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Abstract.

The structure of Galton-Watson trees conditioned to be of a given size is well-

understood. We provide yet another embedding theorem that permits us to obtain

asymptotic probabilities of events that are determined by what happens near the

root of these trees. As an example, we derive the probability that a Galton-Watson

tree is cut when each node is independently removed with probability p, where by

cutting a tree we mean that every path from root to leaf must have at least one

removed node.
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1. The probabilistic model

A set of nodes of a tree is a cut if its removal hits every path from root to leaf. Given a tree

t, and a fixed parameter p ∈ (0, 1), we remove each node independently with probability p. Let ρ(t)

denote the probability that this removal procedure cuts the tree. The main purpose of this paper is

to study ρ(t) for a large class of trees, including random Galton-Watson trees conditioned on their

size. A number of comparisons are carried out, including for complete d-ary trees, uniform random

binary trees (Catalan trees), random Cayley trees, and random binary search trees, and we give the

appropriate limits for conditional Galton-Watson trees, which are also called simply generated trees

in the combinatorial literature—see, e.g., Moon (1970).

The paper is motivated by various other pieces of work, notably the destruction of terrorist

cells (Farley, 2003, 2007), and the failure of a broadcast in tree-shaped networks. The phrase

“cutting trees” has also been used in another model, which was studied, e.g., by Janson (2004) for

complete binary trees, by Janson (2006a) for random trees including Galton-Watson trees, and by

Holmgren (2010) for random split trees. Here nodes are removed sequentially, independently and

uniformly from the remaining tree. After a node is removed, its entire subtree is disconnected. The

parameter of interest in their model is the number of nodes that have to be removed until the tree

is entirely gone.

It is clear that if t1, . . . , tk are the subtrees rooted at the k children of the root of t, then

ρ(t) =

{

p+ (1− p)
∏k

i=1 ρ(ti) if k ≥ 1,

p if k = 0.
(1)

This recursive property can be used to compute ρ(t) for many models of trees. Clearly,

p ≤ p+ (1− p)p|t|−1
1[|t|>1] ≤ ρ(t) ≤ 1− (1− p)|t| ≤ 1,

where the lower bound is reached for a star, i.e., a root with |t| − 1 children, and the upper bound

is reached for a chain. If nodes have at most d > 1 children, and |t| − 1 is a multiple of d, then the

tree that minimizes ρ(t) over all trees of the same size is the fishbone (Campos et al, 2011), where a

fishbone is a tree in which the root has d children, of which d− 1 are leaves. The sole non-leaf child

again has d children, of which d − 1 are leaves, and so forth. A simple computation shows that if

we define ρn = ρ(t) for the fishbone tree on n nodes (where n− 1 is a multiple of d), then

ρn = p+ (1− p)pd−1ρn−d, n > d; ρ(t1) = p,

and the solution of this recursion is

ρn =
p

1− (1− p)pd−1
×
(

1−
(

(1− p)pd−1
)

n−1

d

)

.

Note that if we keep p fixed and let n→ ∞, then

lim
n→∞

ρn
def
= ρ∞ =

p

1− (1− p)pd−1
.

To compare performances of other trees with the optimal fishbones, it is instructive to compare

limits as tree sizes diverge.
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Example 1: Complete d-ary trees. If we define tℓ as the complete d-ary tree with ℓ full levels,

then |tℓ| = n = 1 + d+ · · · dℓ−1. A simple recursive argument yields

ρ(tℓ) = p+ (1− p)ρ(tℓ−1)
d, ρ1 = p.

An elementary calculus shows that

lim
ℓ→∞

ρ(tℓ) = ρ∗

where for p ∈ (0, 1− 1/d), ρ∗ is the unique solution in (0, 1) of

ρ∗ = p+ (1− p)(ρ∗)d.

For p ∈ [1− 1/d, 1], we have ρ∗ = 1. For example, when d = 2, we obtain

ρ∗ =

{

1−
√

1−4p(1−p)
2(1−p)

if p ≤ 1/2,

1 if p ≥ 1/2.

Example 2: Families of d-ary trees. For a tree t, let ℓ be the number of full levels, and let h

be the the number of occupied levels (also called the height). We have

ρ(tℓ) ≤ ρ(t) ≤ ρ(th).

But both upper and lower bound tend to the same limit as ℓ→ ∞. Thus, for any sequence of d-ary

trees with full level number ℓ → ∞, the limiting probability of cutting the trees tends to C∞. A

typical example in this class is the random binary search tree Tn on n nodes. It is known that the

(random) full level number ℓ = ℓ(Tn) tends to infinity in probability (Devroye, 1987), and thus, we

can conclude that

ρ(Tn) → ρ∗

in probability and E{ρ(Tn)} → ρ∗ as n→ ∞, where E denotes expected value. The same property

holds for a large class of random trees, called split trees, introduced by Devroye (1999).

Example 3: Galton-Watson trees. A Galton-Watson (or Galton-Watson-Bienaymé) tree (see

Athreya and Ney, 1972) is a rooted random ordered tree. Each node independently generates a

random number of children drawn from a fixed offspring distribution ξ. Let T be a Galton-Watson

tree determined by ξ, with generating function

g(s)
def
= E

{

sξ
}

=

∞
∑

i=0

P{ξ = i}si.

The recursive formula permits us to compute E{ρ(T )}:

E{ρ(T )} = p+ (1− p)E
{

(E{ρ(T )})ξ 1[ξ>0]

}

= p+ (1− p) (g(E{ρ(T )})−P{ξ = 0}) .

Assume that p ∈ (0, 1) to avoid trivialities. If P{ξ = 0} > 0, we see that E{ρ(T )} is the unique

solution r ∈ (0, 1) of

r = p+ (1− p)(g(r)−P{ξ = 0}). (2)

If P{ξ = 0} = 0 (so that the tree is necessarily infinite), then (2) has one solution at one, and if in

addition (1− p)g′(1) = (1− p)E{ξ} > 1, then there is a second solution in (0, 1). It is easy to verify
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then that E{ρ(T )} = 1 if and only if (1− p)E{ξ} ≤ 1. Otherwise, E{ρ(T )} is given by the unique

solution r ∈ (0, 1) of

r = p+ (1− p)g(r). (3)

In what follows, we are mainly interested in critical Galton-Watson trees (i.e., those having E{ξ =
1}, and P{ξ = 1} < 1). For those, ρ(T ) is given by the unique solution of (2).

Moon (1970) and Meir and Moon (1978) defined the simply generated trees as ordered

labelled trees of size n that are all equally likely given a certain pattern of labeling for each node of

a given degree. The most important examples include the Catalan trees (equiprobable binary trees),

random planted plane trees (equiprobable trees of unlimited degrees) and Cayley trees (equiprobable

unordered rooted trees).

Let Tn be a Galton-Watson tree conditional on its size being n. It is well-known (see, e.g.,

Kennedy, 1975, or Kolchin, 1980, 1986) that most uniform random trees correspond to conditional

Galton-Watson trees for particular choices of the offspring distribution ξ. For example, when ξ is

0 and 2 with probability 1/2 each, then we have a uniform full binary tree. When ξ is 0 or 2 with

probability 1/4 and 1 with probability 1/2, we obtain the uniform binary (Catalan) tree. Uniformly

random full binary trees are obtained by setting P{ξ = 0} = P{ξ = 2} = 1/2. A uniformly

random d-ary tree has its offspring distributed as a binomial (d, 1/d) random variable. A uniform

planted plane tree is obtained for the geometric law P{ξ = i} = 1/2i+1, i ≥ 0. When ξ is Poisson of

parameter 1, one obtains a random rooted labeled (or Cayley) tree. For ξ uniform on {0, 1, 2, . . . , k},
Tn is like a uniform ordered tree with a maximal degree of k. All such trees can be dealt with at

once.

Assume E{ξ} < ∞. Find a θ > 0 such that the random variable ξ∗ with P{ξ∗ = i} =

cθiP{ξ = i} (where c is a normalization constant) has E{ξ∗} = 1. Kennedy (1975) showed that the

distribution of the conditional Galton-Watson tree Tn does not depend upon the value of θ. Thus,

without loss of generality, we can normalize and assume that E{ξ} = 1. Note however that the

above construction does not work for all cases—indeed, there are heavy-tailed distributions with

E{ξ} < 1 such that there is no θ that yields E{ξ∗} = 1. We use the notation pi = P{ξ = i},
and g(s) = E{sξ}. We assume throughout that p1 < 1. Note that {ipi, i ≥ 1} is a probability

distribution on the integers. Its generating function is sg′(s). Let ξ′ be a random variable with

this distribution. Define the span d as the greatest common divisor of all i for which pi > 0. A

Galton-Watson tree with span d can only have sizes that are 1 mod d.

The main result of this paper is Theorem 1.

Theorem 1. Assume p ∈ (0, 1), E{ξ} = 1, V{ξ} = σ2 ∈ (0,∞). Let Tn be the Galton-Watson

tree generated by ξ conditional on being of size n, where n = 1 mod d, and d is the span of ξ. Then,

taking limits only for n = 1 mod d,

lim
n→∞

E{ρ(Tn)} =
p

1− (1− p)g′(r)
,
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where r = E{ρ(T )} is the unique solution on (0, 1) of

r = p+ (1− p)(g(r)− p0),

T is an unconditional Galton-Watson tree with offspring distribution ξ, and g(s) = E{sξ}.

The proof, which is given in a later section, uses two steps. For an unconditional Galton-

Watson tree T , we have a root level recursion, with ξ still denoting the number of children of the

root:

E{ρ(T )} = p+ (1− p)E
{

1[ξ>0](E{ρ(T )})ξ
}

= p+ (1− p) (g(E{ρ(T )})− p0) .

Thus, indeed, r = E{ρ(T )}. In the second step, one notes (see, e.g., Kolchin, 1986) that the root of

Tn has a number of children that as n→ ∞ tends in distribution to ξ′. As n becomes large, all but

one of these children are roots of unconditional Galton-Watson trees (for the original ξ) and one is

the root of a conditional Galton-Watson tree whose size is n−1 minus the sizes of the unconditional

Galton-Watson trees. This structural view is asymptotically precise, and will be nailed down in a

useful Lemma below. This suggests that if ρ∞ is the limit of E{ρ(Tn)}, then

ρ∞ = p+ (1− p)ρ∞E{rξ′−1} = p+ (1− p)ρg′(r),

so that ρ∞ = p/(1− (1− p)g′(r)).

Example 4: The uniform full binary tree. For the uniform full binary tree, we have g(s) =

(1 + s2)/2, g′(s) = s,

r =
1−

√

1− 2p(1− p)

1− p
,

and

lim
n→∞

E{ρ(Tn)} =
p

√

1− 2p(1− p)
.

This can be verified independently by analytic methods based on generating functions and singularity

analysis (for a good account of singularity analysis, see Flajolet and Sedgewick, 2008).
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Example 5. The Catalan tree. For the Catalan tree, we have g(s) = (1+s)2/4, g′(s) = (1+s)/2,

r = p+ (1− p)(r2/4 + r/2).

This yields

r =
1 + p−

√

1− 2p+ 5p2

1− p
.

We have

lim
n→∞

E{ρ(Tn)} =
2p

√

1− 2p+ 5p2
.

Example 6: The random rooted Cayley tree. A more advanced example is the random

rooted Cayley tree, i.e., a uniform random rooted labeled tree. As pointed out above, this corre-

sponds to Tn with ξ Poisson (1). We have g(s) = g′(s) = exp(s− 1). The constant r is the unique

solution on (0, 1) of

r = p+ (1− p)
(

er−1 − e−1
)

.

Finally,

lim
n→∞

E{ρ(Tn)} =
p

1− (1− p)er−1
=

p

1 + p− r − 1−p
e

.
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Figure 1. We show the limiting probabilities of cutting the root from the leaves for various tree models
as a function of p, the probability of removing an individual node.
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2. Preparing the proof: random walks

Let ξ be a random variable representing the number of children of the root in a critical

Galton-Watson tree: E{ξ} = 1, P{ξ = 0} > 0. Set X = ξ − 1, and let X1, X2, . . . be a sequence

of i.i.d. random variables distributed as X. Define the partial sums S0 = 1, Sn = 1 +
∑n

i=1Xi.

There is a well-known depth first or preorder construction of a random Galton-Watson tree which

lends itself well to the study of all properties of randomly selected nodes (see, e.g., Le Gall, 1989,

or Aldous, 1991). Nodes in an ordered tree can be encoded with a vector of child numbers. The

root corresponds to the empty vector. Its children have encodings 1, 2, . . . , ξ. The children of the

j − th child of the root are encoded by (j, 1), (j, 2), . . .. A preorder listing of the nodes is nothing

but a lexicographic listing of the node vectors.

We can traverse a random Galton-Watson tree by visiting nodes in preorder, starting at

the root. To do so, a list L of nodes to be visited is kept, which is initially of size one (having the

root). When node u is visited, we consider ξu, the number of children of u, and remove u from L.

Thus, L increases by ξu − 1. The next node in lexicographic order is taken from L, and the process

continues until L = 0.

We denote by N the size of a random Galton-Watson tree. The size of L after n nodes have

been processed is denoted by Sn. Thus, S0 = 1, and

Sn = 1 +X1 + · · ·+Xn,

where Xn = ξn − 1, and indexing of the nodes is by their lexicographic rank. The root has rank

one, for example. We have the identity

[N = n] = [S1 > 0, S2 > 0, . . . , Sn−1 > 0, Sn = 0].

The standard circular symmetry argument for random walks (see, e.g., Dwass, 1968) shows that

P {N = n} = P {S0 = 1, S1 > 0, S2 > 0, . . . , Sn−1 > 0, Sn = 0}

=
1

n
P {Sn = 0}

=
1

n
P {X1 + · · ·+Xn = −1} .

The asymptotics for this probability distribution are well-known. Let E{ξ2} < ∞, σ2 = V{ξ} > 0

(which implies P{ξ = 0} > 0), and let the span d be the greatest common divisor of all i for which

P{ξ = i} > 0. A Galton-Watson tree with span d can only have sizes that are 1 mod d. From

Petrov (1975, p. 197) or Kolchin (1986, p. 16), we see that when d = 1,

lim
n→∞

sup
k∈N

∣

∣

∣

∣

∣

σ
√
nP {X1 + · · ·+Xn = k} − 1√

2π
e
− k

2

2σ2n

∣

∣

∣

∣

∣

= 0. (0)

Thus, for d = 1,

P {N = n} ∼ 1

σ
√
2πn3/2

.

In fact, if n→ ∞ such that n = 1 mod d, and d ≥ 1, then

P {N = n} ∼ d

σ
√
2πn3/2
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(Kolchin, 1986, p. 105).

remark. infinite variance. If the variance is infinite, one can replace the estimate (0) by one

that involves stable laws. This will not be pursued in the paper.

3. A structure theorem for Galton-Watson trees

Various ways have been suggested for describing the structure of a random Galton-Watson

tree conditioned on its size. In particular, the idea of a spine or marked (infinite) path, or size-

biasing already present in the work of Rouault (1981) has been made prominent by Lyons, Pemantle

and Peres (1995), who used it to give a novel proof of the Kesten-Stigum theorem. It is useful for

studying both subcritical, critical and supercritical trees. Many proofs are based on this view of

marking one special node at each level to form a spine, see, e.g., Aldous and Pitman (1998), Geiger

and Kaufmann (2004) and Duquesne (2009). Our intent is to give a simple lemma that is useful for

proving properties that are heavily influenced by the shape of the tree near the root.

We provide a bound on the total variation distance between the top few levels of two related

random trees. In this section, T is a Galton-Watson tree with typical litter size ξ, where it is assumed

that E{ξ} = 1, p1 < 1, and V{ξ} = σ2 <∞. Let Tn be T conditional on |T | = n.

The second tree in which the size-biasing is made explicit is denoted by T ′
n. We construct

T ′
n by first generating ξ′ children of the root according to the probability law

P{ξ′ = i} = ipi, i ≥ 1.

Note that

E{ξ′} = E{ξ2} = 1 + σ2.

Among the ξ′ children, choose one uniformly at random, and denote its index by Z. Each child, Z

excepted, is the root of an independent unconditional Galton-Watson tree drawn from the distribu-

tion of T . Denote the size of the tree of child i by N ′
i . If N

def
= 1+

∑

i:i 6=Z N
′
i ≥ n, then remove child

Z (and thus, ξ′ is reduced by one). Otherwise, make child Z the root of a tree that is distributed

as Tn−N .

One can apply the same construction recursively to child Z, and this leads to the well-known

“spine” of the conditional Galton-Watson trees. However, our first result is about the total variation

distance between the probability measures of the vectors of subtree sizes. In Tn, the ξ children of

the root have subtree sizes N = (N1, N2, . . . , Nξ). We pad this vector with zeroes to the right. In

T ′
n, we denote the subtree sizes by N ′ = (N ′

1, . . .), and pad with zeroes to the right. Denote the

total variation distance between the probability measures of these vectors by

d(N ,N ′).

By Doeblin’s coupling lemma, we can couple the trees in such a way that with probability 1 −
d(N ,N ′), both are identical. Indeed, if the number of children matches, and the subtree sizes
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match, then each subtree is by construction a Galton-Watson tree conditioned by its size. Let us

use such a coupling, and let us also maximally couple the nodes marked for removal (say, by depth

first order). Clearly, we have

P{ρ(Tn) 6= ρ(T ′
n)} ≤ P{Tn 6= T ′

n} ≤ d(N ,N ′).

Thus, if d(N ,N ′) = o(1), then

lim
n→∞

(

E{ρ(Tn)} −E{ρ(T ′
n)}
)

= 0.

This shows the usefulness of the construction and Lemma 1.

Lemma 1. Assume that E{ξ} = 1, p1 < 1, and V{ξ} = σ2 <∞. Then

lim
n→∞

d(N ,N ′) = 0.

Proof. Let Wk be the space of all strictly positive integer vectors of length k having sum n − 1.

Then, for all (n1, . . . , nk) ∈Wk,

P{N = (n1, . . . , nk, 0, 0, . . .)} =
P{ξ = k}∏k

j=1P{|T | = nj}
P{|T | = n} .

Next, we have, denoting by T (ℓ), ℓ ≥ 1, independent copies of T ,

P{N ′ = (n1, . . . , nk, 0, 0, . . .)}

≥ P{ξ′ = k}1
k

k
∑

i=1

P







∩1≤j≤k,j 6=i[|T (j)| = nj ] , 1 +
∑

1≤j≤k,j 6=i

|T (j)| < n− 1







= P{ξ′ = k}1
k

k
∑

i=1

∏

1≤j≤k,j 6=i

P{|T (j)| = nj}.

Summing over all k and over all vectors (n1, n2, . . . , nk) ∈Wk, and using a well-known property of

the total variation distance, and using the notation u+ = max(u, 0), we have

d(N ,N ′)

≤
∑

k≥1

∑

(n1,...,nk)∈Wk





P{ξ = k}∏k
j=1P{|T | = nj}

P{|T | = n} −P{ξ = k}
k
∑

i=1

∏

1≤j≤k,j 6=i

P{|T | = nj}





+

=
∑

k≥1

∑

(n1,...,nk)∈Wk

P{ξ = k}
k
∏

j=1

P{|T | = nj}
(

1

P{|T | = n} −
k
∑

i=1

1

P{|T | = ni}

)

+

≤ P{ξ > K||T | = n}+
∑

k≤K

∑

(n1,...,nk)∈Wk

P{ξ = k}
k
∏

j=1

P{|T | = nj}
(

1

P{|T | = n} −
k
∑

i=1

1

P{|T | = ni}

)

+

.

Here K is a fixed large integer, and ξ is the number of children of the root in Tn. It is understood

here that there is no problem of division by zero, as zero factors will occur simultaneously in the
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numerator and denominator. We will need only one term in the last sum of the upper bound. We

also note that the right-hand-side is zero when k = 1. Incorporating this, we have

d(N ,N ′) ≤ P{ξ > K||T | = n}

+
∑

K≥k≥2

∑

(n1,...,nk)∈Wk

P{ξ = k}
k
∏

j=1

P{|T | = nj}
(

1

P{|T | = n} − 1

P{|T | = maxi ni}

)

+
.

Consider the subspace W ′
k consisting of all vectors in Wk with n1 = maxi ni. By the symmetry in

our upper bound, we have

d(N ,N ′) ≤ P{ξ > K||T | = n}+∆K ,

where

∆K
def
=

∑

K≥k≥2

kP{ξ = k}
∑

(n1,...,nk)∈W
′

k

k
∏

j=1

P{|T | = nj}
(

1

P{|T | = n} − 1

P{|T | = n1}

)

+
.

If n1 is fixed, then define W ′′
k−1 as the space of positive k − 1-vectors of sum n− 1− n1. Thus,

∆K ≤
∑

K≥k≥2

kP{ξ = k}×

∑

n1:(n−1)/k≤n1≤n−k

P{|T | = n1}
(

1

P{|T | = n} − 1

P{|T | = n1}

)

+
×

∑

(n2,...,nk)∈W
′′

k

k
∏

j=2

P{|T | = nj}.

The last sum is of interest. It is, in fact, nothing but the probability that the total size of a forest

of k − 1 random Galton-Watson trees is of size n− 1− n1. It is well-known that this is

k − 1

n− 1− n1
P{ξ(1) + · · ·+ ξ(n− 1− n1) = n− n1 − k} =

k − 1

n− 1− n1
P
{

Sn−1−n1 = n− n1 − k
}

,

where ξ(1), . . . are i.i.d. and distributed as ξ (see, e.g., Kolchin, 1986, p. 104), and Sn =
∑n

i=1 ξ(i).

We now have

∆K ≤
∑

K≥k≥2

k(k − 1)P{ξ = k}×

∑

n1:(n−1)/k≤n1≤n−k

P{|T | = n1}P
{

Sn−1−n1 = n− n1 − k
}

n− 1− n1

(

1

P{|T | = n} − 1

P{|T | = n1}

)

+
.

Recalling also that

P{|T | = n} =
1

n
P{Sn = n− 1},

we rewrite the inequality as follows:

∆K ≤
∑

K≥k≥2

k(k − 1)P{ξ = k}×

∑

n1:(n−1)/k≤n1≤n−k

P{Sn1 = n1 − 1}P{Sn−1−n1 = n− n1 − k}
n1(n− 1− n1)

(

n

P{Sn = n− 1} − n1
P{Sn1 = n1 − 1}

)

+

.
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By (0), assuming that the span of ξ is 1, we have a uniform approximation that immediately yields

the following, with all the o(·) terms depending upon the distribution of ξ and n only, but not on k:

∆K ≤
∑

K≥k≥2

k(k − 1)P{ξ = k}×

∑

n1:(n−1)/k≤n1≤n−k

exp

(

− (k−1)2

2σ2(n−1−n1)

)

+ o(1)

n
3/2
1 (n− 1− n1)3/2σ

√
2π

(

n3/2 − n
3/2
1 + o(n3/2)

)

+
.

(4)

We show that the upper bound in (4) tends to zero. Note that

n3/2 − n
3/2
1 = n3/2

(

1−
(

1− n− n1
n

)3/2
)

≤ 3

2

√
n(n− n1) (use (1− u)3/2 ≥ 1− 3u/2, u > 0).

Fix k and, discarding constants, look at the sums

Bk
def
=

∑

n1:(n−1)/k≤n1≤n−k

√
n(n− n1)

exp

(

− (k−1)2

2σ2(n−1−n1)

)

+ o(1)

n
3/2
1 (n− 1− n1)3/2

and

Ck
def
=

∑

n1:(n−1)/k≤n1≤n−k

n3/2
exp

(

− (k−1)2

2σ2(n−1−n1)

)

+ o(1)

n
3/2
1 (n− 1− n1)3/2

.

We first show that for any fixed K,

sup
K≥k≥2

Bk = o(1), sup
n≥5

sup
K≥k≥2

Ck <∞. (5)

Using (4), we then have for any fixed K,

d(N ,N ′) ≤ P{ξ > K||T | = n}+ o(1).

We conclude by showing that

lim
K→∞

sup
n≥1

P{ξ > K||T | = n} = 0. (6)

The proof of (5) makes use of the fact that if f is a monotone decreasing function on the

reals, then
k
∑

i=ℓ

f(i) ≤ f(ℓ) +

∫ k

ℓ
f(x) dx.
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We assume throughout that n is large enough. Clearly, we have for some constants c, c′ not depending

upon k or n,

Bk ≤ c
∑

n1:(n−1)/k≤n1≤n−k

√
n

n
3/2
1

√
n− 1− n1

≤ c′k3/2

n

∑

n1:(n−1)/k≤n1≤n−k

k3/2

n
√
n− 1− n1

≤ c′k3/2

n

1√
k − 1

+
c′k3/2

n

∫ n−k

(n−1)/k

1√
n− 1− x

dx

≤ c′k3/2

n

1√
k − 1

+
2c′k3/2√

n

≤ 3c′K3/2

√
n

.

Very similar calculations can be done for Ck:

Ck ≤ cn3/2
∑

n1:(n−1)/k≤n1≤n−k

1

n
3/2
1 (n− 1− n1)3/2

≤ c′k3/2
∑

n1:(n−1)/k≤n1≤n−k

1

(n− 1− n1)3/2

≤ c′k3/2

(k − 1)3/2
+ c′k3/2

∫ n−k

(n−1)/k

1

(n− 1− x)3/2
dx

≤ c′k3/2

(k − 1)3/2
+

2c′k3/2
√

n− 1− (n− 1)/k

≤ c′′K3/2.

Thus, we only need to show (6).

Fix k. Then, using Kolchin’s formula again,

P{ξ = k||T | = n} =
pkP{|T (1)|+ · · ·+ |T (k)| = n− 1}

P{|T | = n}

=
pk

k
n−1P{Sn−1 = n− 1− k}

1
nP{Sn = n− 1}

= pk

k
[

exp
(

− k2

2σ2(n−1)

)

+ o(1)
]

(n− 1)
√
n− 1

×
√
n

n(1 + o(1))

(where o(1) does not depend upon k)

=

(

n

n− 1

)3/2

kpk

[

exp

(

− k2

2σ2(n− 1)

)

+ o(1)

]

≤ (1 + o(1))kpk.

Thus,

P{ξ ≥ K||T | = n} ≤ (1 + o(1))
∞
∑

k=K

kpk,
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from which our result follows since we assumed that
∑

kpk = 1. The above derivation assumes that

the span of ξ is 1. It is easy to verify that the results remain valid for d > 1.

4. Proof of Theorem 1

We first deal with ρ(T ′
n):

E{ρ(T ′
n)} = p+ (1− p)E{rξ′−1ρ(T ′

N )} = p+ (1− p)E{rξ′−1
E{ρ(T ′

N )|N}}, (7)

where ξ′ has distribution {ipi, i ≥ 1}, and N = max(0, n− 1− |T (1)| − · · · − |T (ξ′ − 1)|), with the

T (i)’s i.i.d. unconditional Galton-Watson trees. Furthermore, we agree that T ′
0 is the empty tree,

and that ρ(T ′
0) = 1, to make (7) valid.

We will show that

lim
n→∞

E{ρ(T ′
n)} = λ

where λ is the solution of

λ = p+ (1− p)λE{rξ′−1}, (8)

i.e.,

λ =
p

1− (1− p)E{rξ′−1}
.

Before we continue, we note that g′ is the generating function of ξ′ − 1. Thus we have

λ =
p

1− (1− p)g′(r)
.

To prove (8), define

ρ+n = sup
ℓ:ℓ≥n

E{ρ(T ′
ℓ)}, ρ−n = inf

ℓ:ℓ≥n
E{ρ(T ′

ℓ)}.

From (7), we have

ρ+n ≤ p+ (1− p)P{N < n/2}+E{rξ′−1}ρ+
⌈n/2⌉

.

Take the limit on both sides. If

lim
n→∞

P{N < n/2} = 0, (9)

then we can conclude that

lim sup
n→∞

E{ρ(T ′
n)} ≤ p+ (1− p)g′(r) lim sup

n→∞
E{ρ(T ′

n)},

and thus, that

lim sup
n→∞

E{ρ(T ′
n)} ≤ p

1− (1− p)g′(r)
.

Similarly,

ρ−n ≥ p− (1− p)P{N < n/2}+E{rξ′−1}ρ−
⌈n/2⌉

= p− (1− p)P{N < n/2}+ g′(r)ρ−
⌈n/2⌉

,

from which we conclude that

lim inf
n→∞

E{ρ(T ′
n)} ≥ p

1− (1− p)g′(r)
.
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Therefore, both limits are the same, and we are done. It remains to show (9). For ξ′ > 1, with

“o(1)” below not depending upon ξ′,

P

{

|T (1)|+ · · ·+ |T (ξ′ − 1)| ≥ n− 2

2

∣

∣

∣ξ′
}

=
∑

k:k≥(n−2)/2

P{|T (1)|+ · · ·+ |T (ξ′ − 1)| = k|ξ′}

=
∑

k:k≥(n−2)/2

ξ′ − 1

k
P{Sk = k − ξ′ + 1|ξ′}

=
∑

k:k≥(n−2)/2

ξ′ − 1

k

exp

(

− (ξ′−1)2

2σ2k

)

+ o(1)

σ
√
2πk

≤ 1 + o(1)

σ
√
2π

∑

k:k≥(n−2)/2

ξ′ − 1

k3/2
1 + o(1)

σ
√
2π

≤ c(ξ′ − 1)√
n

for some constant c not depending upon ξ′ or n. Thus,

P{N < n/2} = P{n− 1− |T (1)| − · · · − |T (ξ′ − 1)| < n/2}
= P{n/2− 1 ≤ |T (1)| − · · · − |T (ξ′ − 1)|}
= P{n/2− 1 ≤ |T (1)|+ · · ·+ |T (ξ′ − 1)|, ξ′ ≥ 2}

≤ E

{

c(ξ′ − 1)√
n

}

=
cσ2√
n
.

This concludes the proof.

5. Other applications

Lemma 1 renders many proofs simple. For example, assuming the conditions of the Lemma,

we see that if Zn,1 is the size of the first generation in the conditional Galton-Watson tree Tn, then

Zn,1
L→ ξ′,

where ξ′ has the size-biased distribution {ipi, i ≥ 1}, and L→ denotes convergence in distribution.

This known fact follows immediately from the inequality on total variation distances:

d(Zn,1, ξ
′) ≤ d(N ,N ′) = o(1).

All other properties of N and N ′ are shared. For example, if Mn = maxiNi is the maximal size of

a subtree of the root of Tn, then, under the conditions of Lemma 1, for every fixed ℓ ≥ 0,

lim
n→∞

P{Mn = n− 1− ℓ} = P







∑

1≤k<ξ′

|T (k)| = ℓ







,
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where T (1), . . . are independent copies of T , the Galton-Watson tree for ξ, and ξ′ is independent of

these trees. In particular, for binary trees, we have

lim
n→∞

P{Mn = n− 1} = P{ξ′ = 1} = p1,

and for ℓ > 0,

lim
n→∞

P{Mn = n− 1− ℓ} = (1− p1)P{|T | = ℓ}.

If in a Galton-Watson tree T , we only consider levels 0, k, 2k, 3k, . . ., then we obtain a new

Galton-Watson tree T ∗. If |T | = n, then |T ∗| is random. Under reasonable conditions, we expect

|T ∗| ≈ n/k if k is fixed. In any case, |T ∗| ≥ Hn/k, where Hn is the height of Tn. Consider the

population size Zn,k of the k-th generation in Tn, which is the size of the first generation Z∗
|T∗|,1 in

the corresponding T ∗. Thus,

d(Zn,k, ξ
′
k) ≤ P{|T ∗| ≤M}+ sup

m≥M
d(Z∗

m,1, ξ
′
k),

where ξ′k is the size-biased distribution of the population in an unconditional Galton-Watson tree,

i.e., if Zk is the law of the size of the k-th generation in an ordinary critical Galton-Watson tree,

then

P{ξ′k = i} = iP{Zk = i}, i ≥ 1.

Since M is arbitrary and Hn/
√
n

L→ H, where H is a strictly positive random variable with the

theta distribution (see, e.g., Flajolet and Odlyzko, 1982), we see that

Zn,k
L→ ξ′k.

Results of this nature have been around in various forms. For example, Janson (2006b) showed that

lim
n→∞

E{Zn,k} = 1 + kσ2 = E{ξ′k},

where σ2 = V{ξ}.

Consider sums of the form

Vn =

∞
∑

k=0

ϕ(k)ψ(Zn,k),

where ϕ(k) is summable in k and ψ is a bounded function. Our results imply that

lim
n→∞

E{Vn} =

∞
∑

k=0

ϕ(k)E{ψ(ξ′k)}.

By Fatou’s lemma, it is easy to see that the right-hand side is a lower bound. Furthermore, the upper

bound follows from the summability of ϕ(k) and the fact that for each fixed k, d(Zn,k, ξ
′
k) = o(1).

Lemma 1 is severely limited—it can only handle questions about the behavior of the top

of Tn. In contrast, Aldous’s fringe result (1991), which states that the subtree rooted at a uniform

random node in Tn tends in distribution to the unconditional Galton-Watson tree T , is useful for

global parameters far away from the root.
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Much remains to be done. For example, if V{ξ} = ∞, under which conditions is it still

true that d(N ,N ′) → 0? Can the total variation distance be bounded in a nice manner, so that the

total variation bound can be applied to a much larger chunk of Tn, with a construction of a path of

marked nodes of decent length? Can one easily derive limit laws for weighted sums of functions of

subtrees, and, in particular, for weighted sums for functions of subtree sizes? What is the probability

of cutting a conditional Galton-Watson tree for ξ with E{ξ} < 1 and not normalizable to be critical?
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Séminaire de Probabilités XXIII, edited by J. Azéma, P. A. Meyer and M. Yor, vol. 1372, pp. 258–

274, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1989.

R. Lyons, R. Pemantle, and Y. Peres, “Conceptual proof of Llog L criteria for mean behav-

ior of branching processes,” Annals of Probability, vol. 23, pp. 1125–1138, 1995.

A. Meir and J. W. Moon, “On the altitude of nodes in random trees,” Canadian Journal of Mathe-

matics, vol. 30, pp. 997–1015, 1978.

J. W. Moon, Counting labelled trees, Canadian Mathematical Congress, Montreal, 1970.

J. Neveu and J. W. Pitman, “The branching process in a Brownian excursion,” in: Séminaire de Prob-
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