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Abstract

Self-interacting diffusions are processes living on a compact Riemannian manifold defined by a
stochastic differential equation with a drift term depending on the past empirical measure µt of
the process. The asymptotics of µt is governed by a deterministic dynamical system and under
certain conditions (µt) converges almost surely towards a deterministic measure µ∗ (see Benaïm,
Ledoux, Raimond (2002) and Benaïm, Raimond (2005)). We are interested here in the rate of
convergence of µt towards µ∗. A central limit theorem is proved. In particular, this shows that
greater is the interaction repelling faster is the convergence.
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1 Introduction

Self-interacting diffusions

Let M be a smooth compact Riemannian manifold and V : M × M → R a sufficiently smooth
mapping1. For all finite Borel measure µ, let Vµ : M →R be the smooth function defined by

Vµ(x) =

∫

M

V (x , y)µ(d y).

Let (eα) be a finite family of vector fields on M such that
∑

α eα(eα f )(x) = ∆ f (x), where ∆ is the
Laplace operator on M and eα( f ) stands for the Lie derivative of f along eα. Let (Bα) be a family of
independent Brownian motions.

A self-interacting diffusion on M associated to V can be defined as the solution to the stochastic
differential equation (SDE)

dX t =
∑

α

eα(X t) ◦ dBαt −∇(Vµt)(X t)d t

where µt =
1
t

∫ t

0
δXs

ds is the empirical occupation measure of (X t).

In absence of drift (i.e V = 0), (X t) is just a Brownian motion on M but in general it defines a
non Markovian process whose behavior at time t depends on its past trajectory through µt . This
type of process was introduced in Benaim, Ledoux and Raimond (2002) ([3]) and further analyzed
in a series of papers by Benaim and Raimond (2003, 2005, 2007) ([4], [5] and [6]). We refer
the reader to these papers for more details and especially to [3] for a detailed construction of the
process and its elementary properties. For a general overview of processes with reinforcement we
refer the reader to the recent survey paper by Pemantle (2007) ([16]).

Notation and Background

We letM (M) denote the space of finite Borel measures on M , P (M)⊂M (M) the space of proba-
bility measures. If I is a metric space (typically, I = M ,R+×M or [0, T]×M) we let C(I) denote the
space of real valued continuous functions on I equipped with the topology of uniform convergence
on compact sets. The normalized Riemann measure on M will be denoted by λ.

Let µ ∈ P (M) and f : M → R a nonnegative or µ−integrable Borel function. We write µ f for
∫

f dµ, and f µ for the measure defined as f µ(A) =
∫

A
f dµ. We let L2(µ) denote the space of

functions for which µ| f |2 < ∞, equipped with the inner product 〈 f , g〉µ = µ( f g) and the norm

‖ f ‖µ =
p

µ f 2. We simply write L2 for L2(λ).

Of fundamental importance in the analysis of the asymptotics of (µt) is the mapping Π :M (M)→
P (M) defined by

Π(µ) = ξ(Vµ)λ (1)

1The mapping Vx : M →R defined by Vx(y) = V (x , y) is C2 and its derivatives are continuous in (x , y).

1816



where ξ : C(M)→ C(M) is the function defined by

ξ( f )(x) =
e− f (x)

∫

M
e− f (y)λ(d y)

. (2)

In [3], it is shown that the asymptotics of µt can be precisely related to the long term behavior of a
certain semiflow on P (M) induced by the ordinary differential equation (ODE) onM (M) :

µ̇=−µ+Π(µ). (3)

Depending on the nature of V, the dynamics of (3) can either be convergent or nonconvergent lead-
ing to similar behaviors for {µt} (see [3]). When V is symmetric, (3) happens to be a quasigradient
and the following convergence result holds.

Theorem 1.1 ([5]). Assume that V is symmetric, i.e. V (x , y) = V (y, x). Then the limit set of {µt}
(for the topology of weak* convergence) is almost surely a compact connected subset of

Fix(Π) = {µ ∈ P (M) : µ= Π(µ)}.

In particular, if Fix(Π) is finite then (µt) converges almost surely toward a fixed point of Π. This
holds for a generic function V (see [5]). Sufficient conditions ensuring that Fix(Π) has cardinal one
are as follows:

Theorem 1.2 ([5], [6]). Assume that V is symmetric and that one of the two following conditions hold

(i) Up to an additive constant V is a Mercer kernel: For some constant C, V (x , y) = K(x , y) + C,
and for all f ∈ L2,

∫

K(x , y) f (x) f (y)λ(d x)λ(d y)≥ 0.

(ii) For all x ∈ M , y ∈ M , u ∈ Tx M , v ∈ Ty M

Ricx(u, u) +Ricy(v, v) +Hessx ,y V ((u, v), (u, v))≥ K(‖u‖2+ ‖v‖2)

where K is some positive constant. Here Ricx stands for the Ricci tensor at x and Hessx ,y is the
Hessian of V at (x , y).

Then Fix(Π) reduces to a singleton {µ∗} and µt → µ∗ with probability one.

As observed in [6] the condition (i) in Theorem 1.2 seems well suited to describe self-repelling
diffusions. On the other hand, it is not clearly related to the geometry of M . Condition (ii) has a
more geometrical flavor and is robust to smooth perturbations (of M and V ). It can be seen as a
Bakry-Emery type condition for self interacting diffusions.

In [5], it is also proved that every stable (for the ODE (3)) fixed point of Π has a positive probability
to be a limit point for µt ; and any unstable fixed point cannot be a limit point for µt .
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Organisation of the paper

Let µ∗ ∈ Fix(Π). We will assume that

Hypothesis 1.3. µt converges a.s. towards µ∗.

In this paper we intend to study the rate of this convergence. Let

∆t = et/2(µet −µ∗).

It will be shown that, under some conditions to be specified later, for all g = (g1, . . . , gn) ∈ C(M)n

the process
�

∆s g1, . . . ,∆s gn, V∆s
�

s≥t converges in law, as t → ∞, toward a certain stationary
Ornstein-Uhlenbeck process (Z g , Z) on Rn × C(M). This process is defined in Section 2. The main
result is stated in section 3 and some examples are developed. It is in particular observed that a
strong repelling interaction gives a faster convergence. The section 4 is a proof section.

In the following K (respectively C) denotes a positive constant (respectively a positive random
constant). These constants may change from line to line.

2 The Ornstein-Uhlenbeck process (Z g , Z).

For a more precise definition of Ornstein-Uhlenbeck processes on C(M) and their basic properties,
we refer the reader to the appendix (section 5). Throughout all this section we let µ ∈ P (M) and
g = (g1, ..., gn) ∈ C(M)n. For x ∈ M we set Vx : M →R defined by Vx(y) = V (x , y).

2.1 The operator Gµ

Let h ∈ C(M) and let Gµ,h :R× C(M)→R be the linear operator defined by

Gµ,h(u, f ) = u/2+Covµ(h, f ), (4)

where Covµ is the covariance on L2(µ), that is the bilinear form acting on L2× L2 defined by

Covµ( f , h) = µ( f h)− (µ f )(µh).

We define the linear operator Gµ : C(M)→ C(M) by

Gµ f (x) = Gµ,Vx
( f (x), f ) = f (x)/2+Covµ(Vx , f ). (5)

It is easily seen that ‖Gµ f ‖∞ ≤ (2‖V‖∞ + 1/2)‖ f ‖∞. In particular, Gµ is a bounded operator. Let
{e−tGµ} denote the semigroup acting on C(M) with generator −Gµ. From now on we will assume
the following:

Hypothesis 2.1. There exists κ > 0 such that µ << λ with ‖ dµ
dλ
‖∞ < ∞, and such that for all

f ∈ L2(λ), 〈Gµ f , f 〉λ ≥ κ‖ f ‖2λ.

Let

λ(−Gµ) = lim
t→∞

log(‖e−tGµ‖)
t

.

This limit exists by subadditivity. Then
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Lemma 2.2. Hypothesis 2.1 implies that λ(−Gµ)≤−κ < 0.

Proof : For all f ∈ L2(λ),

d

d t
‖e−tGµ f ‖2λ =−2〈Gµe−tGµ f , e−tGµ f 〉λ ≤−2κ‖e−tGµ f ‖λ.

This implies that ‖e−tGµ f ‖λ ≤ e−κt‖ f ‖λ. Denote by gt the solution of the differential equation

d

d t
gt(x) = Covµ(Vx , gt)

with g0 = f ∈ C(M). Note that e−tGµ f = e−t/2 gt . It is straightforward to check that (using the
fact that ‖ dµ

dλ
‖∞ < ∞) d

d t
‖gt‖λ ≤ K‖gt‖λ with K a constant depending only on V and µ. Thus

supt∈[0,1] ‖gt‖λ ≤ K‖ f ‖λ. Now, since for all x ∈ M and t ∈ [0,1]
�

�

�

�

d

d t
gt(x)

�

�

�

�

≤ K‖gt‖λ ≤ K‖ f ‖λ,

we have ‖g1‖∞ ≤ K‖ f ‖λ. This implies that ‖e−Gµ f ‖∞ ≤ K‖ f ‖λ.

Now for all t > 1, and f ∈ C(M),

‖e−tGµ f ‖∞ = ‖e−Gµe−(t−1)Gµ f ‖∞ ≤ K‖e−(t−1)Gµ f ‖λ
≤ Ke−κ(t−1)‖ f ‖λ ≤ Ke−κt‖ f ‖∞.

This implies that ‖e−tGµ‖ ≤ Ke−κt , which proves the lemma. QED

The adjoint of Gµ is the operator onM (M) defined by the relation

m(Gµ f ) = (G∗µm) f

for all m ∈M (M) and f ∈ C(M). It is not hard to verify that

G∗µm=
1

2
m+ (V m)µ− (µ(V m))µ. (6)

2.2 The generator Aµ and its inverse Qµ

Let H2 be the Sobolev space of real valued functions on M , associated with the norm ‖ f ‖2H = ‖ f ‖2λ+
‖∇ f ‖2λ. Since Π(µ) and λ are equivalent measures with continuous Radon-Nykodim derivative,
L2(Π(µ)) = L2(λ). We denote by Kµ the projection operator, acting on L2(Π(µ)), defined by

Kµ f = f −Π(µ) f .

We denote by Aµ the operator acting on H2 defined by

Aµ f =
1

2
∆ f − 〈∇Vµ,∇ f 〉.
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Note that for f and h in H2 (denoting 〈·, ·〉 the Riemannian inner product on M)

〈Aµ f , h〉Π(µ) =−
1

2

∫

〈∇ f ,∇h〉(x)Π(µ)(d x).

For all f ∈ C(M) there exists Qµ f ∈ H2 such that Π(µ)(Qµ f ) = 0 and

f −Π(µ) f = Kµ f =−AµQµ f . (7)

It is shown in [3] that Qµ f is C1 and that there exists a constant K such that for all f ∈ C(M) and
µ ∈ P (M),

‖Qµ f ‖∞+ ‖∇Qµ f ‖∞ ≤ K‖ f ‖∞. (8)

Finally, note that for f and h in L2,
∫

〈∇Qµ f ,∇Qµh〉(x)Π(µ)(d x) =−2〈AµQµ f ,Qµh〉Π(µ) = 2〈 f ,Qµh〉Π(µ). (9)

2.3 The covariance C g
µ

We let bCµ denote the bilinear continuous form bCµ : C(M)× C(M)→R defined by

bCµ( f , h) = 2〈 f ,Qµh〉Π(µ).

This form is symmetric (see its expression given by (9)). Note also that for some constant K depend-
ing on µ, |bCµ( f , h)| ≤ K‖ f ‖∞×‖h‖∞.

We let Cµ denote the mapping Cµ : M × M → R defined by Cµ(x , y) = bCµ(Vx , Vy). Let M̃ =
{1, . . . , n} ∪M and C g

µ : M̃ × M̃ →R be the function defined by

C g
µ (x , y) =







bCµ(gx , g y) for x , y ∈ {1, . . . , n},
Cµ(x , y) for x , y ∈ M ,
bCµ(Vx , g y) for x ∈ M , y ∈ {1, . . . , n}.

Then Cµ and C g
µ are covariance functions (as defined in subsection 5.2).

In the following, when n = 0, M̃ = M and C g
µ = Cµ. When n ≥ 1, C(M̃) can be identified with

Rn× C(M).

Lemma 2.3. There exists a Brownian motion on Rn× C(M) with covariance C g
µ .

Proof : Since the argument are the same for n≥ 1, we just do it for n= 0. Let

dCµ(x , y) :=
p

Cµ(x , x)− 2Cµ(x , y) + Cµ(y, y)

= ‖∇Qµ(Vx − Vy)‖Π(µ) ≤ K‖Vx − Vy‖∞

where the last inequality follows from (8). Then dCµ(x , y) ≤ Kd(x , y). Thus dCµ satisfies (30) and
we can apply Theorem 5.4 of the appendix (section 5). QED
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2.4 The process (Z g , Z)

Let Gg
µ :Rn× C(M)→Rn× C(M) be the operator defined by

Gg
µ =

�

In/2 Ag
µ

0 Gµ

�

(10)

where In is the identity matrix on Rn and Ag
µ : C(M) → Rn is the linear map defined by Ag

µ( f ) =
�

Covµ( f , g1), . . . , Covµ( f , gn)
�

.

Since Gg
µ is a bounded operator, for any law ν on Rn × C(M), there exists Z̃ = (Z g , Z) an Ornstein-

Uhlenbeck process of covariance C g
µ and drift −Gg

µ , with initial distribution given by ν (using Theo-
rem 5.6). More precisely, Z̃ is the unique solution of

¨

dZt = dWt − GµZt d t
dZ gi

t = dW gi
t −

�

Z gi
t /2+Covµ(Zt , gi)

�

d t, i = 1, . . . , n
(11)

where Z̃0 is a Rn×C(M)-valued random variable of law ν and W̃ = (W g , W ) is a Rn×C(M)-valued
Brownian motion of covariance C g

µ independent of Z̃ . In particular, Z is an Ornstein-Uhlenbeck
process of covariance Cµ and drift −Gµ. Denote by P

g,µ
t the semigroup associated to Z̃ . Then

Proposition 2.4. Assume hypothesis 2.1. Then there exists πg,µ the law of a centered Gaussian variable
in Rn× C(M), with variance Var(πg,µ) where for (u, m) ∈Rn×M (M),

Var(πg,µ)(u, m) := E
�

(mZ∞+ 〈u, Z g
∞〉)

2
�

=

∫ ∞

0

bCµ( ft , ft)d t

with ft = e−t/2
∑

i ui gi + V mt , and where mt is defined by

mt f = m0(e
−tGµ f ) +

n
∑

i=1

ui

∫ t

0

e−s/2Covµ(gi , e−(t−s)Gµ f )ds. (12)

Moerover,

(i) πg,µ is the unique invariant probability measure of Pt .

(ii) For all bounded continuous function ϕ on Rn × C(M) and all (u, f ) ∈ Rn × C(M),
limt→∞P

g,µ
t ϕ(u, f ) = πg,µϕ.

Proof : This is a consequence of Theorem 5.7. To apply it one can remark that Gg
µ is an operator

like the ones given in example 5.11.

The variance Var(πg,µ) is given by Var(πg,µ)(ν) =
∫∞

0
〈ν , e−sGg

µC g
µ es(Gg

µ)∗ν〉ds for ν = (u, m) ∈ Rn ×
M (M) = C(M̃)∗. Thus Var(πg,µ)(u, m) =

∫∞
0
bCµ( ft , ft)d t with ft =

∑

i ut(i)gi + V mt and where

(ut , mt) = e−t(Gg
µ)∗(u, m). Now

(Gg
µ)
∗ =

�

I/2 0
(Ag
µ)∗ (Gµ)∗

�

1821



and (Ag
µ)∗u=

∑

i ui(gi −µgi)µ. Thus ut = e−t/2u and mt is the solution with m0 = m of

dmt

d t
=−e−t/2

 

∑

i

ui(gi −µgi)

!

µ− (Gµ)∗mt . (13)

Note that (13) is equivalent to

d

d t
(mt f ) =−e−t/2Covµ

 

∑

i

ui gi , f

!

−mt(Gµ f )

for all f ∈ C(M), and m0 = m. From which we deduce that

mt = e−tG∗µm0−
∫ t

0

e−s/2e−(t−s)G∗µ

 

∑

i

ui(gi −µgi)µ

!

ds

which implies the formula for mt given by (12). QED

An Ornstein-Uhlenbeck process of covariance C g
µ and drift −Gg

µ will be called stationary when its
initial distribution is πg,µ.

3 A central limit theorem for µt

We state here the main results of this article. We assume µ∗ ∈ Fix(Π) satisfies hypotheses 1.3 and
2.1. Set ∆t = et/2(µet −µ∗), Dt = V∆t and Dt+· = (Dt+s)s≥0. Then

Theorem 3.1. Dt+· converges in law, as t →∞, towards a stationary Ornstein-Uhlenbeck process of
covariance Cµ∗ and drift −Gµ∗ .

For g ∈ C(M)n, we set Dg
t = (∆t g, Dt) and Dg

t+· = (D
g
t+s)s≥0. Then

Theorem 3.2. Dg
t+· converges in law towards a stationary Ornstein-Uhlenbeck process of covariance

C g
µ∗

and drift −Gg
µ∗

.

Define bC : C(M)× C(M)→R the symmetric bilinear form defined by

bC( f , h) =

∫ ∞

0

bCµ∗( ft , ht)d t, (14)

with (ht is defined by the same formula, with h in place of f )

ft(x) = e−t/2 f (x)−
∫ t

0

e−s/2Covµ∗( f , e−(t−s)Gµ∗Vx)ds. (15)

Corollary 3.3. ∆t g converges in law towards a centered Gaussian variable Z g
∞ of covariance

E[Z gi
∞Z

g j
∞] = bC(gi , g j).

Proof : Follows from theorem 3.2 and the calculus of Var(πg,µ)(u, 0). QED
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3.1 Examples

3.1.1 Diffusions

Suppose V (x , y) = V (x), so that (X t) is just a standard diffusion on M with invariant measure
µ∗ = ex p(−V )λ

λexp (−V ) .

Let f ∈ C(M). Since e−tGµ∗1= e−t/21, ft defined by (15) is equal to e−t/2 f . Thus

bC( f , g) = 2µ∗( f Qµ∗ g). (16)

Corollary 3.3 says that

Theorem 3.4. For all g ∈ C(M)n, ∆g
t converges in law toward a centered Gaussian variable

(Z g1
∞ , . . . , Z gn

∞ ), with covariance given by

E(Z gi
∞Z

g j
∞) = 2µ∗(giQµ∗ g j).

Remark 3.5. This central limit theorem for Brownian motions on compact manifolds has already been
considered by Baxter and Brosamler in [1] and [2]; and by Bhattacharya in [7] for ergodic diffusions.

3.1.2 The case µ∗ = λ and V symmetric.

Suppose here that µ∗ = λ and that V is symmetric. We assume (without loss of generality since
Π(λ) = λ implies that Vλ is a constant function) that Vλ= 0.

Since V is compact and symmetric, there exists an orthonormal basis (eα)α≥0 in L2(λ) and a se-
quence of reals (λα)α≥0 such that e0 is a constant function and

V =
∑

α≥1

λαeα⊗ eα.

Assume that for all α, 1/2+ λα > 0. Then hypothesis 2.1 is satisfied, and the convergence of µt
towards λ holds with positive probability (see [6]).

Let f ∈ C(M) and ft defined by (15), denoting f α = 〈 f , eα〉λ and f αt = 〈 ft , eα〉λ, we have f 0
t =

e−t/2 f 0 and for α≥ 1,

f αt = e−t/2 f α−λαe−(1/2+λα)t
�

eλα t − 1

λα

�

f α

= e−(1/2+λα)t f α.

Using the fact that bCλ( f , g) = 2λ( f Qλg), this implies that

bC( f , g) = 2
∑

α≥1

∑

β≥1

1

1+λα+λβ
〈 f , eα〉λ〈g, eβ〉λλ(eαQλeβ).

This, with corollary 3.3, proves
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Theorem 3.6. Assume hypothesis 1.3 and that 1/2 + λα > 0 for all α. Then for all g ∈ C(M)n,
∆g

t converges in law toward a centered Gaussian variable (Z g1
∞ , . . . , Z gn

∞ ), with covariance given by
E(Z gi

∞Z
g j
∞) = bC(gi , g j).

In particular,

E(Z eα
∞ Z

eβ
∞ ) =

2

1+λα+λβ
λ(eαQλeβ).

When all λα are positive, which corresponds to what is named a self-repelling interaction in [6], the
rate of convergence of µt towards λ is bigger than when there is no interaction, and the bigger is
the interaction (that is larger λα’s) faster is the convergence.

4 Proof of the main results

We assume hypothesis 1.3 and µ∗ satisfies hypothesis 2.1. For convenience, we choose for the
constant κ in hypothesis 2.1 a constant less than 1/2. In all this section, we fix g = (g1, ..., gn) ∈
C(M)n.

4.1 A lemma satisfied by Qµ

We denote by X (M) the space of continuous vector fields on M , and equip the spaces P (M) and
X (M) respectively with the weak convergence topology and with the uniform convergence topology.

Lemma 4.1. For all f ∈ C(M), the mapping µ 7→ ∇Qµ f is a continuous mapping from P (M) in
X (M).

Proof : Let µ and ν be inM (M), and f ∈ C(M). Set h= Qµ f . Then f =−Aµh+Π(µ) f and

‖∇Qµ f −∇Qν f ‖∞ = ‖−∇QµAµh+∇QνAµh‖∞
= ‖∇h+∇QνAµh‖∞
≤ ‖∇(h+QνAνh)‖∞+ ‖∇Qν(Aµ− Aν)h‖∞.

Since ∇(h+QνAνh) = 0 and (Aµ− Aν)h= 〈∇Vµ−ν ,∇h〉, we get

‖∇Qµ f −∇Qν f ‖∞ ≤ K‖〈∇Vµ−ν ,∇h〉‖∞. (17)

Using the fact that (x , y) 7→ ∇Vx(y) is uniformly continuous, the right hand term of (17) con-
verges towards 0, when d(µ,ν) converges towards 0, d being a distance compatible with the weak
convergence. QED

4.2 The process ∆

Set ht = Vµt and h∗ = Vµ∗. Recall ∆t = et/2(µet − µ∗) and Dt(x) = V∆t(x) = ∆t Vx . Then (Dt) is
a continuous process taking its values in C(M) and Dt = et/2(het − h∗).
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To simplify the notation, we set Ks = Kµs
, Qs = Qµs

and As = Aµs
. Let (M f

t )t≥1 be the martingale

defined by M f
t =

∑

α

∫ t

1
eα(Qs f )(Xs)dBαs . The quadratic covariation of M f and Mh (with f and h in

C(M)) is given by

〈M f , Mh〉t =
∫ t

1

〈∇Qs f ,∇Qsh〉(Xs)ds.

Then for all t ≥ 1 (with Q̇t =
d
d t
Qt) ,

Qt f (X t)−Q1 f (X1) = M f
t +

∫ t

1

Q̇s f (Xs)ds−
∫ t

1

Ks f (Xs)ds.

Thus

µt f =
1

t

∫ t

1

Ks f (Xs)ds+
1

t

∫ t

1

Π(µs) f ds+
1

t

∫ 1

0

f (Xs)ds

= −
1

t

�

Qt f (X t)−Q1 f (X1)−
∫ t

1

Q̇s f (Xs)ds

�

+
M f

t

t
+

1

t

∫ t

1

〈ξ(hs), f 〉λds+
1

t

∫ 1

0

f (Xs)ds.

For f ∈ C(M) (using the fact that µ∗ f = 〈ξ(h∗), f 〉λ), ∆t f =
∑5

i=1∆
i
t f with

∆1
t f = e−t/2

 

−Qet f (X et ) +Q1 f (X1) +

∫ et

1

Q̇s f (Xs)ds

!

∆2
t f = e−t/2M f

et

∆3
t f = e−t/2

∫ et

1

〈ξ(hs)− ξ(h∗)− Dξ(h∗)(hs − h∗), f 〉λds

∆4
t f = e−t/2

∫ et

1

〈Dξ(h∗)(hs − h∗), f 〉λds

∆5
t f = e−t/2

 

∫ 1

0

f (Xs)ds−µ∗ f

!

.

Then Dt =
∑5

i=1 Di
t , where Di

t = V∆i
t . Finally, note that

〈Dξ(h∗)(h− h∗), f 〉λ =−Covµ∗(h− h∗, f ). (18)

4.3 First estimates

We recall the following estimate from [3]: There exists a constant K such that for all f ∈ C(M) and
t > 0,

‖Q̇t f ‖∞ ≤
K

t
‖ f ‖∞.
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This estimate, combined with (8), implies that for f and h in C(M),

〈M f −Mh〉t ≤ K‖ f − h‖∞× t

and that

Lemma 4.2. There exists a constant K depending on ‖V‖∞ such that for all t ≥ 1, and all f ∈ C(M)

‖∆1
t f ‖∞+ ‖∆5

t f ‖∞ ≤ K × (1+ t)e−t/2‖ f ‖∞, (19)

which implies that ((∆1 +∆5)t+s)s≥0 and ((D1 + D5)t+s)s≥0 both converge towards 0 (respectively in
M (M) and in C(R+×M)).

We also have

Lemma 4.3. There exists a constant K such that for all t ≥ 0 and all f ∈ C(M),

E[(∆2
t f )2] ≤ K‖ f ‖2∞,

|∆3
t f | ≤ K‖ f ‖λ× e−t/2

∫ t

0

‖Ds‖2λds,

|∆4
t f | ≤ K‖ f ‖λ× e−t/2

∫ t

0

es/2‖Ds‖λds.

Proof : The first estimate follows from

E[(∆2
t f )2] = e−tE[(M f

et )2] = e−tE[〈M f 〉et ] ≤ K‖ f ‖2∞.

The second estimate follows from the fact that

‖ξ(h)− ξ(h∗)− Dξ(h∗)(h− h∗)‖λ = O(‖h− h∗‖2λ).

The last estimate follows easily after having remarked that

|〈Dξ(h∗)(hs − h∗), f 〉|= |Covµ∗(hs − h∗, f )| ≤ K‖ f ‖λ×‖hs − h∗‖λ.

This proves this lemma. QED

4.4 The processes ∆′ and D′

Set ∆′ =∆2+∆3+∆4 and D′ = D2+ D3+ D4. For f ∈ C(M), set

ε
f
t = et/2〈ξ(het )− ξ(h∗)− Dξ(h∗)(het − h∗), f 〉λ.

Then

d∆′t f =−
∆′t f

2
d t + dN f

t + ε
f
t d t + 〈Dξ(h∗)(Dt), f 〉λd t

where for all f ∈ C(M), N f is a martingale. Moreover, for f and h in C(M),

〈N f , Nh〉t =
∫ t

0

〈∇Qes f (X es),∇Qes h(X es)〉ds.

1826



Then, for all x ,

dD′t(x) =−
D′t(x)

2
d t + dMt(x) + εt(x)d t + 〈Dξ(h∗)(Dt), Vx〉λd t

where M is the martingale in C(M) defined by M(x) = N Vx and εt(x) = ε
Vx
t . We also have

Gµ∗(D
′)t(x) =

D′t(x)

2
− 〈Dξ(h∗)(D′t), Vx〉λ.

Denoting Lµ∗ = L−Gµ∗ (defined by equation (32) in the appendix (section 5)),

d Lµ∗(D
′)t(x) = dD′t(x) + Gµ∗(D

′)t(x)d t

and we have

Lµ∗(D
′)t(x) = Mt(x) +

∫ t

0

ε′s(x)ds

with ε′s(x) = ε
′
sVx where for all f ∈ C(M),

ε′s f = ε f
s + 〈Dξ(h

∗)((D1+ D5)s), f 〉λ.

Using lemma 5.5,

D′t = L−1
µ∗
(M)t +

∫ t

0

e−(t−s)Gµ∗ε′sds. (20)

Denote ∆t g = (∆t g1, . . . ,∆t gn), ∆′t g = (∆′t g1, . . . ,∆′t gn) , N g = (N g1 , . . . , N gn) and ε′t g =
(ε′t g1, . . . ,ε′t gn). Then, denoting Lg

µ∗
= L−Gg

µ∗
(with Gg

µ∗
defined by (10)) we have

Lg
µ∗
(∆′g, D′)t = (N

g
t , Mt) +

∫ t

0

(ε′s g,ε′s)ds

so that (using lemma 5.5 and integrating by parts)

(∆′t g, D′t) = (L
g
µ∗
)−1(N g , M)t +

∫ t

0

e
−(t−s)Gg

µ∗ (ε′s g,ε′s)ds. (21)

Moreover
(Lg
µ∗
)−1(N g , M)t =

�

bN g1
t , . . . , bN gn

t , L−1
µ∗
(M)t

�

,

where

bN gi
t = N gi

t −
∫ t

0

�

N gi
s

2
+ bCµ∗(L

−1
µ∗
(M)s, gi)

�

ds.
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4.5 Estimation of ε′t

4.5.1 Estimation of ‖L−1
µ∗
(M)t‖λ

Lemma 4.4. (i) For all α≥ 2, there exists a constant Kα such that for all t ≥ 0,

E[‖L−1
µ∗
(M)t‖αλ]

1/α ≤ Kα.

(ii) a.s. there exists C with E[C]<∞ such that for all t ≥ 0,

‖L−1
µ∗
(M)t‖λ ≤ C(1+ t).

Proof : We have
d L−1
µ∗
(M)t = dMt − Gµ∗ L

−1
µ∗
(M)t d t.

Let N be the martingale defined by

Nt =

∫ t

0

*

L−1
µ∗
(M)s

‖L−1
µ∗
(M)s‖λ

, dMs

+

λ

.

We have 〈N〉t ≤ K t for some constant K . Then

d‖L−1
µ∗
(M)t‖2λ = 2‖L−1

µ∗
(M)t‖λdNt − 2〈L−1

µ∗
(M)t , Gµ∗ L

−1
µ∗
(M)t〉λd t

+ d

�
∫

〈M(x)〉tλ(d x)

�

.

Note that there exists a constant K such that

d

d t

�
∫

〈M(x)〉tλ(d x)

�

≤ K

and that (see hypothesis 2.1)

〈L−1
µ∗
(M)t , Gµ∗ L

−1
µ∗
(M)t〉λ ≥ κ‖L−1

µ∗
(M)t‖2λ.

This implies that
d

d t
E[‖L−1

µ∗
(M)t‖2λ]≤−2κE[‖L−1

µ∗
(M)t‖2λ] + K

which implies (i) for α= 2. For α > 2, we find that

d

d t
E[‖L−1

µ∗
(M)t‖αλ] ≤ −ακE[‖L−1

µ∗
(M)t‖αλ] + KE[‖L−1

µ∗
(M)t‖α−2

λ ]

≤ −ακE[‖L−1
µ∗
(M)t‖αλ] + KE[‖L−1

µ∗
(M)t‖αλ]

α−2
α

which implies that E[‖L−1
µ∗
(M)t‖αλ] is bounded.

We now prove (ii). Fix α > 1. Then there exists a constant K such that

‖L−1
µ∗
(M)t‖2λ

(1+ t)α
≤ ‖L−1

µ∗
(M)0‖2λ+ 2

∫ t

0

‖L−1
µ∗
(M)s‖λ

(1+ s)α
dNs + K .
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Then Bürkholder-Davies-Gundy inequality (BDG inequality in the following) inequality implies that

E



sup
t≥0

‖L−1
µ∗
(M)t‖2λ

(1+ t)α



≤ K + 2sup
t≥0

�
∫ t

0

Kds

(1+ s)2α

�1/2

which is finite. This implies the lemma by taking α= 2. QED

4.5.2 Estimation of ‖Dt‖λ

Note that for all f ∈ C(M), |ε f
t | ≤ Ke−t/2‖Dt‖2λ×‖ f ‖∞. Thus

|ε′ t f | ≤ Ke−t/2(1+ t + ‖Dt‖2λ)×‖ f ‖∞.

This implies (using lemma 2.2 and the fact that 0< κ < 1/2)

Lemma 4.5. There exists K such that










∫ t

0

e−(t−s)Gµ∗ε′sds











∞

≤ Ke−κt

�

1+

∫ t

0

e−(1/2−κ)s‖Ds‖2λds

�

. (22)

This lemma with lemma 4.4-(ii) implies the following

Lemma 4.6. a.s. there exists C with E[C]<∞ such that

‖Dt‖λ ≤ C ×
�

1+ t +

∫ t

0

e−s/2‖Ds‖2λds

�

. (23)

Proof : First note that
‖Dt‖λ ≤ ‖D′t‖λ+ K(1+ t)e−t/2.

Using the expression of D′t given by (20), we get

‖D′t‖λ ≤ ‖L−1
µ∗
(M)t‖λ+











∫ t

0

e−(t−s)Gµ∗ε′sds











∞

≤ C(1+ t) + Ke−κt

�

1+

∫ t

0

e−(1/2−κ)s‖Ds‖2λds

�

(with E[C]<∞) which implies the lemma. QED

Lemma 4.7. Let x and ε be real functions, and α a real constant. Assume that for all t ≥ 0, we have

x t ≤ α+
∫ t

0
εs xsds. Then x t ≤ αexp

�

∫ t

0
εsds

�

.

Proof : Similarly to the proof of Gronwall’s lemma, we set yt =
∫ t

0
εs xsds and take λt =

yt exp
�

−
∫ t

0
εsds

�

. Then λ̇t ≤ αεt exp
�

−
∫ t

0
εsds

�

and

yt ≤ α

∫ t

0

εs exp

�
∫ t

s

εudu

�

ds ≤ αexp

�
∫ t

0

εudu

�

−α.

This implies the lemma. QED
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Lemma 4.8. a.s., there exists C such that for all t, ‖Dt‖λ ≤ C(1+ t).

Proof : Lemmas 4.6 and 4.7 imply that

‖Dt‖λ ≤ C(1+ t)× exp

�

C

∫ t

0

e−s/2‖Ds‖λds

�

.

Since hypothesis 1.3 implies that lims→∞ e−s/2‖Ds‖λ = 0, then a.s. for all ε > 0, there exists Cε such
that ‖Dt‖λ ≤ Cεe

εt . Taking ε < 1/4, we get
∫ ∞

0

e−s/2‖Ds‖2λds ≤ Cε.

This proves the lemma. QED

4.5.3 Estimation of ε′t

Lemma 4.9. a.s. there exists C such that for all f ∈ C(M),

|ε′ t f | ≤ C(1+ t)2e−t/2‖ f ‖∞

Proof : We have |ε′ t f | ≤ |ε f
t |+ K(1+ t)e−t/2‖ f ‖∞ and

|ε f
t | ≤ K‖ f ‖λ× e−t/2‖Dt‖2λ ≤ C‖ f ‖∞× (1+ t)2e−t/2

by lemma 4.8. QED

4.6 Estimation of ‖Dt − L−1
µ∗
(M)t‖∞

Lemma 4.10. (i) ‖Dt − L−1
µ∗
(M)t‖∞ ≤ Ce−κt .

(ii) ‖(∆t g, Dt)− (L
g
µ∗
)−1(N g , M)t‖∞ ≤ C(1+ ‖g‖∞)e−κt .

Proof : Note that (i) is implied by (ii). We prove (ii). We have ‖(∆t g, Dt) − (∆′t g, D′t)‖∞ ≤
K(1+ ‖g‖∞)(1+ t)e−κt . So to prove this lemma, using (21), it suffices to show that











∫ t

0

e
−(t−s)Gg

µ∗ (ε′s g,ε′s)ds











∞

≤ K(1+ ‖g‖∞)e−κt . (24)

Using hypothesis 2.1 and the definition of Gg
µ∗

, we have that for all positive t, ‖e−tGg
µ∗‖∞ ≤ Ke−κt .

This implies ‖e−(t−s)Gg
µ∗ (ε′s g,ε′s)‖∞ ≤ Ke−κ(t−s)‖ε′s‖∞×(1+‖g‖∞). Thus the term (24) is dominated

by

K(1+ ‖g‖∞)
∫ t

0

e−κ(t−s)‖ε′s‖∞ds,

from which we prove (24) like in the previous lemma. QED
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4.7 Tightness results

We refer the reader to section 5.1 in the appendix (section 5), where tightness criteria for families
of C(M)-valued random variables are given. They will be used in this section.

4.7.1 Tightness of (L−1
µ∗
(M)t)t≥0

In this section we prove the following lemma which in particular implies the tightness of (Dt)t≥0
and of (D′t)t≥0.

Lemma 4.11. (L−1
µ∗
(M)t)t≥0 is tight.

Proof : We have the relation (that defines L−1
µ∗
(M))

d L−1
µ∗
(M)t(x) =−Gµ∗ L

−1
µ∗
(M)t(x)d t + dMt(x).

Thus, using the expression of Gµ∗

d L−1
µ∗
(M)t(x) =−

1

2
L−1
µ∗
(M)t(x)d t + At(x)d t + dMt(x),

with
At(x) = bCµ∗(Vx , L−1

µ∗
(M)t).

Since µ∗ is absolutely continuous with respect to λ, we have that (with Lip(At) the Lipschitz constant
of At , see (36)).

‖At‖∞+ Lip(At)≤ K‖L−1
µ∗
(M)t‖λ.

Therefore (using lemma 4.4 (i) for α= 2), supt E[‖At‖2∞]<∞.

To prove this tightness result, we first prove that for all x , (L−1
µ∗
(M)t(x))t is tight. Setting Z x

t =
L−1
µ∗
(M)t(x) we have

d

d t
E[(Z x

t )
2] ≤ −E[(Z x

t )
2] + 2E[|Z x

t | × |At(x)|] +
d

d t
E[〈M(x)〉t]

≤ −E[(Z x
t )

2] + KE[(Z x
t ))

2]1/2+ K

which implies that (L−1
µ∗
(M)t(x))t is bounded in L2(P) and thus tight.

We now estimate E[|Z x
t − Z y

t |α]1/α for α greater than 2 and the dimension of M . Setting Z x ,y
t =
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Z x
t − Z y

t , we have (using lemma 4.4 (i) for the last inequality)

d

d t
E[(Z x ,y

t )
α] ≤ −

α

2
E[(Z x ,y

t )
α] +αE[(Z x ,y

t )
α−1|At(x)− At(y)|]

+
α(α− 1)

2
E

�

(Z x ,y
t )

α−2 d

d t
〈M(x)−M(y)〉t

�

≤ −
α

2
E[(Z x ,y

t )
α] + Kd(x , y)E[(Z x ,y

t )
α−1‖L−1(M)t‖λ]

+Kd(x , y)2E[(Z x ,y
t )

α−2]

≤ −
α

2
E[(Z x ,y

t )
α] + Kd(x , y)E[(Z x ,y

t )
α]

α−1
α E[‖L−1(M)t‖αλ]

1/α

+Kd(x , y)2E[(Z x ,y
t )

α]
α−2
α

≤ −
α

2
E[(Z x ,y

t )
α] + Kd(x , y)E[(Z x ,y

t )
α]

α−1
α

+Kd(x , y)2E[(Z x ,y
t )

α]
α−2
α .

Thus, if x t = E[(Z x ,y
t )

α]/d(x , y)α,

d x t

d t
≤−

α

2
x t + K x

α−1
α

t + K x
α−2
α

t .

It is now an exercise to show that x t ≤ K and so that E[(Z x ,y
t )

α]1/α ≤ Kd(x , y). Using proposition
5.2, this completes the proof for the tightness of (L−1

µ∗
(M)t)t . QED

Remark 4.12. Kolmogorov’s theorem (see theorem 1.4.1 and its proof in Kunita (1990)), with the
estimates given in the proof of this lemma, implies that

sup
t
E[‖L−1

µ∗
(M)t‖∞]<∞.

4.7.2 Tightness of ((Lg
µ∗
)−1(N g , M)t)t≥0

Let b∆g be defined by the relation

(b∆g, L−1
µ∗
(M)) = (Lg

µ∗
)−1(N g , M).

Set At g = (At g1, . . . , At gn) with At gi = bCµ∗(gi , L−1
µ∗
(M)t). Then

d b∆t g = dN g
t −

b∆t g

2
d t + At gd t.

Thus,

b∆t g = e−t/2

∫ t

0

es/2dN g
s + e−t/2

∫ t

0

es/2As gds.

Using this expression it is easy to prove that (b∆t g)t≥0 is bounded in L2(P). This implies, using also
lemma 4.11

Lemma 4.13. ((Lg
µ∗
)−1(N g , M)t)t≥0 is tight.
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4.8 Convergence in law of (N g , M)t+·− (N g , M)t

In this section, we denote by Et the conditional expectation with respect toFet . We also set Q= Qµ∗

and C = bCµ∗ .

4.8.1 Preliminary lemmas.

For f ∈ C(M) and t ≥ 0, set N f ,t
s = N f

t+s − N f
t .

Lemma 4.14. For all f and h in C(M), limt→∞〈N f ,t , Nh,t〉s = s× C( f , h).

Proof : For z ∈ M and u> 0, set
¨

G(z) = 〈∇Q f ,∇Qh〉(z)− C( f , h);
Gu(z) = 〈∇Qu f ,∇Quh〉(z)− C( f , h).

We have

〈N f ,t , Nh,t〉s − s× C( f , h) =

∫ et+s

et

Gu(Xu)
du

u

=

∫ et+s

et

(Gu− G)(Xu)
du

u
+

∫ et+s

et

G(Xu)
du

u
.

Integrating by parts, we get that

∫ et+s

et

G(Xu)
du

u
= (µet+s G−µet G) +

∫ s

0

(µet+u G)du.

Since µ∗G = 0, this converges towards 0 on the event {µt → µ∗}. The term
∫ et+s

et (Gu − G)(Xu)
du
u

converges towards 0 because (µ, z) 7→ ∇Qµ f (z) is continuous. This proves the lemma. QED

Let f1, . . . , fn be in C(M). Let (tk) be an increasing sequence converging to ∞ such that the con-
ditional law of M n,k = (N f1,tk , . . . , N fn,tk) given Fetk converges in law towards a Rn-valued process
W n = (W1, . . . , Wn).

Lemma 4.15. W n is a centered Gaussian process such that for all i and j,

E[W n
i (s)W

n
j (t)] = (s ∧ t)C( fi , f j).

Proof : We first prove that W n is a martingale. For all k, M n,k is a martingale. For all u ≤ v, BDG
inequality implies that (M n,k(v)−M n,k(u))k is bounded in L2.

Let l ≥ 1, ϕ ∈ C(Rl), 0 ≤ s1 ≤ · · · ≤ sl ≤ u and (i1, . . . , il) ∈ {1, . . . , n}l . Then for all k and
i ∈ {1, . . . , n}, the martingale property implies that

Etk
[(M n,k

i (v)−M n,k
i (u))Zk] = 0
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where Zk is of the form
Zk = ϕ(M

n,k
i1
(s1), . . . , M n,k

il
(sl)). (25)

Using the convergence of the conditional law of M n,k given Fetk towards the law of W n and since
(M n,k

i (v)−M n,k
i (u))k is uniformly integrable (because it is bounded in L2), we prove that E[(W n

i (v)−
W n

i (u))Z] = 0 where Z is of the form

Z = ϕ(W n
i1
(s1), . . . , W n

il
(sl)). (26)

This implies that W n is a martingale.

We now prove that for (i, j) ∈ {1, . . . , n} (with C = Cµ∗),

〈W n
i , W n

j 〉s = s× C( fi , f j).

By definition of 〈M n,k
i , M n,k

j 〉 (in the following 〈·, ·〉vu = 〈·, ·〉v − 〈·, ·〉u)

Etk

h�

(M n,k
i (v)−M n,k

i (u))(M
n,k
j (v)−M n,k

j (u))− 〈M
n,k
i , M n,k

j 〉
v
u

�

Zk

i

= 0 (27)

where Zk is of the form (25). Using the convergence in law and the fact that (M n,k(v)−M n,k(u))2k
is bounded in L2 (still using BDG inequality), we prove that as k→∞,

Etk
[(M n,k

i (v)−M n,k
i (u))(M

n,k
j (v)−M n,k

j (u))Zk]

converges towards E[(W n
i (v)−W n

i (u))(W
n
j (v)−W n

j (u))Z] with Z of the form (26). Now,

Etk
[〈M n,k

i , M n,k
j 〉v Zk]− v ×E[Z]× C(x i , x j)

= Etk
[(〈M n,k

i , M n,k
j 〉v − v× C( fi , f j))Zk] + v× (Etk

[Zk]−E[Z])× C( fi , f j)

The convergence in L2 of 〈M n,k
i , M n,k

j 〉v towards v × C( fi , f j) shows that the first term converges

towards 0. The convergence of the conditional law of M n,k with respect to Fetk towards W n shows
that the second term converges towards 0. Thus

E
h�

(W n
i (v)−W n

i (u))(W
n
j (v)−W n

j (u))− (v− u)C( fi , f j)
�

Z
i

= 0.

This shows that 〈W n
i , W n

j 〉s = s× C( fi , f j). We conclude using Lévy’s theorem. QED

4.8.2 Convergence in law of Mt+·−Mt

In this section, we denote by Lt the conditional law of Mt+· − Mt knowing Fet . Then Lt is a
probability measure on C(R+×M).

Proposition 4.16. When t →∞, Lt converges weakly towards the law of a C(M)-valued Brownian
motion of covariance Cµ∗ .

Proof : In the following, we will denote Mt+·−Mt by M t . We first prove that

Lemma 4.17. {Lt : t ≥ 0} is tight.
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Proof : For all x ∈ M , t and u in R+,

Et[(M
t
u(x))

2] = Et





∫ t+u

t

d〈M(x)〉s



≤ Ku.

This implies that for all u ∈R+ and x ∈ M , (M t
u(x))t≥0 is tight.

Let α > 0. We fix T > 0. Then for (u, x) and (v, y) in [0, T]×M , using BDG inequality,

Et[|M t
u(x)−M t

v (y)|
α]

1
α ≤ Et[|M t

u(x)−M t
u(y)|

α]
1
α +Et[|M t

u(y)−M t
v (y)|

α]
1
α

≤ Kα× (
p

T d(x , y) +
p

|v− u|)

where Kα is a positive constant depending only on α, ‖V‖∞ and Lip(V ) the Lipschitz constant of V .

We now let DT be the distance on [0, T]×M defined by

DT ((u, x), (v, y)) = Kα× (
p

T d(x , y) +
p

|v− u|).

The covering number N([0, T]× M , DT ,ε) is of order ε−d−1/2 as ε → 0. Taking α > d + 1/2, we
conclude using proposition 5.2. QED

Let (tk) be an increasing sequence converging to ∞ and N a C(M)-valued random process (or a
C(R+×M) random variable) such that Ltk

converges in law towards N .

Lemma 4.18. N is a C(M)-valued Brownian motion of covariance Cµ∗ .

Proof : Let W be a C(M)-valued Brownian motion of covariance Cµ∗ . Using lemma 4.15, we prove
that for all (x1, . . . , xn) ∈ M n, (N(x1), . . . , N(xn)) has the same distribution as (W (x1), . . . , X (xn)).
This implies the lemma. QED

Since {Lt} is tight, this lemma implies that Lt converges weakly towards the law of a C(M)-valued
Brownian motion of covariance Cµ∗ . QED

4.8.3 Convergence in law of (N g , M)t+·− (N g , M)t

Let L g
t denote the conditional law of (N g , M)t+·− (N g , M)t knowing Fet . Then L g

t is a probability
measure on C(R+×M ∪ {1, . . . , n}). Let (N g,t , M t) denote the process (N g , M)t+·− (N g , M)t .

Let (W f
t )(t, f )∈R+×C(M) be a X (M)-valued Brownian motion of covariance bCµ∗ . Denoting Wt(x) =

W Vx
t , then W = (Wt(x))(t,x)∈R+×M is a C(M)-valued Brownian motion of covariance Cµ∗ . Let W g

denote (W g1 , . . . , W gn), and let (W g , W ) denote the process (W g
t , (Wt(x))x∈M )t≥0.

Proposition 4.19. As t goes to∞, L g
t converges weakly towards the law of (W g , W ).

Proof : We first prove that {L g
t : t ≥ 0} is tight. This is a straightforward consequence of the

tightness of {Lt} and of the fact that for all α > 0, there exists Kα such that for all nonnegative u
and v, Et[|N

g,t
u − N g,t

v |α]
1
α ≤ Kα

p

|v− u|.
Let (tk) be an increasing sequence converging to ∞ and (Ñ g , M̃) a Rn × C(M)-valued random
process (or a C(R+ × M ∪ {1, . . . , n}) random variable) such that L g

tk
converges in law towards

(Ñ g , M̃). Then lemmas 4.14 and 4.15 imply that (Ñ g , M̃) has the same law as (W g , W ). Since {L g
t }

is tight, L g
t convergences towards the law of (W g , W ). QED
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4.9 Convergence in law of D

4.9.1 Convergence in law of (Dt+s − e−sGµ∗Dt)s≥0

We have

D′t+s − e−sGµ∗D′t = L−1
µ∗
(M t)s +

∫ s

0

e−(s−u)Gµ∗ε′t+udu.

Since (using lemma 4.9)






∫ s

0
e−(s−u)Gµ∗ε′t+udu







∞
≤ Ke−κt and ‖Dt − D′t‖∞ ≤ K(1 + t)e−t/2, this

proves that (Dt+s − e−sGµ∗Dt − L−1
µ∗
(Mt+· −Mt)s)s≥0 converges towards 0. Since L−1

µ∗
is continuous,

this proves that the law of L−1
µ∗
(Mt+· −Mt) converges weakly towards L−1

µ∗
(W ). Since L−1

µ∗
(W ) is an

Ornstein-Uhlenbeck process of covariance Cµ∗ and drift −Gµ∗ started from 0, we have

Theorem 4.20. The conditional law of (Dt+s − e−sGµ∗Dt)s≥0 given Fet converges weakly towards an
Ornstein-Uhlenbeck process of covariance Cµ∗ and drift −Gµ∗ started from 0.

4.9.2 Convergence in law of Dt+·

We can now prove theorem 3.1. We here denote by Pt the semigroup of an Ornstein-Uhlenbeck
process of covariance Cµ∗ and drift −Gµ∗ , and we denote by π its invariant probability measure.

Since (Dt)t≥0 is tight, there exists ν ∈ P (C(M)) and an increasing sequence tn converging towards
∞ such that Dtn

converges in law towards ν . Then Dtn+· converges in law towards (L−1
µ∗
(W )s +

e−sGµ∗ Z0), with Z0 independent of W and distributed like ν . This proves that Dtn+· converges in law
towards an Ornstein-Uhlenbeck process of covariance Cµ∗ and drift −Gµ∗ .

We now fix t > 0. Let sn be a subsequence of tn such that Dsn−t+· converges in law. Then Dsn−t con-
verges towards a law we denote by νt and Dsn−t+· converges in law towards an Ornstein-Uhlenbeck
process of covariance Cµ∗ and drift −Gµ∗ . Since Dsn

= Dsn−t+t , Dsn
converges in law towards νtPt .

On the other hand Dsn
converges in law towards ν . Thus νtPt = ν .

Let ϕ be a Lipschitz bounded function on C(M). Then

|νtPtϕ−πϕ| =
�

�

�

�

∫

(Ptϕ( f )−πϕ)νt(d f )

�

�

�

�

≤
∫

|Ptϕ( f )−Ptϕ(0)|νt(d f ) + |Ptϕ(0)−πϕ| (28)

where the second term converges towards 0 (using proposition 2.4 (ii) or theorem 5.7 (ii)) and the
first term is dominated by (using lemma 5.8) Ke−κt

∫

‖ f ‖∞νt(d f ).

It is easy to check that
∫

‖ f ‖∞νt(d f ) = lim
k→∞

∫

(‖ f ‖∞ ∧ k)νt(d f )

= lim
k→∞

lim
n→∞

E[‖Dsn−t‖∞ ∧ k] ≤ sup
t
E[‖Dt‖∞].
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Since

‖Dt‖∞ ≤ ‖D1
t + D5

t ‖∞+ ‖L
−1
µ∗
(M)t‖∞+











∫ t

0

e(t−s)Gµ∗ε′sds











∞

,

using the estimates (19), the proof of lemma 4.10 and remark 4.12, we get that

sup
t≥0

E[‖Dt‖∞]<∞.

Taking the limit in (28), we prove νϕ = πϕ for all Lipschitz bounded function ϕ on C(M). This
implies ν = π, which proves the theorem. QED

4.9.3 Convergence in law of Dg

Set D′t
g = (∆′t g, D′t). Since ‖Dg

t −D′gt ‖∞ ≤ K(1+ t)e−t/2, instead of studying Dg , we can only study
D′t

g . Then

D′gt+s − e
−sGg

µ∗D′gt = (Lg
µ∗
)−1(N g,t , M t)s +

∫ s

0

e
−(s−u)Gg

µ∗ (ε′t+u g,ε′t+u)du.

The norm of the second term of the right hand side (using the proof of lemma 4.10) is dominated
by

K(1+ ‖g‖∞)
∫ s

0

e−κ(s−u)‖ε′t+u‖∞du ≤ K

∫ s

0

e−κ(s−u)(1+ t + u)2e−(t+u)/2du

whcih is less than Ke−κt . Like in section 4.9.1, since (Lg
µ∗
)−1(W g , W ) is an Ornstein-Uhlenbeck

process of covariance C g
µ∗

and drift −Gg
µ∗

started from 0,

Theorem 4.21. The conditional law of ((∆g , D)t+s − e
−sGg

µ∗ (∆g , D)t)s≥0 given Fet converges weakly
towards an Ornstein-Uhlenbeck process of covariance C g

µ∗
and drift −Gg

µ∗
started from 0.

From this theorem, like in section 4.9.2, we prove theorem 3.2. QED

5 Appendix : Ornstein-Uhlenbeck processes on C(M)

5.1 Tighness in P (C(M))

Let (M , d) be a compact metric space. Denote by P (C(M)) the space of Borel probability measures
on C(M). Since C(M) is separable and complete, Prohorov theorem (see [8]) asserts that X ⊂
P (C(M)) is tight if and only if it is relatively compact.

The next proposition gives a useful criterium for a class of random variables to be tight. It follows
directly from [15] (Corollary 11.7 p. 307 and the remark following Theorem 11.2). A function
ψ : R+ → R+ is a Young function if it is convex, increasing and ψ(0) = 0. If Z is a real valued
random variable, we let

‖Z‖ψ = inf{c > 0 : E
�

ψ(|Z |/c)
�

≤ 1}.

For ε > 0, we denote by N(M , d;ε) the covering number of E by balls of radius less than ε (i.e. the
minimal number of balls of radius less than ε that cover E), and by D the diameter of M .
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Proposition 5.1. Let (Ft)t∈I be a family of C(M)-valued random variables and ψ a Young function.
Assume that

(i) There exists x ∈ E such that (Ft(x))t∈I is tight;

(ii) ‖Ft(x)− Ft(y)‖ψ ≤ Kd(x , y);

(iii)
∫ D

0
ψ−1(N(M , d;ε))dε <∞.

Then (Ft)t≥0 is tight.

Proposition 5.2. Suppose M is a compact finite dimensional manifold of dimension r, d is the Rieman-
nian distance, and

[E|Ft(x)− Ft(y)|α]1/α ≤ Kd(x , y)

for some α > r. Then conditions (ii) and (iii) of Proposition 5.1 hold true.

Proof : One has N(E, d;ε) of order ε−r ; and for ψ(x) = xα,‖ · ‖ψ is the Lα norm. Hence the result.
QED

5.2 Brownian motions on C(M).

Let C : M × M → R be a covariance function, that is a continuous symmetric function such that
∑

i j aia jC(x i , x j)≥ 0 for every finite sequence (ai , x i) with ai ∈R and x i ∈ M .

A Brownian motion on C(M) with covariance C is a continuous C(M)-valued stochastic process
W = {Wt}t≥0 such that W0 = 0 and for every finite subset S ⊂R+× M̃ , {Wt(x)}(t,x)∈S is a centered
Gaussian random vector with

E[Ws(x)Wt(y)] = (s ∧ t)C(x , y).

For d ′ a pseudo-distance on M and for ε > 0, let

ω(ε) = sup{η > 0 : d(x , y)≤ η⇒ d ′(x , y)≤ ε}. (29)

Then N(M , d;ωC(ε)) ≥ N(M , d ′;ε). We will consider the following hypothsis that d ′ may or may
not satisfy:

∫ 1

0

log(N(M , d;ω(ε)) dε <∞. (30)

Let dC be the pseudo-distance on M defined by

dC(x , y) =
p

C(x , x)− 2C(x , y) + C(y, y).

When d ′ = dC , the function ω defined by (29) will be denoted by ωC .

Remark 5.3. Assume that M is a compact finite dimensional manifold and that dC(x , y)≤ Kd(x , y)α

for some α > 0. Then ωC(ε)≤ (
ε
K
)1/α and N(M , d;η) = O(η−dim(M)); so that dC satisfies (30).

Theorem 5.4. Assume dC satisfies (30). Then there exists a Brownian motion on C(M) with covariance
C .
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Proof : By Mercer Theorem (see e.g [11]) there exists a countable family of function Ψi ∈ C(M),
i ∈ N, such that C(x , y) =

∑

iΨi(x)Ψi(y), and the convergence is uniform. Let Bi , i ∈ N, be a
family of independent standard Brownian motions. Set W n

t (x) =
∑

i≤n Bi
tΨi(x), n ≥ 0. Then, for

each (t, x) ∈ R+ × M , the sequence (W n
t (x))n≥1 is a martingale. It is furthermore bounded in L2

since
E[(W n

t (x))
2] = t

∑

i≤n

Ψi(x)
2 ≤ tC(x , x).

Hence by Doob’s convergence theorem one may define Wt(x) =
∑

i≥0 Bi
tΨi(x). Let now S ⊂R+×M

be a countable and dense set. It is easily checked that the family (Wt(x))(t,x)∈S is a centered Gaussian
family with covariance given by

E[Ws(x)Wt(y)] = (s ∧ t)C(x , y),

In particular, for t ≥ s

E[(Ws(x)−Wt(y))
2] = sC(x , x)− 2sC(x , y) + tC(y, y)

≤ K(t − s) + sdC(x , y)2

This later bound combined with classical results on Gaussian processes (see e.g Theorem 11.17 in
[15]) implies that (t, x) 7→ Wt(x) admits a version uniformly continuous over ST = {(t, x) ∈ S :
t ≤ T}. By density it can be extended to a continuous (in (t, x)) process W = (Wt(x)){(t,x)∈R+×M}.
QED

5.3 Ornstein-Ulhenbeck processes

Let A : C(M)→ C(M) be a bounded operator and C a covariance satisfying hypothesis 30. Let W be
C(M)-valued Brownian motion with covariance C .

An Ornstein-Ulhenbeck process with drift A, covariance C and initial condition F0 = f ∈ C(M) is
defined to be a continuous C(M)-valued stochastic process such that

Ft − f =

∫ t

0

AFsds+Wt . (31)

We let (etA)t∈R denote the linear flow induced by A. For each t, etA is a bounded operator on C(M).
Let LA : C(R+×M)→ C(R+×M) be defined by

LA( f )t = ft − f0−
∫ t

0

Afsds, t ≥ 0. (32)

Lemma 5.5. The restriction of LA to C0(R+×M) = { f ∈ C(R+×M) : f0 = 0} is bijective with inverse
(LA)−1 defined by

L−1
A (g)t = gt +

∫ t

0

e(t−s)AAgsds. (33)
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Proof : Observe that LA( f ) = 0 implies that ft = etA f0. Hence LA restricted to C0(R+ × M) is
injective. Let g ∈ C0(R+×M) and let ft be given by the right hand side of (33). Then

ht = LA( f )t − gt =

∫ t

0

e(t−s)AAgsds−
∫ t

0

Afsds.

It is easily seen that h is differentiable and that d
d t

ht = 0. This proves that ht = h0 = 0. QED

This lemma implies for all f ∈ C(M), g ∈ C0(R+ × M) the solution to LA( f ) = g, with f0 = f is
given by ft = etA f + L−1

A (g)t . This implies

Theorem 5.6. Let A be a bounded operator acting on C(M). Let C be a covariance function satisfying
hypothesis 30. Then there exists a unique solution to (31), given by

Ft = etA f + L−1
A (W )t .

Note that L−1
A (W )t is Gaussian and its variance VarFt

(µ) := E[〈µ, Ft〉2] (with µ ∈ M (M)) is given
by

VarFt
(µ) =

∫ t

0

〈µ, esACesA∗µ〉ds. (34)

where C : M (M) → C(M) is the operator defined by Cµ(x) =
∫

M
C(x , y)µ(d y). *** We refer to

[10] for the calculation of VarFt
. Note that the results given in Theorem 5.6 are not included in

[10].

5.3.1 Asymptotic Behaviour

Let λ(A) = limt→∞
log(‖etA‖

t
. Denote by Pt the semigroup associated to an Ornstein-Uhlenbeck pro-

cess of covariance C and drift A. Then for all bounded measurable ϕ : C(M)→R and f ∈ C(M),

Ptϕ( f ) = E[ϕ(Ft)], (35)

where Ft is the solution to (31), with F0 = f .

Theorem 5.7. Assume that λ(A) < 0. Then there exists a centered Gaussian variable in C(M), with
variance V given by

V(µ) =

∫ ∞

0

〈µ, esACesA∗µ〉ds.

Let π denote the law of this Gaussian variable. Let dV be the pseudo-distance defined by dV(x , y) =
p

V(δx −δy). Assume furthermore that dC and dV satisfy (30). Then

(i) π is the unique invariant probability measure of Pt .

(ii) For all bounded continuous function ϕ on C(M) and all f ∈ C(M),

lim
t→∞

Ptϕ( f ) = πϕ.
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Proof : The fact that λ(A) < 0 implies that limt→∞VarFt
(µ) = V(µ) < ∞. Let νt denote the law

of Ft , where Ft is the solution to (31), with F0 = f . Since Ft is Gaussian, every limit point of
{νt} (for the weak* topology) is the law of a C(M)-valued Gaussian variable with variance V. The
proof then reduces to show that (νt) is relatively compact or equivalently that {Ft} is tight. We
use Proposition 5.1. The first condition is clearly satisfied. Let ψ(x) = ex2

− 1. It is easily verified
that for any real valued Gaussian random variable Z with variance σ2, ‖Z‖Ψ = σ

p

8/3. Hence
‖Ft(x)− Ft(y)‖ψ ≤ 2dV(x , y) so that condition (ii) holds with dV. Denoting ω (defined by (29)) by

ωV when d ′ = dV, N(M , d;ωV(ε)) ≥ N(M , dV;ε) and since ψ−1(u) =
p

log(u− 1) condition (iii)
is verified. QED

Even thought we don’t have the speed of convergence in (ii), we have

Lemma 5.8. Assume that λ(A) < 0. For all bounded Lipschitz continuous ϕ : C(M)→R, all f and g
in C(M),

|Ptϕ( f )−Ptϕ(g)| ≤ Keλ(A)t‖ f − g‖∞.

Proof : We have Ptϕ( f ) = E[ϕ(L−1
A (W )t + etA f )]. So, using the fact that ϕ is Lipschitz,

|Ptϕ( f )−Ptϕ(g)| ≤ K‖etA( f − g)‖∞ ≤ Keλ(A)t‖ f − g‖∞. QED

To conclude this section we give a set of simple sufficient conditions ensuring that dV satisfies (30).
For f ∈ C(M) we let

Lip( f ) = sup
x 6=y

| f (x)− f (y)|
d(x , y)

∈R+ ∪ {∞}. (36)

A map f is said to be Lipschitz provided Lip( f )<∞.

Proposition 5.9. Assume that

(i) N(d, M ;ε) = O(ε−r) for some r > 0;

(ii) C is Lipschitz;

(iii) There exists K > 0 such that Lip(Af )≤ K(Lip( f ) + ‖ f ‖∞);

(iv) λ(A)< 0.

Then dC and dV satisfy (30).

Note that (i) holds when M is a finite dimensional manifold. We first prove

Lemma 5.10. Under hypotheses (iii) and (iv) of proposition 5.9, there exist constants K and α such
that

Lip(etA f )≤ eαt(Lip( f ) + K‖ f ‖∞).

Proof : For all x , y

|etA f (x)− etA f (y)| =

�

�

�

�

�

∫ t

0

[AesA f (x)− AesA f (y)]ds+ f (x)− f (y)

�

�

�

�

�

≤ K

�
∫ t

0

�

Lip(esA f ) + ‖esA f ‖∞
�

ds+ Lip( f )

�

d(x , y).
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Since λ(A) =−λ < 0, there exists K ′ > 0 such that ‖esA‖ ≤ K ′e−sλ. Thus

Lip(etA f )≤ K

∫ t

0

Lip(esA f )ds+
KK ′

λ
‖ f ‖∞+ Lip( f )

and the result follows from Gronwall’s lemma. QED

Proof of proposition 5.9 : Set µ= δx −δy and fs = CesA∗µ so that

〈µ, esACesA∗µ〉= esA fs(x)− esA fs(y).

It follows from (ii) and (iv) that Lip( fs) + ‖ fs‖∞ ≤ Ke−sλ. Therefore, by the preceding lemma,
Lip(esA fs)≤ Keαs and we have

dV(x , y)2 ≤ d(x , y)

∫ T

0

Lip(esA fs)ds+

∫ ∞

T

�

�esA f (x)− esA f (y)
�

� ds

≤ d(x , y)

∫ T

0

Keαsds+ 2

∫ ∞

T

‖esA fs‖∞ds

≤ K

�

d(x , y)eαT +

∫ ∞

T

e−sλds

�

≤ K(d(x , y)eαT + e−λT ).

Let γ = α
λ

, ε > 0, and T = − ln(ε)/λ. Then d2
V(x , y) ≤ K(ε−γd(x , y) + ε). Therefore d(x , y) ≤

εγ+1⇒ d2
V(x , y)≤ Kε, so that N(d, M ;ωV(ε)) = O

�

ε−2r(γ+1)� and dV satisfies (30). QED

Example 5.11. Let

Af (x) =

∫

f (y)k0(x , y)µ(d y) +
n
∑

i=1

ai(x) f (bi(x))

where µ is a bounded measure on M , k0(x , y) is bounded and uniformly Lipschitz in x , ai : M →R
and bi : M → M are Lipschitz. Then hypothesis (iii) of proposition 5.9 is verified.
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