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Gaussian upper bounds for heat kernels of continuous
time simple random walks

Matthew Folz∗

Abstract

We consider continuous time simple random walks with arbitrary speed measure θ on infinite
weighted graphs. Write pt(x , y) for the heat kernel of this process. Given on-diagonal upper
bounds for the heat kernel at two points x1, x2, we obtain a Gaussian upper bound for pt(x1, x2).
The distance function which appears in this estimate is not in general the graph metric, but a
new metric which is adapted to the random walk. Long-range non-Gaussian bounds in this new
metric are also established. Applications to heat kernel bounds for various models of random
walks in random environments are discussed.
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1 Introduction

Let Γ = (G, E) be an unoriented graph. We assume that Γ is connected, contains neither loops
nor multiple edges, is locally finite, and countably infinite. Let d be the usual graph metric; given
x , y ∈ G, d(x , y) is equal to the number of edges in the shortest (geodesic) path between x and y .
We write B(x , r) := {y ∈ G : d(x , y)≤ r} for the closed ball of radius r in the metric d.

We assume that Γ is a weighted graph, so that associated with each (x , y) ∈ G × G is a non-
negative edge weight πx y which is symmetric (πx y = πy x for x , y ∈ G) and satisfies πx y > 0
if and only if {x , y} ∈ E. The edge weights can be extended to a measure on G by setting
πx := π({x}) :=

∑

y∈G πx y for x ∈ G, and this extends to all subsets of G by countable additivity.

Let (θx)x∈G be an arbitrary collection of positive vertex weights. We consider the continuous-time
simple random walk (X t)t≥0, which has generator Lθ , given by

(Lθ f )(x) :=
1

θx

∑

y∼x
πx y( f (y)− f (x)).

Regardless of the choice of (θx)x∈G , the jump probabilities of these processes are P(x , y) = πx y/πx ;
the various walks corresponding to different choices of (θx)x∈G will be time-changes of each other.

Two specific choices of the vertex weights (θx)x∈G arise frequently. The first is the choice θx := πx ,
which yields a process called the constant-speed continuous time simple random walk (CSRW). The
CSRW may also be constructed by taking a discrete-time simple random walk on (Γ,π), which we
denote by (Xn)n∈Z+ , together with an independent rate 1 Poisson process (Nt)t≥0; the CSRW is the
process Yt := XNt

.

The second choice, θx ≡ 1, yields a stochastic process referred to as the variable-speed continuous
time simple random walk (VSRW). This walk has the same jump probabilities as the CSRW, but
instead of waiting for an exponentially distributed time with mean 1 at a vertex x before jumping,
the VSRW waits for an exponentially distributed time with mean π−1

x . As discussed in [4], the
VSRW may explode in finite time.

Associated with the process (X t)t≥0 is a semigroup (Pt)t≥0 defined by (Pt f )(x) := Ex f (X t), and
which possesses a density pt(x , y) with respect to the measure θ , defined by

pt(x , y) :=
1

θy
Px(X t = y).

This function is also called the heat kernel of the process (X t)t≥0.

We discuss here an alternative construction of the heat kernel which will be used in Section
3; this closely follows the discussion in [25]. Let (Gn)n∈Z+ be an increasing sequence of finite
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connected subsets of G whose limit is G. Given U ⊂ G, we denote the first hitting time of U by
TU := inf{s ≥ 0 : Xs ∈ U}.

For each n ∈Z+, we define the killed heat kernel p(Gn)
t (x , y) by

p(Gn)
t (x , y) :=

1

θy
Px(X t = y, TG\Gn

> t).

This object satisfies the following conditions:











∂

∂ t
p(Gn)

t (x , y) = (Lθ )y p(Gn)
t (x , y) if x , y ∈ Gn,

p(Gn)
t (x , y) = 0 if x ∈ G \ Gn or y ∈ G \ Gn,

p(Gn)
t (x , y)≥ 0 for all x , y ∈ G.

Furthermore, we have that for all x , y ∈ G and t > 0 and n ∈Z+,

p(Gn)
t (x , y)≤ p(Gn+1)

t (x , y),

lim
n→∞

p(Gn)
t (x , y) = pt(x , y).

We will also need a distance function on G×G which is adapted to the vertex weights (θx)x∈G; this
will be the metric which appears in our heat kernel estimates. In general, Gaussian upper bounds
for the heat kernel do not hold if one only considers the graph metric, see Remark 6.6 of [4] for an
example. Let dθ (·, ·) be a metric which satisfies







1

θx

∑

y∼x
πx y d2

θ (x , y)≤ 1 for all x ∈ G,

dθ (x , y)≤ 1 whenever x , y ∈ G and x ∼ y .
(1.1)

It is not difficult to verify that such metrics always exist. We write Bθ (x , r) := {y ∈ G : dθ (x , y)≤ r}
for the closed ball of radius r in the metric dθ ; it should be noted that Bθ (x , r)may contain infinitely
many points for some choices of x ∈ G and r > 0, or, equivalently, points arbitrarily far from x in the
graph metric. Note that for the CSRW, the graph metric always satisfies both of the above conditions.

The use of metrics different from the graph metric in heat kernel estimates was initiated by Davies
in [9], and this metric is similar to the metrics considered there. These metrics are closely related to
the intrinsic metric associated with a given Dirichlet form; some details on the latter may be found
in [18]. Recent work using similar metrics includes [4], [12], [15], and [20].

We will need the following condition:
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Definition: A monotonically increasing function g : (a, b) → (0,∞) is (A,γ)−regular on (a, b)
(A≥ 1,γ > 1, 0≤ a < b ≤∞) if for all a < t1 < t2 < γ

−1 b, the inequality

g(γt1)
g(t1)

≤ A
g(γt2)
g(t2)

holds. If a = 0 and b =∞, then we say that g is (A,γ)−regular.

For appropriate values of A and γ, this set of functions includes polynomial functions such as c td/2,
exponential functions such as c exp(C tα), and various piecewise combinations of (A,γ)−regular
functions such as c1 td1/21(0,T] + c2 td2/21(T,∞), where c1 and c2 are chosen to ensure that the
resulting function is continuous.

Our work will assume that one has already obtained on-diagonal upper bound for the heat kernel at
two points x1, x2 ∈ G; that is, there are functions f1, f2 which are (A,γ)−regular on (a, b) such that,
for all t > 0 and i ∈ {1, 2},

pt(x i , x i)≤
1

fi(t)
. (1.2)

On-diagonal bounds such as (1.2) have been studied in considerable detail in both discrete
and continuous settings, and follow from a variety of analytic inequalities, such as a Sobolev
inequality [22], a Nash inequality [6], a log-Sobolev inequality [10], or a Faber-Krahn inequal-
ity [14]. Generally, these methods yield a uniform upper bound, valid for all x ∈ G. In the
present setting of graphs, one may also use isoperimetic inequalities on general graphs, or volume
growth estimates in the particular case of Cayley graphs of groups; details are in [2], [23], and [24].

In the context of Riemannian manifolds, Grigor’yan has shown that any Riemannian manifold M
which satisfies an on diagonal upper bound at two points x , y ∈ M admits a Gaussian upper bound
for the heat kernel qt(x , y). His result is as follows:

Theorem A. [13] Let x1, x2 be distinct points on a smooth Riemannian manifold M, and suppose that
there exist (A,γ)−regular functions f1, f2 such that, for all t > 0 and i ∈ {1, 2},

qt(x i , x i)≤
1

fi(t)
. (1.3)

Then for any D > 2 and all t > 0, the Gaussian upper bound

qt(x1, x2)≤
4A

( f1(δt) f2(δt))1/2
exp

�

−
d2(x1, x2)

2Dt

�

(1.4)

holds, where δ = δ(D,γ).
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One remarkable aspect of this result is that it only requires on-diagonal bounds at the points x1
and x2. Prior to [13], there are several proofs of Gaussian upper bounds for the heat kernel on
manifolds, but these papers involve more restrictive hypotheses on the underlying manifold, in
addition to requiring on-diagonal heat kernel estimates which hold for all x ∈ G. In practice,
the upper bounds (1.3) are often obtained from a uniform upper heat kernel bound using the
techniques described previously, such as a Nash inequality. However, Theorem A leaves open the
possibility of obtaining Gaussian upper bounds for qt(x1, x2) using only the restricted information
in (1.3).

For the discrete time SRW on (Γ,π), one may again assume a uniform upper bound for the heat
kernel, and obtain a Gaussian upper bound from it. This was done first by Hebisch and Saloff-Coste
in [17] using functional-analytic techniques, and later by Coulhon, Grigor’yan, and Zucca in [7],
using techniques analogous to the ones used by Grigor’yan in [13].

In discrete time, a SRW cannot move further than distance n in time n, and hence pn(x , y) = 0
whenever d(x , y) > n, whereas a continuous time random walk has no such constraint. For
the CSRW on Z with the standard weights, the heat kernel does not exhibit Gaussian decay if
d(x , y)� t (see [5]), and as a result we will only attempt to obtain Gaussian upper bounds when
dθ (x , y) ≤ t. Non-Gaussian estimates applicable where dθ (x , y) ≥ t will be discussed in Section 2,
which adapt work of Davies from [8] and [9].

Our main result is a Gaussian upper bound for the heat kernel pt(x , y) which is valid under mild
hypotheses on (Γ,π) and (θx)x∈G .

Theorem 1.1. Let (Γ,π) be a weighted graph, and suppose that there exists a constant Cθ > 0 such
that the vertex weights (θx)x∈G satisfy θx ≥ Cθ for each x ∈ G. Let f1, f2 be (A,γ)−regular functions
satisfying, for i ∈ {1, 2},

sup
0<t<∞

fi(t)

et1/2
≤ A. (1.5)

Suppose also that there exist vertices x1, x2 ∈ G such that for all t > 0 and i ∈ {1,2},

pt(x i , x i)≤
1

fi(t)
. (1.6)

Then there exist constants C1(A,γ, Cθ ), C2(γ),α(γ)> 0, such that for all t ≥ 1∨ dθ (x1, x2),

pt(x1, x2)≤
C1

( f1(αt) f2(αt))1/2
exp

�

−C2
d2
θ (x1, x2)

t

�

.

Remarks:
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1. There is no assumption of stochastic completeness on the process (X t)t≥0; these heat kernel
estimates hold even if (X t)t≥0 has finite explosion time.

2. The main utility of this result is in settings where fi(t) has polynomial growth, so that (1.5)
is satisfied. Suppose that for i ∈ {1, 2}, fi(t) = f (t) := exp(c tα) for some c,α > 0. By Cauchy-
Schwarz, pt(x1, x2) ≤ (pt(x1, x1)pt(x2, x2))1/2, and hence pt(x1, x2) ≤ exp(−c tα) for all t > 0. On
the other hand, by Theorem 2.2, if C > 1 and t ≥ Cdθ (x1, x2),

pt(x1, x2)≤ (θx1
θx2
)−1/2 exp

�

−c1
d2
θ (x1, x2)

t

�

.

If 0≤ x ≤ y and 0≤ x ≤ z, then x ≤ (yz)1/2, so for t ≥ Cdθ (x1, x2),

pt(x1, x2)≤ (θx1
θx2
)−1/4 exp

�

−
c

2
tα− c1

d2
θ (x1, x2)

2t

�

=
c2

f (c3 t)
exp

�

−c1
d2
θ (x1, x2)

2t

�

,

so that a Gaussian upper bound of the desired form can be obtained very easily. Moreover, as
t →∞, it is the on-diagonal term which provides most of the decay in the heat kernel and not the
Gaussian exponential factor.

Nevertheless, the growth condition (1.5) is satisfied in many applications (as long as A is taken
sufficiently large). For example, it is typically satisfied for random walks on graphs of polynomial
volume growth, super-polynomial but sub-exponential volume growth, or exponential volume
growth satisfying a certain isoperimetric inequality [24].

3. Let us note that if f is (A1,γ)−regular, and A2 ≥ A1 ≥ 1, then f is also (A2,γ)−regular. Thus,
as long as there exist A1, A2, A3 ≥ 1 such that f1 is (A1,γ)−regular, f2 is (A2,γ)−regular, and
sup0<t<∞

fi(t)

et1/2
≤ A3, then for A= A1 ∨ A2 ∨ A3, f1, f2 are (A,γ)−regular, and (1.5) is satisfied.

4. In many applications, one has a uniform on-diagonal heat kernel upper bound, that is, an estimate
of the form

pt(x , x)≤
1

f (t)
,

which is valid for all x ∈ G and all t > 0; various techniques for obtaining such estimates were
discussed earlier. However, in other cases, one may obtain a heat kernel upper bound of the form

pt(x , x)≤
1

V (x , c t1/2)
,
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which is valid for all x ∈ G and all t > 0, and where c > 0 is independent of x and
V (x , r) := π(B(x , r)). This particular on-diagonal upper bound is related to the condition of
volume doubling; see [11]. Theorem 1.1 yields Gaussian upper bounds for the heat kernel even in
the second situation, where one may have a different on-diagonal upper bound at each point of the
graph.

The following is an immediate consequence of Theorem 1.1.

Corollary 1.2. Let (Γ,π) be a weighted graph, and suppose that there exists a constant Cθ > 0 such
that the vertex weights (θx)x∈G satisfy θx ≥ Cθ for each x ∈ G. Let f be an (A,γ)−regular function
satisfying (1.5). If for each t > 0, the uniform heat kernel condition

sup
x∈G

pt(x , x)≤
1

f (t)

is satisfied, then there exist constants C1(A,γ, Cθ ), C2(γ),α(γ) > 0 such that for all x1, x2 ∈ G, and
t ≥ 1∨ dθ (x1, x2),

pt(x1, x2)≤
C1

f (αt)
exp

�

−C2
d2
θ (x1, x2)

t

�

.

If f is only (A,γ)−regular on (T1, T2), then we obtain a restricted version of Theorem 1.1:

Theorem 1.3. Let (Γ,π) be a weighted graph, and suppose that there exists a constant Cθ > 0 such
that the vertex weights (θx)x∈G satisfy θx ≥ Cθ for each x ∈ G. Let f1, f2 be (A,γ)−regular functions
on (T1, T2) satisfying, for i ∈ {1, 2},

sup
t∈(T1,T2)

fi(t)

et1/2
≤ A.

If there exist vertices v1, v2 ∈ G such that for all t ∈ (T1, T2) and i ∈ {1,2}, the estimate

pt(vi , vi)≤
1

fi(t)

holds, then there exist constants C1(A,γ, Cθ ), C2(γ),α(γ) > 0 such that for all t > 0 satisfying
72γ4e4T2

1 ∨ 1∨ dθ (v1, v2)< t < T2,

pt(v1, v2)≤
C1

( f1(αt) f2(αt))1/2
exp

�

−C2
d2
θ (v1, v2)

t

�

.

1699



Remarks:

1. The primary use of this result is in the case that T2 = ∞, in which case one obtains Gaussian
upper bounds for all sufficiently large times. In random environments such as supercritical
percolation clusters, the functions which appear in existing on-diagonal heat kernel upper bounds
may not be (A,γ)−regular, but rather (A,γ)−regular on (T,∞) for some T > 0; Theorem 1.3 is
useful for obtaining Gaussian upper bounds in this setting. Theorem 1.3 has also been used to
obtain Gaussian heat kernel estimates for the random conductance model; see [1].

The structure of this paper is as follows. Section 2 establishes long-range, non-Gaussian heat kernel
upper bounds for the heat kernel using the metric dθ , similar to earlier estimates of Davies in [8]
and [9]. Sections 3 proves a maximum principle, analogous to the one established in [13]; this is
subsequently used to estimate a tail sum of the square of the heat kernel. The direct analogue of
the maximum principle from [13] does not work in the setting of graphs, and additional restrictions
are necessary in order to establish the maximum principle of this paper.

In Section 4, we estimate this tail sum further using a telescoping argument from [13]. In [13],
this argument is iterated infinitely many times, but in the present setting the telescoping argument
cannot be employed past a finite number of steps. At this point, it is necessary to use the heat
kernel estimates of Section 2 to get a final estimate on the tail sum. In Section 5, this estimate of
the tail sum is used to estimate a weighted sum of the square of the heat kernel, and in turn, this
estimate is used in Section 6 to establish Theorem 1.1. Section 7 discusses the modifications to
Section 4 which are necessary to prove Theorem 1.3. Finally, Section 8 discusses applications to
random walks on percolation clusters, and how the results of this paper may be applied to existing
work on random walks in random environments.

2 Long range bounds for the heat kernel

In this section, we establish non-Gaussian upper bounds for the heat kernel pt(x , y) which are close
to optimal in the space-time region where dθ (x , y) ≥ t. These bounds are closely related to the
long-range bounds found in [8] and [9], and are established using the same general techniques.
These bounds hold for all x , y ∈ G and all t > 0, although they give results weaker than Gaussian
upper bounds in the space-time region where dθ (x , y)≤ t.

Theorem 2.1. If x1, x2 ∈ G, then for all t > 0,

pt(x1, x2)≤ (θx1
θx2
)−1/2 exp

�

−
1

2
dθ (x1, x2) log

�

dθ (x1, x2)
2et

�

−Λt
�

,

where Λ≥ 0 is the bottom of the L2 spectrum of the operator Lθ .

Proof. By Proposition 5 of [8], for all x , y ∈ G and t > 0, we have the estimate
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pt(x , y)≤ (θxθy)
−1/2 inf

ψ∈L∞(G)
exp(ψ(x)−ψ(y) + c(ψ)t), (2.1)

where c(ψ) := supx∈G b(ψ, x)−Λ, and

b(ψ, x) :=
1

2θx

∑

y∼x
πx y(e

ψ(y)−ψ(x)+ eψ(x)−ψ(y)− 2).

Fix x1, x2 ∈ G, set D := dθ (x1, x2) and, for λ > 0, define ψλ(x) := λ(D∧dθ (x , x1)) ∈ L∞(G). Using
the triangle inequality for the metric dθ and the fact that the function g(t) := et + e−t = 2cosh(t)
is increasing for t ≥ 0, we obtain

b(ψλ, x) :=
1

2θx

∑

y∼x
πx y(e

ψ(y)−ψ(x)+ eψ(x)−ψ(y)− 2)

≤
1

2θx

∑

y∼x
πx y(e

λdθ (x ,y)+ e−λdθ (x ,y)− 2).

At this point, we use the inequality

es + e−s − 2≤ s2es,

which is valid for all s ≥ 0. This gives

b(ψλ, x)≤
1

2θx

∑

y∼x
πx y(e

λdθ (x ,y)+ e−λdθ (x ,y)− 2)

≤
1

2θx

∑

y∼x
πx y(λ

2d2
θ (x , y)eλdθ (x ,y))

=

 

1

θx

∑

y∼x
πx y d2

θ (x , y)

!

�

1

2
λ2eλ

�

≤
1

2
λ2eλ.

Since this estimate holds uniformly in x , we have that

sup
x∈G

b(ψλ, x)≤
1

2
λ2eλ,

and

c(ψλ) := sup
x∈G

b(ψλ, x)−Λ≤
1

2
λ2eλ−Λ.
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Set f (λ) := 1
2
λ2eλ. Combining these estimates with (2.1), we get, for each λ > 0,

pt(x1, x2)≤ (θx1
θx2
)−1/2 exp(ψλ(x1)−ψλ(x2) + c(ψλ)t)

= (θx1
θx2
)−1/2 exp(−λdθ (x1, x2) + c(ψλ)t)

≤ (θx1
θx2
)−1/2 exp(−λdθ (x1, x2) + f (λ)t −Λt)

= (θx1
θx2
)−1/2 exp

�

t
�

−λ
�

dθ (x1, x2)
t

�

+ f (λ)
�

−Λt
�

.

By optimizing over λ > 0, we have

pt(x1, x2)≤ (θx1
θx2
)−1/2 exp

�

t bf
�

dθ (x1, x2)
t

�

−Λt
�

,

where bf is the Legendre transform of f , defined by

bf (γ) := inf
λ>0

�

−λγ+ f (λ)
�

.

Note that if f (λ) ≤ g(λ) for all λ > 0, bf (γ) ≤ bg(γ). Now, the function g(λ) := e2λ satisfies
f (λ)≤ g(λ) for all λ > 0, so

bf (γ)≤ bg(γ) =−
γ

2
log
� γ

2e

�

.

Thus, applying this estimate to the preceding work gives

pt(x1, x2)≤ (θx1
θx2
)−1/2 exp

�

−
1

2
dθ (x1, x2) log

�

dθ (x1, x2)
2et

�

−Λt
�

,

which holds for all t > 0.

One may also use these results to obtain a weak Gaussian upper bound for the heat kernel which
does not use any information from on-diagonal bounds.

Theorem 2.2. If x1, x2 ∈ G, then for t ≥ dθ (x1, x2),

pt(x1, x2)≤ (θx1
θx2
)−1/2 exp

�

−
d2
θ (x1, x2)

2t

�

1−
dθ (x1, x2)

t

�

−Λt

�

.

1702



Proof. We proceed as in the proof of Theorem 2.1. Instead of using the inequality es+e−s−2≤ s2es,
we use the estimate

es + e−s − 2≤ s2
�

1+
ses

6

�

,

which was used previously in [9]; we then obtain estimates similar to those above, except with

f (λ) := 1
2
λ2
�

1+ λeλ

6

�

. In [9], Davies computes that

Õ(2 f )(γ)≤−
γ2

4
+
γ3

8
,

and since bf (γ) = 1
2
Õ(2 f )(2γ), we obtain

bf (γ)≤−
1

2
γ2+

1

2
γ3 =−

1

2
γ2(1− γ).

Inserting this estimate into the above yields

pt(x1, x2)≤ (θx1
θx2
)−1/2 exp

�

−
d2
θ (x1, x2)

2t

�

1−
dθ (x1, x2)

t

�

−Λt

�

,

as desired.

3 Maximum Principle

For the remainder of the paper, we fix a set of vertex weights (θx)x∈G for which there exists Cθ > 0
with θx ≥ Cθ for all x ∈ G, and an associated metric dθ , satisfying (1.1). We also fix an increasing
set of finite connected subsets (Gn)n∈Z+ with limit G.

Let x0 ∈ G be a point for which there exists a (A,γ)−regular function f satisfying (1.5) such that for
t > 0,

pt(x0, x0)≤
1

f (t)
.

We define u(x , t) := pt(x0, x), and u(k)(x , t) := p(Gk)
t (x0, x) for k ∈Z+.

In this section, we will prove a maximum principle for the quantities

J (k)R (t) :=
∑

x∈Gk

(u(k))2(x , t)exp(ξR(x , t))θx ,

where ξR will be defined later. This will allow us to estimate various sums and weighted sums of u2.
One basic estimate which we will use repeatedly is, for any H ⊂ G and k ∈Z+,
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∑

x∈H

(u(k))2(x , t)θx ≤
∑

x∈H

u2(x , t)θx ≤
∑

x∈G

pt(x0, x)pt(x , x0)θx = p2t(x0, x0)≤
1

f (2t)
, (3.1)

using the symmetry and semigroup properties of the heat kernel.

The reason for considering the killed heat kernels p(Gk)
t (x , y) is that the function u(k) is finitely

supported, and thus there is no difficulty in interchanging double sums. When

sup
x∈G

πx

θx
=∞,

Lθ is not a bounded operator on L2(θ) (see [8] for a proof), and the interchange of sums in (3.2)
is not straightforward. We also remark that there is in general no simple description of the domain
of the associated Dirichlet form E in this case.

Fix k ∈Z+. Differentiating J (k)R (t) and using the fact that u is a solution to the heat equation on Gk,
we get (writing u(k)x for u(k)(x , t), ζ for exp◦ ξ, and ζx for ζ(x , t)),

d

d t
J (k)R (t) =

∑

x∈G

�

∂

∂ t
u(k)x

�

(2u(k)x ζx)θx +
∑

x∈G

�

∂

∂ t
ζx

�

(u(k)x )
2θx

=
∑

x∈Gk

(Lθu(k)x )(2u(k)x ζx)θx +
∑

x∈Gk

�

∂

∂ t
ζx

�

(u(k)x )
2θx .

Note that
�

∂
∂ t

u(k)x

�

(2u(k)x ζx) = (Lθu(k)x )(2u(k)x ζx) even if x0 6∈ Gk or x 6∈ Gk. By a Gauss-Green type

calculation and using the fact that u(k)y = 0 for y ∈ G \ Gk,

∑

x∈Gk

(Lθu(k)x )(2u(k)x ζx)θx =
∑

x∈Gk

∑

y∈G

(u(k)y − u(k)x )(2u(k)x ζx)πx y

=
∑

x∈Gk

∑

y∈Gk

(u(k)y − u(k)x )(2u(k)x ζx)πx y +
∑

x∈Gk

∑

y∈G\Gk

(u(k)y − u(k)x )(2u(k)x ζx)πx y

=
∑

x∈Gk

∑

y∈Gk

(u(k)y − u(k)x )(2u(k)x ζx)πx y +
∑

x∈Gk

∑

y∈G\Gk

(−u(k)x )(2u(k)x ζx)πx y

≤
∑

x∈Gk

∑

y∈Gk

(u(k)y − u(k)x )(2u(k)x ζx)πx y

=−
∑

x ,y∈Gk

(u(k)y − u(k)x )(u
(k)
y ζy − u(k)x ζx)πx y . (3.2)

The equality (3.2) follows from interchanging the order of summation, which is permissible since
u(k) has finite support. Completing the square, we see that
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−
∑

x ,y∈Gk

(u(k)y − u(k)x )(u
(k)
y ζy − u(k)x ζx)πx y = −

∑

x ,y∈Gk

ζy(u
(k)
y − u(k)x )

2πx y

−
∑

x ,y∈Gk

u(k)x (u
(k)
y − u(k)x )(ζy − ζx)πx y

≤
1

4

∑

x ,y∈Gk

(u(k)x )
2
(ζx − ζy)2

ζy
πx y .

It follows that

d

d t
J (k)R (t)≤

1

4

∑

x ,y∈Gk

(u(k)x )
2
(ζx − ζy)2

ζy
πx y +

∑

x∈Gk

�

∂

∂ t
ζx

�

(u(k)x )
2θx

=
∑

x∈Gk

(u(k)x )
2
∑

y∈Gk

�

θx

πx

∂

∂ t
ζx +

1

4

(ζx − ζy)2

ζy

�

πx y

=
∑

x∈Gk

(u(k)x )
2ζx

∑

y∈Gk

 

θx

πx

∂

∂ t
ξx +

1

4

 

ζ2
x − 2ζxζy + ζ2

y

ζxζy

!!

πx y

=
∑

x∈Gk

(u(k)x )
2ζx

∑

y∈Gk

�

θx

πx

∂

∂ t
ξx +

1

2
(cosh(ξx − ξy)− 1)

�

πx y .

Given λ > 1, there exists Kλ <∞ so that the inequality

2 cosh t − 2≤ λt2 (3.3)

holds for |t| ≤ Kλ. Now, we define the distance function dR,θ (x) := (R− dθ (x0, x))+, and set

ξR(x , t) :=−
δd2

R,θ (x) + ε

s− t
.

Here R ≥ 0, t > 0, and s = s(t) > t are parameters that will be allowed to vary, and δ,ε > 0 are
parameters that will be fixed. For the rest of this paper, we will fix λ,δ,ε so that the following
conditions are satisfied:

λ > 1, (3.4)

δ <
1

λ
, (3.5)

ε ≥
λδ2

4(1−λδ)
, (3.6)

Kλ
δ
= 6γe2. (3.7)
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Let us show that such an assignment of constants is possible by exhibiting λ0,δ0,ε0 which satisfy
the above conditions. First, we choose λ0 = 2, so that Kλ0

= 2.98 . . . ≤ 3; this satisfies (3.4). Next,
since λ0 and γ are known, we may define δ0 through (3.7), and estimate

δ0 :=
Kλ0

6γe2 <
1

2γe2 <
1

λ0
,

so that (3.5) is also satisfied. We then choose ε0 to be

ε0 :=
λ0δ

2
0

4(1−λ0δ0)
.

Let us also note that (3.6) is equivalent to

4ε

λδ(δ+ 4ε)
≥ 1. (3.8)

Once λ,δ and ε have been fixed, we have the following result:

Lemma 3.1. (Maximum Principle) If conditions (3.4),(3.5),(3.6),(3.7) are satisfied, and R ≥ 0,
t > 0, and s > t are chosen so that

R− 6γe2(s− t) +
1

2
≤ 0, (3.9)

then for each k ∈Z+,
∂

∂ t
J (k)R (t)≤ 0.

Proof. Given k ∈Z+ and x ∈ Gk, set

φ(k)(x) :=
∑

y∈Gk

πx y

�

θx

πx

∂

∂ t
ξx +

1

2
(cosh(ξx − ξy)− 1)

�

Suppose that for all x ∈ Gk, whenever y ∼ x and y ∈ Gk, |ξx−ξy | ≤ Kλ. Using (3.3), the inequality
|d2

R,θ (x)− d2
R,θ (y)| ≤ 2dR,θ (x) + 1, and (3.4),(3.5), (3.6), and (3.8), we obtain
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φ(k)(x) :=
∑

y∈Gk

πx y

�

θx

πx

∂

∂ t
ξx +

1

2
(cosh(ξx − ξy)− 1)

�

≤
∑

y∈Gk

πx y

�

θx

πx

d

d t
ξx +

λ

4
(ξx − ξy)

2
�

= (s− t)−2
∑

y∈Gk

πx y

�

−
θx

πx
(δd2

R,θ (x) + ε) +
λδ2

4
(d2

R,θ (x)− d2
R,θ (y))

2

�

= (s− t)−2
∑

y∈Gk

πx y

�

−
θx

πx
(δd2

R,θ (x) + ε) +
λδ2

4
(dR,θ (x)− dR,θ (y))

2(dR,θ (x) + dR,θ (y))
2

�

≤ (s− t)−2
∑

y∈Gk

πx y

�

−
θx

πx
(δd2

R,θ (x) + ε) +
λδ2

4
d2
θ (x , y)(2dR,θ (x) + 1)2

�

= (s− t)−2



−θx(δd2
R,θ (x) + ε) +

∑

y∈Gk

πx y
λδ2

4
d2
θ (x , y)(2dR,θ (x) + 1)2





=
λδ2

4
(2dR,θ (x) + 1)2(s− t)−2θx





1

θx

∑

y∈Gk

d2
θ (x , y)πx y −

4

λδ2

δd2
R,θ (x) + ε

(2dR,θ (x) + 1)2





≤
λδ2

4
(2dR,θ (x) + 1)2(s− t)−2θx





1

θx

∑

y∈Gk

d2
θ (x , y)πx y − inf

u≥0

4

λδ2

δu2+ ε
(2u+ 1)2





=
λδ2

4
(2dR,θ (x) + 1)2(s− t)−2θx





1

θx

∑

y∈Gk

d2
θ (x , y)πx y −

4ε

λδ(δ+ 4ε)





≤
λδ2

4
(2dR,θ (x) + 1)2(s− t)−2θv





1

θx

∑

y∈Gk

d2
θ (x , y)πx y − 1





≤ 0.

Since

d

d t
J (k)R (t)≤

∑

x∈G

(u(k)x )
2ζxφ

(k)(x),

we conclude that

d

d t
J (k)R (t)≤ 0.

Now, let us analyze the inequality

|ξx − ξy |=

�

�

�

�

�

δ(d2
R,θ (x)− d2

R,θ (y))

s− t

�

�

�

�

�

≤ Kλ.
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As before, we have |d2
R,θ (x)− d2

R,θ (y)| ≤ 2dR,θ (x) + 1, so this holds if

dR,θ (x)≤
Kλ
2δ
(s− t)−

1

2
,

and, since dR,θ (x)≤ R, it certainly holds when

R− 6γe2(s− t) +
1

2
≤ 0.

which is precisely the condition in the statement of the Lemma.

Now, for k ∈Z+, we define

I (k)R (t) :=
∑

x∈Gk\Bθ (x0,R)

(u(k)(x , t))2θx ,

IR(t) :=
∑

x∈G\Bθ (x0,R)

u2(x , t)θx .

By (3.1), all of these quantities are finite, and by monotone convergence,

lim
k→∞

I (k)R (t) = IR(t). (3.10)

The maximum principle allows us to estimate I , as follows:

Lemma 3.2. Suppose that R0 ≥ R1, and s > t0 ≥ t1 > 0 are such that R, s, t satisfy (3.9). Then

IR0
(t0)≤ exp

�

ε

s− t0

�

IR1
(t1) + exp

�

ε

s− t0

�

exp

�

−
δ(R0− R1)2+ ε

s− t1

�

1

f (2t1)
.

Proof. First, since dR0,θ vanishes outside of Bθ (x0, R0), for each k ∈Z+,

I (k)R0
(t0) :=

∑

x∈Gk\Bθ (x0,R0)

(u(k)(x , t0))
2θx

≤ sup
x∈Gk\Bθ (x0,R0)

exp(−ξR0
(x , t0))

∑

x∈Gk\Bθ (x0,R0)

(u(k)(x , t0))
2 exp(ξR0

(x , t0))θx

≤ exp
�

ε

s− t0

�

∑

x∈Gk\Bθ (x0,R0)

(u(k)(x , t0))
2 exp(ξR0

(x , t0))θx

≤ exp
�

ε

s− t0

�

J (k)R0
(t0).
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Next, for ` ∈ [t1, t0],

R0− 6γe2(s− `) +
1

2
≤ 0,

and so the maximum principle yields J (k)R0
(t0)≤ J (k)R0

(t1), so that

I (k)R0
(t0)≤ exp

�

ε

s− t0

�

J (k)R0
(t1)

= exp
�

ε

s− t0

�







∑

x∈Gk\Bθ (x0,R1)

+
∑

x∈Gk∩Bθ (x0,R1)






(u(k)(x , t1))

2 exp(ξR0
(x , t1))θx

≤ exp
�

ε

s− t0

�

I (k)R1
(t1)

+ exp
�

ε

s− t0

�

sup
x∈Gk∩Bθ (x0,R1)

exp(ξR0
(x , t1))

∑

x∈Gk∩Bθ (x0,R1)

(u(k)(x , t1))
2θx

= ≤ exp
�

ε

s− t0

�

I (k)R1
(t1) + exp

�

ε

s− t0

�

exp

�

−
δ(R0− R1)2+ ε

s− t1

�

1

f (2t1)
.

The last three inequalities follow from bounding above the exponential weight exp(ξR0
(x , t1)) by 1

(on Gk\Bθ (x0, R1)), by using the inequality dR0,θ (x)≥ R0−R1 (on Gk∩Bθ (x0, R1)), and using (3.1).

Letting k→∞ and using (3.10), we get

IR0
(t0)≤ exp

�

ε

s− t0

�

IR1
(t1) + exp

�

ε

s− t0

�

exp

�

−
δ(R0− R1)2+ ε

s− t1

�

1

f (2t1)
,

which completes the proof of the Lemma.

4 Further estimates for IR(t)

In this section, we will prove the following estimate for IR(t):

Lemma 4.1. Suppose that t0 ≥ R0 ≥ 1/2. There exist positive constants m0, m1, n0, n1,α, which do
not depend on either t0 or R0, so that

IR0
(t0)≤ m0

1

f (αt0)
exp

�

−m1
R2

0

t0

�

+ n0 exp(−n1R0).
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In [13], a similar estimate is obtained without the n0 exp(−n1R0) term, and is a key step in
establishing Gaussian upper bounds. The condition (1.5) in the statement of Theorem 1.3 prevents

the term n0 exp(−n1R0) from dominating the ‘Gaussian term’ m0
1

f (αt0)
exp
�

−m1
R2

0

t0

�

.

Proof. Given t0 ≥ R0 ≥ 1/2, we define sequences (t j) j∈Z+ , (s j) j∈Z+ ,(R j) j∈Z+ by

t j := t0γ
− j ,

s j := 2t j ,

R j :=
�

1

2
+

1

j+ 2

�

R0.

Recall that γ > 1 was seen first in the (A,γ)− regularity of the function f . Note that

R j − R j+1 ≥
R0

( j+ 3)2
,

s j − t j+1 =
�

2−
1

γ

�

t j .

As long as

R j − 6γe2(s j − t j) +
1

2
≤ 0, (4.1)

then Lemma 3.2 gives

IR j
(t j)≤ exp

�

ε

s j − t j

�

IR j+1
(t j+1) +

1

f (2t j+1)
exp

�

ε

s j − t j

�

exp

�

−
δ(R j − R j+1)2+ ε

s j − t j+1

�

. (4.2)

Let us analyze when (4.1) is satisfied. Let j∗ denote the maximal j for which (4.1) holds. First,
j∗ ≥ 0, since

R0− 6γe2(s0− t0) +
1

2
= R0− 6γe2 t0+

1

2
< 0

Using the definition of (R j) j∈Z+ , we obtain

1

4
≤

R0

2
< R j∗ ≤ R0,
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and the maximality of j∗ shows that

R j∗ ≤ 6γe2 t j∗ ,

R j∗+1 > 6γe2 t j∗+1−
1

2
.

Rearranging, we obtain

1

6γe2 R j∗ ≤ t j∗ <
1

2e2 R j∗ ,

1

12γe2 R0 < t j∗ <
1

2e2 R0. (4.3)

Applying (4.2) repeatedly yields

IR0
(t0)≤

j∗
∏

k=0

exp
�

ε

sk − tk

�

IR j∗
(t j∗)

+
j∗
∑

k=0

 

k
∏

`=0

exp
�

ε

s`− t`

�

!

exp

�

−
δ(Rk − Rk+1)2+ ε

sk − tk+1

�

1

f (2tk+1)

:= S1+ S2.

The product in S1 may be estimated as follows:

S1 :=
j∗
∏

k=0

exp
�

ε

sk − tk

�

IR j∗
(t j∗)

= exp







ε

t0

j∗
∑

k=0

γk






IR j∗
(t j∗)

≤ exp

�

εγ

γ− 1

1

t j∗

�

IR j∗
(t j∗)

≤ exp

�

12εγ2e2

(γ− 1)R0

�

IR j∗
(t j∗)

≤ exp

�

24εγ2e2

γ− 1

�

IR j∗
(t j∗). (4.4)

We will deal with the IR j∗
(t j∗) term later. Continuing,
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S2 :=
j∗
∑

k=0

 

k
∏

`=0

exp
�

ε

s`− t`

�

!

exp

�

−
δ(Rk − Rk+1)2+ ε

sk − tk+1

�

1

f (2tk+1)

≤
j∗
∑

k=0

exp
�

εγ

(γ− 1)t0
γk
�

exp

�

−
δ(Rk − Rk+1)2+ ε

sk − tk+1

�

1

f (2tk+1)

=
j∗
∑

k=0

exp

�

εγ2

(γ− 1)(2γ− 1)t0
γk

�

exp

�

−
δ(Rk − Rk+1)2

sk − tk+1

�

1

f (2tk+1)

≤
j∗
∑

k=0

exp

�

εγ2

(γ− 1)(2γ− 1)t0
γk

�

exp

�

−
δγ

(2γ− 1)
γk

(k+ 3)4
R2

0

t0

�

1

f (2tk+1)
.

At this point, define β > 0, which depends only on γ > 1, by

β := inf
k≥0

γk+1

(2γ− 1)(k+ 2)(k+ 3)4
,

so that for k ≥ 0,

β(k+ 2)≥
γk+1

(2γ− 1)(k+ 3)4
.

The (A,γ)−regularity of f gives, for 0≤ j ≤ k,

f (2t j)

f (2t j+1)
≤ A

f (2t0)
f (2t1)

,

and multiplying these estimates together yields

1

f (2tk+1)
≤

1

f (2t0)

�

A
f (2t0)
f (2t1)

�k+1

=
1

f (2t0)
exp
�

(k+ 1) log
�

A
f (2t0)
f (2t1)

��

. (4.5)

We remark that this is the only point in the proof where we use the (A,γ)−regularity of f .

Set L := log
�

A f (2t0)
f (2t1)

�

and insert (4.5) into our earlier estimate for S2 to obtain
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S2 ≤
1

f (2t0)

j∗
∑

k=0

exp

�

εγ2

(γ− 1)(2γ− 1)t0
γk

�

exp

�

−δβ(k+ 2)
R2

0

t0

�

exp ((k+ 1)L)

≤
1

f (2t0)
exp

�

εγ2

(γ− 1)(2γ− 1)t j∗

� j∗
∑

k=0

exp

�

−δβ(k+ 2)
R2

0

t0

�

exp ((k+ 1)L)

=
1

f (2t0)
exp

�

24εγ3e2

(γ− 1)(2γ− 1)

�

exp

�

−δβ
R2

0

t0

�

×
j∗
∑

k=0

exp

�

−(k+ 1)

�

δβ
R2

0

t0
− L

��

.

At this point, we divide into cases based on whether

δβ
R2

0

t0
− L ≥ log 2

or not. If it is, then we have

S2 ≤
1

f (2t0)
exp

�

24εγ3e2

(γ− 1)(2γ− 1)

�

exp

�

−δβ
R2

0

t0

� j∗
∑

k=0

exp
�

−(k+ 1) log2
�

≤
1

f (2t0)
exp

�

24εγ3e2

(γ− 1)(2γ− 1)

�

exp

�

−δβ
R2

0

t0

�

. (4.6)

If not, then we can estimate S2 by

S2 ≤ IR0
(t0)

≤
∑

x∈G

u2(x , t0)θx

≤
1

f (2t0)

≤
1

f (2t0)
exp

�

−δβ
R2

0

t0
+ log

�

A
f (2t0)
f (2t1)

�

+ log 2

�

=
2A

f (2t1)
exp

�

−δβ
R2

0

t0

�

. (4.7)

It remains to estimate the quantity IR j∗
(t j∗). From Theorem 2.1, we have the following pointwise

estimate of the heat kernel:
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pt(x , y)≤ (θxθy)
−1/2 exp

�

−
1

2
dθ (x , y) log

�

dθ (x , y)
2et

��

Hence,

IR j∗
(t j∗) :=

∑

x∈G\Bθ (v0,R j∗ )

u2(x , t j∗)θx

≤ sup
x∈G\Bθ (x0,R j∗ )

u(x , t j∗)
∑

x∈G\Bθ (x0,R j∗ )

u(x , t j∗)θx

≤ sup
x∈G\Bθ (x0,R j∗ )

u(x , t j∗).

At this point, note that if t > 0 is fixed, the function

φt(d) := exp
�

−
1

2
d log

�

d

2et

��

is nonincreasing for d ≥ 2t. Since R j∗ > 2e2 t j∗ , we get

IR j∗
(t j∗)≤ sup

x∈G\Bθ (x0,R j∗ )
u(x , t j∗)

≤ C−1
θ φt j∗

(R j∗)

≤ C−1
θ φt j∗

�

2e2 t j∗
�

= C−1
θ exp

�

−e2 t j∗
�

≤ C−1
θ exp

�

−
1

12γ
R0

�

. (4.8)

This is the only point in the argument at which we explicitly use the fact that the vertex weights are
bounded below.

Now, we can put all of our estimates together. Combining (4.4),(4.6),(4.7),(4.8) we have

IR0
(t0)≤ m0

1

f (αt0)
exp

�

−m1
R2

0

t0

�

+ n0 exp(−n1R0),

where the constants α, m0, m1, n0, n1 may be taken to be

α :=
2

γ
, m0 := exp

�

24εγ3e2

(γ− 1)(2γ− 1)

�

∨ 2A, m1 := δβ ,
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n0 := C−1
θ exp

�

24εγ2e2

γ− 1

�

, n1 :=
1

12γ
.

The fact that γ− 1 can be very close to 0 is a potential concern. In practice, one will often have the
choice of several values of γ; for example, if f (t) = tα, one may choose any γ > 1. One also has the
option of using the fact that (A,γ)−regularity implies (A2n

,γ2n
)−regularity to increase γ at the cost

of increasing A (and hence m0) also. However, choosing γ excessively large will cause α and n1 to
be undesirably close to zero.

5 Estimating a weighted sum of u2

For H ⊂ G, let us define the following weighted sum of u2,

Eκ,D,H(x0, t) :=
∑

x∈H

u2(x , t)exp

�

κ
(dθ (x , x0)∧ D)2

t

�

θx

=
∑

x∈H

p2
t (x , x0)exp

�

κ
(dθ (x , x0)∧ D)2

t

�

θx .

Lemma 5.1. There exist constants κ0, C ,α0 > 0 such that for t ≥ 1
2
∨ D

2
,

Eκ0,D,G(x0, t)≤
C

f (α0 t)
.

Proof. Fix t ≥ 1
2
∨ D

2
, and choose κ0 to satisfy the inequalities 16κ0 −m1 < 0, 8κ0 − n1 < 0, where

m1, n1 are the constants in Lemma 4.1.

We define k∗ to be the largest nonnegative integer so that 2k∗ ≤
p

t (if there is no such nonnegative
integer, set k∗ = 0), and partition G as

⋃

0≤ j≤k∗+1

Ak, where

A0 := {x ∈ G : dθ (x0, x)≤
p

t},

Ak := {x ∈ G : 2k−1pt < dθ (x0, x)≤ 2kpt} for 1≤ k ≤ k∗,

Ak∗+1 := {x ∈ G : dθ (x0, x)> 2k∗pt}.

We turn our attention to the quantities Eκ0,D,A j
(x0, t) for 0≤ j ≤ k∗+ 1, which satisfy
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Eκ0,D,G(x0, t) =
k∗+1
∑

j=0

Eκ0,D,A j
(x0, t). (5.1)

On A0, the exponential weight exp
�

κ0
(dθ (x ,x0)∧D)2

t

�

is bounded above by eκ0 , and hence

Eκ0,D,A0
(x0, t)≤ eκ0

∑

x∈A0

u2(x , t)θx ≤ eκ0
1

f (2t)
≤ eκ0

1

f (αt)
. (5.2)

For 1 ≤ j ≤ k∗, on A j , the exponential weight exp
�

κ0
(dθ (x ,x0)∧D)2

t

�

is bounded above by exp(κ04 j).

Since 2 j−1pt ≤ t, we may apply the bound of Lemma 4.1 to obtain

k∗
∑

j=1

Eκ0,D,A j
(x0, t)≤

k∗
∑

j=1

exp(κ04 j)I2 jpt(t)

≤
k∗
∑

j=1

exp(κ04 j)
�

m0
1

f (αt)
exp(−m14 j) + n0 exp(−n12 j−1pt)

�

= m0
1

f (αt)

k∗
∑

j=1

exp((4κ0−m1)4
j−1) + n0

k∗
∑

j=1

exp(2 j−1(2κ02 j − n1
p

t))

≤ m0
1

f (αt)

k∗
∑

j=1

exp((4κ0−m1)4
j−1) + n0

k∗
∑

j=1

exp(2 j−1(4κ0− n1)
p

t))

≤ m0
1

f (αt)

k∗
∑

j=1

exp((4κ0−m1)4
j−1)

+ n0 exp((4κ0− n1)
p

t)
k∗
∑

j=1

exp((2 j−1− 1)(4κ0− n1)
p

t)

≤ m0
1

f (αt)

k∗
∑

j=1

exp((4κ0−m1)4
j−1)

+ n0 exp((4κ0− n1)
p

t)
k∗
∑

j=1

exp
�

1
p

2
(2 j−1− 1)(4κ0− n1)

�

≤ m0T0
1

f (αt)
+ n0T1 exp((4κ0− n1)

p
t),

where
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T0 :=
∞
∑

j=1

exp((4κ0−m1)4
j−1)<∞,

T1 :=
k∗
∑

j=1

exp
�

1
p

2
(2 j−1− 1)(4κ0− n1)

�

<∞.

By (1.5), we know that

exp((4κ0− n1)
p

t)≤
A

f ((4κ0− n1)2 t)
,

so that

k∗
∑

j=1

Eκ0,D,A j
(x0, t)≤ (m0T0+ n0T1A)

1

f ((α∨ (4κ0− n1)2)t)
. (5.3)

On Ak∗+1, the exponential weight exp
�

κ0
(dθ (x ,x0)∧D)2

t

�

is bounded above by exp
�

κ0
D2

t

�

≤

exp(4κ0 t), since D ≤ 2t. By definition, we have 1
2

p
t < 2k∗ ≤

p
t, and hence another applica-

tion of Lemma 3.1 gives

Eκ0,D,Ak∗+1
(x0, t)≤ exp(4κ0 t)I2k∗pt(t)

≤ exp(4κ0 t)It/2(t)

≤ m0
1

f (αt)
exp
�

4κ0 t −m1
t

4

�

+ n0 exp
�

4κ0 t − n1
t

2

�

= m0
1

f (αt)
exp
�

1

4
(16κ0−m1)t

�

+ n0 exp
�

1

2
(8κ0− n1)t

�

= m0
1

f (αt)
exp
�

1

8
(16κ0−m1)

�

+ n0 exp
�

1

2
(8κ0− n1)t

�

≤ m0
1

f (αt)
exp
�

1

8
(16κ0−m1)

�

+ n0 exp
�

1

2
p

2
(8κ0− n1)

p
t
�

.

By (1.5) again,

exp
�

1

2
p

2
(8κ0− n1)

p
t
�

≤
A

f (1/8 · (8κ0− n1)2 t)
,

and so

Eκ0,D,Ak∗+1
(x0, t)≤ (m0 exp

�

1

8
(16κ0−m1)

�

+ n0A)
1

f ((α∨ 1/8 · (8κ0− n1)2 t)
. (5.4)
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Combining (5.1) with (5.2),(5.3), and (5.4) completes the proof.

6 Gaussian upper bounds for the heat kernel

We are now ready to prove Theorem 1.1.

Proof. Let D := dθ (x1, x2) and assume that t ≥ 1∨D. Then t
2
≥ 1

2
∨ D

2
, so we may apply Lemma 5.1

with the points x1 and x2 (for which we have (1.6)) to obtain positive constants c and α such that,
for t ≥ 1∨ D,

Ec,D,G(x1, t/2)≤
C

f1(αt/2)
,

Ec,D,G(x2, t/2)≤
C

f2(αt/2)
.

The truncated distance ρθ (x , y) := dθ (x , y) ∧ D satisfies d2
θ (x1, x2) = ρ2

θ (x1, x2) ≤ 2(ρ2
θ (x1, x) +

ρ2
θ (x , x2)) for all x ∈ G. By using the semigroup property and Cauchy-Schwarz combined with the

above considerations, we obtain, for all t ≥ 1∨ D,

pt(x1, x2) =
∑

x∈G

pt/2(x1, x)pt/2(x , x2)θx

≤
∑

x∈G

pt/2(x1, x)exp

�

c
ρ2
θ (x1, x)

t

�

pt/2(x , x2)exp

�

c
ρ2
θ (x2, x)

t

�

exp

�

−c
ρ2
θ (x1, x2)

2t

�

θx

≤ (Ec,D,G(x1, t/2)Ec,D,G(x2, t/2))1/2 exp

�

−c
ρ2
θ (x1, x2)

2t

�

≤
C

( f1(αt/2) f2(αt/2))1/2
exp

�

−c
d2
θ (x1, x2)

2t

�

,

which completes the proof of Gaussian upper bounds for the heat kernel.

7 Restricted (A,γ)−regular functions

In Section 4, where we estimated the quantity IR(t), we assumed that t0 ≥ R0 ≥ 1/2, and used
(A,γ)−regularity to obtain, for 0≤ k ≤ j∗,

1

f (2tk+1)
≤

1

f (2t0)

�

A
f (2t0)
f (2t1)

�k+1

.
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This is the only point at which (A,γ)−regularity is used. It follows that if f is merely (A,γ)−regular
on (T1, T2), then for this inequality to hold, we must have T1 < 2t j∗+1 and 2t1 < γ

−1T2. Subse-
quently, in Section 5, we apply our bounds for IR(t) with t = t0 and R = 2 jpt, for 0 ≤ j ≤ sup{k ∈
Z : 2k ≤

p
t}∨0. Using (4.3), and setting t0 = t/2 (where t ≥ 1∨D), we see that these inequalities

hold when

T1 <
1

6γ2e2 (t/2)
1/2,

T2 > 2(t/2).

Rearranging, we have

t > 72e4γ4T2
1 ,

t < T2,

and applying these additional constraints yields Theorem 1.3.

8 Applications to random walks on percolation clusters

In this section, we show how Theorem 1.3 may be used to obtain Gaussian upper bounds for the
CSRW on the infinite component of supercritical bond percolation on the lattice Zd equipped with
the standard weights. A detailed description of percolation is given in [16]; a percolation cluster
is a random connected subgraph of the lattice Zd obtained by deleting each edge independently
with probability 1− p and keeping it otherwise. By fundamental results of percolation theory, there
exists a critical probability pc(d) such that for p > pc(d) (i.e., the supercritical case), there is an a.s.
unique infinite cluster; we consider the CSRW on this family of random graphs, which we denote
by Cp,∞(ω).

For existing work on random walks on percolation clusters, including on-diagonal heat kernel es-
timates and invariance principles, see [21] and [3]. From now on, we fix p > pc(d), and write
qωt (x , y) for the heat kernel of the CSRW on Cp,∞(ω); the dependence on ω of qωt (x , y) is a conse-
quence of Cp,∞(ω) being random. We denote the graph metric on Cp,∞(ω) by dC . In [21], Mathieu
and Remy proved the following on-diagonal heat kernel bound for the CSRW on Cp,∞(ω).

Lemma 8.1. [21] There exist random variables Nx(ω) < ∞ and non-random constants c1, c2 such
that almost surely, for all x ∈ G and t > 0,

qωt (x , x)≤

(

c1 t−1/2 if 0< t ≤ Nx(ω),
c2 t−d/2 if Nx(ω)< t.
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The polynomial function f (t) := c2 td/2 is (A,γ)−regular on (Nx(ω),∞) for A= 1, γ= 2, and hence
an application of Theorem 1.3 shows that for t ≥ C(Nx(ω) ∨ Ny(ω)) ∨ 1 ∨ dC (x , y), we have the
Gaussian upper bound

qωt (x , y)≤ C1 t−d/2 exp

�

−C2
d2
C (x , y)

t

�

, (8.1)

where C1, C2 > 0 are non-random constants.

Remarks:

1. For the discrete time simple random walk on Cp,∞(ω), Gaussian upper bounds are obtained
in [7] as an application of their discrete time heat kernel estimates. However, the bounds in [7]
have a random constant C1 = C1(ω) in (8.1). The reason is that [7] only considers functions which
are (A,γ)−regular, and in general the function f (t) := c−1

1 t1/21{0<t≤Nx (ω)} + c−1
2 td/21{Nx (ω)<t}

is not (A,γ)−regular. The authors of [7] therefore bound f (t) by a smaller random function
g(t) := d1 t1/21{0<t≤Nx (ω)} + d2 td/21{Nx (ω)<t}, where d1 = d1(ω) and d2 = d2(ω) are random
constants chosen to ensure that f ≥ g and g is (A,γ)−regular.

2. Theorem 1.3 is also used in [1] to obtain Gaussian upper bounds for the heat kernel in the
random conductance model; as in the case of supercritical percolation clusters, the function
appearing in the on-diagonal heat kernel estimate of Proposition 4.1 of [1] is not (A,γ)−regular
but rather (A,γ)−regular on (T,∞) for some T > 0, so Theorem 1.3 yields Gaussian upper bounds
for all sufficiently large times.

Acknowledgement: The author thanks his Ph.D supervisor, Martin Barlow, for suggesting this prob-
lem and providing helpful discussions and feedback.
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