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Two-sided random walks
conditioned to have no intersections∗
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Abstract

Let S1, S2 be independent simple random walks in Zd (d = 2, 3) started at the origin.
We construct two-sided random walk paths conditioned that S1[0,∞) ∩ S2[1,∞) = ∅
by showing the existence of the following limit:

lim
n→∞

P (· | S1[0, τ1(n)] ∩ S2[1, τ2(n)] = ∅),

where τ i(n) = inf{k ≥ 0 : |Si(k)| ≥ n}. Moreover, we give upper bounds of the rate
of the convergence. These are discrete analogues of results for Brownian motion
obtained in [3] and [8].
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1 Introduction and Main Results

1.1 Introduction

Let S = (S(n)) be a simple random walk in Zd (d = 2, 3) started at the origin. Take
integers k < n. A time k is called cut time up to n if

S[0, k] ∩ S[k + 1, n] = ∅, (1.1)

where S[0, k] = {S(j) : 0 ≤ j ≤ k}. We call S(k) a cut point if k is a cut time. Lawler [4]
has shown that there are constants 0 < c, c′ <∞ such that for all n,

cn−
ξ
2 ≤ P (S[0, n] ∩ S[n+ 1, 2n] = ∅) ≤ c′n−

ξ
2 , (1.2)

where ξ = ξd is the intersection exponent (see Section 2.1 below). Lawler, Schramm
and Werner [6] have proved that ξ2 = 5

4 by using the SLE techniques. The value of ξ3 is
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not still known. Let Jk be the indicator function of the event that k is a cut time up to n

and let Rn =
n∑
k=0

Jk. Lawler [4] also proved that there exists c > 0 such that

P (Rn ≥ cn1−
ξ
2 ) ≥ c for d = 2,

Rn ≈ n1−
ξ
2 with probability one for d = 3,

where ≈ denotes that the logarithms of both sides are asymptotic.
While the understanding of the number of cut times has been advanced, there is

a few results about the geometrical structure of the path around cut points, which is
the purpose of this paper. We consider the following problem. If we condition that
S[0, n] ∩ S[n + 1, 2n] = ∅, then what kind of structure does the path have around S(n)?
Let S1, S2 be independent simple random walks started at the origin. Then, thanks to
the translation invariance and the reversibility of the simple random walk, our problem
may be deduced to clarify the structure of S1, S2 around the origin when we condition
that S1[0, n] ∩ S2[1, n] = ∅. Letting n→∞, we will face the following problems:

(1) Construct two-sided path conditioned that S1[0,∞) ∩ S2[1,∞) = ∅.

(2) What kind of geometrical structure does such a conditioned path have?

(3) For each l, is the difference between the distribution of S1[0, l]∪S2[0, l] conditioned
on {S1[0, n] ∩ S2[1, n] = ∅} and that conditioned on {S1[0,∞) ∩ S2[1,∞) = ∅} small
for large n?

By (1.2), the probability that S1[0,∞)∩S2[1,∞) = ∅ is 0 for d = 2, 3, so question (i) is
not trivial. For Brownian motions, Lawler [3], and Lawler, Vermesi [8] have constructed
Brownian paths conditioned to have no intersections. More precisely, let B1, B2 be
Brownian motions in Rd (d = 2, 3) starting distance one apart and

T i(R) = inf{t ≥ 0 : |Bi(t)| = R}.

In [3], it was proved that for d = 2, the limit

lim
n→∞

P (· | B1[0, T 1(en)] ∩B2[0, T 2(en)] = ∅) (1.3)

exists and the rate of convergence is bounded above by O(e−δ
√
n) for some δ > 0. For

d = 3, it was shown in [8] that the limit of (1.3) also exists and the rate of convergence
is at most O(e−δn) (see Proposition 2.9).

In this paper we will answer the question (i) and (iii). We will construct the path in
(1) by proving the existence of the limit as in (1.3) for simple random walk (Theorem
1.1). Furthermore, we will derive same rates of convergence as Brownian cases. Since
the speed of convergence in Theorem 1.1 is relatively fast, it would give evidence that
the gap considered in (3) is small.

Even though the conditioned Brownian paths were already constructed as in (1.3),
it is not straightforward to construct it for the simple random walk. Both in [3] and [8],
the scaling property of Brownian motion is crucial in the construction and hence the
same arguments cannot be applied for the simple random walk case. To overcome this
problem, we will use the strong approximation of Brownian motion by simple random
walk derived from the Skorohod embedding. By this approximation, we can define
simple random walks S1, S2 and Brownian motions B1, B2 on the same probability space
so that with high probability, the paths of Si are very close to those of Bi. However,
if S1 and S2 start from a same point, then the difference between the path of Si and
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that of Bi is too large to control the difference between P (B1[0, n] ∩ B2[1, n] = ∅) and
P (S1[0, n] ∩ S2[1, n] = ∅). (See Proposition 2.4 for the difference between Si[0, n] and
Bi[0, n]. We must admit the fact that the difference may be of order n

1
4 .) This difficulty

can be dealt with using the following ideas. Even if starting points of S1 and S2 are
very close, they gradually have a good chance of being reasonably far apart because
of the conditioning not to intersect. Once S1 and S2 are far apart, we can use the
Skorohod embedding to control the non-intersection probability of simple random walks
(see Proposition 3.19 for details).

The question (iii) will be discussed in a forthcoming paper [9]. Let S
1
, S

2
be the

associated two-sided random walks whose probability law is P ] in Theorem 1.1. In order

to show that paths of S
i

have different structures from those of usual simple random

walk Si, we will consider a simple random walk on G := S
1
[0,∞) ∪ S2

[0,∞). (Here we
regard G as the subgraph consisting of all the vertices visited and edges traversed by

either S
1

or S
2
.) In [9], it will be shown that the simple random walk on G, say X, has

subdiffusive behavior for d = 2. This is due to that G has many so called bottleneck
edges and it takes much longer for X to move away from its starting point compared to
the simple random walk in Z2.

Throughout this paper, we use c, c′, c1, c2, δ, · · · to denote arbitrary constants that
depend only on the dimension d. The values of them may change from place to place.

1.2 Framework and Main results

Let d = 2, 3. For x ∈ Zd, let

B(x, n) = {z ∈ Zd : |z − x| < n}

and

∂B(x, n) = {z ∈ Zd\B(x, n) : |z − y| = 1 for some y ∈ B(x, n)}.

We write B(n) = B(0, n) and ∂B(n) = ∂B(0, n). Let Bk(x) = B(x, 2k) and ∂Bk(x) =

∂B(x, 2k). We also write Bk = Bk(0) and ∂Bk = ∂Bk(0).

A sequence of points γ = [γ(0), γ(1), · · · , γ(l)] ⊂ Zd is called path if |γ(j)−γ(j−1)| = 1

for each j = 1, 2, · · · , l. We let lenγ = l be the length of the path, Λ(n) be the set of paths
satisfying that

γ(0) = 0, γ(j) ∈ B(n) for all j = 0, 1, · · · , lenγ − 1

γ(lenγ) ∈ ∂B(n).

Let

Γ(n) = {γ = (γ1, γ2) ∈ Λ(n)2 : γ1(i) 6= γ2(j) for all (i, j) 6= (0, 0)},

and Γ(∞) =
⋂∞
n=1 Γ(n). We write Γk = Γ(2k).

Let S1, S2 be the independent simple random walks in Zd started at the origin. Let

τ i(n) = inf{k ≥ 0 : Si(k) ∈ ∂B(n)},

and τ ik = τ i(2k).

Theorem 1.1. Let d = 2 or 3. For each L ∈ N and γ ∈ Γ(L), the limit

lim
N→∞

P
(

(S1[0, τ1(L)], S2[0, τ2(L)]) = γ
∣∣ (S1[0, τ1(N)], S2[0, τ2(N)]) ∈ Γ(N)

)
=: P ](γ)

(1.4)
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exists. Furthermore, there exist δ > 0 and c <∞ depending only on the dimension such
that the following holds for all L and γ ∈ Γ(L).∣∣∣P((S1[0, τ1(L)], S2[0, τ2(L)]) = γ

∣∣ (S1[0, τ1(N)], S2[0, τ2(N)]) ∈ Γ(N)
)
− P ](γ)

∣∣∣ ≤ ce−δ√logN

(1.5)

for d = 2,∣∣∣P((S1[0, τ1(L)], S2[0, τ2(L)]) = γ
∣∣ (S1[0, τ1(N)], S2[0, τ2(N)]) ∈ Γ(N)

)
− P ](γ)

∣∣∣ ≤ cN−δ
(1.6)

for d = 3,

and P ] extends uniquely to a probability measure on Γ(∞).

The paper is organized as follows. Section 2 gives some preliminary propositions
about Brownian motions and simple random walks. In particular, we state the Skorohod
embedding which is crucial in this paper. Key estimates are given in Section 3 by using
this approximation. We give the proof of Theorem 1.1 in Section 4.

2 Known Results

In this section, we give a list of definition of the objects and known results commonly
used throughout this paper.

2.1 Intersection Exponent

In this subsection, we review the intersection exponent for Brownian motion and
simple random walk. Let d = 2 or 3. Let B1, B2 be independent Brownian motions in
Rd. We start by stating the estimate from [5]. Let

T i(n) = inf{t ≥ 0 : |Bi(t)| = n},

and write P x,y = P x,y1,2 to denote probabilities assuming B1(0) = x,B2(0) = y. Then we
have the following proposition.

Proposition 2.1. ([5], Corollary 3.13.) There exist ξ = ξd, c < ∞ and an increasing
function f : (0, 2]→ (0,∞) such that if |x| = |y| = 1, then for all n ≥ 1

f(|x− y|)n−ξ ≤ P x,y(B1[0, T 1(n)] ∩B2[0, T 2(n)] = ∅) ≤ cn−ξ. (2.1)

Note that ξ is called the intersection exponent for Brownian motion. Next we state
the analogues for simple random walks. Let S1, S2 be independent simple random walks
in Zd. Again we write P x,y = P x,y1,2 to denote probabilities assuming S1(0) = x, S2(0) = y.
Let

τ i(n) = inf{k ≥ 0 : |Si(k)| ≥ n}.

Then the following proposition was proved in [4].

Proposition 2.2. ([4], Theorem 1.3, Corollary 4.6.) Let ξ be the exponent in Proposition
2.1. Then there exist constants c1, c2 such that the following holds.

c1n
−ξ ≤P 0,0(S1[0, τ1(n)] ∩ S2(0, τ2(n)] = ∅) ≤ c2n−ξ, (2.2)

sup
|x|,|y|≤m

P x,y(S1[0, τ1(n)] ∩ S2(0, τ2(n)] = ∅) ≤ c2
( n
m

)−ξ
, (2.3)

for all m ≤ n.
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Remark 2.3. In [6], it was proved that

ξ2 =
5

4
. (2.4)

The value of ξ3 is not known. Rigorous estimate ([1], [5]) show that 1
2 < ξ3 < 1. Simula-

tions suggests that ξ3 is around 0.57 (see Section 7 in [8]).

2.2 Skorohod Embedding

In this subsection, we state the strong approximation of Brownian motion by simple
random walk derived from the Skorohod embedding (see [4] for details).

Proposition 2.4. ([4], Lemma 3.1, Lemma 3.2.) There exist a probability space (Ω,F , P )

containing a d-dimensional standard Brownian motion B and d-dimensional simple ran-
dom walk S such that the following holds. For every ε > 0 there exist δ > 0 and a < ∞
such that

P
(

sup
0≤t≤n

|B(t)− S(td)| ≥ n 1
4+ε
)
≤ a exp(−nδ). (2.5)

Moreover, if we set

T (n) = inf{t : |B(t)| = n}, τ(n) = inf{j : |S(j)| ≥ n}

then for every ε > 0 there exist δ > 0 and a <∞ such that

P
(

sup
0≤t≤T (n)

|B(t)− S(td)| ≥ n 1
2+ε
)
≤ a exp(−nδ). (2.6)

We will be using the strong Markov property at time T (n). However, one slight
complication that arises is the fact that {B(t), S(td) : t ≤ T (n)} might contain a little
information about B(t) beyond time T (n). To overcome this problem, we need the
following proposition.

Proposition 2.5. ([4], Lemma 3.3.) There exist δ > 0 and a <∞ such that the following
holds. For each n, there is an event Ψ(n) with

P (Ψ(n)) ≥ 1− a exp(−nδ)

such that on the event Ψ(n),

{B(t) : t ≤ max{T (n), τ(n)}} ∪ {S(td) : t ≤ max{T (n), τ(n)}}

and
{B(t) : t ≥ T (2n)}

are conditionally independent given B(T (2n)).

2.3 Beurling Estimate

For d = 2, thanks to the Beurling estimate stated in Proposition 2.6 below, we can
say intuitively that every path is ‘hittable’ for both simple random walk and Brownian
motion. Now we state it.

Let B be the Brownian motion in R2 and S be the simple random walk in Z2. Then
the following are well-known (see [7] for the continuous case and [2] for discrete case).

Proposition 2.6. (i) ([7], Theorem 3.76) There exists a constant K < ∞ such that for
any R ≥ 1, any x ∈ R2 with |x| ≤ R, any A ⊂ R2 with [0, R] ⊂ {|z| : z ∈ A},

P x(T (R) < TA) ≤ K
( |x|
R

) 1
2 , (2.7)
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where T (R) = inf{t ≥ 0 : |B(t)| ≥ R} and TA = inf{t ≥ 0 : B(t) ∈ A}.
(ii) ([2], Theorem 2.5.2.) There exists a constant K < ∞ such that for any n ≥ 1, any
x ∈ Z2 with |x| ≤ n, any connected set A ⊂ Z2 containing the origin and such that
sup{|z| : z ∈ A} ≥ n,

P x(τ(n) < τA) ≤ K
( |x|
n

) 1
2 , (2.8)

where τ(n) = inf{j ≥ 0 : |S(j)| ≥ n} and τA = inf{j ≥ 0 : S(j) ∈ A}.

For d = 3, there is no useful analogue of Proposition 2.6. So we need some more
work. Let B be the Brownian motion in R3. For each ε > 0, b < ∞ and a curve γ in R3,
define

f(γ) = f(γ, ε, b) = supP z(B[0, T (2n)] ∩ γ = ∅),
where the supremum is over all z with |z| ≤ n such that

dist(z, γ) ≤ bn1−ε,

and T (n) be the first hitting time of B to the boundary of disk centered at the origin
with radius n. Note that P z denotes the probability with B(0) = z and f(γ) is a function
of γ. Let B′ be the another Brownian motion in R3 and denote the first hitting time of it
to the boundary of disk centered at the origin with radius n by T ′(n). Let

Zn = Zn(ε, b) = f(B′[0, T ′(2n)]).

Note that Zn is a function of B′[0, T ′(2n)]. In other words,

Zn = supP z(B[0, T (2n)] ∩B′[0, T ′(2n)] = ∅ | B′[0, T ′(2n)]),

where the supremum is over all z with |z| ≤ n such that

dist(z,B′[0, T ′(2n)]) ≤ bn1−ε,

The following proposition says that Brownian path is a ‘hittable set’ with high probabil-
ity.

Proposition 2.7. ([4], Lemma 2.4.) For every M < ∞, ε > 0, b < ∞, there exist δ > 0

and a <∞ such that for |x| ≤ n,

P ′x(Zn ≥ n−δ) ≤ an−M , (2.9)

where P ′x denotes probability with B′(0) = x.

Finally, we state an analogue of this proposition for simple random walks. Let S, S′

be two independent simple random walks in Z3. For each ε > 0 and b <∞, let

Z]n = Zn(ε, b)] = supP z(S[0, τ(2n)] ∩ S′[0, τ ′(2n)] = ∅ | S′[0, τ ′(2n)]),

where the supremum is over all z with |z| ≤ n and

dist(z, S′[0, τ ′(2n)]) ≤ bn1−ε,

and τ(n) (resp. τ ′(n)) be the first hitting time of S (resp. S′) to ∂B(n). Again note that
P z denotes the probability with S(0) = z and Z]n is a function of S′[0, τ ′(2n)]. Then we
have the following.

Proposition 2.8. ([4], Lemma 2.6.) For every M < ∞, ε > 0, b < ∞, there exist δ > 0

and a <∞ such that for |x| ≤ n,

P ′x(Z]n ≥ n−δ) ≤ an−M , (2.10)

where P ′x denotes probability with S′(0) = x.

Throughout this paper, we use Proposition 2.8 for M = 6.
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2.4 Nonintersecting Brownian motions

In this subsection, we state convergence theorems for Brownian motion in R2 and
R3 obtained in [3] and [8], respectively. Let d = 2 or 3, and B1, B2 be independent
Brownian motions in Rd. Let D = {z ∈ Rd : |z| ≤ 1} and ∂D = {z ∈ Rd : |z| = 1}. For
K1,K2 ⊂ D and w = (w1, w2) ∈ ∂D2 with wj ∈ Kj ∩ ∂D, define

An(K1,K2) = {B1[0, T 1(en)]∩B2[0, T 2(en)] = ∅, B1[0, T 1(en)]∩K2 = ∅, B2[0, T 2(en)]∩K1 = ∅},

where T i(R) = inf{t ≥ 0 : |Bi(t)| ≥ R}. Let

Qn(K,w) = enξPw1,w2(An(K1,K2)).

Here ξ = ξd is the intersection exponent defined as in Section 2.1. In [3] and [8], it was
shown the following convergence theorems for d = 2 and d = 3, respectively.

Proposition 2.9. ([3], Theorem 1.2 and [8], Proposition 4.8.) Let d = 2 or 3. For each
K1,K2 ⊂ D and w = (w1, w2) ∈ ∂D2 with wj ∈ Kj ∩ ∂D, the limit

lim
n→∞

Qn(K,w) =: Q(K,w) (2.11)

exists. Moreover there exist c < ∞ and β > 0 depending only on the dimension such
that the following holds.

|Q(K,w)−Qn(K,w)| ≤ ce−β
√
nQ(K,w) for d = 2, (2.12)

|Q(K,w)−Qn(K,w)| ≤ ce−βnQ(K,w) for d = 3. (2.13)

As mentioned, our main result Theorem 1.1 (or Theorem 4.1 below) is a random walk
version of this proposition. Notice that the rate of convergence in Theorem 1.1 is same
as that of Proposition 2.9.

3 Approximation of non-intersection probabilities

3.1 Preliminary

Fix L ∈ N and γ = (γ1, γ2) ∈ ΓL. We write wi = γi(lenγi) for the end point of
γi. Assume 10L < m < n. Let S1, S2 be two independent simple random walks in Zd

starting at w1, w2 respectively. Let Am(γ) denote the event

Am(γ) =


S1[0, τ1m] ∩ γ2 = ∅,
S2[0, τ2m] ∩ γ1 = ∅,
S1[0, τ1m] ∩ S2[0, τ2m] = ∅

 . (3.1)

The goal of this section is to prove the following proposition.

Proposition 3.1. Let d = 2, 3. For all L ∈ N and γ = (γ1, γ2) ∈ ΓL, there exist c < ∞
and δ > 0 such that for all n > m > 10L,

|2(m−L)ξP (Am(γ))− 2(n−L)ξP (An(γ))| ≤ c2−δm
d
2
− 1

2 . (3.2)

3.2 Several Lemmas

For m
3 ≤ j ≤

m
2 , let

Dj = min{dist(S1(τ1j ), S2[0, τ2j ]),dist(S2(τ2j ), S1[0, τ1j ])} (3.3)

The next lemma shows the probability that a pair of random walk paths come close to
each other, but still stay apart for a long time afterward, is small.
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Lemma 3.2. There exist c <∞ and δ > 0 such that for all N ≥ m,

P (AN (γ), Dj ≤ 20.99j) ≤ c2−(N−L)ξ2−δj , (3.4)

for each m
3 ≤ j ≤

m
2 .

Proof. It is enough to show that

P (AN (γ),dist(S1(τ1j ), S2[0, τ2j ]) ≤ 20.99j) ≤ c2−(N−L)ξ2−δj . (3.5)

By the strong Markov property,

P (AN (γ),dist(S1(τ1j ), S2[0, τ2j ]) ≤ 20.99j) ≤ c2−(N−j−1)ξP (Aj+1(γ),dist(S1(τ1j ), S2[0, τ2j ]) ≤ 20.99j).

Applying Proposition 2.8 with ε = 0.01, b = 1, S = S1 and S′ = S2, we see that there
exist δ > 0 and c <∞ such that

P (Aj+1(γ),dist(S1(τ1j ), S2[0, τ2j ]) ≤ 20.99j)

≤ P (Z]2j (0.01, 1) ≥ 2−δj) + P (Aj+1(γ),dist(S1(τ1j ), S2[0, τ2j ]) ≤ 20.99j , Z]2j (0.01, 1) ≤ 2−δj)

≤ c2−6j + P (Aj+1(γ),dist(S1(τ1j ), S2[0, τ2j ]) ≤ 20.99j , Z]2j (0.01, 1) ≤ 2−δj).

By the strong Markov property,

P (Aj+1(γ),dist(S1(τ1j ), S2[0, τ2j ]) ≤ 20.99j , Z]2j (0.01, 1) ≤ 2−δj) ≤ 2−δjP (Aj(γ)).

Since P (Aj(γ)) ≤ c2−(j−L)ξ, the lemma is finished.

Let
Fm = {Dm

3
≥ 2

0.99m
3 }. (3.6)

By Lemma 3.2, there exists δ > 0 such that

P (AN (γ), F cm) ≤ c2−(N−L)ξ2−δm, (3.7)

for every N ≥ m.
For each i = 1, 2, define

σi = σim = inf{k ≥ τ i(2m3 − 2
2m
9 ) : Si(k) ∈ ∂B(Si(τ i(2

m
3 − 2

2m
9 )), 2

m
4 )}.

The next lemma shows that conditioned on AN (γ), if the random walk stays at a point
x near the boundary of a ball, then it hits the boundary near by x with high probability.

Lemma 3.3. There exist δ > 0 and c <∞ such that for each N ≥ m,

P (AN (γ), σi < τ im
3

) ≤ c2−(N−L)ξ2−δm. (3.8)

Proof. By the strong Markov property,

P (AN (γ), σi < τ im
3

) ≤ c2−(N−m3 )ξP (Am
3

(γ), σi < τ im
3

).

Since σi > τ im
3 −1

, we see that

P (Am
3

(γ), σi < τ im
3

) ≤ E3−i
(
Ei
(
1{Am

3 −1(γ)}PS
i(τ i(2

m
3 −2

2m
9 ))

i (σi < τ im
3

)
))
,

where P xi denotes the probability measure of Si with Si(0) = x. It is easy to see that
there exist δ > 0 and c <∞ such that

P
Si(τ i(2

m
3 −2

2m
9 ))

i (σi < τ im
3

) ≤ c2−δm,

and the lemma is proved.
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LetGm = {Si[τ i(2m3 −2
2m
9 ), τ im

3
] ⊂ B(Si(τ i(2

m
3 −2

2m
9 )), 2

m
4 ), for i = 1, 2} From Lemma

3.3, we have
P (AN (γ), Gcm) ≤ c2−(N−L)ξ2−δm. (3.9)

Let S be the another simple random walk whose probability measure is denoted by P z

when we assume S(0) = z. Then let

Zim = supP z(S[0, τm
3

] ∩ Si[0, τm
3

] = ∅), (3.10)

where the supremum is over all z with

dist(z, Si[0, τ i(2
m
3 − 2

2m
9 )]) ≤ 2

11m
60 .

Note that Zim is a function of Si[0, τm
3

]. By Proposition 2.8, we see that there exist δ > 0

and c <∞ such that
Pi(Z

i
m ≥ 2−δm) ≤ c2−6m. (3.11)

Therefore, if we set Hi
m = {Zim < 2−δm} and Hm = H1

m ∩H2
m, we have

P (AN (γ), Hc
m) ≤ c2−(N−L)ξ2−δm. (3.12)

3.3 Coupling

Using the strong Markov property, we see that

P (AN (γ), Fm, Gm, Hm) = E
(
1{Am

3
(γ), Fm, Gm, Hm}P

S1(τ1
m
3
),S2(τ2

m
3
)

1,2 (Rm
3 ,N

)
)
, (3.13)

where we let Rm
3 ,N

be the event

Rm
3 ,N

=


S
1
[0, τ1N ] ∩ (S2[0, τ2m

3
] ∪ γ2) = ∅

S
2
[0, τ2N ] ∩ (S1[0, τ1m

3
] ∪ γ1) = ∅

S
1
[0, τ1N ] ∩ S2

[0, τ2N ] = ∅

 . (3.14)

Here S
1

and S
2

are independent simple random walks starting at S1(τ1m
3

) and S2(τ2m
3

),

respectively, and we use same notation τ i(l), τ ik for the hitting time of S
i
. More precisely,

let
τ i(l) = inf{j ≥ 0 : S

i ∈ ∂B(l)}

and τ ik = τ i(2k). Throughout this section we will let (B1, S
1
) and (B2, S

2
) be two in-

dependent Brownian motion - random walk pairs coupled as in Section 2.2. Assume

Bi(0) = S
i
(0) = Si(τ im

3
) =: wim/3. Let

T i(l) = inf{t ≥ 0 : |Bi| = l}, (3.15)

and T ik = T i(2k). From now on, we assume the event Am
3

(γ) ∩ Fm ∩Gm ∩Hm holds and
compare the probability that two Brownian motions do not intersect each other with
the probability that simple random walks do not intersect. For this purpose, let

PATHi
f = PATHi

f,m = {z ∈ Rd : dist(z, Si[0, τ im
3

] ∪ γi) ≤ 2
11m
60 }. (3.16)

be a fattened path of Si[0, τ im
3

] ∪ γi. Set

β = inf


m

3
≤ k ≤ N :

S
1
[τ1k , τ

1
N ] ∩ (S

2
[0, τ2k ] ∪ S2[0, τ2m

3
] ∪ γ2) = ∅

S
2
[τ2k , τ

2
N ] ∩ (S

1
[0, τ1k ] ∪ S1[0, τ1m

3
] ∪ γ1) = ∅

S
1
[τ1k , τ

1
N ] ∩ S2

[τ2k , τ
2
N ] = ∅

 , (3.17)
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where β =∞ if no such k exists. Note that β =∞ implies S
1
(τ1N ) = S

2
(τ2N ) and

P
w1
m/3,w

2
m/3

1,2 (S
1
(τ1N ) = S

2
(τ2N )) ≤ c2−N .

Here P
w1
m/3,w

2
m/3

1,2 denotes the probability measure of (S
1
, S

2
) with S

i
(0) = wim/3. By

definition of β, we see that β = m
3 implies that Rm

3 ,N
holds. Therefore, if we let Jm,N be

the event

Jm,N = {B1[0, T 1
N ]∩PATH2

f = ∅, B2[0, T 2
N ]∩PATH1

f = ∅, B1[0, T 1
N ]∩B2[0, T 2

N ] = ∅}, (3.18)

then

P
w1
m/3,w

2
m/3

1,2 (Jm,N ) ≤ Pw
1
m/3,w

2
m/3

1,2 (Rm
3 ,N

)+
N∑

k=m
3 +1

P
w1
m/3,w

2
m/3

1,2 (Jm,N , β = k)+c2−N . (3.19)

Since
min{dist(w1

m/3,PATH2
f ),dist(w2

m/3,PATH1
f )} ≥ 2

0.99m
3 −1

on the event Fm, we see that P
w1
m/3,w

2
m/3

1,2 (Jm,N ) > 0. In this section, we will estimate

P
w1
m/3,w

2
m/3

1,2 (Jm,N , β = k) for m
3 < k ≤ N assuming that Fm, Gm and Hm hold.

Before starting estimates of P
w1
m/3,w

2
m/3

1,2 (Jm,N , β = k), we give an intuitive idea here.
If β = k and m

3 < k ≤ N , then we have

S
1
[τ1k−1, τ

1
k ] ∩ (S

2
[0, τ2k ] ∪ S2[0, τ2m

3
] ∪ γ2) 6= ∅

or

S
2
[τ2k−1, τ

2
k ] ∩ (S

1
[0, τ1k ] ∪ S1[0, τ1m

3
] ∪ γ1) 6= ∅.

Assume S
1
[τ1k−1, τ

1
k ] ∩ (S

2
[0, τ2k ] ∪ S2[0, τ2m

3
] ∪ γ2) 6= ∅. If S

1
[τ1k−1, τ

1
k ] ∩ S2

[0, τ2k ] 6= ∅, then

roughly speaking, B1[T 1
k−1, T

1
k ] intersects B2[0, T 2

k ] with high probability because of the
strong approximation in Proposition 2.4 and the fact Brownian path is a ‘hittable’ set.

Hence by the strong Markov property, P
w1
m/3,w

2
m/3

1,2 (Jm,N , β = k) is much smaller than

P
w1
m/3,w

2
m/3

1,2 (Jm,N ). A slight difficulty arises when k = N and S
1
[τ1N−1, τ

1
N ] intersects

S
2
[0, τ2N ] around S

2
(τ2N ). In this case, we cannot conclude that P

w1
m/3,w

2
m/3

1,2 (Jm,N , β = k)

is much smaller than P
w1
m/3,w

2
m/3

1,2 (Jm,N ) by using the strong approximation as above.

However, the probability that S
1
[τ1N−1, τ

1
N ] intersects S

2
[0, τ2N ] around S

2
(τ2N ) is small,

so we can overcome this difficulty (see subsection 3.3.3 for details). Next, assume

S
1
[τ1k−1, τ

1
k ] ∩ S2[0, τ2m

3
] 6= ∅ and d = 2. Then by the strong approximation, B1[T 1

k−1, T
1
k ]

intersects S2[0, τ2m
3

]∪B2[0, T 2
N ] with high probability. Hence by using the strong Markov

property, we conclude P
w1
m/3,w

2
m/3

1,2 (Jm,N , β = k) is much smaller than P
w1
m/3,w

2
m/3

1,2 (Jm,N ).
For d = 3, we need more careful observation because Brownian motion does not inter-
sect simple random walk path with probability one. To overcome this problem we first

consider the case that 21m
60 < k. In this case, the probability that S

1
[τ1k−1, τ

1
k ] ∩ B(2

m
3 )

is small, so by the strong Markov property, we can say that P
w1
m/3,w

2
m/3

1,2 (Jm,N , β = k)

is much smaller than P
w1
m/3,w

2
m/3

1,2 (Jm,N ) (see subsection 3.3.2). For m
3 < k ≤ 21m

60 , by

the strong approximation, one can show that B1[T 1
k−1, T

1
k ] intersects PATH2

f ∪ B2[0, T 2
N ]

with high probability under the assumption that Fm, Gm and Hm hold (see subsection
3.3.1). Hence we have the same conclusion. The same idea works for the case that
S
1
[τ1k−1, τ

1
k ] ∩ γ2 6= ∅.
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3.3.1 Bounds for m
3 < k ≤ 21m

60

Let m
3 < k ≤ 21m

60 . It is easy to see that β = k implies that

S
1
[τ1k−1, τ

1
k ] ∩ (S

2
[0, τ2k ] ∪ S2[0, τ2m

3
] ∪ γ2) 6= ∅

or

S
2
[τ2k−1, τ

2
k ] ∩ (S

1
[0, τ1k ] ∪ S1[0, τ1m

3
] ∪ γ1) 6= ∅.

We assume that the first event holds. (Similar arguments work for the second one.)
Let

Qi = { sup
0≤s≤T ik+1

|Bi(s)− Si(ds)| ≥ 2
31k
60 },

and Q = Q1 ∪ Q2. Let Ψ1(2k+1),Ψ2(2k+1) be the events given in Proposition 2.5 for

(B1, S
1
) and (B2, S

2
), respectively, and let Ψ = Ψ1(2k+1) ∩Ψ2(2k+1).

Lemma 3.4. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1k−1, τ

1
k ] ∩ S2

[0, τ2k ] 6= ∅) ≤ c2−(N−m3 )ξ2−δk. (3.20)

Proof. There exist c <∞ and δ > 0 such that

P (Jm,N ,Ψ
c) ≤ c2−(N−k−2)ξ exp(−2δk). (3.21)

By Proposition 2.5, Q and {B1(t) : t ≥ T 1
k+2} ∪ {B2(t) : t ≥ T 2

k+2} are conditionally
independent given B1(T 1

k+2), B1(T 1
k+2) on the event Ψ. Hence by Proposition 2.4,

P (Jm,N ,Ψ, Q) ≤ P (B1[T 1
k+2, T

1
N ] ∩B2[T 2

k+2, T
2
N ] = ∅,Ψ, Q)

≤ c2−(N−k−2)ξ exp(−2δk). (3.22)

Now we give an upper bound of

P (Jm,N ,Ψ, Q
c, S

1
[τ1k−1, τ

1
k ] ∩ S2

[0, τ2k ] 6= ∅). (3.23)

By the strong Markov property, this probability is bounded above by

c2−(N−k−2)ξP (Jm,k+1,Ψ, Q
c, S

1
[τ1k−1, τ

1
k ] ∩ S2

[0, τ2k ] 6= ∅).

Assume Qc holds. Then it is easy to see that

dT i(2k−1 − 2
31k
60 ) ≤ τ ik−1 < τ ik ≤ dT i(2k + 2

31k
60 ).

Hence on the event Qc ∩ {S1
[τ1k−1, τ

1
k ] ∩ S2

[0, τ2k ] 6= ∅}, we see that there exist s, t with

dT 1(2k−1 − 2
31k
60 ) ≤ s ≤ dT 1(2k + 2

31k
60 ),

0 ≤ t ≤ dT 2(2k + 2
31k
60 )

such that S
1
(s) = S

2
(t). For such s and t, we have

|B1(
s

d
)−B2(

t

d
)| ≤ 2

31k
60 +1.

Namely, the following event holds,

Dk := {dist
(
B1[T 1(2k−1 − 2

31k
60 ), T 1(2k + 2

31k
60 )], B2[0, T 2(2k + 2

31k
60 )]

)
≤ 2

31k
60 +1}. (3.24)
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Let

Zk = supP z(B[0, Tk+1] ∩B2[0, Tk+1] = ∅),

where the supremum is over all z with z ∈ B(2k + 2
31k
60 ) and

dist(z,B2[0, T 2(2k + 2
31k
60 )) ≤ 2

31k
60 +1.

We let Hk be the event {Zk ≤ 2−δk}. By Proposition 2.7, there exists δ > 0 such that

P (Hk) ≤ 2−6k.

Therefore, we have only to estimate

P (Jm,k+1,Ψ, Dk, H
c
k).

On the event Jm,k+1 ∩Dk ∩Hc
k, B1[T 1(2k−1 − 2

31k
60 ), T 1

k+1] does not intersect B2[0, T 2
k+1]

nevertheless B1 comes close to B2[0, T 2
k+1] which is a hittable set. By the strong Markov

property,

P (Jm,k+1,Ψ, Dk, H
c
k) ≤ c2−δk2−(k−

m
3 )ξ,

and this finishes the proof.

Lemma 3.5. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅) ≤ c2−(N−m3 )ξ exp(−2δk). (3.25)

Proof. Recall Ψ and Q are the events given before the statement of Lemma 3.4. By
(3.21) and (3.22), it suffices to estimate

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅,Ψ, Qc).

By the strong Markov property, this probability is bounded above by

c2−(N−k)ξP
w1
m/3,w

2
m/3

1,2

(
Jm,k+1,Ψ, Q

c, S
1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅

)
.

On the event Qc ∩ {S1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅}, it is easy to see that there exists

t with

T 1(2k−1 − 2
31k
60 ) ≤ t ≤ T 1(2k + 2

31k
60 )

such that

dist
(
B1(t), (S2[0, τ2m

3
] ∪ γ2)

)
≤ 2

31k
60 .

Since k ≤ 21m
60 , we have 31k

60 ≤
651m
3600 < 11m

60 . Therefore,

B1[0, T 1
k+1] ∩ PATH2

f 6= ∅,

and the lemma is finished.
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3.3.2 Bounds for 21m
60 < k ≤ N − 3

From now we assume that 21m
60 < k ≤ N − 3. The similar argument in the proof of

Lemma 3.4 gives the following lemma, so we omit the proof.

Lemma 3.6. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1k−1, τ

1
k ] ∩ S2

[0, τ2k ] 6= ∅) ≤ c2−(N−m3 )ξ2−δk. (3.26)

Let Ψ and Q be the events defined before the statement of Lemma 3.4. By (3.21)
and (3.22), in order to prove

P
w1
m/3,w

2
m/3

1,2 (Jm,N , β = k) ≤ c2−(N−m3 )ξ2−δk,

for 21m
60 < k ≤ N − 3, it is enough to show the following lemma.

Lemma 3.7. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅,Ψ, Qc) ≤ c2−(N−m3 )ξ2−δk. (3.27)

Proof. By the strong Markov property, the left hand side of (3.27) is bounded above by

c2−(N−k)ξP
w1
m/3,w

2
m/3

1,2

(
Jm,k+1,Ψ, Q

c, S
1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅

)
.

Assume d = 3 and 21m
60 < k ≤ 20m

31 so that 31k
60 ≤

m
3 . If S

1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅,

then S
1
[τ1k−1, τ

1
k ] ∩ B(2

m
3 ) 6= ∅. On the other hand, on the event Qc, we have

3T 1(2k−1 − 2
31k
60 ) ≤ τ1k−1 ≤ τ1k ≤ 3T 1(2k + 2

31k
60 ).

Since 31k
60 ≤

m
3 , we have

B1[T 1(2k−1 − 2
31k
60 ), T 1(2k + 2

31k
60 )] ∩ B(2

m
3 +1) 6= ∅.

For k > 21m
60 , a standard estimate shows that

P1(B1[T 1(2k−1 − 2
31k
60 ), T 1(2k + 2

31k
60 )] ∩ B(2

m
3 +1) 6= ∅) ≤ c2−(k−m3 ).

Using the strong Markov property at T 1(2k−1−2
31k
60 ) first, and then estimating P (Jm,k−2),

we have

P
w1
m/3,w

2
m/3

1,2

(
Jm,k+1,Ψ, Q

c, S
1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅

)
≤ c2−(k−m3 )2−(k−

m
3 )ξ.

Therefore, the proof for d = 3 and 21m
60 < k ≤ 20m

31 is finished.

Next we assume d = 3 and 20m
31 < k ≤ N − 3. In this case, if S

1
[τ1k−1, τ

1
k ] ∩ B(2

m
3 ) 6= ∅

and Qc hold, then

B1[T 1(2k−1 − 2
31k
60 ), T 1(2k + 2

31k
60 )] ∩ B(2

31k
60 +1) 6= ∅. (3.28)

Since this event occur with probability at most c2−
k
3 , the lemma is proved for d = 3.

Assume d = 2. In this case, the probability of the event (3.28) is bounded below by
1/k, so we need to change the proof. Assume 21m

60 < k ≤ 20m
31 . (For the otherwise, the

proof is almost same as this case. So we only consider this case.) Let

η = inf{t ≥ T 1(2k−1 − 2
31k
60 ) : B1(t) ∈ B(2

m
3 +1)}.
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We already showed that if S
1
[τ1k−1, τ

1
k ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅ and Qc hold, then η ≤

T 1(2k + 2
31k
60 ). By the Proposition 2.6, we see that

P
w1
m/3,w

2
m/3

1,2

(
Jm,k+1, η ≤ T 1(2k + 2

31k
60 )
)

≤ Ew
2
m/3

2

(
E
w1
m/3

1

(
1{Jm,k−2, η ≤ T 1(2k + 2

31k
60 ), B1[η, T 1

k+1] ∩B2[0, T 2
k+1] = ∅}

))
≤ Pw

1
m/3,w

2
m/3

1,2 (Jm,k−2)c2−
k
5

≤ c2−(k−m3 )ξ2−
k
5 ,

and the lemma is proved for all cases.

3.3.3 Bounds for N − 2 ≤ k ≤ N

Finally, we give estimates for N − 2 ≤ k ≤ N . Since a proof is similar, we only consider
for k = N . By definition of β in (3.17), we see that β = N implies the event⋃

i=1,2

{Si[τ iN−1, τ iN ] ∩ (S
3−i

[0, τ3−iN ] ∪ S3−i[0, τ3−im
3

] ∪ γ3−i) 6= ∅}. (3.29)

We will only give bounds on the probability of the event for i = 1 in (3.29). First we
show the following lemma.

Lemma 3.8. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1
N ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅) ≤ c2−(N−m3 )ξ2−δN . (3.30)

Proof. Recall Q is the event defined before the statement of Lemma 3.4 (k = N in this
case). By Proposition 2.4,

P
w1
m/3,w

2
m/3

1,2 (Q) ≤ c exp(−(2δN )). (3.31)

AssumeQc holds. Then dT 1(2N−1−2
31N
60 ) ≤ τ1N−1. Therefore, if S

1
[τ1N−1, τ

1
N ]∩(S2[0, τ2m

3
]∪

γ2) 6= ∅, we have

B1[T 1
N−2,∞) ∩ B(2

31N
60 +1) 6= ∅. (3.32)

For d = 3, the probability of the event (3.32) is bounded above by c2−
N
3 . Therefore, by

the strong Markov property,

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1
N ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅)

≤ Pw
1
m/3,w

2
m/3

1,2 (Jm,N−2, Q
c, B1[T 1

N−2,∞) ∩ B(2
31N
60 +1) 6= ∅) + c exp(−(2δN ))

≤ c2−N3 2−(N−
m
3 )ξ,

for d = 3.
Next we consider the two dimensional case. Assume S

1
[τ1(2N−2

31N
60 ), τ1N ]∩(S2[0, τ2m

3
]∪

γ2) 6= ∅ and Qc holds. This implies that S
1
[τ1(2N−2

31N
60 ), τ1N ]∩B(2

31N
60 ) 6= ∅. On the event

Qc, we have

2T 1(2N − 2
31N
60 +1) ≤ τ1(2N − 2

31N
60 ) ≤ τ1N ≤ 2T 1(2N + 2

31N
60 ).

Therefore,
B1[T 1(2N − 2

31N
60 +1), T 1(2N + 2

31N
60 )] ∩ B(2

31N
60 +1) 6= ∅. (3.33)
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Using Proposition 2.6, the probability of the event (3.33) is bounded above by c2−
N
3 .

Hence by the strong Markov property,

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1(2N − 2

31N
60 ), τ1N ] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅) ≤ c2−N3 2−(N−

m
3 )ξ.

Assume S
1
[τ1N−1, τ

1(2N − 2
31N
60 )] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅ and Qc holds. This implies that

B1[T 1(2N−1 − 2
31N
60 ), T 1

N ] ∩ B(2
31N
60 +1) 6= ∅. (3.34)

So let

ρ = inf{t ≥ T 1(2N−1 − 2
31N
60 ) : B1(t) ∈ B(2

31N
60 +1)}.

Again by using Proposition 2.6,

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1(2N − 2
31N
60 )] ∩ (S2[0, τ2m

3
] ∪ γ2) 6= ∅, Qc)

≤ Pw
1
m/3,w

2
m/3

1,2 (Jm,N−2, ρ ∈ [T 1(2N−1 − 2
31N
60 ), T 1

N ], B1[ρ, T 1
N ] ∩B2[0, T 2

N ] = ∅)

≤ Pw
1
m/3,w

2
m/3

1,2 (Jm,N−2)2−
N
3

≤ c2−(N−m3 )ξ2−
N
3 ,

and the lemma is proved.

To estimate the probability of (3.29), we have only to show the following lemma.

Lemma 3.9. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1
N ] ∩ S2

[0, τ2N ] 6= ∅) ≤ c2−(N−m3 )ξ2−δN . (3.35)

Before we start to prove this lemma, we need to prepare several lemmas.

Lemma 3.10. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1
N ] ∩ S2

[τ2(2N − 2
2N
3 ), τ2N ] 6= ∅) ≤ c2−(N−m3 )ξ2−δN . (3.36)

Proof. Let Q be the event defined in the proof of Lemma 3.8. Let

σ = inf{k ≥ τ2(2N − 2
2N
3 ) : S

2

k ∈ ∂B(S
2
(τ2(2N − 2

2N
3 )), 2

3N
4 )}.

If Qc holds and σ < τ2N , then

σ := inf{t ≥ T 2(2N−2
2N
3 +2

31N
60 ) : B2(t) ∈ ∂B(B2(T 2(2N−2

2N
3 +2

31N
60 ), 2

3N
4 −2

31N
60 )} ≤ T 2(2N+2

31N
60 ).

(3.37)
It is easy to see that the probability of (3.37) is bounded above by c2−δN for some c <∞
and δ > 0. Hence by the strong Markov property,

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1
N ] ∩ S2

[τ2(2N − 2
2N
3 ), τ2N ] 6= ∅, σ < τ2N ) ≤ c2−δN2−(N−

m
3 )ξ.

Now assume σ < τ2N . Then S
2
[τ2(2N − 2

2N
3 ), τ2N ] ⊂ B(S

2
(τ2(2N − 2

2N
3 )), 2

3N
4 ). Therefore

S
1
[τ1N−1, τ

1
N ] ∩ S2

[τ2(2N − 2
2N
3 ), τ2N ] 6= ∅ implies that

S
1
[τ1N−1, τ

1
N ] ∩ B(S

2
(τ2(2N − 2

2N
3 )), 2

3N
4 ) 6= ∅. (3.38)
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If Qc and (3.38) hold, we see that

B1[T 1(2N−1 − 2
31N
60 ), T 1(2N + 2

31N
60 )] ∩ B(B2(T 2(2N − 2

2N
3 )), 2

3N
4 +1) 6= ∅. (3.39)

For any x ∈ ∂B(2N − 2
2N
3 ), we have

P1(B1[T 1(2N−1 − 2
31N
60 ), T 1(2N + 2

31N
60 )] ∩ B(x, 2

3N
4 +1) 6= ∅) ≤ c2−N4 .

By the strong Markov property,

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1
N ] ∩ S2

[τ2(2N − 2
2N
3 ), τ2N ] 6= ∅, σ ≥ τ2N ) ≤ c2−δN2−(N−

m
3 )ξ,

and hence prove the lemma.

Remark 3.11. Similar arguments in the proof of Lemma 3.10 give that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1(2N − 2

2N
3 ), τ1N ] ∩ S2

[0, τ2N ] 6= ∅) ≤ c2−(N−m3 )ξ2−δN . (3.40)

By Lemma 3.10 and Remark 3.11, we have only to show the following lemma to
prove Lemma 3.9.

Lemma 3.12. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1(2N − 2
2N
3 )] ∩ S2

[0, τ2(2N − 2
2N
3 )] 6= ∅) ≤ c2−(N−m3 )ξ2−δN .

(3.41)

Proof. Let Q be the event defined in the proof of Lemma 3.8. If

S
1
[τ1N−1, τ

1(2N − 2
2N
3 )] ∩ S2

[0, τ2(2N − 2
2N
3 )] 6= ∅

and Qc holds, then we have

dist(B1[T 1(2N−1 − 2
31N
60 ), T 1(2N − 2

2N
3 + 2

31N
60 )], B2[0, T 2(2N − 2

2N
3 + 2

31N
60 )]) ≤ 2

31N
60 +1.

(3.42)
Let

Z = supP z(B[0, TN ] ∩B2[0, T 2
N ] = ∅),

where the supremum is over all z with z ∈ B(2N − 2
2N
3 + 2

31N
60 ) and

dist(z,B2[0, T 2(2N − 2
2N
3 + 2

31N
60 )]) ≤ 2

31N
60 +1.

Then by Proposition 2.7,

P
w2
m/3

2 (Z ≥ 2−δN ) ≤ c2−6N ,
for some δ > 0 and c <∞. Therefore,

P
w1
m/3,w

2
m/3

1,2 (Jm,N , S
1
[τ1N−1, τ

1(2N − 2
2N
3 )] ∩ S2

[0, τ2(2N − 2
2N
3 )] 6= ∅, Qc)

is bounded above by

P
w1
m/3,w

2
m/3

1,2 (Jm,N ,dist(B1[T 1(2N−1 − 2
31N
60 ), T 1(2N − 2

2N
3 + 2

31N
60 )], B2[0, T 2(2N − 2

2N
3 + 2

31N
60 )])

≤ 2
31N
60 +1, Z ≤ 2−δN ) + c2−6N .

Using the strong Markov property for B1, we see that this probability is bounded above
by

2−δNP
w1
m/3,w

2
m/3

1,2 (Jm,N−2),

and hence the proof is finished.
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3.3.4 Conclusion Lower Bound

Combining estimates obtained in subsections 3.3.1, 3.3.2 and 3.3.3 with (3.19), we have
the following proposition.

Proposition 3.13. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (Jm,N ) ≤ Pw
1
m/3,w

2
m/3

1,2 (Rm
3 ,N

) + c2−(N−
m
3 )ξ2−δm, (3.43)

on the event Fm ∩Gm ∩Hm.

3.3.5 Upper bound

From this subsection, we will give an upper bound of P
w1
m/3,w

2
m/3

1,2 (Rm
3 ,N

) by using P
w1
m/3,w

2
m/3

1,2 (Jm,N )

on the event Fm ∩Gm ∩Hm. For this purpose, define

β] = inf

m3 ≤ k ≤ N :

B1[T 1
k , T

1
N ] ∩ (B2[0, T 2

k ] ∪ PATH2
f ) = ∅

B2[T 2
k , T

2
N ] ∩ (B1[0, T 1

k ] ∪ PATH1
f ) = ∅

B1[T 1
k , T

1
N ] ∩B2[T 2

k , T
2
N ] = ∅

 . (3.44)

Note that β] ≤ N almost surely and β] = m
3 implies Jm,N holds. Therefore,

P
w1
m/3,w

2
m/3

1,2 (Rm
3 ,N

) = P
w1
m/3,w

2
m/3

1,2 (Rm
3 ,N

,
m

3
≤ β] ≤ N)

= P
w1
m/3,w

2
m/3

1,2 (Rm
3 ,N

, Jm,N ) +
N∑

k=m
3 +1

P
w1
m/3,w

2
m/3

1,2 (Rm
3 ,N

, β] = k)

≤ Pw
1
m/3,w

2
m/3

1,2 (Jm,N ) +
N∑

k=m
3 +1

P
w1
m/3,w

2
m/3

1,2 (Rm
3 ,N

, β] = k). (3.45)

We will give bounds for the second term in the right hand side of (3.45). For m
3 + 1 ≤

k ≤ N , β] = k implies that⋃
i=1,2

{B1[T 1
k , T

1
N ]∩B2[T 2

k , T
2
N ] = ∅}∩{Bi[T ik−1, T ik]∩(B3−i[0, T 3−i

k ]∪PATH3−i
f ) 6= ∅}. (3.46)

We only consider the case i = 1 in (3.46). The idea to estimate P
w1
m/3,w

2
m/3

1,2 (Rm
3 ,N

, β] = k)

is essentially same as that for P
w1
m/3,w

2
m/3

1,2 (Jm,N , β = k). Roughly speaking, if two Brow-
nian motions intersect, then with high probability, corresponding two simple random
walks also intersect.

3.3.6 Bounds for 21m
60 ≤ k ≤ N − 3

Lemma 3.14. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
k , T

1
N ]∩B2[T 2

k , T
2
N ] = ∅, B1[T 1

k−1, T
1
k ]∩B2[0, T 2

k ] 6= ∅, Rm
3 ,N

) ≤ c2−(N−m3 )ξ2−δk.

(3.47)

Proof. Since the idea is quite similar as in the proof of Lemma 3.4, we will just sketch
the proof. By the strong Markov property, the probability in the left hand side of (3.47)
can be bounded above by

c2−(N−k)ξP
w1
m/3,w

2
m/3

1,2 (B1[T 1
k−1, T

1
k ] ∩B2[0, T 2

k ] 6= ∅, Rm
3 ,k+1).
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By Proposition 2.4, if B1[T 1
k−1, T

1
k ]∩B2[0, T 2

k ] 6= ∅, then S
1

comes close to S
2
[0, τ2k ] during

[τ1k−1, τ
1
k ] with probability greater than 1 − c exp(−2δk), for some δ > 0 and c < ∞. By

Proposition 2.8, once S
1

comes close to S
2
[0, τ2k ] during [τ1k−1, τ

1
k ], then S

1
intersects

S
2
[0, τ2k+1] until τ1k+1 with probability greater than 1 − 2−δk. Hence by using the strong

Markov property, the lemma can be proved.

Lemma 3.15. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
k , T

1
N ]∩B2[T 2

k , T
2
N ] = ∅, B1[T 1

k−1, T
1
k ]∩PATH2

f 6= ∅, Rm
3 ,N

) ≤ c2−(N−m3 )ξ2−δk.

(3.48)

Proof. Similar idea used in the proof of Lemma 3.7 works here. So we just state the
idea of the proof.

First let d = 3. The probability that B1[T 1
k , T

1
N ] does not intersect B2[T 2

k , T
2
N ] is

bounded above by c2−(N−k)ξ. Assume B1[T 1
k−1, T

1
k ]∩PATH2

f 6= ∅, then B1 enters in B(2
m
3 )

during [T 1
k−1, T

1
k ]. The probability that B1[T 1

k−1, T
1
k ] ∩ B(2

m
3 ) 6= ∅ is at most c2−(k−

m
3 ).

Finally, using P
w1
m/3,w

2
m/3

1,2 (Rm
3 ,k−2) ≤ c2−(k−

m
3 )ξ and the strong Markov property, the

lemma is finished for d = 3.
Next let d = 2. In this case, if B1 enters in B(2

m
3 ) during [T 1

k−1, T
1
k ], then S

1
en-

ters B(2(
m
3 ∨

31N
60 )+1) during [τ1k−1, τ

1
k ] with probability greater than 1 − exp(−2δk). Once

S
1
[τ1k−1, τ

1
k ] ∩ B(2(

m
3 ∨

31N
60 )+1) 6= ∅, the probability that S

1
intersects S

2
[0, τ2k ] until τ1k is

greater than 1 − 2−δk. Therefore, by using the strong Markov property, we finish the
proof of the lemma for d = 2.

3.3.7 Bounds for m
3 + 1 ≤ k ≤ 21m

60

We can prove the following lemma by using the same idea of Lemma 3.14. So we omit
its proof.

Lemma 3.16. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
k , T

1
N ]∩B2[T 2

k , T
2
N ] = ∅, B1[T 1

k−1, T
1
k ]∩B2[0, T 2

k ] 6= ∅, Rm
3 ,N

) ≤ c2−(N−m3 )ξ2−δk.

(3.49)

For m
3 + 1 ≤ k ≤ 21m

60 , we have only to show the following lemma.

Lemma 3.17. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
k , T

1
N ]∩B2[T 2

k , T
2
N ] = ∅, B1[T 1

k−1, T
1
k ]∩PATH2

f 6= ∅, Rm
3 ,N

) ≤ c2−(N−m3 )ξ2−δk.

(3.50)

Proof. We will give a full proof of this lemma. Recall the definition of PATH2
f in (3.16).

Let
2PATH2

f = {z ∈ Rd : dist(z, S2[0, τ2m
3

] ∪ γ2) ≤ 2
11m
60 +1},

and
Qi = { sup

0≤t≤T ik+1

|Si(dt)−Bi(t)| ≥ 2
31k
60 }.

We write Q = Q1 ∪Q2. By Proposition 2.4, we see that

P
w1
m/3,w

2
m/3

1,2 (Q) ≤ c exp(−2δk),
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for some δ > 0 and c < ∞. Let Ψ1(2k+1), Ψ2(2k+1) be the event in Proposition 2.5 for

(B1, S
1
), (B2, S

2
), respectively. Let Ψ = Ψ1(2k+1) ∩Ψ2(2k+1). By Proposition 2.5,

P
w1
m/3,w

2
m/3

1,2 (Ψc) ≤ c exp(−2δk),

for some δ > 0 and c <∞. Recall that on the event Ψ,⋃
i=1,2

{Bi(t) : t ≤ T ik+1 ∨ τ ik+1} ∪ {S
i
(dt) : t ≤ T ik+1 ∨ τ ik+1}

and ⋃
i=1,2

{Bi(t) : t ≥ T ik+2}

are conditionally independent given B1(T 1
k+2) and B2(T 2

k+2). Therefore,

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
k , T

1
N ] ∩B2[T 2

k , T
2
N ] = ∅, B1[T 1

k−1, T
1
k ] ∩ PATH2

f 6= ∅, Rm
3 ,N

, Qc,Ψ)

≤ c2−(N−k)ξPw
1
m/3,w

2
m/3

1,2 (B1[T 1
k−1, T

1
k ] ∩ PATH2

f 6= ∅, Rm
3 ,k+1, Q

c,Ψ).

From now we will estimate for P
w1
m/3,w

2
m/3

1,2 (B1[T 1
k−1, T

1
k ] ∩ PATH2

f 6= ∅, Rm
3 ,k+1, Q

c).
First, let d = 2. If Qc holds, then it is easy to see that

τ1(2k−1 − 2
31k
60 )

2
≤ T 1

k−1 ≤ T 1
k ≤

τ1(2k + 2
31k
60 )

2
. (3.51)

Therefore, on the event Qc ∩ {B1[T 1
k−1, T

1
k ] ∩ PATH2

f 6= ∅}, we have

dist(S
1
(2t), S2[0, τ2m

3
] ∪ γ2) ≤ 2

11m
60 + 2

31k
60 ≤ 2

11m
60 +1,

for some t ∈ [ τ
1(2k−1−2

31k
60 )

2 , τ
1(2k+2

31k
60 )

2 ]. Here we use k ≤ 21m
60 in the last inequality.

Hence,

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
k−1, T

1
k ] ∩ PATH2

f 6= ∅, Rm
3 ,k+1, Q

c)

≤ Pw
1
m/3,w

2
m/3

1,2 (S
1
[τ1(2k−1 − 2

31k
60 ), τ1(2k + 2

31k
60 )] ∩ 2PATH2

f 6= ∅, Rm
3 ,k+1). (3.52)

Let
σ = inf{j ≥ τ1(2k−1 − 2

31k
60 ) : S

1
(j) ∈ 2PATH2

f}.

Then the right hand side in (3.52) is bounded above by

E
w2
m/3

2

(
E
w1
m/3

1

(
1{S1

[0, τ1k−2] ∩ S2

k−2 = ∅, σ ≤ τ1(2k + 2
31k
60 )}

× PS
1
(σ)(S

1
[0, τ1k+1] ∩ (S

2
[0, τ2k+1] ∪ S[0, τ2m

3
] ∪ γ2) = ∅)

))
. (3.53)

Since S
2
[0, τ2k+1] ∪ S[0, τ2m

3
] ∪ γ2 is a path from the origin to ∂B(2k+1),

S
1
(σ) ∈ B(2

m
3 + 2

11m
60 +1)

and
dist(S

1
(σ), S2[0, τ2m

3
] ∪ γ2) ≤ 2

11m
60 +1,

by using Proposition 2.6, we see that

PS
1
(σ)(S

1
[0, τ1k+1] ∩ (S

2
[0, τ2k+1] ∪ S[0, τ2m

3
] ∪ γ2) = ∅) ≤ c2−δk,
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for some δ > 0 and c <∞. Hence (3.53) is bounded above by

c2−δkP
w1
m/3,w

2
m/3

1,2 (S
1
[0, τ1k−2] ∩ S2

k−2 = ∅) ≤ c2−δk2−(k−
m
3 )ξ,

and the proof for d = 2 is finished.
Next we estimate for d = 3. Recall the events Fm, Gm and Hm in (3.13). By (3.52),

we need to estimate

P
w1
m/3,w

2
m/3

1,2 (S
1
[τ1(2k−1 − 2

31k
60 ), τ1(2k + 2

31k
60 )] ∩ 2PATH2

f 6= ∅, Rm
3 ,k+1)

on the event Fm ∩Gm ∩Hm. For this end, we decompose 2PATH2
f into three parts U1, U2

and U3 as follows.

U1 = {z ∈ Rd : dist(z, γ2) ≤ 2
11m
60 +1}

U2 = {z ∈ Rd : dist(z, S2[0, τ2(2
m
3 − 2

2m
9 )]) ≤ 2

11m
60 +1}

U3 = {z ∈ Rd : dist(z, S2[τ2(2
m
3 − 2

2m
9 ), τ2m

3
]) ≤ 2

11m
60 +1}

Since γ2 ∈ B(2L) and L ≤ m
10 , it is easy to see that

P
w1
m/3,w

2
m/3

1,2 (S
1
[τ1(2k−1 − 2

31k
60 ), τ1(2k + 2

31k
60 )] ∩ U1 6= ∅, Rm

3 ,k+1) ≤ c2−δk2−(k−
m
3 )ξ,

for some δ > 0 and c < ∞. Since S2[τ2(2
m
3 − 2

2m
9 ), τ2m

3
] ⊂ B(S2(τ2(2

m
3 − 2

2m
9 )), 2

m
4 ) on

the event Gm, we see that U3 ⊂ B(S2(τ2(2
m
3 − 2

2m
9 )), 2

m
4 +1). Therefore S

1
[τ1((2k−1 −

2
31k
60 ) ∨ 2

m
3 ), τ1(2k + 2

31k
60 )] ∩ U3 6= ∅ implies that

S
1
[τ1((2k−1 − 2

31k
60 ) ∨ 2

m
3 ), τ1(2k + 2

31k
60 )] ∩ B(S2(τ2(2

m
3 − 2

2m
9 )), 2

m
4 +1). (3.54)

However,

|S1
(τ1((2k−1 − 2

31k
60 ) ∨ 2

m
3 )− S2(τ2(2

m
3 − 2

2m
9 ))| ≥ 2

0.99m
3 ,

on the event Fm. So the probability of (3.54) is bounded above by c2−
m
24 for some c <∞.

Using the strong Markov property,

P
w1
m/3,w

2
m/3

1,2 (S
1
[τ1((2k−1 − 2

31k
60 ) ∨ 2

m
3 ), τ1(2k + 2

31k
60 )] ∩ U3 6= ∅, Rm

3 ,k+1) ≤ c2−δk2−(k−
m
3 )ξ,

for some δ > 0 and c <∞. Finally we consider U2. Let

σ] = inf{j ≥ τ1(2k−1 − 2
31k
60 ) : S

1
(j) ∈ U2}.

Then by the strong Markov property,

P
w1
m/3,w

2
m/3

1,2 (S
1
[τ1(2k−1 − 2

31k
60 ), τ1(2k + 2

31k
60 )] ∩ U2 6= ∅, Rm

3 ,k+1)

≤ Ew
2
m/3

2

(
E
w1
m/3

1

(
1{Rm

3 ,k−2, σ
] ≤ τ1(2k + 2

31k
60 )}

× PS
1
(σ])

1 (S
1
[0, τ1k+1] ∩ S2[0, τ2m

3
] = ∅)

))
. (3.55)

Note that PS
1
(σ])

1 (S
1
[0, τ1k+1] ∩ S2[0, τ2m

3
] = ∅) ≤ Z2

m. Hence on the event Hm, the right

hand side of (3.55) can be bounded above by c2−δk2−(k−
m
3 )ξ for some δ > 0 and c < ∞,

and the lemma is proved.
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3.3.8 Bounds for k = N − 2, N − 1, and k = N

Again, we will only consider the case that k = N , as in Section 3.3.3. Other cases can
be proved similarly.

Lemma 3.18. There exist δ > 0 and c <∞ such that

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
N−1, T

1
N ] ∩ (B2[0, T 2

N ] ∪ PATH2
f ) 6= ∅, Rm

3 ,N
) ≤ c2−(N−m3 )ξ2−δN . (3.56)

Proof. We will sketch the proof. First we consider the following probability,

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
N−1, T

1
N ] ∩ PATH2

f 6= ∅, Rm
3 ,N

). (3.57)

The probability that B1 enters Bm
3

during [T 1
N−1, T

1
N ] is bounded above by c2−(N−

m
3 )

for d = 3. Therefore by using the strong Markov property, we see that (3.57) can be
bounded above by c2−(N−

m
3 )2−(N−

m
3 )ξ. Since N ≥ m, we have 2−(N−

m
3 )2−(N−

m
3 )ξ ≤

2−
N
2 2−(N−

m
3 )ξ.

For d = 2, we use Proposition 2.6 as follows. AssumeB1 enters Bm
3

during [T 1
N−1, T

1
N ].

Then by a similar argument given in the proof of Lemma 3.8, S
1

also enters B(2
2N
3 ) dur-

ing [τ1N−1, τ
1
N ] with probability greater than 1 − 2−

N
6 . After S

1
enters B(2

2N
3 ), it follows

from Proposition 2.6 that the probability that S
1

does not intersect S
2
[0, τ2N ] until it

reaches ∂B(2N ) is bounded above by c2−
N
6 . Combining these estimate, we see that

(3.57) can be bounded above by c2−
N
6 2−(N−

m
3 )ξ for d = 2.

Therefore, in order to show (3.56), we need to estimate the following probability,

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
N−1, T

1
N ] ∩B2[0, T 2

N ] 6= ∅, Rm
3 ,N

). (3.58)

By similar arguments as in Lemma 3.10 and Remark 3.11, we have

P
w1
m/3,w

2
m/3

1,2 (B1[T 1
N−1, T

1
N ] ∩B2[T 2(2N − 2

2N
3 ), T 2

N ] 6= ∅, Rm
3 ,N

) ≤ c2−δN2−(N−
m
3 )ξ

P
w1
m/3,w

2
m/3

1,2 (B1[T 1(2N − 2
2N
3 ), T 1

N ] ∩B2[0, T 2
N ] 6= ∅, Rm

3 ,N
) ≤ c2−δN2−(N−

m
3 )ξ,

for some δ > 0 and c <∞. So, assume B1[T 1
N−1, T

1(2N −2
2N
3 )]∩B2[0, T 2(2N −2

2N
3 )] 6= ∅.

Then by Proposition 2.4,

dist
(
S
1
[τ1(2N−1−2

31N
60 ), τ1(2N−2

2N
3 +2

31N
60 )], S

2
[0, τ2(2N−2

2N
3 +2

31N
60 )]

)
≤ 2

31N
60 , (3.59)

with probability greater than 1− exp(−2δN ). Let

U =
{

dist
(
S
1
[τ1(2N−1−2

31N
60 ), τ1(2N −2

2N
3 +2

31N
60 )], S

2
[0, τ2(2N −2

2N
3 +2

31N
60 )]

)
≤ 2

31N
60

}
,

then by modifying the proof of Lemma 3.10, we see that

P
w1
m/3,w

2
m/3

1,2 (U ∩Rm
3 ,N

) ≤ c2−δN2−(N−
m
3 )ξ,

which gives the proof of the lemma.

3.3.9 Conclusion Upper Bound

Combining estimates obtained in subsections 3.3.6, 3.3.7 and 3.3.8 with (3.45) and
Proposition 3.13, we have the following.

Proposition 3.19. There exist δ > 0 and c <∞ such that

|Pw
1
m/3,w

2
m/3

1,2 (Rm
3 ,N

)− Pw
1
m/3,w

2
m/3

1,2 (Jm,N )| ≤ c2−δm2−(N−
m
3 )ξ, (3.60)

on the event Fm ∩Gm ∩Hm.
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4 Proof of Main Theorem

4.1 Cauchy sequence

Fix L ∈ N and γ ∈ ΓL. For m ≥ 10L, define

Q(m, γ) = 2(m−L)ξP (Am(γ)). (4.1)

We will show the following Theorem.

Theorem 4.1. There exist δ > 0 and c <∞ depending only on the dimension such that
for all n ≥ m ≥ 10L, we have

|Q(m, γ)−Q(n, γ)| ≤ c2−δ
√
m, for d = 2, (4.2)

|Q(m, γ)−Q(n, γ)| ≤ c2−δm, for d = 3. (4.3)

Proof. Fix L ∈ N, γ ∈ ΓL and n ≥ m ≥ 10L. Then by (3.7), (3.9) and (3.12), we have

|Q(m, γ)−Q(n, γ)|

≤ |2(m−L)ξP (Am(γ) ∩ Fm ∩Gm ∩Hm)− 2(n−L)ξP (An(γ) ∩ Fm ∩Gm ∩Hm)|+ c2−δm,

for some δ > 0 and c <∞. By the strong Markov property,

|2(m−L)ξP (Am(γ) ∩ Fm ∩Gm ∩Hm)− 2(n−L)ξP (An(γ) ∩ Fm ∩Gm ∩Hm)|

= |2(m3 −L)ξE
(
1{Am

3
(γ) ∩ Fm ∩Gm ∩Hm}2

2m
3 ξP

w1
m/3,w

2
m/3

1,2 (Rm
3 ,m

)
)

− 2(
m
3 −L)ξE

(
1{Am

3
(γ) ∩ Fm ∩Gm ∩Hm}2(n−

m
3 )ξP

w1
m/3,w

2
m/3

1,2 (Rm
3 ,n

)
)
| (4.4)

By Proposition 3.19, we have

|Pw
1
m/3,w

2
m/3

1,2 (Rm
3 ,m

)
)
− Pw

1
m/3,w

2
m/3

1,2 (Jm,m)| ≤ c2−δm2−
2m
3 ξ

|Pw
1
m/3,w

2
m/3

1,2 (Rm
3 ,n

)− Pw
1
m/3,w

2
m/3

1,2 (Jm,n)| ≤ c2−δm2−(n−
m
3 )ξ,

on the event Fm ∩Gm ∩Hm. Therefore, the right hand side of (4.4) is bounded above by

2(
m
3 −L)ξE

(
1{V m}2 2m

3 ξ|Pw
1
m/3,w

2
m/3

1,2 (Rm
3 ,m

)− Pw
1
m/3,w

2
m/3

1,2 (Jm,m)|
)

+ 2(
m
3 −L)ξE

(
1{V m}|2 2m

3 ξP
w1
m/3,w

2
m/3

1,2 (Jm,m)− 2(n−
m
3 )ξP

w1
m/3,w

2
m/3

1,2 (Jm,n)|
)

+ 2(
m
3 −L)ξE

(
1{V m}2(n−m3 )ξ|Pw

1
m/3,w

2
m/3

1,2 (Rm
3 ,n

)− Pw
1
m/3,w

2
m/3

1,2 (Jm,n)|
)

≤ 2(
m
3 −L)ξE

(
1{V m}|2 2m

3 ξP
w1
m/3,w

2
m/3

1,2 (Jm,m)− 2(n−
m
3 )ξP

w1
m/3,w

2
m/3

1,2 (Jm,n)|
)

+ c2−δm2(
m
3 −L)ξP (V m),

where V m = Am
3

(γ) ∩ Fm ∩Gm ∩Hm. By Proposition 2.9,

|2 2m
3 ξP

w1
m/3,w

2
m/3

1,2 (Jm,m)− 2(n−
m
3 )ξP

w1
m/3,w

2
m/3

1,2 (Jm,n)| ≤ c2−δ
√
m,

for d = 2 and

|2 2m
3 ξP

w1
m/3,w

2
m/3

1,2 (Jm,m)− 2(n−
m
3 )ξP

w1
m/3,w

2
m/3

1,2 (Jm,n)| ≤ c2−δm,

for d = 3 on the event V m. Hence

2(
m
3 −L)ξE

(
1{V m}|2 2m

3 ξP
w1
m/3,w

2
m/3

1,2 (Jm,m)− 2(n−
m
3 )ξP

w1
m/3,w

2
m/3

1,2 (Jm,n)|
)

≤ c2−δm
d
2
− 1

2 2(
m
3 −L)ξP (V m).
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Finally, by the strong Markov property,

P (V m) ≤ P (AL+1(γ))c2−(
m
3 −L)ξ,

and the proof is finished.

From Theorem 4.1, we get the following corollary immediately.

Corollary 4.2. There exist δ > 0 and c < ∞ such that the following holds. For each
L ∈ N and γ ∈ ΓL, there exists Q(γ) ∈ (0, 1) such that

lim
m→∞

Q(m, γ) = Q(γ) (4.5)

|Q(m, γ)−Q(γ)| ≤ c2−δm
d
2
− 1

2 . (4.6)

Especially, there exists a α ∈ (0, 1) such that

lim
n→∞

P
(
(S1[0, τ1n], S2[0, τ2n]) ∈ Γn

)
2nξ = α (4.7)

|P
(
(S1[0, τ1n], S2[0, τ2n]) ∈ Γn

)
2nξ − α| ≤ c2−δn

d
2
− 1

2 . (4.8)

Corollary 4.3. There exist δ > 0 and c < ∞ such that the following holds. For each
L ∈ N and γ ∈ ΓL, the limit

lim
N→∞

P ((S1[0, τ1L], S2[0, τ2L]) = γ | (S1[0, τ1N ], S2[0, τ2N ]) ∈ ΓN ) (4.9)

exists. If we denote the limit by P ](γ), then

|P ((S1[0, τ1L], S2[0, τ2L]) = γ | (S1[0, τ1N ], S2[0, τ2N ]) ∈ ΓN )− P ](γ)| ≤ c2−δN
d
2
− 1

2 . (4.10)

Proof. Fix L ∈ N and γ ∈ ΓL. Let

p(γ) = P ((S1[0, τ1L], S2[0, τ2L]) = γ).

Then

P ((S1[0, τ1L], S2[0, τ2L]) = γ | (S1[0, τ1N ], S2[0, τ2N ]) ∈ ΓN )

=
p(γ)P (AN (γ))

P ((S1[0, τ1N ], S2[0, τ2N ]) ∈ ΓN )

By Corollary 4.2, if we let P ](γ) be

p(γ)2LξQ(γ)

α
,

the proof is finished.

Remark 4.4. In order to simplify the notations, all results above were stated for the
first hitting time of ∂B(2N ) instead of ∂B(N). However there is no essential difference
between them and similar arguments also work for the latter case. Since it is easy to
extend above results to the hitting time of ∂B(N), we leave the details to the reader.
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