(η){n− 2

2
− (k − 2) + l(η)}. (6.6)

Furthermore we have ∑
η∈Θm

∑
ξ∈Ψ+(η)

f(η, ξ) =
∑

ξ∈Θm+1

∑
η∈Ψ−(ξ)

f(η, ξ), (6.7)

for any function f .

Similarly, we assume that n is odd. We also define Ψ0
+,Ψ

0
−,Ψ

1
+,Ψ

1
− by

Ψ0
+(η) := {ηx,y ∈ Θ0

l(η)+1 : x, y ∈ Tn \ {z, z+, z − 1}},

Ψ0
−(η) := {ηx,y ∈ Θ0

l(η)−1 : x, y ∈ Tn \ {z, z + 1, z − 1}},

Ψ1
+(η) := {ηx,y ∈ Θ1

l(η)+1 : x, y ∈ Tn \ {z, z + 1, z − 1}},

Ψ1
−(η) := {ηx,y ∈ Θ1

l(η)−1 : x, y ∈ Tn \ {z, z + 1, z − 1}}.
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Then we have

#Ψ0
+(η) = {(k − 2)− 2l(η)}{(k − 2)− 2l(η)− 1},

#Ψ0
−(η) = 4l(η){n− 3

2
− (k − 2) + l(η)},

#Ψ1
+(η) = {(k − 3)− 2l(η)}{(k − 3)− 2l(η)− 1},

#Ψ1
−(η) = 4l(η){n− 3

2
− (k − 3) + l(η)}.

Furthermore we have ∑
η∈Θ0

m

∑
ξ∈Ψ0

+(η)

f(η, ξ) =
∑

ξ∈Θ0
m+1

∑
η∈Ψ0

−(ξ)

f(η, ξ),

∑
η∈Θ1

m

∑
ξ∈Ψ1

+(η)

f(η, ξ) =
∑

ξ∈Θ1
m+1

∑
η∈Ψ1

−(ξ)

f(η, ξ),

for any function f .

7 Proof of Lemma 3.3

We have picked and fixed ρM with 1/3 < ρM < 1/2. (For example, we set ρM = 5/12.)
We have also picked and fixed ρ0 with 0 < ρ0 < ρM . Furthermore we have set a = a(ρ0),
b = b(ρ0) and n0 = n0(ρ0) by

a =
ρ2

0

64
, b =

ρ2
0

32
, n0 =

128

ρ2
0

.

We recall (4.6);

V6 ≤ 49
1

n

∑
z∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

α(η)α(ξ)
µ(η)µ(ξ).

We set

A =
⋃

m>an

Θm, Ac =

an⋃
m=0

Θm,

if n is even and

A =
⋃

m>an

(Θ0
m ∪Θ1

m), Ac =

an⋃
m=0

(Θ0
m ∪Θ1

m),

if n is odd. We set

W1 =
1

n

∑
z∈Tn

∑
η∈A

∑
ξ∈A

(f(η)− f(ξ))2ηzηz+1ξzξz+1µ(η)µ(ξ)

W2 =
1

n

∑
z∈Tn

∑
η∈A

∑
ξ∈Ac

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n

α(ξ)
µ(η)µ(ξ)

W3 =
1

n

∑
z∈Tn

∑
η∈Ac

∑
ξ∈Ac

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

α(η)α(ξ)
µ(η)µ(ξ)

and C7 = 49/a2, C8 = 98/a, C9 = 49. We have α(η) ≥ l(η) + 1 ≥ an for η ∈ A. Therefore
we have

V6 ≤ C7W1 + C8W2 + C9W3. (7.1)
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We can rewrite W1 by

W1 ≤ 1

n

∑
z∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2ηzηz+1ξzξz+1µ(η)µ(ξ)

= (Eµ[η0η1])2 1

n

∑
z∈Tn

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2 ηzηz+1µ(η)

Eµ[ηzηz+1]

ξzξz+1µ(ξ)

Eµ[ξzξz+1]
.

Then we can treat ηzηz+1µ(η)/Eµ[ηzηz+1] as conditional probability with condition ηz =

ηz+1 = 1. Hence we can treat

∑
η∈Σ0

n,k

∑
ξ∈Σ0

n,k

(f(η)− f(ξ))2 ηzηz+1µ(η)

Eµ[ηzηz+1]

ξzξz+1µ(ξ)

Eµ[ξzξz+1]

as conditional variance with the same condition. If we assume that ηz = ηz+1 = 1, then
α(η) ≥ 1, and η ∈ Σ0

n,k. Since µ is uniform measure on Σ0
n,k, the conditional prob-

ability ηzηz+1µ(η)/Eµ[ηzηz+1] is uniform probability measure on {0, 1}Tn\{z,z+1} with∑
x∈Tn\{z,z+1} ηx = k − 2. Therefore we can apply spectral gap estimate for mean field

type simple exclusion process [2]. We conclude that

W1 ≤ Eµ[η0η1]
1

n

∑
z∈Tn

1

n− 2

∑
x,y∈Tn\{z,z+1}

∑
η∈Σ0

n,k

(πx,yf(η))2ηzηz+1µ(η). (7.2)

We assume that n is even. Since α(ξ) ≥ l(ξ) + 1 = m+ 1 if ξ ∈ Θm, by the definition
of A and Θm, we have

W2 ≤ 1

n

∑
z∈Tn

∑
η∈A

an∑
m=0

∑
ξ∈Θm

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n

m+ 1
µ(η)µ(ξ).

We set W2,m by

W2,m =
1

n

∑
z∈Tn

∑
η∈A

∑
ξ∈Θm

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n

m+ 1
µ(η)µ(ξ).

Note that

W2 =

an∑
m=0

W2,m. (7.3)

By the definition of Ψ+, Θm and (6.5), we have

W2,m =
1

n

∑
z∈Tn

∑
η∈A

∑
ξ∈Θm

{(k − 2)− 2(m+ 1)}!
{(k − 2)− 2m}!

∑
ζm+1∈Ψ+(ξ)

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n

m+ 1
µ(η)µ(ξ).

Inductively, we have

W2,m =
1

n

∑
z∈Tn

∑
η∈A

∑
ξ∈Θm

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ζm+1∈Ψ+(ξ)

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n

m+ 1
µ(η)µ(ξ).
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We set

W4,m =
1

n

∑
z∈Tn

∑
η∈A

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ζbn∈Θbn

∑
ζbn−1∈Ψ−(ζbn)

. . .
∑

ζm+1∈Ψ−(ζm+2)

∑
ξ∈Ψ−(ζm+1)

(f(η)− f(ζbn))2ηzηz+1ξzξz+1
n

m+ 1
µ(η)µ(ξ),

W5,m =
1

n

∑
z∈Tn

∑
η∈A

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ξ∈Θm

∑
ζm+1∈Ψ+(ξ)

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(ζbn)− f(ξ))2ηzηz+1ξzξz+1
n

m+ 1
µ(η)µ(ξ).

Since (f(η)− f(ξ))2 ≤ 2(f(η)− f(ζbn))2 + 2(f(ζbn)− f(ξ))2, by using (6.7), we have

W2,m ≤ 2W4,m + 2W5,m. (7.4)

Since µ is uniform measure and ξz = ζbnz , and ξz+1 = ζbnz+1 by the definition of Ψ+, by
using (6.2), (6.6) we have

W4,m ≤ n

m+ 1

#Θm

#Θbn

1

n

∑
z∈Tn

∑
η∈A

∑
ζbn∈Θbn

(f(η)− f(ζbn))2ηzηz+1ζ
bn
z ζbnz+1µ(η)µ(ζbn).

Since Θbn ⊂ A, we have

W4,m ≤ n

m+ 1

#Θm

#Θbn

1

n

∑
z∈Tn

∑
η∈A

∑
ζbn∈A

(f(η)− f(ζbn))2ηzηz+1ζ
bn
z ζbnz+1µ(η)µ(ζbn)

=
n

m+ 1

#Θm

#Θbn
W1.

By using (6.3) and (6.4), we have

an∑
m=0

n

m+ 1

#Θm

#Θbn
≤

an∑
m=0

n

m+ 1

#Θan

#Θbn
≤

an∑
m=0

n

m+ 1

1

2(b−a)n
≤ an2 1

2(b−a)n
.

Since b = 2a and a =
ρ20
64 , we set

C10 = C10(ρ0) := 256
1

ρ2
0

≥ sup
x≥0

ax2 1

2(b−a)x
=

256

(e log 2)2

1

ρ2
0

.

Then we conclude that
an∑
m=0

W4,m ≤ C10W1. (7.5)

If we set

W6,m =
1

n

∑
z∈Tn

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ξ∈Θm

∑
ζm+1∈Ψ+(ξ)

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(ζbn)− f(ξ))2ξzξz+1
n

m+ 1
µ(ξ),

then, by summing up over η, we have

W5,m ≤W6,m. (7.6)
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We set

W7,m = 2
1

n

∑
z∈Tn

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ζm+1∈Θm+1

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(ζbn)− f(ζm+1))2ζm+1
z ζm+1

z+1 µ(ζm+1)
∑

ξ∈Ψ−(ζm+1)

n

m+ 1
,

W8,m = 2
1

n

∑
z∈Tn

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ξ∈Θm

∑
ζm+1∈Ψ+(ξ)

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(ζm+1)− f(ξ))2ξzξz+1
n

m+ 1
µ(ξ).

Since we have (f(ζbn)− f(ξ))2 ≤ 2(f(ζbn)− f(ζm+1))2 + 2(f(ζm+1)− f(ξ))2, µ is uniform
measure and ξz = ζm+1

z , ξz+1 = ζm+1
z+1 by the definition, by using (6.7), we have

W6,m ≤W7,m +W8,m.

By using (6.6), we have∑
ξ∈Ψ−(ζm+1)

2
{(k − 2)− 2(m+ 1)}!
{(k − 2)− 2m}!

m+ 2

m+ 1
≤ 8

(m+ 2){n/2− k +m+ 2}
(k − 2m)2

In our setting, if m ≤ bn then k − m > 0 and k − 2m ≥ nρ0/2. In our assumption,
n ≥ n0 = 128/ρ2

0, we have

sup
0≤m≤bn

8
(m+ 2){n/2− k +m+ 2}

(k − 2m)2
≤ (b+

2

n
)
16

ρ2
0

≤ 3

4
.

Therefore we have

W7,m =
1

n

∑
z∈Tn

{(k − 2)− 2bn}!
{(k − 2)− 2(m+ 1)}!

∑
ζm+1∈Θm+1

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(ζbn)− f(ζm+1))2ζm+1
z ζm+1

z+1

n

m+ 2
µ(ζm+1)∑

ξ∈Ψ−(ζm+1)

2
{(k − 2)− 2(m+ 1)}!
{(k − 2)− 2m}!

m+ 2

m+ 1

≤ 3

4
W6,m+1, (7.7)

for 0 ≤ m ≤ bn.
By using (6.5), we have

2
{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

n

m+ 1

= 2
n

m+ 1

1

{(k − 2)− 2m}{(k − 2)− 2m− 1}
.

In our setting, k − 2m− 3 ≥ nρ0/2. Hence we set a constant C11 = 8/ρ2
0, then we have

sup
0≤m≤bn

2
n

m+ 1

1

{(k − 2)− 2m}{(k − 2)− 2m− 1}
≤ 8

ρ2
0n

=
C11

n
.

By using this inequality and the definition of Ψ+, we have

W8,m ≤ C11
1

n

∑
z∈Tn

1

n

∑
ξ∈Θm

∑
ζm+1∈Ψ+(ξ)

(f(ζm+1)− f(ξ))2ξzξz+1µ(ξ)

≤ C11
1

n

∑
z∈Tn

∑
ξ∈Θm

1

n

∑
x,y∈Tn\{z,z+1}

(πx,yf(ξ))2ξzξz+1µ(ξ). (7.8)
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Lower bound estimate of the spectral gap for SEP with degenerate rates

By the definition of W6,m,W8,m, we note that

W6,bn−1 =
1

2
W8,bn−1.

By using (7.7) and by the definition of W6,m,W7,m,W8,m, we have

an∑
m=0

W6,m ≤
bn−2∑
m=0

W6,m ≤
bn−2∑
m=0

(W7,m +W8,m)

≤ 3

4
W6,1 +

bn−2∑
m=1

W7,m +

bn−2∑
m=0

W8,m ≤ (1 +
3

4
)

bn−2∑
m=1

W7,m + (1 +
3

4
)

bn−2∑
m=0

W8,m

≤ . . . ≤
bn−2∑
m=0

(
3

4
)mW6,bn−1 +

bn−2∑
m=0

(
3

4
)m

bn−2∑
m=0

W8,m ≤
bn−2∑
m=0

(
3

4
)m

bn−2∑
m=0

W8,m

≤ 4

bn−2∑
m=0

W8,m.

By using this inequality and (7.8) we conclude that

an∑
m=0

W6,m ≤ 4

bn−1∑
m=0

W8,m

≤ 4C11
1

n

∑
z∈Tn

∑
ξ∈Σ0

n,k

1

n

∑
x,y∈Tn\{z,z+1}

(πx,yf(ξ))2ξzξz+1µ(ξ). (7.9)

Similarly, we can rewrite W3 as

W3 =
1

n

∑
z∈Tn

∑
η∈Ac

∑
ξ∈Ac

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

α(η)α(ξ)
µ(η)µ(ξ)

≤ 1

n

∑
z∈Tn

an∑
j=0

∑
η∈Θj

an∑
m=0

∑
ξ∈Θm

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ).

We also set W3,j,m by

W3,j,m =
1

n

∑
z∈Tn

∑
η∈Θj

∑
ξ∈Θm

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ).

Then we have

W3 =

an∑
j=0

an∑
m=0

W3,j,m. (7.10)

By the definition of Ψ+, Θm and (6.5), we have

W3,j,m =
1

n

∑
z∈Tn

∑
η∈Θj

{(k − 2)− 2bn}!
{(k − 2)− 2j}!

∑
ωj+1∈Ψ+(η)

∑
ωj+2∈Ψ+(ωj+1)

. . .
∑

ωbn∈Ψ+(ωbn−1)∑
ξ∈Θm

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ζm+1∈Ψ+(ξ)

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ).
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Lower bound estimate of the spectral gap for SEP with degenerate rates

We set

W9,j,m =
1

n

∑
z∈Tn

∑
η∈Θj

{(k − 2)− 2bn}!
{(k − 2)− 2j}!

∑
ωj+1∈Ψ+(η)

∑
ωj+2∈Ψ+(ωj+1)

. . .
∑

ωbn∈Ψ+(ωbn−1)∑
ξ∈Θm

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ζm+1∈Ψ+(ξ)

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(η)− f(ωbn))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ),

W10,j,m =
1

n

∑
z∈Tn

∑
η∈Θj

{(k − 2)− 2bn}!
{(k − 2)− 2j}!

∑
ωj+1∈Ψ+(η)

∑
ωj+2∈Ψ+(ωj+1)

. . .
∑

ωbn∈Ψ+(ωbn−1)∑
ξ∈Θm

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ζm+1∈Ψ+(ξ)

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(ωbn)− f(ζbn))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ),

W11,j,m =
1

n

∑
z∈Tn

∑
η∈Θj

{(k − 2)− 2bn}!
{(k − 2)− 2j}!

∑
ωj+1∈Ψ+(η)

∑
ωj+2∈Ψ+(ωj+1)

. . .
∑

ωbn∈Ψ+(ωbn−1)∑
ξ∈Θm

{(k − 2)− 2bn}!
{(k − 2)− 2m}!

∑
ζm+1∈Ψ+(ξ)

∑
ζm+2∈Ψ+(ζm+1)

. . .
∑

ζbn∈Ψ+(ζbn−1)

(f(ζbn)− f(ξ))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ).

Since (f(η)−f(ξ))2 ≤ 3(f(η)−f(ωbn))2 +3(f(ωbn)−f(ζbn))2 +3(f(ζbn)−f(ξ))2, by using
(6.7), we have

W3,j,m ≤ 3W9,j,m + 3W10,j,m + 3W11,j,m. (7.11)

By using the same argument in the estimate of W4,m, we can estimate W10,j,m and∑
j,mW10,j,m by

W10,j,m ≤
n

j + 1

#Θj

#Θbn

n

m+ 1

#Θm

#Θbn
W1,

an∑
j=0

an∑
m=0

W10,j,m ≤ C2
10W1. (7.12)

It is easy to see that

W9,j,m =
1

n

∑
z∈Tn

∑
η∈Θj

{(k − 2)− 2bn}!
{(k − 2)− 2j}!

∑
ωj+1∈Ψ+(η)

∑
ωj+2∈Ψ+(ωj+1)

. . .
∑

ωbn∈Ψ+(ωbn−1)

(f(η)− f(ωbn))2ηzηz+1
n

j + 1
µ(η)

1

m+ 1

∑
ξ∈Θm

ξzξz+1µ(ξ).

Since µ is uniform measure, by using (6.3),(6.4), we have

an∑
m=0

n

m+ 1
µ(Θm) ≤

an∑
m=0

n

m+ 1
2(a−b)n ≤ C10.

Therefore we conclude that
an∑
m=0

W9,j,m ≤ C10W6,j . (7.13)
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Lower bound estimate of the spectral gap for SEP with degenerate rates

Similarly, we have
an∑
j=0

W11,j,m ≤ C10W6,m. (7.14)

By using (7.2), (7.3), (7.4), (7.5), (7.6) and (7.9), we have

W2 ≤ 2C10W1 + 2

an∑
m=0

W6,m

≤ {2C10Eµ[η0η1] + 8C11}

× 1

n

∑
z∈Tn

1

n− 2

∑
x,y∈Tn\{z,z+1}

∑
η∈Σ0

n,k

(πx,yf(η))2ηzηz+1µ(η). (7.15)

Similarly by using (7.2), (7.10), (7.11), (7.12), (7.13) and (7.14), we have

W3 ≤ 3C2
10W1 + 6C10

an∑
m=0

W6,m

≤ {3C2
10Eµ[η0η1] + 24C10C11}

× 1

n

∑
z∈Tn

1

n− 2

∑
x,y∈Tn\{z,z+1}

∑
η∈Σ0

n,k

(πx,yf(η))2ηzηz+1µ(η). (7.16)

By using (7.1), (7.2), (7.15) and (7.16), we conclude

V6 ≤ C7W1 + C8W2 + C9W3

≤ {C7Eµ[η0η1] + 2C8C10Eµ[η0η1] + 3C9C
2
10Eµ[η0η1] + 8(C8 + 3C10)C11}

× 1

n

∑
z∈Tn

1

n− 2

∑
x,y∈Tn\{z,z+1}

∑
η∈Σ0

n,k

(πx,yf(η))2ηzηz+1µ(η). (7.17)

By the definition of C7, C8, C9, C10, C11, if we set C12 = 13496320, then we have

C7Eµ[η0η1] + 2C8C10Eµ[η0η1] + 3C9C
2
10Eµ[η0η1] + 8(C8 + 3C10)C11 ≤ C12

1

ρ4
0

. (7.18)

We recall (5.1). By using standard moving particle lemma, there exists a constant C6

not depending on n nor k such that

1

n

∑
z∈Tn

1

n− 2

∑
x,y∈Tn\{z,z+1}

∑
η∈Σ0

n,k

(πx,yf(η))2ηzηz+1µ(η)

≤ C6n
2
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η).

Plugging (4.2), (4.3), (4.4), (4.5), (5.1), (7.17) and (7.18) into (4.1), we have

V [f ] ≤ 6{C4n
2 + C5n

2 + C6C12
n2

ρ4
0

}
∑
x∈Tn

∑
η∈Σ0

n,k

(πx,x+1f(η))2cx(η)µ(η).

We set Ce3 := 1/(C4 + C5 + C6C12)), then we have

λ(n, k) ≥ Ce3
ρ4

0

n2
,

if n is even.
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Lower bound estimate of the spectral gap for SEP with degenerate rates

We assume that n is odd. We set

W 0
2 =

1

n

∑
z∈Tn

∑
η∈A

an∑
m=0

∑
ξ∈Θ0

m

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n

m+ 1
µ(η)µ(ξ),

W 1
2 =

1

n

∑
z∈Tn

∑
η∈A

an∑
m=0

∑
ξ∈Θ1

m

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n

m+ 1
µ(η)µ(ξ),

W 00
3 =

1

n

∑
z∈Tn

an∑
j=0

∑
η∈Θ0

j

an∑
m=0

∑
ξ∈Θ0

m

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ),

W 01
3 =

1

n

∑
z∈Tn

an∑
j=0

∑
η∈Θ0

j

an∑
m=0

∑
ξ∈Θ1

m

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ),

W 10
3 =

1

n

∑
z∈Tn

an∑
j=0

∑
η∈Θ1

j

an∑
m=0

∑
ξ∈Θ0

m

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ),

W 11
3 =

1

n

∑
z∈Tn

an∑
j=0

∑
η∈Θ1

j

an∑
m=0

∑
ξ∈Θ1

m

(f(η)− f(ξ))2ηzηz+1ξzξz+1
n2

(j + 1)(m+ 1)
µ(η)µ(ξ).

Then we can rewrite W2, W3 by

W2 ≤W 0
2 +W 1

2 , W3 ≤W 00
3 +W 01

3 +W 10
3 +W 11

3 .

Then we can use the same argument for W 0
2 ,W

1
2 , W 00

3 ,W 01
3 ,W 10

3 and W 11
3 . Therefore

we have

V [f ] ≤ 6{C4n
2 + C5n

2 + 4C6C12
n2

ρ4
0

}
∑
x∈Tn

∑
η∈Σ0

n,k

(f(η)− f(ηx,x+1))2cx(η)µ(η).

We set Co3 := 1/(C4 + C5 + 4C6C12), then we have

λ(n, k) ≥ Co3
ρ4

0

n2
,

if n is odd. Finally, we set C3 = min{Ce3 , Co3} = Co3 = 1/(C4 + C5 + 4C6C12), then we
conclude that

λ(n, k) ≥ C3
ρ4

0

n2
,
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