
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 16 (2011), Paper no. 82, pages 2246–2295.

Journal URL
http://www.math.washington.edu/~ejpecp/

Pfaffian Stochastic Dynamics of Strict Partitions

Leonid Petrov
lenia.petrov@gmail.com ∗

Dobrushin Mathematics Laboratory
Kharkevich Institute for Information Transmission Problems

Moscow, Russia
Department of Mathematics Northeastern University

360 Huntington Ave., Boston
MA 02115, USA

Abstract

We study a family of continuous time Markov jump processes on strict partitions (partitions with
distinct parts) preserving the distributions introduced by Borodin [Bor99] in connection with
projective representations of the infinite symmetric group. The one-dimensional distributions
of the processes (i.e., the Borodin’s measures) have determinantal structure. We express the
dynamical correlation functions of the processes in terms of certain Pfaffians and give explicit
formulas for both the static and dynamical correlation kernels using the Gauss hypergeometric
function. Moreover, we are able to express our correlation kernels (both static and dynamical)
through those of the z-measures on partitions obtained previously by Borodin and Olshanski in
a series of papers.
The results about the fixed time case were announced in the note [Pet10b]. A part of the present
paper contains proofs of those results .
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1 Introduction

We introduce and study a family1 of continuous time Markov jump processes on the set of all strict
partitions (that is, partitions in which nonzero parts are distinct). Our Markov processes preserve
the family of probability measures introduced by Borodin [Bor99] in connection with the harmonic
analysis of projective representations of the infinite symmetric group. The construction of our dy-
namics is similar to that of Borodin and Olshanski [BO06a] and is based on a special coherency
property2 of the measures on strict partitions introduced in [Bor99]. Regarding each strict parti-
tion λ = (λ1 > · · · > λ` > 0), λ j ∈ Z, as a point configuration

�

λ1, . . . ,λ`
	

on the half-lattice
Z>0 := {1, 2, . . . }, one can say that the state space of our Markov processes is the space of all finite
point configurations on Z>0. The fixed time distributions of our dynamics are probability measures
on this configuration space. In other words, in the static (fixed time) picture one sees a random
point process on Z>0. The detailed description of the model and formulation of the main results are
given in §2.

The main result of the paper is the computation of the dynamical (or space-time) correlation func-
tions for our family of Markov processes. We show that these correlation functions have certain

1The whole picture depends on two continuous parameters α > 0 and 0< ξ < 1.
2which has a representation-theoretic meaning.
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Pfaffian form, and compute the corresponding kernel. Here the kernel is a function Φα,ξ(s, x; t, y)
of two space-time variables, where x , y ∈ Z and s, t ∈ R, which is explicitly expressed through
the Gauss hypergeometric function. Following the common terminology (e.g., see [NF98], [Joh05],
[BO06a]), we call Φα,ξ the extended (Pfaffian) hypergeometric-type kernel. Precise formulation of
this result and an explicit expression for the Pfaffian kernel are given in Theorem 2 in §2.

In the static case the Pfaffian formula for the correlation functions of our Markov processes can
be reduced to a determinantal one. Thus, in the fixed time picture we have a determinantal point
process on Z>0. Its kernel Kα,ξ has integrable form and is also expressed through the Gauss hy-
pergeometric function. We call this kernel the hypergeometric-type kernel. See Theorem 1 in §2
for a detailed statement and a formula for the kernel Kα,ξ. The results about the static case were
announced in the note [Pet10b]. A part of the present paper (namely, §4–§8) contains complete
proofs of those results.

Models with correlation functions of Pfaffian form first appeared in theory of random matrices, e.g.,
see [Dys70], [MP83a], [MP83b], [NW91a], [NW91b], [TW96], [Nag07], and the book by Mehta
[Meh04]. An essentially time-inhomogeneous Pfaffian dynamical model of random-matrix type
was considered by Nagao, Katori and Tanemura [KNT04], [Kat05]. Static Pfaffian random point
processes of various origins have also been studied, e.g., see [Rai00], [Fer04], [Mat05], [BR05],
[Vul07], and §10 of the survey [Bor09]. Borodin and Strahov [BS06], [BS09], [Str10a] considered
static models which are discrete analogues of Pfaffian models of random-matrix type, they involve
random ordinary (i.e., not necessary strict) partitions and have a representation-theoretic interpre-
tation (see [Str10b]). The dynamical model that we study in the present paper seems to be a first
example of a stationary (in contrast to the model of [KNT04], [Kat05]) Pfaffian dynamics.

Comparison with results for the z-measures

Our model of random strict partitions and associated stochastic dynamics is very similar to the
one of the z-measures on ordinary partitions.3 The structure of static and dynamical correlation
functions in that case was investigated in [BO00], [Oko01b], [BO06a], [BO06b]. Let us discuss the
relationship of our results with the ones from those papers.

• The main feature of our model is that its dynamical correlation functions are expressed in terms
of Pfaffians and not determinants, as it is for the z-measures.

• Determinantal (static) correlation kernels of random point processes often appear to be projection
operators. In particular, this holds for the z-measures. In our situation the kernel Kα,ξ(x , y)
(x , y ∈ Z>0) is symmetric, but it is not a projection operator in the corresponding coordinate
Hilbert space `2(Z>0).

• On the other hand, the static Pfaffian kernel Φα,ξ(x , y) := Φα,ξ(s, x; s, y) (where x , y ∈Z) in our
model has a structure which is very similar to that of the determinantal kernel of the z-measures
on semi-infinite point configurations on the lattice. Viewed as an operator in the Hilbert space
`2(Z), Φα,ξ(·, ·) is a rank one perturbation of an orthogonal projection operator.

3The z-measures originated from the problem of harmonic analysis for the infinite symmetric group S∞ [KOV93],
[KOV04] and were studied in detail by Borodin, Okounkov, Olshanski, and other authors, e.g., see the bibliography in
[BO09].
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• Furthermore, our extended Pfaffian kernel Φα,ξ(s, x; t, y) is obtained from the static kernel
Φα,ξ(x , y) in a way which is common for Markov processes on configuration spaces with de-
terminantal dynamical correlation functions. In particular, the same extension happens in the
case of the z-measures.

• Markov processes of [BO06a], as well as many dynamical determinantal models that arise in the
theory of random matrices and random tilings (e.g., see [NF98], [War07], [JN06], [ANvM10],
[Joh02], [Joh05], [BGR10]), are closely related to orthogonal polynomials. Moreover, con-
nections with orthogonal polynomials also arise in static Pfaffian models of random-matrix
and representation-theoretic origin [NW91a], [NW91b], [TW96], [KNT04], [Kat05], [Nag07],
[BS06], [BS09], [Str10a]. For our model there also exists a connection with orthogonal polyno-
mials (namely, the Krawtchouk polynomials), but this connection does not help us to compute the
correlation kernels as it was for the z-measures [BO06a], [BO06b].

• The expressions for our correlation kernels involve the same special functions (expressed through
the Gauss hypergeometric function) which arise for the kernels in the case of the z-measures.
These functions first appeared in the works of Vilenkin and Klimyk [VK88], [VK95]. In particular,
certain degenerations of them lead to the classical Meixner and Krawtchouk orthogonal polyno-
mials.

Using this fact, we are able to express our kernels directly through the corresponding kernels for
the z-measures. These expressions seem to have no direct probabilistic meaning at the level of
random point processes, but in particular they allow to study asymptotics of our kernels with the
help of results of [BO00], [BO06a], see [Pet10a, §11].

Method

Our technique of obtaining both static and dynamical correlation kernels in an explicit form is
different from those of [BO00], [BO06b], [BO06a], and is based on computations in the fermionic
Fock space involving so-called Kerov’s operators which span a certain sl(2,C)-module. Both the
static and dynamical correlation kernels in our model are expressed through matrix elements related
to this module. This approach is similar to the one invented by Okounkov [Oko01b] to calculate
the (static) correlation kernel of the z-measures on ordinary partitions.4 In computations in this
paper we use the ordinary fermionic Fock space instead of the (closely related, but different) infinite
wedge space of [Oko01b]. Moreover, our situation also requires to deal with a Clifford algebra
(acting in the fermionic Fock space) of a different type. One can say that our Clifford algebra is an
infinite-dimensional generalization of the Clifford algebra over an odd-dimensional quadratic space.
Similar Clifford algebras were used in [DJKM82], [Mat05], [Vul07]. In the latter two papers the
fermionic Fock space is also used for computations of certain correlation functions. That approach is
analogous to the formalism of Schur measures and Schur processes [Oko01a], [OR03] and differs
from the one used in the present paper.

Organization of the paper

The present paper is a shortened version of the arXiv preprint [Pet10a].
4A possibility of use of this method in studying the dynamical model related to the z-measures was pointed out in

[BO06a], and later this approach was carried out by Olshanski [Ols08].
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In §2 we give main definitions and state main results about our model. In §3 we discuss combina-
torial constructions from which our model arises. We also give an argument why the corresponding
fixed time random point processes on Z>0 are determinantal. In §4 we study Kerov’s operators on
strict partitions. These operators provide us with a convenient way of writing expectations with
respect to our point processes. Such formulas are used in the computation of both static and dy-
namical correlation functions. In §5 we recall the formalism of the fermionic Fock space and define
an action of a Clifford algebra in it. These structures are extensively used in our computations.

In §6 we discuss functions (matrix elements of a certain sl(2,C)-module) which are used in explicit
expressions for our correlation kernels. These functions are eigenfunctions of a certain second
order difference operator on the lattice Z. This fact allows later to interpret our kernels through
orthogonal spectral projections related to that operator on the lattice.

In §7 we prove that the static correlation functions of our Markov dynamics can be written as certain
Pfaffians. We express the Pfaffian kernel through matrix elements related to Kerov’s operators, and
through the functions discussed in §6. In §8 we write the static correlation functions as determinants
and express the determinantal correlation kernel in various forms (including a so-called integrable
form).

The Markov processes on strict partitions are defined in §9 in terms of their jump rates. In §10
we show that the dynamical correlation functions of our Markov processes have Pfaffian form, and
give an explicit expression for the dynamical (Pfaffian) correlation kernel in terms of the functions
discussed in §6.

Acknowledgements

The author is very grateful to Grigori Olshanski for permanent attention to the work, fruitful discus-
sions, and access to his unpublished manuscript [Ols08]. I would also like to thank Alexei Borodin
and Vadim Gorin for useful comments on my work.

2 Model and results

2.1 Point processes on the half-lattice

Let us first describe the fixed time picture, that is, the random point processes on the half-lattice
Z>0 that we study. They arise from a model of random strict partitions introduced in [Bor99].

By a strict partition we mean a partition in which nonzero parts are distinct, that is, λ = (λ1 >

· · · > λ`(λ) > 0), where λ j ∈ Z>0. The number |λ| := λ1 + · · ·+ λ`(λ) is called the weight of the
partition, and the number of nonzero parts `(λ) is the length of the partition. By Sn denote the set
of all strict partitions of weight n= 0,1, . . . .5 Throughout the paper we identify strict partitions and
corresponding shifted Young diagrams as in [Mac95, Ch. I, §1, Ex. 9].

The description of the model of [Bor99] starts with the Plancherel measures on strict partitions of a
fixed weight:

Pln(λ) :=
2n−`(λ) · n!

(λ1! . . .λ`(λ)!)2
∏

1≤k< j≤`(λ)

�

λk −λ j

λk +λ j

�2

, λ ∈ Sn (2.1)

5By agreement, the set S0 consists of the empty partition ∅.
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(by Pln(λ)we denote the measure of a singleton {λ}, and the same agreement for other measures on
strict partitions is used throughout the paper). The measure Pln is a probability measure on Sn. The
set Sn parametrizes irreducible truly projective representations of the symmetric group Sn [Sch11],
[HH92], and the measures Pln on Sn are analogues (in the theory of projective representations of
Sn) of the well-known Plancherel measures on ordinary partitions. The system of measures {Pln}
possesses a coherency property (3.3) which has a representation-theoretic meaning. The Plancherel
measures on strict partitions were studied in, e.g., [Bor99], [Iva99], [Iva06], [Pet10c].

Borodin [Bor99] introduced a deformation of the measures Pln (2.1) depending on one real param-
eter α > 0 (in [Bor99] this parameter is denoted by x):

Mα,n(λ) := Pln(λ) ·
1

α(α+ 2) . . . (α+ 2n− 2)
·
`(λ)
∏

k=1

λk−1
∏

j=0

�

j
�

j+ 1
�

+α
�

. (2.2)

The deformations Mα,n of the Plancherel measures Pln preserve the coherency property (3.3). As
α→+∞, the measure Mα,n on Sn converges to Pln. In this paper we do not focus on the Plancherel
case, but all our results are translated to that case in a straightforward way, see [Pet10a, §8.3 and
§11.2].

Definition 2.1. To simplify certain formulas, instead of the parameter α we will sometimes use
another parameter ν(α) := 1

2

p
1− 4α. If 0 < α ≤ 1

4
, then ν(α) is real, 0 ≤ ν(α) < 1

2
. If α > 1

4
, then

ν(α) can take arbitrary purely imaginary values. The whole picture is symmetric with respect to the
replacement of ν(α) by −ν(α). Sometimes the argument α in ν(α) is omitted.

Our main object in the present paper is a mixing6 of the measures Mα,n in terms of the negative
binomial distribution on the set of indices n ∈Z≥0:

πα,ξ(n) := (1− ξ)α/2 (α/2)n
n!
ξn, n= 0,1, 2, . . . , (2.3)

where ξ ∈ (0, 1) is an additional parameter. Here

(a)k := a(a+ 1) . . . (a+ k− 1) = Γ(a+ k)/Γ(a) (2.4)

is the Pochhammer symbol, and Γ(·) is the Euler gamma function. This mixing is defined as

Mα,ξ(λ) := πα,ξ(|λ|) ·Mα,|λ|(λ), λ ∈ S.

Regarding each strict partition λ = (λ1, . . . ,λ`(λ)) as a point configuration
¦

λ1, . . . ,λ`(λ)
©

on Z>0
(to the empty partition ∅ corresponds the empty configuration), we view the resulting mixed distri-
bution Mα,ξ as a random point process on the half-lattice Z>0.7 The process Mα,ξ is supported by
finite configurations. The probability of each configuration λ=

�

λ1, . . . ,λ`
	

⊂Z>0 has the form

Mα,ξ(λ) = (1− ξ)α/2 ·
∏̀

k=1

wα,ξ(λk) ·
∏

1≤k< j≤`

�

λk −λ j

λk +λ j

�2

, (2.5)

6Which also can be viewed as a passage to the grand canonical ensemble, cf. [Ver96].
7Throughout the paper we use this identification of strict partitions with point configurations on Z>0 whenever we

speak about random point processes and their correlation functions.
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where

wα,ξ(x) :=
ξx cos(πν(α))

2π

Γ(1
2
− ν(α) + x)Γ(1

2
+ ν(α) + x)

(x!)2
, x ∈Z>0, (2.6)

and (1− ξ)α/2 is a normalizing constant (observe that wα,ξ(x)> 0, x ∈Z>0).

Our first result is the computation of the correlation functions of the point processes Mα,ξ. Recall
that the correlation functions of a random point process on Z>0 are defined as

ρ(n)(x1, . . . , xn) := Prob
�

the random configuration contains x1, . . . , xn
	

, (2.7)

where n = 1, 2, . . . , and x1, . . . , xn are pairwise distinct points of Z>0. Under mild assumptions,
the correlation functions determine the point process uniquely. A point process on Z>0 is called
determinantal, if there exists a function K on Z>0 × Z>0 (called the (determinantal) correlation
kernel) such that the correlation functions ρ(n), n= 1,2, . . . , have the following form:

ρ(n)(x1, . . . , xn) = det
�

K(xk, x j)
�n

k, j=1
.

About determinantal point processes see, e.g., the surveys [Sos00], [HKPV06], [Bor09].

To formulate the result, we need the following functions in the variable x ∈ Z indexed by m ∈ Z
and depending on our parameters α > 0 and 0< ξ < 1:

ϕm(x;α,ξ) :=

 

Γ(1
2
+ ν(α) + x)Γ(1

2
− ν(α) + x)

Γ(1
2
+ ν(α)−m)Γ(1

2
− ν(α)−m)

!
1
2

ξ
1
2
(x+m)(1− ξ)−m×

×
2F1(

1
2
+ ν(α) +m, 1

2
− ν(α) +m; x +m+ 1; ξ

ξ−1
)

Γ(x +m+ 1)
.

Here 2F1(A, B; C; w) :=
∑∞

n=0
(A)n(B)n
(C)nn!

wn is the Gauss hypergeometric function.

Theorem 1. For any values of the parameters α > 0 and 0 < ξ < 1, the point process Mα,ξ on the
half-lattice Z>0 is determinantal. The correlation kernel Kα,ξ of Mα,ξ is expressed through the Gauss
hypergeometric function:

Kα,ξ(x , y) =

p

αξx y

1− ξ
·

P(x)Q(y)−Q(x)P(y)
x2− y2 ,

where P(x) := ϕ0(x;α,ξ) and Q(x) := ϕ1(x;α,ξ)−ϕ−1(x;α,ξ).

We call the kernel Kα,ξ the hypergeometric-type kernel. In (8.3) we are able to express the kernel
Kα,ξ through the discrete hypergeometric kernel introduced in [BO00], [BO06b].

2.2 Dynamical model

Let us now describe a family of continuous time Markov jump processes (λα,ξ(t))t∈[0,+∞) on the
space of all strict partitions S (which is the same as the set of all finite configurations on Z>0).
These processes preserve the measures Mα,ξ. The construction of the processes λα,ξ uses the same
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ideas as in [BO06a]. A closely related Markov dynamical model on strict partitions (but in discrete
time) was considered in [Pet10c].

Our first key ingredient is the continuous time birth and death process on Z>0 denoted by
(nα,ξ(t))t∈[0,+∞). It depends on our parameters α and ξ and has the following jump rates:

Prob
¦

nα,ξ(t + d t) = n+ 1 |nα,ξ(t) = n
©

= (1− ξ)−1ξ(n+α/2)d t,

Prob
¦

nα,ξ(t + d t) = n− 1 |nα,ξ(t) = n
©

= (1− ξ)−1nd t.

The process nα,ξ preserves the negative binomial distribution πα,ξ (2.3) on Z>0 and is reversible
with respect to it. About birth and death processes in general see, e.g., [KM57], [KM58].

The second key ingredient is the collection of Markov transition kernels p↑α(n, n+1) from Sn to Sn+1
and p↓(n+ 1, n) from Sn+1 to Sn, n= 0,1, 2, . . . , such that

Mα,n ◦ p↑α(n, n+ 1) =Mα,n+1 and Mα,n+1 ◦ p↓(n+ 1, n) =Mα,n. (2.8)

These kernels are canonically associated with the system of measures {Mα,n}∞n=0 (see §3.2 below,
and also [Bor99], [Pet10c]), this construction follows the general formalism of Vershik and Kerov
[VK87]. Note that the kernels p↑α(n, n+ 1) depend on the parameter α, and the kernels p↓(n+ 1, n)
do not depend on any parameter. The values p↑α(n, n+ 1)µ,c and p↓(n+ 1, n)c,µ, where µ ∈ Sn and
c ∈ Sn+1 (these are the individual transition probabilities), vanish unless the shifted Young diagram
c is obtained from µ by adding a box. In other words, the transition kernels p↑α(n, n + 1) and
p↓(n+ 1, n) describe random procedures of adding and deleting one box, respectively.

We describe the dynamics λα,ξ on strict partitions in terms of jump rates. The jumps are of two
types: one can either add a box to the random shifted Young diagram, or remove a box from it (of
course, the result must still be a shifted Young diagram). The events of adding and removing a box
are governed by the birth and death process nα,ξ = |λα,ξ|. Conditioned on λα,ξ(t) = λ and the jump
n → n+ 1 (where n = |λ|) of the process nα,ξ during the time interval (t, t + d t), the choice of
the box to be added to the diagram λ is made according to the probabilities p↑α(n, n+ 1)λ,c, where
c ∈ Sn+1. Similarly, conditioned on λα,ξ(t) = λ and the jump n→ n− 1 of nα,ξ during (t, t + d t),
the choice of the box to be removed from λ is made according to the probabilities p↓(n, n− 1)λ,µ,
where µ ∈ Sn−1.

The fact that the process nα,ξ preserves the mixing distribution πα,ξ together with (2.8) implies that
the measure Mα,ξ on S is invariant for the process λα,ξ. Moreover, the process is reversible with
respect to Mα,ξ. In this paper by (λα,ξ(t))t≥0 we mean the equilibrium process (that is, the process
starting from the invariant distribution Mα,ξ).

Let (t1, x1), . . . (tn, xn) ∈R≥0×Z>0 be pairwise distinct space-time points. The dynamical (or space-
time) correlation functions of the Markov process λα,ξ are defined as

ρ
(n)
α,ξ(t1, x1; . . . ; tn, xn) (2.9)

:= Prob
¦

the configuration λα,ξ(t) at time t = t j contains x j , j = 1, . . . , n
©

.

The notion of dynamical correlation functions is a combination of finite-dimensional distributions
of a stochastic dynamics and correlation functions of a random point process. Indeed, the finite-
dimensional distribution of the process λα,ξ at times t1, . . . , tn (let these times be distinct for sim-
plicity) is a probability measure on configurations on the space Z>0 t · · · t Z>0 (n copies), and
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ρ
(n)
α,ξ(t1, x1; . . . ; tn, xn) (t j ’s fixed) are just the correlation functions of this measure on configura-

tions. The dynamical correlation functions uniquely determine the dynamics (λα,ξ(t))t∈[0,+∞).

The main result of the present paper is the computation of the dynamical correlation functions of
λα,ξ.

To formulate the result, we need a notation. By Z 6=0 denote the set of all nonzero integers, and for
x1, . . . , xn ∈Z>0 put, by definition, x−k :=−xk, k = 1, . . . , n.

Theorem 2. The equilibrium continuous time dynamics (λα,ξ(t))t≥0 is Pfaffian, that is, there exists a
function Φα,ξ(s, x; t, y), x , y ∈Z, s ≤ t, such that the dynamical correlation functions of λα,ξ have the
form

ρ
(n)
α,ξ(t1, x1; . . . ; tn, xn) = Pf

�

Φα,ξ¹T, Xº
�

, 0≤ t1 ≤ · · · ≤ tn, (2.10)

where Φα,ξ¹T, Xº is the 2n × 2n skew-symmetric matrix with rows and columns indexed by
1,−1, . . . , n,−n, and the k j-th entry in Φα,ξ¹T, Xº above the main diagonal is Φα,ξ(t|k|, xk; t| j|, x j),
where k, j = 1,−1, . . . , n,−n (thus, |k| ≤ | j|). The kernel Φα,ξ is be expressed through the Gauss
hypergeometric function:

Φα,ξ(s, x; t, y) := (−1)min(x ,0)+max(y,0)
∞
∑

m=0

2−δ(m)e−m(t−s)ϕm(x;α,ξ)ϕm(−y;α,ξ).

We express our dynamical Pfaffian kernel Φα,ξ through the extended discrete hypergeometric kernel
of [BO06a], see §10.5. Such an expression helps to study the asymptotic behavior of the dynamical
kernel in various limit regimes. This is carried out in [Pet10a, §11].

Remark 2.2. 1. Observe that it is enough for Φα,ξ(s, x; t, y) to be defined only for x , y ∈ Z 6=0 be-
cause only such values ofΦα,ξ(s, x; t, y) are used in the theorem. However, our kernelΦα,ξ(s, x; t, y)
extends to x , y ∈ Z in a very natural way, so we always let Φα,ξ(s, x; t, y) to be defined for all
x , y ∈Z. The same is applicable to the static Pfaffian kernel Φα,ξ(x , y).

2. In (2.10) we require that the time moments t j are ordered. However, Theorem 2 allows to

compute the correlation functions ρ(n)
α,ξ(t1, x1; . . . ; tn, xn) with arbitrary order of time moments: one

should simply permute the space-time points (t1, x1), . . . , (tn, xn) (this does not change the value of
ρ
(n)
α,ξ(t1, x1; . . . ; tn, xn)) in such a way that the time moments become nondecreasing, and then apply

(2.10).

Remark 2.3 (Hidden determinantal structure in Pfaffian processes). If in Theorem 2 we set t1 =
· · · = tn, then the dynamical correlation functions turn into the (static) correlation functions of the
point process Mα,ξ on Z>0. Thus, Theorem 2 implies that the point process Mα,ξ on Z>0 is Pfaffian.
To show that it is in fact determinantal requires some work (see Theorem 8.1 and Proposition A.2
from Appendix). Thus, one can say that in the static case the determinantal structure of correlation
functions is hidden under the Pfaffian one.

On the other hand, numerical computations suggest that the dynamical correlation functions of the
Markov process λα,ξ cannot be written as determinants. We plan to give a rigorous proof of this fact
in a subsequent work.
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3 Schur graph and multiplicative measures

3.1 Schur graph

We identify strict partitions λ = (λ1 > · · · > λ`(λ) > 0), λ j ∈ Z>0, and corresponding shifted Young
diagrams as in [Mac95, Ch. I, §1, Example 9]. The shifted Young diagram of the form λ consists
of `(λ) rows. Each kth row (k = 1, . . . ,`(λ)) has λk boxes, and for j = 1, . . . ,`(λ)− 1 the first box
of the ( j + 1)th row is right under the second box of the jth row. For example, the shifted Young
diagram corresponding to the strict partition λ= (6, 4,2, 1) looks as follows:

Let µ and λ be strict partitions. If |λ| = |µ| + 1 and the shifted diagram λ is obtained from the
shifted diagram µ by adding a box, then we write µ↗ λ, or, equivalently, λ↘ µ. The box that is
added is denoted by λ/µ.

The set S =
⊔∞

n=0 Sn of all strict partitions is equipped with a structure of a graded graph: for
µ ∈ Sn−1 and λ ∈ Sn we draw an edge between µ and λ iff µ↗ λ. Thus, the edges in S are drawn
only between consecutive floors. We assume the edges to be oriented from Sn−1 to Sn. In this way
S becomes a graded graph. It is called the Schur graph.8 This graph describes the branching of
(suitably normalized) irreducible truly projective characters of symmetric groups, e.g., see [Iva99].

Let dimSλ be the total number of oriented paths in the Schur graph from the initial vertex ∅ to the
vertex λ. This number is given by [Mac95, Ch. III, §8, Example 12]

dimSλ=
|λ|!

λ1! . . .λ`(λ)!

∏

1≤k< j≤`(λ)

λk −λ j

λk +λ j
, λ ∈ S. (3.1)

Observe that if the components of λ are not distinct, then dimSλ vanishes. The numbers dimSλ

satisfy the recurrence relations

dimSλ=
∑

µ: µ↗λ
dimSµ for all λ ∈ S, dimS∅= 1. (3.2)

The number dimSλ can also be interpreted as the number of shifted standard tableaux of the form
λ [Sag87], [Wor84], and as the (suitably normalized) dimension of the irreducible truly projective
representation of the symmetric group S|λ| corresponding to the shifted diagram λ [HH92], [Iva99].

Similarly, by dimS(µ,λ) denote the total number of paths from µ to λ in the graph S. Clearly,
dimS(µ,λ) vanishes unless µ ⊆ λ, that is, unless µk ≤ λk for all k. If µ ⊆ λ, by λ/µ denote
the corresponding skew shifted Young diagram, that is, the set difference of λ and µ. We have
dimSλ= dimS(∅,λ).

8In [Pet10c] the Schur graph had multiple edges, but now it is more convenient for us to consider simple edges as in,
e.g., [Bor99]. The difference between these two choices is inessential because the down transition probabilities (§3.2)
are the same.
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3.2 Coherent systems of measures on the Schur graph

Following the general formalism (e.g., see [KOO98]), one can define coherent systems of measures
on the Schur graph. This definition starts from the notion of the down transition probabilities. For
λ,µ ∈ S, set

p↓(λ,µ) :=

¨

dimSµ/dimSλ, if µ↗ λ;
0, otherwise.

By (3.2), the restriction of p↓ to Sn+1 × Sn for all n = 0, 1, . . . is a Markov transition kernel. We
denote it by p↓(n+ 1, n) = {p↓(n+ 1, n)λ,µ}λ∈Sn+1,µ∈Sn

, and call it the down transition kernel.

Definition 3.1. Let Mn be a probability measure on Sn, n= 0,1, . . . . We call
�

Mn
	

a coherent system
of measures iff

Mn(λ) =
∑

c: c↘λ
Mn+1(c)p↓(c,λ) for all n and λ ∈ Sn. (3.3)

In other words, Mn+1 ◦ p↓(n+ 1, n) = Mn for all n (cf. (2.8)).

Having a nondegenerate coherent system
�

Mn
	

(that is, Mn(λ) > 0 for all n and λ ∈ Sn), we can
define the corresponding up transition probabilities. They depend on a choice of a coherent system.
For λ,c ∈ S, set

p↑(λ,c) :=

¨

Mn+1(c)p↓(c,λ)/Mn(λ), if λ ∈ Sn, c ∈ Sn+1 and λ↗ c,
0, otherwise.

By (3.3), the restriction of p↑ to Sn × Sn+1 for all n = 0, 1, . . . is a Markov transition kernel. We
denote it by p↑(n, n+ 1) = {p↑(n, n+ 1)λ,c}λ∈Sn,c∈Sn+1

and call it the up transition kernel. We have
Mn ◦ p↑(n, n+ 1) = Mn+1 (cf. (2.8)).

A representation-theoretic meaning of coherent systems of measures on the Schur graph is discussed
in, e.g., [Pet10a, §3.2] (see also [Naz92], [Iva99]). A general formalism is explained in [KOO98].

3.3 Multiplicative measures

There is a distinguished coherent system on the Schur graph, namely, the Plancherel measures
�

Pln
	∞

n=0 (2.1). Using the function dimSλ defined by (3.1), one can write

Pln(λ) = 2n−`(λ) �dimSλ
�2
/n!, n ∈Z>0, λ ∈ Sn.

The Plancherel measures on strict partitions are analogues (in the theory of projective representa-
tions of symmetric groups) of the well-known Plancherel measures on ordinary partitions.

Borodin [Bor99] has introduced a deformation Mα,n (2.2) of the measures Pln on Sn depending
on one real parameter α > 0. Here let us recall the characterization of the measures

¦

Mα,n

©

from
[Bor99].

Definition 3.2. A system of probability measures Mn on Sn is called multiplicative if there exists a
function f :

�

(i, j): j≥ i≥ 1
	

→ C such that

Mn(λ) = cn ·Pln(λ) ·
∏

�=(i,j)∈λ
f (i, j) for all n and all λ ∈ Sn.
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Here cn, n= 0,1, . . . , are normalizing constants. The product above is taken over all boxes �= (i, j)
of the shifted Young diagram λ, where i and j are the row and column numbers of the box �,
respectively. (Note that for shifted Young diagrams we always have j≥ i.)

Theorem 3.3 ([Bor99]). Let {Mn} be a nondegenerate coherent system of measures on the Schur
graph. It is multiplicative iff the function f has the form

f (i, j) = (j− i)(j− i+ 1) +α (3.4)

for some parameter α ∈ (0,+∞].9

If f (i, j) is given by (3.4), then cn = α(α+2) . . . (α+2n−2). The case α=+∞ is understood in the
limit sense: limα→+∞

1
cn

∏

�=(i,j)∈λ f (i, j) = 1 for all n (this gives the Plancherel measures).

We denote by {Mα,n}∞n=0 the multiplicative coherent system corresponding to the parameter α ∈
(0,+∞), these measures are given by (2.2). The up transition kernel on Sn × Sn+1 (§3.2) for the
coherent system

¦

Mα,n

©

is denoted by p↑α(n, n+ 1).

3.4 Mixing of measures. Point configurations on the half-lattice

For a set X, by Conf(X) denote the space of all (locally finite) point configurations on X, and by
Conf fin(X) ⊂ Conf(X) denote the subset consisting only of finite configurations. A Borel probability
measure (with respect to a certain natural topology) on Conf(X) is called a random point process
on X. If X is discrete, then Conf(X) ∼= {0,1}X, and we take the standard coordinatewise topology
on {0, 1}X which turns it into a compact space. More details about random point processes can be
found in [Sos00].

As explained in §2.1, we mix the measures Mα,n (2.2) using the negative binomial distribution πα,ξ
(2.3) on the set {0,1, . . . } of indices n. As a result we get a probability measure Mα,ξ (2.5) on the
set S of all strict partitions. Identifying strict partitions with point configurations in a natural way
(§2.1), we see that the set S is the same as Conf fin(Z>0). Thus, Mα,ξ can be viewed as a random
point process on Z>0 supported by finite configurations.

Let us now prove that the point processes Mα,ξ on Z>0 are determinantal. Observe that both these
processes have a general structure described as follows:

Definition 3.4. Let w be a nonnegative function on Z>0 such that
∑∞

x=1
w(x)<∞. (3.5)

By P(w) denote the point process onZ>0 that lives on finite configurations and assigns the probability

P(w)(λ) := const ·
∏̀

k=1

w(λk)
∏

1≤k< j≤`

�

λk −λ j

λk +λ j

�2

(3.6)

to every configuration λ=
�

λ1, . . . ,λ`
	

⊂Z>0, where const is a normalizing constant.

9For certain negative values of α one can also define the measures Mα,n by Definition 3.2 with f given by (3.4) (see
§6.5), but such measures are degenerate.

2257



The process Mα,ξ has the form P(w) with w(x) = wα,ξ(x) given by (2.6).

Let L(w) be the following Z>0×Z>0 matrix:

L(w)(x , y) :=
2
p

x y ·w(x)w(y)
x + y

, x , y ∈Z>0. (3.7)

Condition (3.5) implies that the operator in `2(Z>0) corresponding to L(w) is of trace class, and, in
particular, the Fredholm determinant det(1+ L(w)) is well defined.

Lemma 3.5. (1) Let λ=
�

λ1, . . . ,λ`
	

⊂Z>0 be a point configuration. We have

P(w)(λ) =
detL(w)(λ)

det(1+ L(w))
,

where L(w)(λ) denotes the submatrix
�

L(w)(λk,λ j)
�`

k, j=1
of L(w).

(2) The point process P(w) is determinantal with the correlation kernel K(w) = L(w)(1+ L(w))−1.

Proof. The first claim directly follows from the Cauchy determinant identity [Mac95, Ch. I, §4, Ex.
6].

This means that the point process P(w) is a so-called L-ensemble corresponding to the matrix L(w)

defined above (e.g., see [BO00, Prop. 2.1] or [Bor09, §5]). This implies the second claim about the
correlation kernel.

Note that the normalizing constant in (3.6) is equal to (det(1+ L(w)))−1, so condition (3.5) is nec-
essary for the point process P(w) to be well defined.

Remark 3.6. The correlation kernel K(w) of the process P(w) is symmetric, because it has the form
K(w) = L(w)(1+L(w))−1, where L(w) is symmetric. However, the operator of the form L(w)(1+L(w))−1

cannot be a projection operator in `2(Z>0). This aspect discriminates our processes from many
other determinantal processes appearing in, e.g., random matrix models (see the references given
in Introduction).

On the other hand, the static Pfaffian kernel in our model resembles the structure of a spectral
projection operator, see Proposition 7.5.

Lemma 3.5 implies, in particular, that our point processes Mα,ξ on Z>0 are determinantal (for all
values of α > 0 and 0 < ξ < 1). Denote the correlation kernel of Mα,ξ by Kα,ξ (it is symmetric).
However, Lemma 3.5 does not give any suggestions on how to calculate this kernel. Below we
compute Kα,ξ using a fermionic Fock space technique.

4 Kerov’s operators

4.1 Definition

The main tool that we use in the present paper to compute the correlation functions of the point
processes Mα,ξ (and also of the associated dynamical models, see §9–§10) is a representation of the
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Lie algebra sl(2,C) in the pre-Hilbert space `2
fin(S) given by the so-called Kerov’s operators. This

approach was introduced by Okounkov [Oko01b] for the z-measures on ordinary partitions.

By `2
fin(S) we denote the space of all finitely supported functions on S with the inner product

( f , g) :=
∑

λ∈S
f (λ)g(λ).

This is a pre-Hilbert space whose Hilbert completion is the usual space `2(S) of all functions on S
which are square integrable with respect to the counting measure on S. The standard orthonormal
basis in `2(S) is denoted by {λ}λ∈S, that is,

λ(µ) :=

¨

1, if µ= λ;
0, otherwise.

(4.1)

Definition 4.1. The Kerov’s operators in `2
fin(S) depend on our parameter α > 0 and are defined as

Uλ :=
∑

c: c↘λ
2−δ(j−i)/2

p

(j− i)(j− i+ 1) +α ·c, (i, j) = c/λ;

Dλ :=
∑

µ: µ↗λ
2−δ(j−i)/2

p

(j− i)(j− i+ 1) +α ·µ, (i, j) = λ/µ; (4.2)

Hλ :=
�

2|λ|+ α
2

�

λ.

We denote a box by (i, j) iff its row number is i and its column number is j.

The Kerov’s operators are closely related to the measures Mα,n (2.2) on Sn: since

(Un∅,λ) = (Dnλ,∅) = dimSλ · 2−`(λ)/2
∏

�=(i,j)∈λ

p

(j− i)(j− i+ 1) +α

for all n and λ ∈ Sn, we have

Mα,n(λ) = Z−1
n (U

n∅,λ)(Dnλ,∅), (4.3)

where Zn = n!(α/2)n is the normalizing constant.

Lemma 4.2. The map

U :=

�

0 1
0 0

�

→ U, D :=

�

0 0
−1 0

�

→ D, H :=

�

1 0
0 −1

�

→ H (4.4)

defines a representation of the Lie algebra sl(2,C) in `2
fin(S). That is, the operators U, D, and H satisfy

the commutation relations

[H,U] = 2U, [H,D] =−2D, [D,U] = H. (4.5)

Proof. Denote
qα(�) = qα(i, j) := 2−δ(j−i)/2

p

(j− i)(j− i+ 1) +α, (4.6)

where �= (i, j). The relation [H,U] = 2U is straightforward:

[H,U]λ= H
∑

c↘λ
qα(c/λ)c−

�

2|λ|+
α

2

�

∑

c↘λ
qα(c/λ)c

= 2 (|λ|+ 2− |λ|)Uλ= 2Uλ,
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and the same for the relation [H,D] =−2D.

It remains to prove that [D,U] = H. The vector [D,U]λ has the form
∑

c↘λ

∑

ρ↗c
qα(c/λ)qα(c/ρ)ρ−

∑

µ↗λ

∑

ρ↘µ
qα(λ/µ)qα(ρ/µ)ρ. (4.7)

This is a linear combination of vectors ρ, where ρ ∈ Sn and either ρ = λ, or ρ = λ+�1 −�2 for
some boxes �1 6=�2. In the second case the coefficient by the vector ρ with ρ = λ+�1−�2 is

qα(�1)qα(�2)− qα(�2)qα(�1) = 0.

Thus, in (4.7) it remains to consider only the terms with ρ = λ. Therefore, one must establish the
combinatorial identity

∑

c: c↘λ
qα(c/λ)2−

∑

µ: µ↗λ
qα(λ/µ)

2 = 2|λ|+ α
2

for all λ ∈ S.

The proof of this identity (using Kerov’s interlacing coordinates of shifted Young diagrams) is essen-
tially contained in §3.1 of the paper [Pet10c] (the arXiv version).

For a more detailed discussion about Kerov’s operators and their connection with the measures Mα,n
see [Pet10a, §4.1].

4.2 Kerov’s operators and averages with respect to our point processes

The probability assigned to a strict partition λ by the measure Mα,ξ (2.5) (which is a mixture of the
measures Mα,n) can be written for small enough ξ as follows:

Mα,ξ(λ) = (1− ξ)α/2(e
p
ξU∅,λ)(e

p
ξDλ,∅).

Here e
p
ξDλ is clearly an element of `2

fin(S). The fact that the vector e
p
ξUλ belongs to `2(S) (for

small enough ξ) requires a justification (see the proof of Proposition 4.3), because the operator U
in `2(S) is unbounded. This makes the above formula for Mα,ξ(λ) not very convenient for taking
averages with respect to the measure Mα,ξ.

10 In this subsection we overcome this difficulty and give
a convenient way of writing expectations with respect to Mα,ξ. Our approach here is similar to that
of Olshanski [Ols08] and is also based on the ideas of [Oko01b].

Recall that the Kerov’s operators U, D, and H (4.2) define (via the map (4.4)) a representation
of the complex Lie algebra sl(2,C) in the (complex) pre-Hilbert space `2

fin(S). Consider the real
form su(1,1) ⊂ sl(2,C) spanned by the matrices U − D, i(U + D), and iH (here i =

p
−1). The

corresponding operators U−D, i(U+D), and iH act skew-symmetrically in `2
fin(S). Now we prove

that the representation of the Lie algebra su(1, 1) can be lifted to a representation of a corresponding
Lie group:

Proposition 4.3. All vectors of the space `2
fin(S) are analytic for the described above action of the Lie

algebra su(1, 1) in `2
fin(S). Consequently, this action of su(1,1) gives rise to a unitary representation of

the universal covering group SU(1, 1)∼ in the Hilbert space `2(S).
10Static correlation functions are readily expressed as averages with respect to Mα,ξ (see (7.4) below), so we need good

tools for computing such averages.

2260



Proof. Recall [Nel59] that a vector h is analytic for an operator A if the power series
∑∞

n=0
‖Anh‖

n!
sn in

s has a positive radius of convergence.

We can use Lemma 9.1 in [Nel59] that guarantees the existence of the desired unitary representation
of SU(1, 1)∼ in `2(S) if we first prove that for some constant s0 > 0 we have

‖Ai1 . . . Ainh‖ ≤
n!

sn
0

(4.8)

for any h ∈ `2
fin(S), all sufficiently large n (the bound on n depends on h), and any indices i1, . . . , in

taking values 1,2, 3, where A1 = U−D, A2 = i(U+D), and A3 = iH. Note that this in fact implies
that any vector in `2

fin(S) is analytic for the action of su(1,1).

It suffices to prove the estimate (4.8) for Â1 := U, Â2 := D, and Â3 := H, this can only affect the
value of the constant s0. Moreover, we can consider only the cases when h = c for an arbitrary
c ∈ S. Because all the matrix elements of the operators U, D, and H are nonnegative in the standard
basis

�

λ
	

λ∈S, we have
‖Âi1 . . . Âinc‖ ≤ ‖(U+D+H)nc‖.

Now the desired estimate would follow if we show that the power series expansion of
exp (s(U+D+H))c converges for small enough s > 0. For matrices in SL(2,C) (see (4.4)) we
have

exp(s(U + D+H)) = exp
� s

1− s
U
�

exp
�

log
�

1

1− s

�

H
�

exp
� s

1− s
D
�

.

Thus, the power series expansion of exp (s(U+D+H))c is the same as that of

exp
� s

1− s
U
�

exp
�

log
�

1

1− s

�

H

�

exp
� s

1− s
D
�

c.

Since the operator D is locally nilpotent and the operator H acts on each λ as multiplication by
(2|λ|+α/2), to obtain the desired estimate (4.8) it remains to show that the series

∑∞

n=0
‖Unµ‖sn/n!

converges for all µ ∈ S for sufficiently small s > 0 (the bound on s must not depend on µ). Let us
fix µ with |µ|= k. We can write by definition of U:

‖Unµ‖2 =
∑

λ∈Sk+n
(Unµ,λ)2 =

∑

λ∈Sk+n
dimS(µ,λ)2

∏

�∈λ/µ
qα(�)2,

where qα is defined by (4.6). Here the product is taken over all boxes of the skew shifted diagram
λ/µ (see the end of §3.1). Since dimS(µ,λ)≤ dimSλ, we can estimate

‖Unµ‖2 ≤
�
∏

�∈µ
qα(�)−2

�

·
∑

λ∈Sk+n
(dimSλ)

2
∏

�∈λ
qα(�)2

=
�
∏

�∈µ
qα(�)−2

�

·
∑

λ∈Sn+k
(Un∅,λ)2 = Zn+k ·

�
∏

�∈µ
qα(�)−2

�

.

The factor
∏

�∈µ qα(�)−2 has no impact on convergence, and Zn = n!(α/2)n. Putting all together,
we get

∞
∑

n=0

sn

n!
‖Unµ‖ ≤

�
∏

�∈µ
qα(�)−2

�
1
2 ·
∞
∑

n=0

sn

n!

p

(n+ k)!(α/2)n+k. (4.9)
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Using [Erd53, 1.18.(5)], we see that
p

(n+ k)!(α/2)n+k

n!
∼

È

n2k+α/2−1

Γ(α/2)
,

so the series (4.9) converges for small enough s > 0. This concludes the proof of the proposition.

To formulate the central statement of this section, we need some preparation. By Gξ denote the
matrix

Gξ :=









1p
1−ξ

p
ξp

1−ξp
ξp

1−ξ
1p
1−ξ









=





1+
p

ξ

1−
p

ξ





U−D
2

∈ SU(1, 1), 0≤ ξ < 1. (4.10)

Clearly, (Gξ)0≤ξ<1 is a continuous curve in SU(1, 1) starting at the unity. By (eGξ)0≤ξ<1 denote
the lifting of this curve to SU(1, 1)∼, again starting at the unity. The unitary operators in `2(S)
corresponding (by Proposition 4.3) to eGξ are denoted by eGξ.

The next thing we need is the weighted `2 space `2(S,Mα,ξ)— the space of functions on S that are
square summable with the weight Mα,ξ. This is a Hilbert space with the inner product ( f , g)Mα,ξ

:=
∑

λ∈S f (λ)g(λ)Mα,ξ(λ). There is an isometry map Iα,ξ from `2(S,Mα,ξ) to `2(S):

Iα,ξ :=multiplication of f ∈ `2(S,Mα,ξ) by the function λ 7→
p

Mα,ξ(λ). (4.11)

The standard orthonormal basis
�

λ
	

λ∈S (4.1) of the space `2(S) corresponds to the orthonormal

basis
�

(Mα,ξ(λ))
− 1

2λ
	

λ∈S of `2(S,Mα,ξ). To any operator A in `2(S,Mα,ξ) corresponds the operator
Iα,ξAI−1

α,ξ acting in `2(S).

Now we can formulate and prove the main statement of this section:

Proposition 4.4. Let A be a bounded operator in `2(S,Mα,ξ). Then

(A1,1)Mα,ξ
=
�

eG−1
ξ (Iα,ξAI−1

α,ξ)eGξ∅,∅
�

. (4.12)

Here 1 ∈ `2(S,Mα,ξ) is the constant identity function. On the left the inner product is in `2(S,Mα,ξ),
while on the right it is taken in `2(S).

Proof. Let us first show that

eGξ∅=
∑

λ∈S

�

Mα,ξ(λ)
�

1
2 λ. (4.13)

In the matrix group SL(2,C) we have

Gξ = exp
�
p

ξU
�

exp
�

1

2
log(1− ξ)H

�

exp
�

−
p

ξD
�

.

The vector ∅ ∈ `2
fin(S) is analytic for the action of su(1, 1) (Proposition 4.3), so on this vector the

representation of SU(1,1)∼ can be extended to a representation of the local complexification of the
group SU(1, 1)∼ (see, e.g., the beginning of §7 in [Nel59]). This means that for small enough ξ
(when eGξ is close to the unity of the group SU(1, 1)∼) we have

eGξ∅= exp
�
p

ξU
�

exp
�

1

2
log(1− ξ)H

�

exp
�

−
p

ξD
�

∅.
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The operator e−
p
ξD preserves ∅, and thus

eGξ∅= (1− ξ)α/4
∑

λ∈S
ξ|λ|

|λ|! dimSλ ·
�
∏

�∈λ
qα(λ)

�

λ=
∑

λ∈S

�

Mα,ξ(λ)
�

1
2 λ.

We have established (4.13) for small ξ. The left-hand side of (4.13) is analytic in ξ11 because ∅
is an analytic vector for the operator eGξ by Proposition 4.3. The right-hand side of (4.13) is also
analytic in ξ by definition of Mα,ξ, see §2.1. Thus, (4.13) holds for all ξ ∈ (0, 1).

It follows that I−1
α,ξ
eGξ∅= 1 ∈ `2(S,Mα,ξ), see (4.11). Therefore,

(eG−1
ξ Iα,ξAI−1

α,ξ
eGξ∅,∅) = (eG−1

ξ Iα,ξ(A1),∅) = (Iα,ξ (A1) , eGξ∅),

because the operator eGξ is unitary and has real matrix elements. We have

(Iα,ξ (A1) , eGξ∅) =
�

Iα,ξ (A1) ,
∑

λ∈S

�

Mα,ξ(λ)
�

1
2 λ

�

=
∑

λ∈S

�

Iα,ξ (A1) ,λ
��

Mα,ξ(λ)
�

1
2

=
∑

λ∈S

�

Iα,ξ (A1) , Iα,ξ(λ)
�

=
�

A1,
∑

λ∈S
λ
�

Mα,ξ

= (A1,1)Mα,ξ
.

This concludes the proof.

Remark 4.5. The left-hand side of (4.12) can be regarded as an expectation with respect to the
measure Mα,ξ of the function (A1)(·) on S. In the special case when the operator A is diagonal, say,
A= A f is the multiplication by a (bounded) function f (·) on S, (4.12) is rewritten as the following
formula for the expectation:

Eα,ξ f :=
∑

λ∈S
f (λ)Mα,ξ(λ) =

�

eG−1
ξ A f

eGξ∅,∅
�

. (4.14)

This case is used in the computation of the static correlation functions, and for the dynamical corre-
lation functions we need to use the more general statement of Proposition 4.4.

5 Fermionic Fock space

5.1 Wick’s theorem

We begin with the definition of a certain Clifford algebra over the Hilbert space V := `2(Z). Denote
the standard orthonormal basis of the space V by

�

vx
	

x∈Z. Define a symmetric bilinear form 〈·, ·〉
on V by

¬

vx , vy

¶

:=







1, if x =−y 6= 0;
2, if x = y = 0;
0, otherwise.

Let V+ and V− be the spans of
�

vx
	

x∈Z>0
and

�

vx
	

x∈Z<0
, respectively, and let V 0 denote the space

Cv0. Note that the spaces V+ and V− are maximal isotropic subspaces for the form 〈·, ·〉, and

V = V−⊕ V 0⊕ V+.
11Throughout the paper, when speaking about analytic functions in ξ, we assume that ξ lies in the unit open disc
{z ∈C: |z|< 1}.
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By Cl(V ) denote the Clifford algebra over the quadratic space (V, 〈·, ·〉), that is, Cl(V ) is the quotient
of the tensor algebra

⊕∞
n=0 V⊗n of the space V by the two-sided ideal generated by the elements

�

v⊗ v′+ v′⊗ v−



v, v′
�

: v, v′ ∈ V
	

.

The tensor product of v and v′ in Cl(V ) is denoted simply by vv′. Thus,

vv′+ v′v =



v, v′
�

for all v, v′ ∈ V . (5.1)

Now let us prove a version of Wick’s theorem that allows to write certain functionals on Cl(V ) as
Pfaffians. (In §5.3 below we define a functional on Cl(V ) called the vacuum average to which this
version of Wick’s theorem is applicable.)

Theorem 5.1. Let F be a linear functional on Cl(V ) such that F(1) = 1 and for any p, q, r ∈ Z≥0,
f +1 , . . . , f +p ∈ V+, and f −1 , . . . , f −q ∈ V−, we have

F( f +1 . . . f +p vr
0 f −1 . . . f −q ) = 0 (5.2)

if at least one of the numbers p, q is nonzero.

Then for any n≥ 1 and any 2n elements f1, . . . , f2n ∈ V we have

F( f1 . . . f2n) = Pf(F¹ f1, . . . , f2nº),

where F¹ f1, . . . , f2nº is the skew-symmetric 2n× 2n matrix in which the k j-th entry above the main
diagonal is F( fk f j), 1≤ k < j ≤ 2n.

Proof. Step 1. Consider decompositions

f j = f −j + f 0
j + f +j , j = 1, . . . , 2n,

where f ±j ∈ V± and f 0
j ∈ V 0 = Cv0. Thus,

F( f1 . . . f2n) =
∑

s1,...,s2n
F( f s1

1 . . . f s2n
2n ),

where each s j is a sign, s j ∈ {−, 0,+}, and the sum is taken over all 32n possible sequences of signs.

Step 2. Fix any particular sequence of signs (s1, . . . , s2n). Consider first the case when all of the s j ’s
are nonzero. We aim to prove that

F( f s1
1 . . . f s2n

2n ) = Pf(F¹ f s1
1 , . . . , f s2n

2n º), (5.3)

where F¹ f s1
1 , . . . , f s2n

2n º is the 2n×2n skew-symmetric matrix in which the k jth entry above the main
diagonal is F( f sk

k f
s j

j ).

First, note that if in the sequence (s1, . . . , s2n) all the “+” signs are on the left and all the “−” signs
are on the right,12 then by (5.2) we get (5.3), because in the Pfaffian in the right-hand side of (5.3)
each entry is zero.

12Including the case when there are only “+” or only “−” signs.
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Next, observe that (5.3) is equivalent to

F( f s1
1 . . . f s2n

2n ) =
∑2n−1

k=1
(−1)k+1F( f s1

1 . . .Óf sk
k . . . f s2n−1

2n−1 )F( f
sk
k f s2n

2n ), (5.4)

this is just the standard Pfaffian expansion (here Óf sk
k means the absence of f sk

k ). It can be readily
verified that the right-hand side and the left-hand side of (5.4) vary in the same way under the
interchange f sr

r ↔ f sr+1
r+1 for any r = 1, . . . , 2n− 1. This implies that (5.4) holds because one can

always move the “+” signs to the left and the “−” signs to the right. This argument is similar to the
proof of Lemma 2.3 in [Vul07].

Step 3. Now assume that among the sequence of signs (s1, . . . , s2n) there can be zeroes. It is not
hard to see that both sides of (5.3) vanish unless the number of zeroes is even. Let the positions of
zeroes be j1 < · · ·< j2k. Thus, moving all f 0

j1
, . . . , f 0

j2k
to the left, we have

F( f s1
1 . . . f s2n

2n ) = (−1)

2k
∑

m=1
( jm−m)

F( f 0
j1

. . . f 0
j2k
)F( f s1

1 . . .cf 0
j1

. . .Óf 0
j2k

. . . f s2n
2n ). (5.5)

By (5.3), the factor F( f s1
1 . . .cf 0

j1
. . .Óf 0

j2k
. . . f s2n

2n ) is written as the corresponding Pfaffian of order (2n−
2k). Assume that f 0

jm
= cmv0 (where m= 1, . . . , 2k), then

F( f 0
j1

. . . f 0
j2k
) = c1 . . . c2k.

Since for any f ∈ V+ ⊕ V− we have (using (5.2)) F(v0 f ) = F( f v0) = 0, the right-hand side of
(5.5) can be interpreted as the Pfaffian of the block 2n×2n matrix with blocks formed by rows and
columns with numbers j1, . . . , j2k and {1, . . . , 2n} \

�

j1, . . . , j2k
	

, respectively. This skew-symmetric
2n× 2n matrix is exactly F¹ f s1

1 , . . . , f s2n
2n º for our sequence (s1, . . . , s2n).

This implies that (5.3) holds for any choice of signs (s1, . . . , s2n), s j ∈ {−, 0,+}.
Step 4. Let us now deduce the claim of the theorem from (5.3). We must prove that

∑

s1,...,s2n
Pf(F¹ f s1

1 , . . . , f s2n
2n º) = Pf(F¹ f1, . . . , f2nº).

This is done by induction on n. The base is n= 1:

F( f −1 f +2 ) + F( f 0
1 f 0

2 ) = F( f1 f2)

(all other combinations of signs in the left-hand side give zero contribution). The induction step is
readily verified using the Pfaffian expansion (5.4). This concludes the proof of the theorem.

5.2 Fermionic Fock space

Consider the space `2(Z>0) with the standard orthonormal basis
�

εk
	

k∈Z>0
. The exterior algebra

∧`2(Z>0) is the vector space with the basis

{vac} ∪ {εi1 ∧ · · · ∧ εi` :∞> i1 > . . .> i` ≥ 1, `= 1,2, . . . }, (5.6)

where vac ≡ 1 is called the vacuum vector. Define an inner product (·, ·) in the exterior algebra
∧`2(Z>0) with respect to which the basis (5.6) is orthonormal. This inner product turns ∧`2(Z>0)
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into a pre-Hilbert space. Its Hilbert completion is called the (fermionic) Fock space and is denoted by
Fock(Z>0). The space (∧`2(Z>0), (·, ·)) consisting of finite linear combinations of the basis vectors
(5.6) is denoted by Fockfin(Z>0).

Clearly, the map
λ 7→ ελ1

∧ · · · ∧ ελ`(λ) , λ ∈ S

(in particular, ∅ maps to vac) defines an isometry between the pre-Hilbert spaces `2
fin(S) and

Fockfin(Z>0), and also between their Hilbert completions `2(S) and Fock(Z>0). Below we iden-
tify `2(S) and Fock(Z>0), and by λ we mean the vector ελ1

∧ · · · ∧ ελ`(λ) .
In the next subsection we describe the structure of Fock(Z>0) in more detail.

5.3 Creation and annihilation operators. Vacuum average

Let φk, k = 1, 2, . . . , be the creation operators in Fock(Z>0), that is,

φkλ := εk ∧λ, λ ∈ S.

Let φ∗k, k = 1,2, . . . , be the operators that are adjoint to φk with respect to the inner product in
Fock(Z>0). They are called the annihilation operators and act as follows:

φ∗kλ=
∑`(λ)

j=1
(−1) j+1δk,λ j

· ελ1
∧ · · · ∧Óελ j

∧ · · · ∧ ελ`(λ) .

We also need the operator φ0 = φ∗0 acting as

φ0λ := (−1)`(λ)λ.

To simplify certain formulas below, we organize the operators φk, φ0 and φ∗k into a single family:

φm :=

¨

φm, if m≥ 0;
(−1)mφ∗−m, otherwise,

where m ∈Z.

It can be readily checked that the operators φm satisfy the following anti-commutation relations:

φkφ l +φ lφk =

¨

2, if k = l = 0;
(−1)lδk,−l , otherwise.

(5.7)

In agreement to these definitions, let
�

v x
	

x∈Z be another orthonormal basis in the space V = `2(Z)
defined as

v x :=

¨

vx , if x ≥ 0;
(−1)x vx , if x < 0,

where x ∈Z. (5.8)

In other words, v x = (−1)x∧0vx . In the Clifford algebra Cl(V ) we have

v x v y + v y v x =
¬

v x , v y

¶

=

¨

2, x = y = 0;
(−1)xδx ,−y , otherwise.

(5.9)
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Definition 5.2. Let T be a representation of the Clifford algebra Cl(V ) in Fock(Z>0) defined on V
by

T (v x) := φ x , x ∈Z,

and extended to the whole Cl(V ) by (5.1) and by linearity. The fact that T is indeed a representation
follows from (5.7) and (5.9).

Definition 5.3. The representation T allows to consider the following functional on the Clifford
algebra Cl(V ):

Fvac(w) := (T (w)vac,vac) , w ∈ Cl(V )

called the vacuum average. Here the inner product on the right is taken in Fock(Z>0).

It can be readily verified that the functional Fvac on Cl(V ) satisfies the hypotheses of Wick’s Theorem
5.1.

5.4 The representation R

The space `2
fin(S) is isometric to Fockfin(Z>0), and thus the Kerov’s operators U, D, and H (4.2) in

`2
fin(S) give rise to certain operators in Fockfin(Z>0). We obtain a representation of the Lie algebra
sl(2,C) in Fock(Z>0), denote this representation by R.

It can be readily verified that the action of the operators R(U), R(D), and R(H) in Fockfin(Z>0) (this
subspace of Fock(Z>0) is invariant for the representation R of sl(2,C)) can be expressed in terms of
the creation and annihilation operators as follows:

R(U) =
∑∞

k=0
2−δ(k)/2(−1)k

p

k(k+ 1) +α ·φk+1φ−k,

R(D) =
∑∞

k=0
2−δ(k)/2(−1)k+1

p

k(k+ 1) +α ·φkφ−k−1, (5.10)

R(H) = α
2
+ 2
∑∞

k=1
(−1)kkφkφ−k.

Proposition 4.3 can be reformulated for the representation R. Namely, the representation R of
sl(2,C) restricted to the real form su(1, 1) ⊂ sl(2,C) gives rise to a unitary representation of the
universal covering group SU(1, 1)∼ in the Hilbert space Fock(Z>0). Denote this representation also
by R.

Under the identification of `2(S) with Fock(Z>0), we say that the map Iα,ξ (4.11) is an isometry
between `2(S,Mα,ξ) and Fock(Z>0). By Proposition 4.4, for any bounded operator A in `2(S,Mα,ξ)
we have

(A1,1)Mα,ξ
=
�

R(eGξ)
−1(Iα,ξAI−1

α,ξ)R(eGξ)vac,vac
�

. (5.11)

Here eGξ ∈ SU(1, 1)∼, 0 ≤ ξ < 1 is defined in §4.2, and 1 ∈ `2(S,Mα,ξ) is the constant identity
function. The inner products on the left and on the right are taken in the spaces `2(S,Mα,ξ) and
Fock(Z>0), respectively.

Formula (4.14) for the expectation of a bounded function f (·) on S with respect to the measure
Mα,ξ is rewritten as

Eα,ξ f =
�

R(eGξ)
−1A f R(eGξ)vac,vac

�

, (5.12)

where A f is the operator of multiplication by f .
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As we will see below, for averages expressing the correlation functions, the right-hand side of (5.11)
(and (5.12)) can be written as a vacuum average. That is, the operator R(eGξ)−1(Iα,ξAI−1

α,ξ)R(eGξ)

(respectively, R(eGξ)−1A f R(eGξ)) has the form T (w) for a certain w ∈ Cl(V ).

6 Z-measures and an orthonormal basis in `2(Z)

In this section we examine functions ϕm on the lattice which are used in our expressions for correla-
tion kernels (both static and dynamical). They form an orthonormal basis in the Hilbert space `2(Z)
and are eigenfunctions of a certain second order difference operator on the lattice. These functions
arise as a particular case of the functions ψa‘ used to describe correlation kernels in the model of
the z-measures on ordinary partitions, and we begin this section by recalling some definitions from
[BO06b], [BO06a].

6.1 Discrete hypergeometric kernel

For an ordinary (i.e., not necessary strict) partition σ = (σ1, . . . ,σ`(σ)), let dimσ denote the number
of standard Young tableaux of shape σ (we identify partitions with ordinary Young diagrams as
usual, e.g., see [Mac95, Ch. I, §1]), and |σ| be the number of boxes in the Young diagram σ.
Consider the following 3-parameter family of measures on the set of all ordinary partitions:

Mz,z′,ξ(σ) := (1− ξ)zz′ξ|σ|(z)σ(z
′)σ

�

dimσ

|σ|!

�2

, (6.1)

where (a)σ :=
∏`(σ)

i=1 (a)σi
is a generalization of the Pochhammer symbol. Here the parameter

ξ ∈ (0,1) is the same as our parameter ξ (e.g., in §2.1), and the parameters z, z′ are in one of the
following two families (we call such parameters admissible):

• (principal series) The numbers z, z′ are not real and are conjugate to each other.

• (complementary series) Both z, z′ are real and are contained in the same open interval of the form
(m, m+ 1), where m ∈Z.

To any ordinary partition σ = (σ1, . . . ,σ`(σ), 0, 0, . . . ) is associated an infinite point configuration
(sometimes called the Maya diagram) on the lattice Z′ =Z+ 1

2
:

σ 7→ X (σ) := {σi − i+ 1
2
}∞i=1 ⊂Z

′. (6.2)

One can see that the correspondence σ 7→ X (σ) is a bijection between ordinary partitions and
those (infinite) configurations X ⊂ Z′ for which the symmetric difference X 4Z′− is a finite subset
containing equally many points in Z′+ and Z′− (Here Z′+ and Z′− denote the sets of all positive resp.
negative half-integers.)

Using the above identification of ordinary partitions with point configurations on the lattice Z′,
it is possible to speak about the correlation functions of the measures Mz,z′,ξ (6.1) in the same
way as in (2.7). The resulting random point processes are determinantal with a correlation kernel
Kz,z′,ξ(x ‘, y ‘) (where x ‘, y ‘ ∈Z′) which is called the discrete hypergeometric kernel [BO00], [BO06b].
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Remark 6.1. Whenever speaking about points in the shifted lattice Z′ =Z+ 1
2
, we denote them by

x ‘, y ‘, . . . , because we want to reserve the letters x , y, . . . for the non-shifted integers: x , y, . . . ∈Z.

Theorem 6.2 ([BO00], [BO06b]). Under the correspondence σ 7→ X (σ) (6.2), the z-measures become
a determinantal point process on Z′ with the correlation kernel given by

Kz,z′,ξ(x ‘, y ‘) =
∑

a‘∈Z′+
ψa‘(x ‘; z, z′,ξ)ψa‘(y ‘; z, z′,ξ), x ‘, y ‘ ∈Z′, (6.3)

where the functions ψa‘ are defined in [BO06b, (2.1)].

From [BO06b, §2] it follows that the discrete hypergeometric kernel Kz,z′,ξ (viewed as an operator
in `2(Z′)) is an orthogonal spectral projection corresponding to the positive part of the spectrum of
a certain difference operator D(z, z′,ξ).

6.2 An orthonormal basis {ϕm} in the Hilbert space `2(Z)

For the study of our model, we need the following family of functions:

ϕm(x;α,ξ) =

 

Γ(1
2
+ ν(α) + x)Γ(1

2
− ν(α) + x)

Γ(1
2
+ ν(α)−m)Γ(1

2
− ν(α)−m)

!
1
2

ξ
1
2
(x+m)(1− ξ)−m×

×
2F1(

1
2
+ ν(α) +m, 1

2
− ν(α) +m; x +m+ 1; ξ

ξ−1
)

Γ(x +m+ 1)
, (6.4)

where ν(α) is given in Definition 2.1. Here the argument x and the index m range over the lattice
Z. Because α > 0, we have Γ(1

2
+ν(α)+ k)Γ(1

2
−ν(α)+ k)> 0 for any k ∈Z. Thus, the expression

in (6.4) which is taken to the power 1
2

is positive. Note also that while the Gauss hypergeometric

function 2F1(A, B; C; w) is not defined if C is a negative integer, the ratio 2F1(A,B;C;w)
Γ(C) (occurring in

(6.4)) is well-defined for all C ∈ C. Thus, we see that the functions ϕm(x;α,ξ) are well-defined.

It can be readily verified that ϕm’s arise as a particular case of the functions ψa‘ defined in [BO06b,
(2.1)]:

ϕm(x;α,ξ) =ψm+ 1
2
+d(x −

1
2
− d;ν(α) + 1

2
+ d,−ν(α) + 1

2
+ d;ξ) (6.5)

for any d ∈ Z. For x , m, d ∈ Z, the numbers m+ 1
2
+ d and x − 1

2
− d belong to Z′, as it should be.

Observe that the parameters

z = z(α) := ν(α) + 1
2
+ d, z′ = z′(α) :=−ν(α) + 1

2
+ d

for α > 0 and any d ∈ Z are admissible (§6.1). For 0 < α ≤ 1
4

these parameters belong to the

complementary series, and for α > 1
4

they are of principal series.

Remark 6.3. The fact that (6.5) holds for any d is a reflection of a certain translation invariance
property of the z-measures, see [BO98, §10, 11].

From [BO06b, §2] one can readily deduce the corresponding properties of our functions ϕm:
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Proposition 6.4. 1) The functions ϕm(x;α,ξ), as the index m ranges over Z, form an orthonormal
basis in the Hilbert space `2(Z):

∑

x∈Z
ϕm(x;α,ξ)ϕ l(x;α,ξ) = δml , m, l ∈Z.

2) The functions ϕm are eigenfunctions of the following second order difference operator in `2(Z)
(acting on functions f (x), where x ranges over Z):

Dα,ξ f (x) :=
p

ξ(α+ x(x + 1)) f (x + 1) (6.6)

+
p

ξ(α+ x(x − 1)) f (x − 1)− x(1+ ξ) f (x).

This operator is symmetric in `2(Z). We have

Dα,ξϕm(x;α,ξ) = m(1− ξ)ϕm(x;α,ξ), m, x ∈Z.

3) The functions ϕm satisfy the following symmetry relations:13

ϕm(x;α,ξ) = ϕ x(m;α,ξ); (6.7)

ϕm(x;α,ξ) = (−1)x+mϕ−m(−x;α,ξ), x , m ∈Z. (6.8)

4) The functions ϕm satisfy the three-term relation:

(1− ξ)xϕm =
p

ξ(m(m+ 1) +α)ϕm−1 (6.9)

+
p

ξ(m(m− 1) +α)ϕm+1−m(1+ ξ)ϕm, m ∈Z.

6.3 “Twisting”

To simplify certain formulas in the paper (in particular, the ones involving spectral projections), we
will also need certain versions of our functions ϕm(x;α,ξ) which differ from the original ones by
multiplying by (−1)x∧0:

eϕm(x;α,ξ) := (−1)x∧0ϕm(x;α,ξ), x , m ∈Z. (6.10)

These functions also form an orthonormal basis in `2(Z). They are eigenfunctions of a difference
operator eDα,ξ in `2(Z) which is conjugate to Dα,ξ:

(eDα,ξ f )(x) := (−1)1x<0
p

ξ(α+ x(x + 1)) f (x + 1) (6.11)

+(−1)1x≤0
p

ξ(α+ x(x − 1)) f (x − 1)− x(1+ ξ) f (x)

(here 1 means the indicator),

eDα,ξeϕm(x;α,ξ) = m(1− ξ)eϕm(x;α,ξ), m, x ∈Z.

13Property (6.7) here means that the functions ϕm(x;α,ξ) are self-dual (in contrast to the more general functions
ψa‘(x ‘; z, z′,ξ), cf. [BO06b, Prop. 2.5]).
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6.4 Matrix elements of sl(2,C)-modules

Here we interpret the functions {ϕm} (6.4) through certain matrix elements of irreducible unitary
representations of the Lie group PSU(1, 1) = SU(1, 1)/{±I} (I is the identity matrix) in the Hilbert
space `2(Z).

Remark 6.5. The more general functionsψa‘ [BO06b, (2.1)] first appeared in the works of Vilenkin
and Klimyk [VK88], [VK95] as matrix elements of unitary representations of the universal covering
group SU(1,1)∼. In a context similar to ours they were obtained by Okounkov [Oko01b] in a
computation of the discrete hypergeometric kernel Kz,z′,ξ (6.3) using the fermionic Fock space.

Let S be the representation of the Lie algebra sl(2,C) (spanned by the operators U , D, and H (4.4))
in the Hilbert space `2(Z)with the canonical orthonormal basis {k}k∈Z (that is, k(x) = δk,x) defined
as follows:

S(U)k =
p

k(k+ 1) +α · k+ 1;

S(D)k =
p

k(k− 1) +α · k− 1; (6.12)

S(H)k = 2k · k.

This representation depends on our parameter α > 0. One can establish an analogue of Proposition
4.3:

Proposition 6.6. All vectors of the space `2
fin(Z) (consisting of finite linear combinations of the basis

vectors {k}) are analytic for the action S of sl(2,C) (6.12). The representation S of the Lie algebra
su(1, 1) ⊂ sl(2,C) in `2

fin(Z) lifts to a unitary representation of the Lie group PSU(1,1) in the Hilbert
space `2(Z).

Proof. It is known (e.g., see [Puk64] or [Lan85, Ch. VI, §6]) that for any α > 0 the above represen-
tation S of su(1, 1) in `2

fin(Z) is irreducible (this is an irreducible Harish–Chandra module) and lifts
to a unitary representation of the Lie group SU(1,1) in `2(Z). Moreover, since S(H)k = 2k · k, this
is in fact a representation of the group PSU(1,1). The claim about analytic vectors follows from,
e.g., [Lan85, Ch. X, §3, Thm. 7].

If 0< α≤ 1
4
, the above irreducible representation of PSU(1, 1) in `2(Z) is of complementary series,

and for α > 1
4

it is of principal series [Puk64] (cf. the series of the parameters (z, z′) in (6.5)).
Denote this representation of PSU(1, 1) again by S. For notational reasons (e.g., see Proposition
6.7 below), also by S let us denote the corresponding representations of SU(1,1) and SU(1, 1)∼ in
`2(Z) that are obtained from the representation of PSU(1,1) by a trivial lifting procedure.

Now let us compute the matrix elements of the operator S(Gξ)−1 (where Gξ ∈ SU(1,1) is defined in
(4.10)) in the basis {k}k∈Z. These matrix elements will be used below in formulas for our correlation
kernels.

Proposition 6.7. For all x , k ∈Z we have
�

S(Gξ)
−1 x , k

�

`2(Z)
= ϕ−k(x;α,ξ). (6.13)
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Proof. Fix x , k ∈ Z. By Proposition 6.6, the function ξ 7→
�

S(Gξ)−1 x , k
�

`2(Z)
is analytic. The right-

hand side of (6.13) is also analytic in ξ, see (6.4). Thus, it suffices to prove (6.13) for small ξ. Also
by Proposition 6.6, on x ∈ `2

fin(Z) the representation S can be extended to a representation of the
local complexification of PSU(1,1). This means that for small ξ (when Gξ is close to the unity of
the group) we can write:

S(Gξ)
−1 x = exp

�

−
p

ξS(U)
�

exp





p

ξ

1− ξ
S(D)



exp
�

1

2
log(1− ξ)S(H)

�

x

(this follows from the corresponding identity for matrices in SL(2,C), see also the proof of Proposi-
tion 4.4).

Denote cy :=
p

y(y + 1) +α, so that S(U)y = cy · y + 1 and S(D)y = cy−1 · y − 1. Note that

c2
y = y(y + 1) + α = (y + ν(α) + 1

2
)(y − ν(α) + 1

2
). Also set a := −

p

ξ and b :=
p

ξ/(1− ξ). We
have

�

S(Gξ)
−1 x , k

�

`2(Z)
= (1− ξ)x

�

eaS(U)ebS(D)x , k
�

`2(Z)

= (1− ξ)x
∞
∑

r=0

∞
∑

l=0

ar bl

r!l!
cx−l+r−1 . . . cx−l cx−l . . . cx−1(x − l + r, k)`2(Z).

Clearly, (x − l + r, k)`2(Z) = δx−l+r,k. There are two cases: x ≥ k, and x ≤ k. For x ≥ k we perform
the above summation over r ≥ 0 and set l = r+ x−k. For x ≤ k we sum over l and set r = l+k− x .
After direct calculations we obtain (we omit the argument in ν(α)):

�

S(Gξ)
−1 x , k

�

`2(Z)
= (1− ξ)x bx−k

 

Γ(x + ν + 1
2
)Γ(x − ν + 1

2
)

Γ(k+ ν + 1
2
)Γ(k− ν + 1

2
)

!
1
2

×

×
2F1(

1
2
− k− ν , 1

2
− k+ ν; x − k+ 1; ab)

(x − k)!
, if x ≥ k;

�

S(Gξ)
−1 x , k

�

`2(Z)
= (1− ξ)x ak−x

 

Γ(k+ ν + 1
2
)Γ(k− ν + 1

2
)

Γ(x + ν + 1
2
)Γ(x − ν + 1

2
)

!
1
2

×

×
2F1(

1
2
− x − ν , 1

2
− x + ν; k− x + 1; ab)

(k− x)!
, if x ≤ k.

It is known that the expression 2F1(A,B;C;w)
Γ(C) is well-defined for all C ∈ C, and by [Erd53, 2.1.(3)] we

see that
2F1(A, B; n+ 1; w)

Γ(n+ 1)
= 2F1(A− n, B− n;−n+ 1; w)
(A− n)n(B− n)nΓ(−n+ 1)

w−n, n= 1,2, . . . .

Let us apply this identity in the case x ≤ k above:

2F1(
1
2
− x − ν , 1

2
− x + ν; k− x + 1; ab)

(k− x)!

=
2F1(

1
2
− k− ν , 1

2
− k+ ν; x − k+ 1; ab)

Γ(x − k+ 1)
·
Γ(1

2
+ x − ν)Γ(1

2
+ x + ν)

Γ(1
2
+ k− ν)Γ(1

2
+ k+ ν)

(ab)x−k
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(we have also used the fact that (−1)mΓ(1
2
+m± ν) =

Γ( 1
2
+ν)Γ( 1

2
−ν)

Γ( 1
2
∓ν−m)

for m ∈Z, see (2.4)). Thus, we

get the desired result (6.13) for small ξ, and hence for all ξ ∈ (0,1) by analyticity. This concludes
the proof.

Remark 6.8. The operator Dα,ξ (6.6) acting in `2(Z) can be expressed through the operators of the
representation S of sl(2,C) as follows:

Dα,ξ =
p

ξ(S(U) + S(D))− 1
2
(1+ ξ)S(H) =−(1− ξ)S(Hξ),

where
Hξ := 1

2
GξHG−1

ξ ∈ sl(2,C).

Indeed, this is verified by a simple matrix computation (see (4.10)):

1

2
GξHG−1

ξ =
1

2(1− ξ)

�

1
p

ξ
p

ξ 1

��

1 0
0 −1

��

1 −
p

ξ

−
p

ξ 1

�

=







1
2

1+ξ
1−ξ −

p
ξ

1−ξp
ξ

1−ξ −1
2

1+ξ
1−ξ






.

An operator corresponding to the matrix Hξ under the representation R (5.10) appears below in
Corollary 9.4, where it plays the role of the generator of our Markov dynamics on strict partitions.

6.5 Connection with Meixner and Krawtchouk polynomials

The z-measures Mz,z′,ξ (§6.1) for ξ ∈ (0, 1) and (z, z′) of principal or complementary series are
supported by the set of all ordinary partitions. As is known (e.g., see [BO06b]), the z-measures
admit two degenerate series of parameters:

• (first degenerate series) ξ ∈ (0,1), and one of the numbers z and z′ (say, z) is a nonzero integer
while z′ has the same sign and, moreover, |z′|> |z| − 1.

Here if z = N = 1,2, . . . , then the measure Mz,z′,ξ(σ) vanishes unless `(σ) ≤ N . Likewise, if
z =−N , Mz,z′,ξ(σ) = 0 if `(σ′) = σ1 exceeds N (σ′ denotes the transposed Young diagram).

• (second degenerate series) ξ < 0, and z = N and z′ =−N ′, where N and N ′ are positive integers.

In this case, the measure Mz,z′,ξ is supported by the (finite) set of all ordinary Young diagrams
which are contained in the rectangle N × N ′ (that is, `(σ)≤ N and `(σ′)≤ N ′).

As is explained in [BO06b], in the first case the functions ψa‘(x ‘; z, z′,ξ) are expressed through
the classical Meixner orthogonal polynomials (about their definition, e.g., see [KS96, §1.9]). In
the second degenerate series these functions are related to the Krawtchouk orthogonal polynomials
[KS96, §1.10].

For our measures Mα,ξ on strict partitions there exists only one degenerate series of parameters:
α = −N(N + 1) for some N = 1, 2, . . . , and ξ < 0. In this case, the measure Mα,ξ is supported
by the set of all shifted Young diagrams which are contained inside the staircase shifted shape
(N , N − 1, . . . , 1). This case corresponds to the second degenerate series of the z-measures, and our
functions ϕm are expressed through the Krawtchouk orthogonal polynomials.

The measures Mα,ξ in this case are interpreted as random point processes on the finite lattice
{1, . . . , N}, and one could also define a suitable dynamics for them similarly to §2.2. The results
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of the present paper about the structure of the static and dynamical correlation functions also hold
for the degenerate model, and correlation kernels are expressed through the Krawtchouk polynomi-
als.

7 Static correlation functions

In this section we obtain a Pfaffian formula for the correlation functions of the point process Mα,ξ,
and discuss the resulting Pfaffian kernel.

7.1 Pfaffian formula

Recall that by Z 6=0 we denote the set of all nonzero integers. For x1, . . . , xn ∈ Z>0 we put, by
definition,

x−k :=−xk, k = 1, . . . , n. (7.1)

We use this convention in the formulation of the next theorem. Let the function Φα,ξ on Z 6=0×Z 6=0
be defined by (see §5 for definitions of objects below)

Φα,ξ(x , y) := (−1)x∧0+y∧0
�

R(eGξ)
−1φ xφ yR(eGξ)vac,vac

�

, (7.2)

where the inner product is taken in Fock(Z>0). (For now Φα,ξ(x , y) is defined for x , y ∈Z 6=0, but in
§7.2 we extend the definition of Φα,ξ(x , y) to zero values of x , y in a natural way. See also Remark
2.2.1.) In this subsection we prove the following:

Theorem 7.1. The correlation functions ρ(n)
α,ξ (2.7) of the measures Mα,ξ (2.5) are given by the follow-

ing Pfaffian formula:
ρ
(n)
α,ξ(x1, . . . , xn) = Pf(Φ̂α,ξ¹Xº), (7.3)

where X =
�

x1, . . . , xn
	

⊂ Z>0 (here x j ’s are distinct), and Φ̂α,ξ¹Xº is the skew-symmetric 2n× 2n
matrix with rows and columns indexed by the numbers 1, 2, . . . , n,−n, . . . ,−2,−1, and the k j-th entry
in Φ̂α,ξ¹Xº above the main diagonal is Φα,ξ(xk, x j), where k, j = 1, . . . , n,−n, . . . ,−1.14

Below in (7.16) we write Φα,ξ(x , y) in terms of the Gauss hypergeometric function. For this reason,
we call Φα,ξ the Pfaffian hypergeometric-type kernel. Another form of a 2n × 2n skew-symmetric
matrix (constructed using the kernel Φα,ξ(x , y)) which can be put in the right-hand side of (7.3) is
discussed below in §10.4. The above form Φ̂α,ξ¹Xº is most useful when rewriting the Pfaffian in
(7.3) as a determinant, see Theorem 8.1 and Proposition A.2 from Appendix.

The rest of this subsection is devoted to proving Theorem 7.1. Consider the following operators in
`2(S,Mα,ξ):

∆xλ :=

¨

λ, if x ∈ λ;
0, otherwise,

x ∈Z>0.

Fix a finite subset X =
�

x1, . . . , xn
	

⊂ Z>0 and set ∆
¹Xº := ∆x1

. . .∆xn
. This is a diagonal operator

of multiplication by a function which is the indicator of the event {λ: λ ⊇ X }. We view ∆
¹Xº as an

14Theorem 7.1 is the same as Proposition 2 in [Pet10b], the only difference is that in [Pet10b] the factor (−1)
∑n

k=1 xk

is put in front of the Pfaffian, and thus in the definition of the Pfaffian kernel in [Pet10b] there is no factor of the form
(−1)x∧0+y∧0.
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operator acting in `2(S,Mα,ξ). Since this operator is diagonal, it does not change under the isometry
Iα,ξ : `2(S,Mα,ξ)→ Fock(Z>0) (4.11). Thus, ∆

¹Xº also acts in Fock(Z>0) (in the same way).

The correlation functions ρ(n)
α,ξ (2.7) of the measures Mα,ξ (2.5) are written as

ρ
(n)
(α,ξ)(x1, . . . , xn) =Mα,ξ

�

λ: λ⊇
�

x1, . . . , xn
	�

= (∆
¹Xº1,1)Mα,ξ

, (7.4)

where 1 ∈ `2(S,Mα,ξ) is the constant identity function. Using (5.11) (or (5.12)), we can rewrite the
correlation functions as

ρ
(n)
(α,ξ)(x1, . . . , xn) =

�

R(eGξ)
−1∆

¹XºR(eGξ)vac,vac
�

. (7.5)

In this formula the operator∆
¹Xº acts in Fock(Z>0). Clearly,∆

¹Xº is expressed through the creation
and annihilation operators in the Fock space Fock(Z>0) as

∆
¹Xº =

∏n

k=1
φxk
φ∗xk

.

It is more convenient for us to rewrite ∆
¹Xº using the anti-commutation relations for φx and φ∗x

(see (5.7)) as follows:
∆
¹Xº = φx1

. . .φxn
φ∗xn

. . .φ∗x1
(7.6)

(after moving all the φk ’s to the left and φ∗k ’s to the right there is no change of sign).

Our next step is to write (7.5) with ∆
¹Xº given by (7.6) as the vacuum average functional Fvac

applied to a certain element of the Clifford algebra Cl(V ) (§5.1).

Recall that in §5.3 we have defined a representation T of Cl(V ) in Fock(Z>0) such that T (v x) = φ x ,
x ∈ Z, where

�

v x
	

x∈Z is the basis of V = `2(Z) defined by (5.8). Using the anti-commutation
relations (5.7), one can readily compute the following commutators between the operators T (v x)
and the operators of the representation R (5.10):

�

R(U),T (v x)
�

= 2(δ(x)−δ(x+1))/2
p

x(x + 1) +α · T (v x+1);
�

R(D),T (v x)
�

= 2(δ(x)−δ(x−1))/2
p

x(x − 1) +α · T (v x−1);
�

R(H),T (v x)
�

= 2x · T (v x), x ∈Z.

These formulas motivate the following definition:

Definition 7.2. Let Š be the representation of the Lie algebra sl(2,C) in the (pre-Hilbert) space Vfin
(consisting of of all finite linear combinations of the basis vectors

�

v x
	

x∈Z) defined as:

Š(U)v x := 2(δ(x)−δ(x+1))/2
p

x(x + 1) +α · v x+1;

Š(D)v x := 2(δ(x)−δ(x−1))/2
p

x(x − 1) +α · v x−1;
Š(H)v x := 2x · v x , x ∈Z.

(7.7)

The representation Š is chosen in such a way that for all matrices M ∈ sl(2,C) and vectors v ∈ Vfin
we have

[R(M),T (v)] = T (Š(M)v) (7.8)

(the equality of operators in Fockfin(Z>0)). This follows from definitions of R, T , and Š.
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Comparing (7.7) and (6.12), we see that the representation Š is conjugate to the representation
S discussed in §6.4 above. Namely, Š = Z−1SZ , where Z is an operator in V = `2(Z) defined by
Zv x := 2δ(x)/2 x , x ∈ Z. This means that Proposition 6.6 also holds for the representation Š. In
particular, Š lifts to a representation of the group PSU(1,1) in the Hilbert space V .15 Note that Š is
not unitary (but we do not need this property).

The next proposition (due to Olshanski [Ols08]) is a “group level” version of the identity (7.8).

Proposition 7.3. For all g ∈ SU(1,1)∼ and all v ∈ V we have

R(g)T (v)R(g)−1 = T (Š(g)v) (7.9)

(the equality of operators in Fock(Z>0)).

Proof. Step 1. Since the representation T is norm preserving, it suffices to take v ∈ V from the
dense subspace Vfin. Without loss of generality, we can assume that v = v x for some x ∈Z.

Step 2. Rewrite the claim (7.9) as

R(g)T (v x) = T (Š(g)v x)R(g). (7.10)

This is an equality of operators in the Hilbert space Fock(Z>0). It is enough to show that these
operators agree on Fockfin(Z>0), which is true if

R(g)T (v x)λ= T
�

Š(g)v x
�

R(g)λ for all g ∈ SU(1, 1)∼, x ∈Z, and λ ∈ S. (7.11)

Step 3. Now let us prove that both sides of (7.11) are analytic functions in g ∈ SU(1,1)∼ with
values in Fock(Z>0):

• (left-hand side) The vector T (v x)λ belongs to Fockfin(Z>0), and hence is analytic for the repre-
sentation R, see Proposition 4.3. This means that the function g 7→ R(g)T (v x)λ is analytic.

• (right-hand side) By Proposition 6.6 (and remarks before the present proposition), the function
g 7→ Š(g)v x is an analytic function with values in the Hilbert space V . Since T is continu-
ous in the norm topology, T

�

Š(g)v x
�

is an analytic function with values in the Banach space
End
�

Fock(Z>0)
�

of bounded operators in the space Fock(Z>0). On the other hand, the function
R(g)λ is also analytic (with values in Fock(Z>0)). Therefore, the function g 7→ T

�

Š(g)v x
�

R(g)λ
is analytic, too.

Step 4. Now it remains to compare the Taylor series expansions of both sides of (7.10) at g = e, the
unity element of SU(1,1)∼. That is, we need to establish that for any M ∈ sl(2,C) and any x ∈Z:

∞
∑

k=0

R(M)ksk

k!
T (v x) =

 

∞
∑

l=0

T
�

Š(M)l v x
�

sl

l!

! 

∞
∑

r=0

R(M)rsr

r!

!

. (7.12)

This should be understood as an equality of formal power series in s with coefficients being operators
in Fockfin(Z>0). Let us divide both sides by the last formal sum,

∑∞
r=0

R(M)r sr

r!
. After that it can be

readily verified that the identity (7.12) of formal power series is a corollary of the “Lie algebra level”
commutation identity (7.8).

This last step concludes the proof of the proposition.

15Also by Š we denote the corresponding representations of SU(1, 1) and SU(1,1)∼ in V that are obtained from the
representation Š of PSU(1,1) by a trivial lifting procedure.
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Define (the second equality holds because Š is a representation of PSU(1, 1))

vx ,ξ := Š(eGξ)
−1vx = Š(Gξ)

−1vx ∈ V, x ∈Z. (7.13)

Putting this together with Proposition 7.3, we can rewrite the correlation functions (7.5) as the
vacuum average (see Definition 5.3):

ρ
(n)
α,ξ(x1, . . . , xn) = Fvac

�

vx1,ξ . . . vxn,ξv−xn,ξ . . . v−x1,ξ

�

. (7.14)

Observe that for x , y ∈Z 6=0 we have

Fvac(vx ,ξvy,ξ) = (−1)x∧0+y∧0
�

R(eGξ)
−1φ xφ yR(eGξ)vac,vac

�

= Φα,ξ(x , y),

as in (7.2). Therefore, formula (7.14) together with Wick’s Theorem 5.1 immediately implies our
Theorem 7.1.

7.2 Static Pfaffian kernel

Let us express our kernel Φα,ξ(x , y) through the functions ϕm defined by (6.4). This kernel is
defined for x , y ∈Z 6=0 and has the form (see the previous subsection)

Φα,ξ(x , y) = Fvac(vx ,ξvy,ξ) =
∑

k,l∈Z
(vx ,ξ, vk)`2(Z)(vy,ξ, vl)`2(Z)Fvac(vkvl)

(where the vectors vx ,ξ, vy,ξ are defined by (7.13)). By definitions of §5.3, we have

Fvac(vkvl) =

¨

1, if l =−k ≥ 0,
0, otherwise.

(7.15)

Therefore,
Φα,ξ(x , y) =

∑∞

m=0
(vx ,ξ, v−m)`2(Z)(vy,ξ, vm)`2(Z).

Proposition 7.4. For any r, k ∈Z we have

(vr,ξ, vk)`2(Z) = (−1)r∧0+k∧02(δ(r)−δ(k))/2ϕ−k(r;α,ξ),

where the functions ϕm are defined in §6.2.

Proof. By (7.13) and then by (5.8),

(vr,ξ, vk)`2(Z) = (Š(Gξ)
−1vr , vk)`2(Z) = (−1)r∧0+k∧0(Š(Gξ)

−1v r , v k)`2(Z).

Using the fact that Š = Z−1SZ (see the discussion before Proposition 7.3) and Proposition 6.7, we
conclude the proof.

Therefore, since Φα,ξ(x , y) is defined for x , y ∈ Z 6=0, we have (in our derivation we have also used
(6.8)):

Φα,ξ(x , y) = (−1)x∧0+y∨0
∑∞

m=0
2−δ(m)ϕm(x;α,ξ)ϕm(−y;α,ξ). (7.16)

In the rest of the paper we agree that by this formula the kernel Φα,ξ(x , y) is defined for ar-
bitrary x , y ∈ Z (see also Remark 2.2.1). This is needed to view Φα,ξ as an operator in
`2(Z). One can also write this kernel using the “twisted” functions defined in §6.3: Φα,ξ(x , y) =
∑∞

m=0 2−δ(m)eϕm(x)eϕm(−y).
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7.3 Interpretation through spectral projections

One can interpret the kernel Φα,ξ through orthogonal spectral projections related to the difference
operator eDα,ξ defined by (6.11). Namely, the projection onto the positive part of the spectrum of
eDα,ξ has the form (see §6.3):

Proj>0(eDα,ξ)(x , y) =
∑∞

m=1
eϕm(x;α,ξ)eϕm(y;α,ξ).

We also need the projection onto the zero eigenspace, which is simply

Proj=0(eDα,ξ)(x , y) = eϕ0(x;α,ξ)eϕ0(y;α,ξ).

Proposition 7.5. Viewing the static Pfaffian kernel Φα,ξ as an operator in `2(Z), we have

Φα,ξ =
�

Proj>0(eDα,ξ) +
1
2

Proj=0(eDα,ξ)
�

R,

where R: `2(Z)→ `2(Z) is the operator corresponding to the reflection of the lattice Z with respect to
0: (R f )(x) := f (−x), f ∈ `2(Z).

Since R2 is the identity operator, we see that the operator Φα,ξR is a rank one perturbation of the
orthogonal spectral projection operator corresponding to the positive part of the spectrum of eDα,ξ.

7.4 Expression through the discrete hypergeometric kernel

Recall that the discrete hypergeometric kernel Kz,z′,ξ(x ‘, y ‘) (where x ‘, y ‘ ∈ Z′ = Z+ 1
2
) serves as

a determinantal kernel for the z-measures on ordinary partitions (§6.1). Under a suitable choice
of parameters z, z′, the functions involved in the formula for Kz,z′,ξ(x ‘, y ‘) turn into our functions
ϕm, see (6.5). This means that one could express our Pfaffian kernel Φα,ξ through the discrete
hypergeometric kernel:

Proposition 7.6. For all x , y ∈Z we have

Φα,ξ(x , y) = 1
2
(−1)x∧0+y∨0

h

Kν(α)− 1
2

,−ν(α)− 1
2
(x + 1

2
,−y + 1

2
) (7.17)

+ Kν(α)+ 1
2

,−ν(α)+ 1
2
(x − 1

2
,−y − 1

2
)
i

.

Proof. Using (6.3) and (6.5) with d =−1 and d = 0, we observe that for x , y ∈Z:
∑∞

m=1
ϕm(x;α,ξ)ϕm(y;α,ξ) = Kν(α)− 1

2
,−ν(α)− 1

2
,ξ(x +

1
2
, y + 1

2
); (7.18)

∑∞

m=0
ϕm(x;α,ξ)ϕm(y;α,ξ) = Kν(α)+ 1

2
,−ν(α)+ 1

2
,ξ(x −

1
2
, y − 1

2
). (7.19)

Taking half sum and using (7.16), we conclude the proof.

A time-dependent version of (7.17) is (10.12). A similar identity for the (static) determinantal
kernel of our model is (8.3) below.
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7.5 Reduction formulas

It is possible to rewrite the Pfaffian hypergeometric-type kernel Φα,ξ(x , y) in a closed form (without
the sum):

Proposition 7.7. For any x , y ∈Z we have

Φα,ξ(x , y) =
(−1)x∧0+y∧0

p

αξ

2(1− ξ)
×

×
ϕ0(x)

�

ϕ1(y)−ϕ−1(y)
�

−ϕ0(y)
�

ϕ1(x)−ϕ−1(x)
�

x + y
.

For x = −y there is a singularity in the numerator (this is seen using (6.8)) as well as in the
denominator. In this case the value of Φα,ξ(x , y) is understood according to the L’Hospital’s rule
using the analytic expression for ϕm (6.4). The same is applicable to all similar formulas below.

Proof. There are several ways of establishing this fact. One could use representation-theoretic ar-
guments as in the proof of Theorem 3 in [Oko01b]. Another way is to argue directly using the
three-term relations for the functions ϕm (6.9) to simplify the sum (7.16) similarly to the standard
derivation of the ChristoffelâĂŞDarboux formula for orthogonal polynomials.

We use Proposition 7.6 together with the existing closed form expression for Kz,z′,ξ [BO06b, Propo-
sition 3.10]:16

Kz,z′,ξ(x ‘, y ‘) =

p

zz′ξ

1− ξ

ψ− 1
2
(x ‘)ψ 1

2
(y ‘)−ψ 1

2
(x ‘)ψ− 1

2
(y ‘)

x ‘− y ‘
, x ‘, y ‘ ∈Z′.

(of course, the parameters of the functions ψ above are z, z′,ξ). We plug this formula into (7.17),
and then express each function ψa‘ through ϕm using (6.5) with d = −1 and d = 0. Observe that
for such d we have z(α)z′(α) = α. After that we apply (6.8) to simplify the resulting expression.
This concludes the proof.

Corollary 7.8 (Reduction formulas for Φα,ξ). For all x , y ∈Z we have:

(1) Φα,ξ(x ,−y) = Φα,ξ(y,−x);

(2) Φα,ξ(x ,−y) =−Φα,ξ(−x , y) if x 6= y;

(3) (x + y)Φα,ξ(x , y) = (x − y)Φα,ξ(x ,−y) (note that Φα,ξ(x , x) = 0 for all x 6= 0).

Proof. Claim (1) is best seen from (7.17), because the kernel K is symmetric. Claims (2) and (3)
follow from Proposition 7.7 and (6.8).

16In fact, [BO06b, Proposition 3.10] itself is established using the three-term relations for the functions ψa‘.
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8 Static determinantal kernel

Here we compute and discuss the determinantal correlation kernel Kα,ξ of the point process Mα,ξ
on Z>0, thus completing the proof of Theorem 1 from §2.

Theorem 8.1. For all α > 0 and 0 < ξ < 1, the point process Mα,ξ on Z>0 is determinantal. Its
correlation kernel Kα,ξ can be expressed in several ways (here x , y ∈Z>0):

(1) As an infinite sum

Kα,ξ(x , y) =
2
p

x y

x + y

∞
∑

m=0

2−δ(m)ϕm(x;α,ξ)ϕm(y;α,ξ) (8.1)

(the functions ϕm are defined in §6.2).

(2) In an integrable form

Kα,ξ(x , y) =

p

αξx y

1− ξ
·

P(x)Q(y)−Q(x)P(y)
x2− y2 , (8.2)

where P(x) = ϕ0(x;α,ξ) and Q(x) = ϕ1(x;α,ξ)−ϕ−1(x;α,ξ).

(3) In terms of the discrete hypergeometric kernel of the z-measures (§6.1)

eKα,ξ(x , y) = Kν(α)+ 1
2

,−ν(α)+ 1
2

,ξ(x −
1
2
, y − 1

2
) (8.3)

+ (−1)y Kν(α)− 1
2

,−ν(α)− 1
2

,ξ(x +
1
2
,−y + 1

2
),

where we have denoted eKα,ξ(x , y) :=
Ç x

y
·Kα,ξ(x , y).

(4) Viewed as an operator in `2(Z>0), eKα,ξ can be interpreted in terms of orthogonal spectral pro-
jections corresponding to the difference operator eDα,ξ (6.11) as follows (we restrict the operator
below to `2(Z>0)⊂ `2(Z)):

eKα,ξ =
�

Proj>0(eDα,ξ) +
1
2

Proj=0(eDα,ξ)
��

I+R
�

,

where I is the identity operator and R is the reflection, see Proposition 7.5.

Proof. The fact that the process Mα,ξ is determinantal is guaranteed by Lemma 3.5. On the other
hand, the reduction formulas for the Pfaffian kernel Φα,ξ (Corollary 7.8) allow us to apply Proposi-
tion A.2 from Appendix. This implies that

ρ
(n)
α,ξ(X ) = Pf(Φ̂α,ξ¹Xº) = det

�

Kα,ξ(xk, x j)
�n

k, j=1
,

where X =
�

x1, . . . , xn
	

⊂Z>0 (with pairwise distinct x j ’s), Φ̂α,ξ¹Xº is the skew-symmetric 2n×2n
matrix introduced in Theorem 7.1, and

Kα,ξ(x , y) =
2
p

x y

x + y
Φα,ξ(x ,−y), x , y ∈Z>0.
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This gives an argument (independently of Lemma 3.5) that the process Mα,ξ is determinantal. More-
over, this also provides us with explicit formulas for the kernel Kα,ξ. Namely, claims 1 and 2 of the
present theorem directly follow from the expressions of Φα,ξ as a series (7.16) and in a closed form
(Proposition 7.7).

To prove claims 3 and 4, observe that

Kα,ξ(x , y) =
Ç

y

x

�

x − y

x + y
+ 1
�

Φα,ξ(x ,−y) =
Ç

y

x

�

Φα,ξ(x , y) +Φα,ξ(x ,−y)
�

(the last equality is by Corollary 7.8.(3)), so

eKα,ξ(x , y) = Φα,ξ(x , y) +Φα,ξ(x ,−y).

Now we see that claim 3 follows from (7.16) and (7.18)–(7.19), and claim 4 is due to Proposition
7.5. This concludes the proof.

Comments to Theorem 8.1

1. Formulas (8.1) and (8.2) for the correlation kernel Kα,ξ are the same as the statements of Theo-
rems 2.1 and 2.2 in [Pet10b]. This can be seen from the expression (6.4) for the functions ϕm.

2. It is possible to obtain double contour integral expressions for the kernel Kα,ξ(x , y) (given in
[Pet10b, Propositions 3 and 4]). They can be derived from (8.1) in the same way as in the proof of
[BO06b, Theorem 3.3].

3. The form (8.2) of the kernel Kα,ξ is called integrable because the operator (8.2) in `2(Z>0) can
be viewed as a discrete analogue of an integrable operator (if we take x2 and y2 as variables).
About integrable operators, e.g., see [IIKS90], [Dei99]. Discrete integrable operators are discussed
in [Bor00] and [BO00, §6].

4. The expression eKα,ξ(x , y) is a so-called gauge transformation of the original correlation kernel
Kα,ξ, that is, eKα,ξ is related to Kα,ξ by a conjugation by a diagonal matrix. This means that the
Z>0×Z>0 matrix eKα,ξ can also serve as a correlation kernel for the point process Mα,ξ.

5. Relation (8.3) seems to be purely formal and have no consequences at the level of random point
processes.

6. Consider the Z>0 ×Z>0 matrix Lα,ξ which is defined by (3.7), where w(x) = wα,ξ(x) is given
by (2.6). Then one can show similarly to the proof of Theorem 3.3 in [BO00] (and also using the
identities from Appendix in that paper) that Kα,ξ = Lα,ξ(1+ Lα,ξ)−1. That is, the symmetric kernel
Kα,ξ is precisely the one given by Lemma 3.5.

9 Markov processes

In §2.2 we have described a family of continuous time Markov processes on the set S of all strict
partitions. They depend on our parameters α > 0 and 0 < ξ < 1 and are defined in terms of jump
rates (here λ ∈ Sn, n= 0,1, . . . ):

Qλ,c := (1− ξ)−1ξ(n+α/2)p↑α(n, n+ 1)λ,c, where c↘ λ;
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Qλ,µ := (1− ξ)−1np↓(n, n− 1)λ,µ, where µ↗ λ;

Qλ,λ :=−
∑

c: c↘λ
Qλ,c−

∑

µ: µ↗λ
Qλ,µ (9.1)

=−(1− ξ)−1{ξ(α/2+ n) + n}.

All other jump rates are zero. Here p↓(n, n− 1) and p↑α(n, n+ 1) are the down and up transition
kernels, respectively (see §3).

Under the projection S→ Z≥0, λ 7→ |λ|, the S× S matrix Q (9.1) turns into the Z≥0 ×Z≥0 matrix
of jump rates of the birth and death process nα,ξ (see §2.2). This means that the processes on S
“extend” the birth and death processes nα,ξ.

The jump rates Q (9.1) uniquely define a continuous time Markov process on S that can start from
any point and any probability distribution. This fact is proven similarly to the case of the ordinary
partitions [BO06a, §4]. In our situation the details are explained in [Pet10a, §9]. The process with
jump rates (9.1) preserves the measure Mα,ξ on S. By (λα,ξ(t))t∈[0,+∞) we denote the equilibrium
version of this process. It is reversible with respect to the measure Mα,ξ on strict partitions.

Remark 9.1. In contrast to [BO06a], we restrict our attention to the stationary (time homogeneous)
case, that is, we assume that the parameter ξ does not vary in time. The introduction of the non-
stationary processes in [BO06a] was motivated by the technique of handling the stationary case (in
particular, by the method of the computation of the dynamical correlation functions). The technique
that we use in the present paper does not require dealing with non-stationary processes.

Let us discuss the pre-generator of the Markov process λα,ξ. We regard the S × S matrices
�

Pλ,µ(t)
�

t≥0
of transition probabilities of the process λα,ξ as operators acting on functions on S

(from the left):
(P(t) f )(λ) :=

∑

µ∈S
Pλ,µ(t) f (µ).

Here Pλ,µ(t) is the probability that the process starting from λ will be at µ after time t. The
family (P(t))t≥0 is a Markov semigroup of self-adjoint contractive operators in the weighted space
`2(S,Mα,ξ) (see §4.2 for the definition of `2(S,Mα,ξ)). This semigroup has a generator which is
an unbounded operator. By Q let us denote the restriction of this generator to `2

fin(S,Mα,ξ) ⊂
`2(S,Mα,ξ), the dense subspace of all finitely supported functions in `2(S,Mα,ξ). The operator Q
acts as

(Q f )(λ) =
∑

µ∈S
Qλ,µ f (µ), f ∈ `2

fin(S,Mα,ξ), (9.2)

where Qλ,µ (9.1) are the jump rates of the process λα,ξ.

The operator Q is symmetric with respect to the inner product (·, ·)Mα,ξ
. Moreover, it is closable in

`2(S,Mα,ξ), and its closure generates the semigroup (P(t))t≥0 (see Remark 9.5 below). That is, Q
is the pre-generator of the process λα,ξ.

Remark 9.2. As a wider domain for the operator Q (9.2) one can take the space of all functions f
on S such that both f and Q f (defined by (9.2)) belong to `2(S,Mα,ξ). This space clearly includes
finitely supported functions.

Using the isometry Iα,ξ : `2(S,Mα,ξ)→ `2(S) (4.11), we get a symmetric operator B in `2
fin(S) and a

Markov semigroup (V(t))t≥0 of self-adjoint contractive operators in `2(S) corresponding to Q and
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(P(t))t≥0, respectively.17 Let us compute the matrix elements of the operator B in the standard
orthonormal basis

�

λ
	

λ∈S.

Proposition 9.3. We have

Bλ=
∑

ν∈S
(Bλ,ν)ν =−(1− ξ)−1{|λ|+ ξ(|λ|+

α

2
)}λ

+

p

ξ

1− ξ

∑

µ: µ↗λ
qα(λ/µ)µ+

p

ξ

1− ξ

∑

c: c↘λ
qα(c/λ)c.

Here qα is the function of a box defined by (4.6).

Proof. Fix λ ∈ S, and for any ν ∈ S one has

(Bλ,ν) =
�

(Mα,ξ(λ))
− 1

2Qλ, (Mα,ξ(ν))
− 1

2 ν
�

Mα,ξ

= (Mα,ξ(λ)Mα,ξ(ν))
− 1

2 (Qλ,ν)Mα,ξ
=Mα,ξ(ν)

1
2Mα,ξ(λ)

− 1
2Qν ,λ

(Q is given in (9.1)), and Proposition follows from a direct computation.

Corollary 9.4. The operator B in Fockfin(Z>0) has the form

B=−R(Hξ) +
α
4
I,

where I is the identity operator, the unitary representation R of sl(2,C) in the Hilbert space Fockfin(Z>0)
is defined in §5.4, and Hξ is given in Remark 6.8.

Proof. This is a straightforward consequence of Proposition 9.3 (where, of course, we identify `2(S)
and Fock(Z>0)) and the matrix computation in Remark 6.8.

Remark 9.5. From the above corollary it follows that the operator B (with domain Fockfin(Z>0)) is
essentially self-adjoint because, by Proposition 4.3, all vectors of the space Fockfin(Z>0) are analytic
for the operator R(Hξ). The same also holds for the operator R(H) (corresponding to the case

ξ = 0). Moreover, the closure of B looks as B = α
4
I− R(Hξ) =

α
4
I− R(eGξ)R(H)R(eGξ)−1, and this

operator generates the semigroup (V(t))t≥0.

These properties of B in fact imply (using the isometry Iα,ξ (4.11)) that the operator Q is closable in
`2(S,Mα,ξ), and its closure generates the semigroup (P(t))t≥0 of the Markov process λα,ξ on strict
partitions.

10 Dynamical correlation functions

In this section we prove a Pfaffian formula for the dynamical correlation functions ρ(n)
α,ξ (2.9) of the

Markov processes λα,ξ on strict partitions, thus proving Theorem 2 from §2.

17We denote, e.g., the operators B and Q by different symbols only to indicate in what spaces they act. Essentially,
these operators are the same.
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10.1 Dynamical correlation functions and Markov semigroups

Let us fix n≥ 1 and pairwise distinct space-time points (t1, x1), . . . , (tn, xn) ∈R≥0×Z>0. We assume
that the time moments are ordered as 0 ≤ t1 ≤ · · · ≤ tn. Recall the operators ∆x (where x ∈ Z>0)
in the Hilbert space `2(S,Mα,ξ) defined in §7.1.

Lemma 10.1. The dynamical correlation functions of λα,ξ have the form

ρ
(n)
α,ξ(t1, x1; . . . ; tn, xn) =

�

∆x1
P(t2− t1)∆x2

. . .∆xn−1
P(tn− tn−1)∆xn

1,1
�

Mα,ξ
,

where (P(t))t≥0 is the semigroup of the process λα,ξ in the space `2(S,Mα,ξ) and 1 ∈ `2(S,Mα,ξ) is the
constant identity function.

Proof. This is a simple consequence of the Markov property of the process λα,ξ. Indeed, let us
assume (for simplicity) that t j ’s are distinct. The n-dimensional distribution of the process λα,ξ at
time moments t1 < · · · < tn is a probability measure on S× · · · × S (n copies) which assigns the
probability

Mα,ξ(λ
(1))Pλ(1),λ(2)(t2− t1) . . .Pλ(n−1),λ(n)(tn− tn−1) (10.1)

to every point (λ(1), . . . ,λ(n)), λ(i) ∈ S. By definition, ρ(n)
α,ξ(t1, x1; . . . ; tn, xn) is exactly the mass of

the set {λ(1) 3 x1, . . . ,λ(n) 3 xn} under the measure (10.1). This proves the claim for distinct t j ’s. It
can be readily verified that the claim also holds if some of t j ’s coincide. This concludes the proof.

Let us consider the following operator in Fock(Z>0):

∆
¹T,Xº :=∆x1

V(t2− t1)∆x2
. . .∆xn−1

V(tn− tn−1)∆xn
.

Here (V(t))t≥0 is the semigroup in `2(S) defined in §9, and we have identified `2(S)with Fock(Z>0)
as in §5.2. The operators ∆x , x ∈Z>0, are now acting in Fock(Z>0).

Proposition 10.2. The correlation functions of λα,ξ have the form

ρ
(n)
α,ξ(t1, x1; . . . ; tn, xn) =

�

R(eGξ)
−1∆

¹T,XºR(eGξ)vac,vac
�

. (10.2)

Note that now the expectation is taken in Fock(Z>0).

Proof. Since V(t) = Iα,ξP(t)I
−1
α,ξ, the claim is a direct consequence of Lemma 10.1 and formula

(5.11) with A=∆x1
P(t2− t1)∆x2

. . .∆xn−1
P(tn− tn−1)∆xn

.

Note that in contrast to the static case (7.5), the operator ∆
¹T,Xº is not diagonal (see also Remark

4.5). It is worth noting that formula (10.2) does not hold if t j ’s are not ordered as t1 ≤ · · · ≤ tn.
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10.2 Pre-generator and Kerov’s operators

Our next aim is to extend the definition of the semigroup (V(t))t≥0 from real nonnegative values of
t to complex values of t with ℜt ≥ 0. This will be needed in the next subsection for computation of
the dynamical correlation functions.

Observe that the matrix iHξ (where Hξ is defined in Remark 6.8 and here and below i =
p
−1)

belongs to the real form su(1,1)⊂ sl(2,C). Denote

Wξ(τ) := e−iτHξ = Gξ

�

e−iτ/2 0
0 eiτ/2

�

G−1
ξ ∈ SU(1,1), τ ∈R.

The family
¦

Wξ(τ)
©

τ∈R for any fixed ξ ∈ [0, 1) is a continuous curve in SU(1,1) passing through

the unity at τ = 0. By {fWξ(τ)}τ∈R denote the lifting of this curve to the universal covering group
SU(1,1)∼.

For real τ one can consider unitary operators

R
�

fWξ(τ)
�

= R(eGξ)R
�

fW0(τ)
�

R(eGξ)
−1

in the Fock space Fock(Z>0). Here the operator R(fW0(τ)) (corresponding to ξ = 0) acts in
Fockfin(Z>0) as

R(fW0(τ))λ= e−iτR(H)/2λ= e−iτ(|λ|+ α
4
)λ, λ ∈ S, τ ∈R. (10.3)

Informally speaking, for s ∈ R≥0, the operator V(s) means esB, and for τ ∈ R, the operator
R(fWξ(τ))e

iτ α
4

I means eiτB (here B is the generator of the semigroup (V(s))s≥0). Thus, it is nat-
ural to give the following definition:

Definition 10.3. For t = s + iτ ∈ C+ := {w ∈ C: ℜw ≥ 0} let V(t) be the following operator in
Fock(Z>0):

V(t) :=V(s)R(fWξ(τ))e
iτ α

4
I

For real nonnegative t the operator V(t) is self-adjoint and bounded, it was defined in §9. For
purely imaginary t, the operator V(t) is unitary. Thus, the operators V(t) are bounded for all
t ∈ C+. Moreover, V(t1+ t2) =V(t1)V(t2) for any t1, t2 ∈ C+, so {V(t)}t∈C+ is a semigroup (with
complex parameter) that can be viewed as an analytic continuation of the semigroup {V(s)}s∈R≥0

.
In particular, the operators V(t) commute with each other. Moreover, it is clear that the function
t 7→V(t)h is bounded and continuous in C+ and holomorphic in the interior

�

w ∈ C+ : ℜw > 0
	

of
C+ for any vector h ∈ Fock(Z>0) which is analytic for the operator B.

10.3 Pfaffian formula for dynamical correlation functions

Theorem 10.4. The dynamical correlation functions of the equilibrium Markov process (λα,ξ(t))t≥0
have the form

ρ
(n)
α,ξ(t1, x1; . . . ; tn, xn) = Pf(Φα,ξ¹T, Xº), (10.4)
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where the function Φα,ξ(s, x; t, y) (x , y ∈Z, s ≤ t) is given by

Φα,ξ(s, x; t, y) := (−1)x∧0+y∨0
∞
∑

m=0

2−δ(m)e−m(t−s)ϕm(x;α,ξ)ϕm(−y;α,ξ) (10.5)

(see (6.4) for definition of ϕm). In (10.4), (t1, x1), . . . , (tn, xn) ∈R≥0×Z>0 are pairwise distinct space-
time points such that 0 ≤ t1 ≤ · · · ≤ tn, and Φα,ξ¹T, Xº is the 2n× 2n skew-symmetric matrix with
rows and columns indexed by the numbers 1,−1, . . . , n,−n, such that the k j-th entry in Φα,ξ¹T, Xº
above the main diagonal is Φα,ξ(t|k|, xk; t| j|, x j), where k, j = 1,−1, . . . , n,−n (thus, |k| ≤ | j|).18

The rest of this subsection is devoted to proving Theorem 10.4.

Lemma 10.5 ([Ols08]). Let F(z) be a function on the right half-plane C+ which is bounded and
continuous in C+ and is holomorphic in the interior of C+. Then F is uniquely determined by its values
on the imaginary axis {w ∈ C: ℜw = 0}.

Proof. Conformally transforming C+ to the unit disc |ζ| < 1, we get a function G on the disc which
is holomorphic in the interior of the disc and bounded and continuous up to the boundary (with
possible exception of one point corresponding to w =∞∈ C+).

For any fixed ζ0 with |ζ0| < 1, the value G(ζ0) is represented by Cauchy’s integral over the circle
|ζ| = r, for |ζ0| < r < 1. By our hypotheses, this Cauchy’s integral has a limit as r → 1, which gives
an expression of G(ζ0) through the boundary values.

Let us fix pairwise distinct space-time points (t1, x1), . . . , (tn, xn) ∈ R≥0 ×Z>0 such that 0 ≤ t1 ≤
· · · ≤ tn. For convenience, set tk j := tk − t j . Above we have expressed the dynamical correlation
functions as (10.2), that is,

ρ
(n)
α,ξ(t1, x1; . . . ; tn, xn)
=
�

R(eGξ)
−1∆x1

V(t2,1)∆x2
. . .∆xn−1

V(tn,n−1)∆xn
R(eGξ)vac,vac

�

.
(10.6)

Denote the right-hand side of (10.6) byF (t2,1, . . . , tn,n−1; x1, . . . , xn). As a function in n−1 variables
t2,1, . . . , tn,n−1,F is initially defined for t j, j−1 taking real nonnegative values. However, as explained
in §10.2, the definition of each operator V(t j, j−1) can be extended to t j, j−1 ∈ C+, so F is defined
on (C+)n−1 ⊂ Cn−1. Moreover, F is continuous and bounded in (t2,1, . . . , tn,n−1) belonging to the
closed domain (C+)n−1 and is holomorphic in the interior of this domain. Therefore, by Lemma
10.5, F (t2,1, . . . , tn,n−1; x1, . . . , xn) is uniquely determined by its values when all the variables t j, j−1
are purely imaginary.

From now on in the computation we will assume that the variables t j = iτ j (where τ j ∈ R, j =
1, . . . , n) are purely imaginary. This implies that the differences tk, j = i(τk − τ j) are also purely
imaginary. For such t j , each operator V(t j, j−1) is unitary, and, moreover,

V(t j, j−1) =V(t j−1,1)
−1V(t j,1), j = 1, . . . , n (10.7)

(here by agreement t1,1 = 0, and V(0) = I, the identity operator).

18Here and below we use convention (7.1).
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Now we want to rewriteF (t2,1, . . . , tn,n−1; x1, . . . , xn) as a certain Pfaffian. First, we need a notation.
Recall that in §7.1 we have defined a representation Š of SU(1, 1) in the Hilbert space V = `2(Z)
with the standard orthonormal basis

�

vx
	

x∈Z. Denote

v(t)x ,ξ := Š(W0(τ))Š(Gξ)
−1vx ∈ V, x ∈Z, t = iτ ∈ iR. (10.8)

For t = 0 this vector becomes vx ,ξ defined by (7.13).

Lemma 10.6. For t j = iτ j ∈ iR and distinct x j ∈Z>0 ( j = 1, . . . , n) we have

F (t2,1, . . . , tn,n−1; x1, . . . , xn) = Pf(F¹T, Xº), (10.9)

where F¹T, Xº is the 2n×2n skew-symmetric matrix with rows and columns indexed by the numbers

1,−1, . . . , n,−n, such that the k j-th entry inF¹T, Xº above the main diagonal is Fvac

�

v
(t|k|,1)
xk ,ξ , v

(t| j|,1)
x j ,ξ

�

,

where k, j = 1,−1, . . . , n,−n (and thus |k| ≤ | j|). Here Fvac is the vacuum average on the Clifford
algebra Cl(V ), see §5.

Proof. The operators ∆x have the form

∆x = T (vx)T (v−x) = T (vx v−x), x ∈Z>0.

By (10.8) and Proposition 7.3, we have

R(fW0(τ))R(eGξ)
−1∆xR(eGξ)R(fW0(τ))

−1 = T (v(t)x ,ξv(t)−x ,ξ), x ∈Z, t = iτ ∈ iR.

A straightforward computation using Definition 10.3 and (10.7) allows us to rewrite the operator in
the right-hand side of (10.6) as

R(eGξ)
−1∆x1

V(t2,1)∆x2
. . .∆xn−1

V(tn,n−1)∆xn
R(eGξ)

= T (v(t1,1)
x1,ξ v

(t1,1)
−x1,ξ . . . v

(tn,1)
xn,ξ v

(tn,1)
−xn,ξ)R(fW0(τn,1))e

iτn,1
α
4

I.

Observe that from (10.3) it follows that R(fW0(τn,1))e
iτn,1

α
4

Ivac= vac, so

F (t2,1, . . . , tn,n−1; x1, . . . , xn) =
�

T (v(t1,1)
x1,ξ v

(t1,1)
−x1,ξ . . . v

(tn,1)
xn,ξ v

(tn,1)
−xn,ξ)vac,vac

�

= Fvac

�

v
(t1,1)
x1,ξ v

(t1,1)
−x1,ξ . . . v

(tn,1)
xn,ξ v

(tn,1)
−xn,ξ

�

.

An application of Wick’s Theorem 5.1 concludes the proof.

Now that we have established a Pfaffian formula for purely imaginary time variables t j, j−1 ( j =
2, . . . , n), we want to extend it to the case when all t j, j−1’s are real nonnegative. Let us look closer

at the function Fvac(v
(s)
x ,ξv(t)y,ξ), where s = iσ and t = iτ are purely imaginary. We have

v(s)x ,ξ = Š(W0(σ))vx ,ξ, v(t)y,ξ = Š(W0(τ))vy,ξ,

where vx ,ξ and vy,ξ are defined by (7.13). Therefore, we get

Fvac(v
(s)
x ,ξv(t)y,ξ) =

∑

k,l∈Z
(vx ,ξ, vk)`2(Z)(vy,ξ, vl)`2(Z)Fvac

�

�

Š(W0(σ))vk
��

Š(W0(τ))vl
�

�

.
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On the space Vfin ⊂ V = `2(Z) consisting of finite linear combinations of the basis vectors
�

vx
	

x∈Z,
the operator Š(W0(u)) acts as e−iuŠ(H)/2 (where u ∈R). From this fact and (7.15), we see that

Fvac(v
(s)
x ,ξv(t)y,ξ) =

∑∞

m=0
e−m(t−s)(vx ,ξ, v−m)`2(Z)(vy,ξ, vm)`2(Z)

= (−1)x∧0+y∨0
∑∞

m=0
2−δ(m)e−m(t−s)ϕm(x)ϕm(−y). (10.10)

Note that here s and t are still purely imaginary. However, one can view the right-hand side of
(10.10) as a function in (t − s) ∈ C+. This function is bounded and continuous in C+ and is
holomorphic in the interior of C+. Indeed, this follows from the fact that the series in (10.10)

converges rapidly because the functions ϕm(x) for fixed x and m→+∞ decay as Const ·m−x− 1
2ξ

m
2

(this can be observed from the analytic expression (6.4)). We are interested in the restriction of
the right-hand side of (10.10) to real nonnegative values of (t − s). Observe that this is exactly the
kernel Φα,ξ(s, x; t, y) (10.5). By application of Lemma 10.5, we see that formula (10.9) holds for
real nonnegative t2,1, . . . , tn,n−1, that is, for 0 ≤ t1 ≤ · · · ≤ tn. This fact together with Proposition
10.2 implies Theorem 10.4.

Thus, we have established Theorem 2 from §2.

10.4 Skew-symmetric matrices in Pfaffian formulas

In the right-hand sides of our Pfaffian formulas (7.3) and (10.4) for static and dynamical correla-
tion functions we see certain skew-symmetric 2n× 2n matrices constructed using Pfaffian kernels
Φα,ξ(x , y) and Φα,ξ(s, x; t, y), respectively. It is clear from (7.16) and (10.5) that for t = s, the
dynamical kernel Φα,ξ(s, x; t, y) turns into the static one. (In fact, this is the reason why we use the
same notation for these kernels.) However, the matrix of (10.4) for t1 = · · · = tn does not become
the one from (7.3). Let us explain how one can transform (10.4) to get the expected behavior in the
static picture.

One can readily verify that conjugating the matrix Φα,ξ¹T, Xº from (10.4) by the matrix C of the
permutation (1,2n, 2, 2n− 1, . . . , n, n+ 1), we get the following 2n× 2n skew-symmetric matrix:

(CΦα,ξ¹T, XºC T )i, j (10.11)

=







Φα,ξ(t i , x i; t j , x j), if 1≤ i < j ≤ n;
Φα,ξ(t i , x i; t j′ ,−x j′), if 1≤ i ≤ n< j ≤ 2n and i ≤ j′;
−Φα,ξ(t j′ ,−x j′; t i , x i), if 1≤ i ≤ n< j ≤ 2n and i > j′;
−Φα,ξ(t j′ ,−x j′; t i′ ,−x i′), if n< i < j ≤ 2n,

where 1≤ i < j ≤ 2n, and i′ := 2n+1−i, j′ := 2n+1− j. The permutation matrix C has determinant
one (cf. how (7.6) is obtained), so the Pfaffian does not change under such a conjugation. It is
worth noting that matrices similar to (10.11) appeared in [Mat05, Thm. 3.1] and [Vul07, Thm.
2.2]). Using Corollary 7.8, it is clear that for t1 = · · · = tn, (10.11) becomes the matrix Φ̂α,ξ¹Xº.
Observe that Corollary 7.8.(2) does not hold in the dynamical case, so one cannot put a matrix of
the form Φ̂α,ξ¹T, Xº in the right-hand side of (10.4).

10.5 Expression through the extended discrete hypergeometric kernel

The extended discrete hypergeometric kernel introduced in [BO06a] serves as a determinantal ker-
nel for a Markov dynamics preserving the z-measures on ordinary partitions (§6.1). It is given by
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[BO06a, Thm. A (Part 2)]:

Kz,z′,ξ(t, x ‘; s, y ‘) =±
∑

a‘∈Z′+
e−a‘|t−s|ψ±a‘(x ‘; z, z′,ξ)ψ±a‘(y ‘; z, z′,ξ),

where x ‘, y ‘ ∈ Z′ = Z+ 1
2
, the “+” sign is taken for t ≥ s, and the “−” sign is taken for t < s. Our

kernel Φα,ξ(s, x; t, y) can be expressed through Kz,z′,ξ(t, x ‘; s, y ‘):

Proposition 10.7. For all x , y ∈Z and s ≤ t, we have

Φα,ξ(s, x; t, y) = 1
2
(−1)x∧0+y∨0

h

e−
1
2
(t−s)Kν(α)− 1

2
,−ν(α)− 1

2
,ξ(t, x + 1

2
; s,−y + 1

2
)

+ e
1
2
(t−s)Kν(α)+ 1

2
,−ν(α)+ 1

2
,ξ(t, x − 1

2
; s,−y − 1

2
)
i

, (10.12)

Proof. This is established similarly to (7.17): using the above formula for the kernel
Kz,z′,ξ(t, x ‘; s, y ‘) and (6.5), one can write two identities analogous to (7.18) and (7.19), then take
their half sum and use (10.5).

When t = s, (10.12) reduces to the static version (7.17). Observe that the parameters z, z′ (de-
pending on α) in (10.12) are admissible (see §6.1). However, similarly to the static identity,
(10.12) seems to imply no probabilistic connections between the dynamics related to the z-measures
[BO06a] and our Markov processes λα,ξ. On the other hand, this identity helps to study the asymp-
totics of our dynamical kernel Φα,ξ in various limit regimes similar to the ones discussed in [BO06a,
§9–10]. This analysis is carried out in [Pet10a, §11].

A Reduction of Pfaffians to determinants

Let us first recall basic definitions and properties related to Pfaffians. We use the following notations
for matrices. Let X be an abstract finite space of indices and a= (a1, . . . , a2n) be a sequence of length
2n of points of X. Let F : X×X→ C be some function. Form a 2n× 2n skew-symmetric matrix















0 F(a1, a2) . . . F(a1, a2n−1) F(a1, a2n)
−F(a1, a2) 0 . . . F(a2, a2n−1) F(a2, a2n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−F(a1, a2n−1) −F(a2, a2n−1) . . . 0 F(a2n−1, a2n)
−F(a1, a2n) −F(a2, a2n) . . . −F(a2n−1, a2n) 0















.

Denote this matrix by F¹aº. This skew-symmetric matrix has rows and columns indexed by
a1, . . . , a2n, such that the i jth element above the main diagonal is equal to F(ai , a j) (here 1 ≤
i < j ≤ 2n).

Definition A.1. Let a = (a1, . . . , a2n) and F¹aº be as defined above. The determinant det(F¹aº)
is a perfect square as a polynomial in F(ai , a j) (where i < j). The Pfaffian of F¹aº, denoted
by Pf

�

F¹aº
�

, is defined to be the square root of det F¹aº having the “+” sign by the monomial
F(a1, a2) . . . F(a2n−1, a2n).

The following properties of Pfaffians are well known:
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• Let A be a skew-symmetric 2n× 2n matrix and B be any 2n× 2n matrix, then

Pf(BABT ) = det B · Pf(A). (A.1)

where BT means the transposed matrix;

• If M is any n× n matrix, then

Pf

�

0 M
−M T 0

�

= (−1)n(n−1)/2 det M . (A.2)

Now we give a sufficient condition under which a 2n×2n Pfaffian can be reduced to a certain n× n
determinant. Assume that the set X is divided into two parts X = X+ t X−, and there exists a
bijection between X+ and X−. By a 7→ â we denote the corresponding involution of the space X that
interchanges X+ and X−. Let a :=

�

a1, . . . , an, ân, . . . , â1
�

, and ai ∈ X+ (so âi ∈ X−), i = 1, . . . , n.

Proposition A.2. Suppose that the function F on X×X satisfies the following properties:19

(1) F(a, b̂) = F(b, â) for any a, b ∈ X.

(2) F(a, b) =−F(b, a) for any a, b ∈ X such that a 6= b̂.

(3) There exists a strictly positive function f : X+ → R with the property f (a) 6= f (b) if a 6= b, such
that

�

f (a)− f (b)
�

F(a, b̂) = ( f (a) + f (b))F(a, b) for any a, b ∈ X+.

Then
Pf
�

F¹a1, . . . , an, ân, . . . , â1º
�

= det[K(ar , as)]
n
r,s=1,

where K has the form

K(u, v) =
2F(u, v̂)

p

f (u) f (v)

f (u) + f (v)
, u, v ∈ X+. (A.3)

Note that the third property above implies that F(a, a) = 0 for all a ∈ X+.

Proof. In this proof we denote the matrix F¹a1, . . . , an, ân, . . . , â1º simply by F .

We act on F by SL(2,C)n: each jth copy of SL(2,C) acts as F 7→ C j FC T
j , where C j is the 2n× 2n

identity matrix except for the 2×2 submatrix with determinant 1 formed by rows and columns with
numbers j and 2n+ 1− j. By (A.1), this action of SL(2,C)n does not change the Pfaffian of F . We
want to choose C ∈ SL(2,C)n such that the matrix C FC T becomes a block matrix as in (A.2).

Define g(a) := 1
2

log f (a), a ∈ X+. As the jth element in C ∈ SL(2,C)n we take the hyperbolic

rotation

�

cosh g(a j) sinh g(a j)
sinh g(a j) cosh g(a j)

�

. The whole matrix C looks as

C =



















cosh g(a1) . . . 0 0 . . . sinh g(a1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . cosh g(an) sinh g(an) . . . 0
0 . . . sinh g(an) cosh g(an) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sinh g(a1) . . . 0 0 . . . cosh g(a1)



















.

19cf. Corollary 7.8.
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It can be readily verified using the properties of F that C FC T =

�

0 M
−M T 0

�

, where the rows of

M are indexed by i = 1,2, . . . , n, and columns are indexed by j = n+ 1, . . . , 2n, and

Mi j =







2F(ai , a2n+1− j)
p

f (ai) f (a2n+1− j)

f (ai)− f (a2n+1− j)
, if i+ j 6= 2n,

F(ai , âi), otherwise.

Set, for r, s = 1, . . . , n,
K(ar , as) := Mr,2n+s−1, (A.4)

and note that det
�

K(ar , as)
�n

r,s=1 = (−1)n(n−1)/2 det M . Thus, from (A.1) and (A.2) we get Pf(F) =
Pf(C FC T ) = (−1)n(n−1)/2 det M = det

�

K(ar , as)
�n

r,s=1. It remains to observe that K(·, ·) (A.4) that
now has the form

K(u, v) =







2F(u, v)
p

f (u) f (v)

f (u)− f (v)
, if u 6= v,

F(u, û), otherwise,

where u, v ∈ X+, can be rewritten as (A.3) using the properties of F .
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