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Abstract

We use coupling into and from the past to sample perfectly in a simple and provably fast fashion
from the Vervaat family of perpetuities. The family includes the Dickman distribution, which
arises both in number theory and in the analysis of the Quickselect algorithm (the motivation
for our work).
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1 Introduction, background, and motivation

1.1 Perpetuities in general

Define a perpetuity to be a random variable Y such that

Y =W1+W1W2+W1W2W3+ · · · (1)

for some sequence W1, W2, W3, . . . of independent and identically distributed random variables dis-
tributed as W . Throughout this paper we assume W ≥ 0 (a.s.) and EW < 1 since these simplifying
assumptions are met by the Vervaat perpetuities, which are discussed in Section 1.2 and are the
focus of our work. [Some authors define a perpetuity as in (1) but with 1 added to the right-hand
side.] The distribution of such a random variable Y is also referred to as a perpetuity. General
background on perpetuities is provided in the first paragraph of Devroye [1, Section 1]. To avoid
repetition, we refer the reader to that paper, which also cites literature about perpetuities in general
and about approximate sampling algorithms.

Within the general framework of (1), the following simple observations (with
L
= denoting equality

in law, or distribution) can be made:

1. The random variable Y ≥ 0 is finite almost surely; indeed, its expected value is finite:

E Y =
EW

1− EW
<∞.

2. The perpetuity satisfies the distributional fixed-point equation

Y
L
=W (1+ Y ) (2)

where, on the right, W and Y are independent. [In fact, this fixed-point equation characterizes
the distribution (1).]

3. If W has a density fW , then Y has a density fY satisfying the integral equation

fY (y) =

∫ ∞

0

(1+η)−1 fW
� y

1+η

�

fY (η) dη, y ≥ 0.

1.2 Quickselect, the Dickman distribution, and the Vervaat family of perpetuities

Our interest in perpetuities originated with study of the running time of the Quickselect algorithm
(also known as Find), due to Hoare [4]. Quickselect(n, m) is a recursive algorithm to find the
item of rank m ≥ 1 (say, from the bottom) in a list of n ≥ m distinct numbers (called “keys”). First,
a “pivot” is chosen uniformly at random from among the n keys and every key is compared to it,
thereby determining its rank (say, j) and separating the other keys into two groups. If j = m, then
Quickselect(n, m) returns the pivot. If j > m, then Quickselect( j − 1, m) is applied to the keys
smaller than the pivot. If j < m, then Quickselect(n− j, m− j) is applied to the keys larger than
the pivot.
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Let C(n, m) denote the (random) number of key comparisons required by the call
Quickselect(n, m), and write 1(A) to mean the indicator that has value 1 if the Boolean expres-
sion A is true and 0 otherwise. Let Jn denote the rank of the first pivot chosen. Immediately from
the description of the algorithm we find the distributional recurrence relation

C(n, m)
L
=(n− 1) + 1(Jn > m)C(Jn− 1, m) + 1(Jn < m)C∗(n− Jn, m− Jn), (3)

where, on the right, (i) for each fixed r and s the random variable C(r, s) is distributed as the
number of key comparisons required by Quickselect(r, s), the joint distribution of such random
variables being irrelevant; (ii) similarly for C∗(r, s); (iii) the collection of random variables C(r, s)
is independent of the collection of C∗(r, s); and (iv) Jn is uniformly distributed on {1, . . . , n} and is
independent of all the C ’s and C∗’s.

The distribution of C(n, m) is not known in closed form for general finite n and m, so we turn to
asymptotics. For any fixed m, formal passage to the limit as n→∞ suggests that

Y (n, m) :=
C(n, m)

n
− 1

has a limiting distribution L (Y ) satisfying the fixed-point equation

Y
L
=U(1+ Y ).

This is indeed the case, as was shown by Mahmoud et al. [12]. Recalling the characterization (2),
we see that the law of Y is a perpetuity, known as the Dickman distribution. Curiously, if m is chosen
uniformly at random from {1, . . . , n} before the algorithm is run, then the limiting distribution of
Y (n, m) is the convolution square of the Dickman distribution, as was also shown in [12].

See [6, Section 2] concerning various important settings, including number theory (largest prime
factors) and combinatorics (longest cycles in permutations), in which the Dickman distribution
arises; also see [6] for some basic facts about this distribution. The support of the distribution
is [0,∞), and simple integral expressions are known for the characteristic and moment-generating
functions of this log-concave (that is, strongly unimodal) and infinitely divisible distribution. In
addition, the Dickman distribution has a continuous density f that is constant with value e−γ over
(0,1] (here γ is Euler’s constant). Over each interval (k, k + 1] with k a positive integer, f is the
unique solution to the delayed differential equation

f ′(y) =− f (y − 1)/y.

Still, no closed form for f is known.

Some years back, Luc Devroye challenged the first author to find a method for simulating perfectly
from the Dickman distribution in finite time, where one assumes that only perfect draws from the
uniform distribution and basic arithmetic operations such as multiplication (with perfect precision)
are possible; in particular, numerical integration is not allowed. The problem was solved even prior
to the writing of Devroye’s paper [1], but the second author pointed out extensive simplification
that could be achieved. The result is the present collaborative effort, which shows how to sample
perfectly in a simple, provably fast fashion from the Dickman distribution, and more generally from
any member of the Vervaat [15] family of perpetuities handled by Devroye [1]. To obtain the Vervaat
perpetuities, one for each value of 0< β <∞, choose W = U1/β in (2).
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1.3 A quick review of Devroye’s method

To compare with the Markov-chain-based method employed in the present paper, we first review
highlights of Devroye’s [1]method for perfect simulation of perpetuities. Devroye sketches a general
approach and carries it out successfully for the Vervaat family.

The underlying idea of Devroye’s approach is simple acceptance-rejection:

1. Find explicit h> 0 and 1≤ c <∞ so that

fY ≤ h everywhere and

∫

h= c.

2. Generate X with density c−1h.

3. Accept X with probability fY (X )/h(X ); otherwise, reject X and independently repeat steps
2–3.

Here is how Devroye [1] carries out these three steps in the case of Vervaat perpetuities. (It is
somewhat surprising how simple the first two steps turn out to be.)

1. One can take

h(x) :=min
�

β(β + 1)x−2,β xβ−1
�

and c = (β + 1)(2β+1)/(β+1).

2. Let U1 and U2 be independent uniform(0, 1) random variables and set

X := (β + 1)1/(β+1)U1/β
1 U−1

2 .

3. Since fY can’t be computed exactly, having generated X = x and an independent uniform
random variable U3, one must figure out how to determine whether or not U3 ≤ fY (x)/h(x).

Devroye’s solution for step 3 is to find explicitly computable approximations fn(x) to fY (x) and
explicitly computable bounds Rn(x) so that, for every x ,

| fn(x)− fY (x)| ≤ Rn(x), Rn(x)→ 0 as n→∞.

Devroye’s functions fn are quite complicated, involving (among other things)

• the sine integral function S (t) :=
∫ t

0
sin s

s
ds and approximations to it computable in finite

time;

• explicit computation of the characteristic function φY of Y ;

• use of quadrature (trapezoidal rule, Simpson’s rule) to approximate the density fY as the
inverse Fourier transform of φY .
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Devroye proves that the running time of his algorithm is finite almost surely (for any β > 0), but can-
not get finite expected running time for any β > 0 without somewhat sophisticated improvements
to his basic algorithm. He ultimately develops an algorithm so that

E T <∞ for β > 5/3.

More careful analysis would be difficult. Devroye makes no claim “that these methods are inherently
practical”. We do not mean to criticize; after all, as Devroye points out, his paper [1] is useful in
demonstrating that perfect simulation of perpetuities (in finite time) is possible.

The approach we will take is very simple conceptually, very easy to code, and (at least for Vervaat
pereptuities with β not too large) very fast (provably so). While we have hopes that our methodol-
ogy can be generalized to apply to any perpetuity, in this paper we develop the details for Vervaat
perpetuities for any β > 0.

1.4 Our approach

Briefly, our approach to perfect simulation of a perpetuity from the Vervaat family is to use the
Markov-chain-based perfect sampling algorithm known as coupling into and from the past (CIAFTP)
([7, 8]) that produces draws exactly from the stationary distribution of a Markov chain. CIAFTP
requires use of a so-called dominating chain, which for us will be simple random walk with negative
drift on a set of the form {x0 − 1, x0, x0 + 1, x0 + 2, . . .}, where x0 is a fixed real number at least 2.
In order to handle the continuous state space, multigamma coupling [13] will be employed.

As we shall see, all of the Markov chain steps involved are very easy to simulate, and the expected
number of steps can be explicitly bounded. For example, our bound is the modest constant 15 in
the case β = 1 of the Dickman distribution, for which the actual expected number of steps appears
to be a little larger than 6 (consult the end of Section 5).

The basic idea is simple. From the discussion in Section 1.1 it is clear that the kernel K given by

K(x , ·) :=L (W (1+ x)) (4)

provides a Markov chain which, for any initial distribution, converges in law to the desired stationary
distribution L (Y ), the perpetuity.

An update function or transition rule for a Markov chain on state space Ω with kernel K is a function
φ : Ω×Ω′ → Ω (for some space Ω′) so that for a random variable W with a specified distribution
on Ω′ we have L (φ(x , W )) = K(x , ·) for every x ∈ Ω. There are of course many different choices
of update function for any particular Markov chain. To employ coupling from the past (CFTP) for a
Markov chain, an update function that is monotone suffices. Here, an update function φ is said to
be monotone if whenever x � y with respect to a give partial order on Ω we have φ(x , w)� φ(y, w)
for all w ∈ Ω′.
Consider the state space [0,∞) linearly ordered by ≤, and let W be distributed as in (2). Then

φnatural(x , w) = w(1+ x)

provides a natural monotone update function. If we wish to do perfect simulation, it would appear
at first that we are ideally situated to employ coupling from the past (CFTP).

However, there are two major problems:
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1. The rule φnatural is strictly monotone, and thus no two trajectories begun at distinct states will
ever coalesce.

2. The state space has no top element.

It is well known how to overcome these difficulties:

1. Instead of φnatural, we use a multigamma coupler [13].

2. Instead of CFTP, we use CIAFTP with a dominating chain which provides a sort of “stochastic
process top” to the state space [7, 8].

Our work presents a multigamma coupler for perpetuities that is monotone. Monotonicity greatly
simplifies the use of CFTP [14] and CIAFTP. Useful monotone couplers can be difficult to find for
interesting problems on continuous state spaces; two very different examples of the successful use
of monotone couplers on such spaces can be found in [16] and [5].

1.5 Outline

In Section 2 we describe our multigamma coupler; in Section 3, our dominating chain. Section 4
puts everything together and gives a complete description of the algorithm, and Section 5 is devoted
to bounding the running time. Section 6 briefly discusses approaches similar to ours carried out by
two other pairs of authors.

2 The multigamma coupler

The multigamma coupler of Murdoch and Green [13] is an extension of the γ coupler described in
Lindvall [11] that couples a single pair of random variables. An update function can be thought
of as coupling an uncountable number of random variables simultaneously, thus the need for
“multi"gamma coupling. The goal of multigamma coupling is to create an update function whose
range is but a single element with positive probability, in order to use CIAFTP as described in Sec-
tion 4.

Originally multigamma coupling was described in terms of densities; here we consider the method
from the point of view of the update function. Suppose that the update function can be written in
the form

φ(x , w) = 1(w ∈ Ax)φ1(w) + 1(w /∈ Ax)φ2(x , w).

Now let A := ∩xAx . If W ∈ A, then the Markov chain will transition from x to φ(x , W ) = φ1(W ),
for all values of x .

Recall our Markov kernel (4). In the Vervaat case W = U1/β the conditional distribution of W (1+ x)
given W ≤ 1/(1+ x) is the unconditional distribution of W .

Proposition 2.1. For any Vervaat perpetuity, the function

φ(x , w(1), w(2)) := 1
�

w(1)≤
1

1+ x

�

w(2) + 1
�

w(1)>
1

1+ x

�

w(1)(1+ x)
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is a monotone update function for the kernel K at (4). More explicitly, φ(x , w(1), w(2)) is nonde-
creasing in x ∈ [0,∞) for each fixed w(1), w(2) ∈ [0,1), and the distributions of φ(x , W (1), W (2))
and W (1+ x) are the same when W (1), W (2) are two independent random variables distributed as
W = U1/β , where U is uniformly distributed on [0, 1).

Proof. Since the conditional distribution of U(1+ x)β given U ≤ (1+ x)−β is uniform on [0, 1), by
taking βth roots we find

L (W (1+ x) |W ≤ (1+ x)−1) =L (W ),

independent of x , as remarked prior to the statement of the proposition. Therefore
φ(x , W (1), W (2)) has the same distribution as W (1+ x).

Also, for fixed w(1), w(2) ∈ [0, 1) the function φ(·, w(1), w(2)) has the constant value w(2) < 1
over [0, w(1)−1 − 1] and increases linearly over [w(1)−1 − 1,∞) with value 1 at the left endpoint
and slope w(1), so monotonicity is also clear.

3 A dominating chain

Dominating chains were introduced by Kendall [7] (and extended in [8]) to extend the use of CFTP
to chains on a partially ordered state space with a bottom element but no top element. A dominating
chain for a Markov chain (X t) is another Markov chain (Dt) that can be coupled with (X t) so that
X t ≤ Dt for all t. In this section we give such a dominating chain for the Vervaat perpetuity, and in
the next section we describe how the dominated chain can be used with CIAFTP.

Since our multigamma coupler φ of Proposition 2.1 is monotone, if we can find an update function
ψ(x , w(1), w(2)) on a subset S of the positive integers x such that

φ(x , w(1), w(2))≤ψ(x , w(1), w(2)) for all x ∈ S, (5)

then [with the same driving variables W (1), W (2) as in Proposition 2.1] ψ drives a dominating
chain. This is because if x ∈ [0,∞) and y ∈ S and x ≤ y , then

φ(x , w(1), w(2))≤ φ(y, w(1), w(2))≤ψ(y, w(1), w(2)).

We exhibit such a rule ψ in our next result, Proposition 3.1. It is immediate from the definition of ψ
that the dominating chain is just a simple random walk on the integers {x0 − 1, x0, . . . } that moves
left with probability 2/3 and right with probability 1/3; the walk holds at x0 − 1 when a move to
x0− 2 is proposed. In the definition of ψ, note that no use is made of w(2).

Proposition 3.1. Fix 0 < β <∞. Let φ be the multigamma coupler for Vervaat perpetuities described
in Proposition 2.1. Define

x0 :=

¢

2

1− (2/3)1/β

¥

− 1≥ 2 (6)

and, for x ∈ S := {x0− 1, x0, . . . },

ψ(x , w(1), w(2)) := x + 1(w(1)> (2/3)1/β)− 1(w(1)≤ (2/3)1/β , x ≥ x0).

Then (5) holds, and so ψ drives a chain that dominates the φ-chain.
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Proof. To establish (5), suppose first that x ≥ x0. Since

φ(x , w(1), w(2))≤ x + 1 and ψ(x , w(1), w(2)) ∈ {x − 1, x + 1},

we need only show that if ψ(x , w(1), w(2)) = x − 1 [i.e., if w(1) ≤ (2/3)1/β], then
φ(x , w(1), w(2))≤ x − 1. Indeed, if w(1)≤ 1/(1+ x), then

φ(x , w(1), w(2))) = w(2)≤ 1≤ x0− 1≤ x − 1;

and if w(1)> 1/(1+ x), then

φ(x , w(1), w(2)) = w(1)(1+ x)≤ (2/3)1/β(x + 1)≤ x − 1,

where the last inequality holds because

x − 1

x + 1
= 1−

2

x + 1
≥ 1−

2

x0+ 1
≥
�

2

3

�1/β

. (7)

[This is how the value of x0 was chosen in (6).]

The proof for x = x0 − 1 is quite similar, so we omit most details. In place of (7) one needs to
establish

1−
1

x0
≥
�

2

3

�1/β

,

but this follows from the last inequality in (7) since x0 ≥ 2> 1.

4 A perfect sampling algorithm for Vervaat perpetuities

For an update function φ(x , w) and random variables W−t , . . . , W−1, set

F0
−t(x) = φ(φ(. . .φ(x , W−t), . . . , W−2), W−1),

so that if X−t = x , then X0 = F0
−t(x). To use coupling from the past with a dominated chain for

perfect simulation, we require:

1. A bottom element 0 for the partially ordered state space of the underlying chain X , a dominat-
ing chain D, and update functions φ(x , w) and ψ(x , w) for simulating the underlying chain
and dominating chain forward in time.

2. The ability to generate a variate from the stationary distribution of the dominating chain. This
variate is used as D0, the state of the dominating chain at time 0.

3. The ability to simulate the dominating chain backwards in time, so that D−1, D−2, . . . , D−t can
be generated given D0.

4. The ability to generate i.i.d. random variables W−t , W−t+1, . . . , W−1 for the update function
conditioned on the values of D0, . . . , D−t .
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5. The ability (given W−t , . . . , W−1) to determine whether F0
−t(x) takes on a single value for all

x ∈ [0, D−t]. (This detection of coalescence can be conservative, but we must never claim to
detect coalescence when none occurs.)

With these pieces in place, dominated coupling from the past [8] is:

1. Generate D0 using (ii).

2. Let t ′← 1, t ← 0.

3. Generate D−t−1, . . . , D−t ′ using (iii).

4. Generate W−t ′ , . . . , W−t−1 using D−t ′ , . . . , D−t and (iv).

5. If F0
−t ′([0, D−t ′]) = {x}, then output state x as the random variate and quit.

6. Else let t ← t ′, t ′← t ′+ 1, and go to step 3.

The update to t ′ in step 6 can be done in several ways. For instance, doubling time rather than
incrementing it additively is often done. For our chain step 5 only requires checking to see whether
W−t ′ ≤ 1/(1+ D−t ′), and so requires constant time for failure and time t ′ for success. Thus step 6
as written is efficient.

Because the dominating chain starts at time 0 and is simulated into the past, and then the underlying
chain is (conditionally) simulated forward, Wilson [16] referred to this algorithm as coupling into
and from the past (CIAFTP).

Now we develop each of the requirements (i)–(v) for Vervaat perpetuities. Requirement (i) was
dealt with in Section 2, where it was noted that the dominating chain is a simple random walk with
probability 2/3 of moving down one unit towards 0 and probability 1/3 of moving up one unit. The
chain has a partially absorbing barrier at x0 − 1, so that if the chain is at state x0 − 1 and tries to
move down it stays in the same position.

The stationary distribution of the dominating random walk can be explicitly calculated and is a
shifted geometric random distribution; requirement (ii) can be satisfied by letting D0 be x0− 2+ G
where G ∈ {1, 2, . . . } has the Geometric distribution with success probability 1/2. [Recall that we
can generate G from a Unif(0, 1) random variable U using G = d−(ln U)/(ln2)e.] Simulating the
D-chain backwards in time [requirement (iii)] is also easy since D is a birth-and-death chain and so
is reversible.

Now consider requirement (iv). Suppose that a one-step transition D−t+1 = D−t + 1 (say) forward
in time is observed, and consider the conditional distribution of the driving variable W−t that would
produce this [via D−t+1 = ψ(D−t , W−t)]. What we observe is precisely that the random variable
W−t(1) = U1/β

−t fed to the update function ψmust have satisfied W−t(1)> (2/3)1/β , i.e., U−t > 2/3.

Hence we simply generate W−t(1) from the distribution of U1/β
−t conditionally given U−t > 2/3.

Similarly, if D−t+1 = D−t − 1 or D−t+1 = D−t = x0 − 1, then we generate W−t(1) conditioned on
W−t(1) ≤ (2/3)1/β , i.e., on U−t ≤ 2/3. The random variable W−t(2) is always generated indepen-
dently as the 1/β power of a Unif(0,1) random variable.

Finally, requirement (v) is achieved by using the multigamma coupler from the last section; indeed,
if ever W−t(1) ≤ 1/(D−t + 1), then the underlying chain coalesces to a single state at time −t + 1,
and hence also at time 0.

Thus our algorithm is as follows:
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1. Generate G ∼ Geom(1/2) and let D0← x0− 2+ G. Set t ← 1.

2. Having generated D−(t−1), generate D−t by moving up from D−(t−1) with probability 1/3 and
“down” with probability 2/3. Here, and in step 4 below, a move up adds 1 and a move “down”
subtracts 1 unless D−(t−1) = x0− 1, in which case D−t = x0− 1, too.

3. Read the transition forward from D−t to D−t+1.

4. If the forward move is up, impute U−t ∼ Unif(2/3, 1); if the forward move is “down”, impute
U−t ∼ Unif(0, 2/3]. In either case, set W−t(1) = U1/β

−t .

5. If W−t(1) ≤ 1/(D−t + 1), then generate W−t(2) independently and set X−t+1 = W−t(2);
otherwise increment t by 1 and return to step 2.

6. Using the imputed driving variables W−s(1) (t ≥ s ≥ 1), and generating independent variables
W−s(2) as necessary, grow the X -trajectory forward to time 0:

X−s+1 = φ(X−s, W−s(1), W−s(2)).

Here φ is the multigamma coupler described in Proposition 2.1.

7. Output X0.

5 A bound on the running time

Theorem 5.1. Let T be the number of steps taken backwards in time. (This is also the number of
times steps 3, 4, and 5 of the algorithm at the end of Section 4 are executed.) Define x0 = d2/(1−
(2/3)1/β)e − 1 as in Proposition 3.1. Then for any 0< β <∞ we have

xβ0 ≤ E T ≤ 2(x0+ 1)β + 3 (8)

and hence E T = eβ lnβ+Θ(β) as β →∞; and

E T → 1 as β → 0. (9)

Proof. The lower bound in (8) is easy: Since Dt ≥ x0 − 1, the expectation of the number of steps t
needed to get (U−t)1/β ≤ 1/(D−t + 1) is at least xβ0 . We proceed to derive the upper bound.

Consider a potential function Φ = (Φt)t≥0 such that Φt depends on D−t , . . . , D0 and W−t , . . . , W−1 in
the following way:

Φt =

¨

0 if t ≥ T
D−t − (x0− 1) + 2

3
(x0+ 1)β otherwise.

(10)

We will show that the process (Φt∧T+(1/3)(t∧T )) is a supermartingale and then apply the optional
sampling theorem to derive the upper bound. LetFt be the σ-algebra generated by D−t , . . . , D0 and
W−t , . . . , W−1, so that T is a stopping time with respect to the filtration (Ft). Suppose that T > t.
In this case there are two components to Φt − Φt−1. The first component comes from the change
from D−t to D−t+1. The second component comes from the possibility of coalescence (which gives
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T = t) due to the choice of W−t(1). The expected change in Φ is the sum of the expected changes
from these two sources.

For the change in the D-chain we observe

E[D−t − D−t+1|Ft−1]

= (1
3
− 2

3
)1(D−t+1 > x0− 1) + 1

3
1(D−t+1 = x0− 1). (11)

The expected change in Φ due to coalescence can be bounded above by considering coalescence
only when D−t+1 = x0 − 1, in which case we have D−t ∈ {x0 − 1, x0}. But then coalescence occurs
with probability at least [1/(1 + x0)]β , and if coalescence occurs, Φ drops from (2/3)(x0 + 1)β

down to 0. Therefore the expected change in Φ from coalescence when D−t+1 = x0 − 1 is at most
−(2/3)(x0+ 1)β/(x0+ 1)β =−2/3. Combining with (11) yields

E[Φt −Φt−1|Ft−1]

≤ (1
3
− 2

3
)1(D−t+1 > x0− 1) + (1

3
− 2

3
)1(D−t+1 = x0− 1) =−1

3
.

So whenever T > t, the potential Φ decreases by at least 1/3 on average at each step, and hence
(Φt∧T + (1/3)(t ∧ T )) is a supermartingale. Since it is also nonnegative the optional sampling
theorem can be applied (see for example [3], p. 271) to yield

EΦT +
1
3
E T ≤ EΦ0.

Since ΦT = 0, it remains to bound EΦ0. Recall that D0 − (x0 − 2) is a geometric random variable
with parameter 1/2 and thus has mean 2. Hence EΦ0 = 1+(2/3)(x0+1)β , giving the desired upper
bound on E T .

We now prove (9), using notation such as T (β) to indicate explicitly the dependence of various
quantities on the value of the parameter β . However, notice that x0(β) = 2 for all 0 < β ≤ β0 :=
ln(3/2)/ ln 3 and hence that the same dominating chain D may be used for all such values of β . For
0< β ≤ β0 define

Yt(β) :=
t
∏

s=1

�

1− (D−s + 1)−β
�

. (12)

Conditionally given the entire D-process, since 1− (D−s + 1)−β is the probability that coalescence
does not occur at the sth step backwards in time, Yt(β) equals the probability that coalescence does
not occur on any of the first t steps backwards in time. Thus

P(T (β)> t) = E Yt(β), t = 1,2, . . . ,

and hence

E T (β) = 1+
∞
∑

t=1

E Yt(β). (13)

We now need only apply the dominated convergence theorem, observing that Yt(β)≥ 0 is increasing
in 0< β ≤ β0 and that 1+

∑∞
t=1 E Yt(β0) = E T (β0)≤ 2 · 3β0 + 3= 6<∞ by (8).

For any fixed value of β , it is possible to find E T to any desired precision. Let us sketch how this
is done for the Dickman distribution, where β = 1. First, we note for simplicity that T in Theo-
rem 5.1 has the same distribution as the time it takes for the dominating random walk D = (Dt)t≥0,
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run forward from the stationary distribution at time 0, to stop, where “stopping” is determined as
follows. Having generated the walk D through time t and not stopped yet, let Ut be an indepen-
dent uniform(0,1) random variable. If Ut > 2/3, let D move up (and stopping is not possible); if
Ut ≤ 2/3, let D move “down” and stop (at time t + 1) if Ut ≤ 1/(Dt + 1). Adjoin to the dominating
walk’s state space {x0 − 1, x0, x0 + 1, . . .} an absorbing state corresponding to stopping. Then the
question becomes: What is the expected time to absorption? We need only compute the expected
time to absorption from each possible deterministic initial state and then average with respect to the
shifted-geometric stationary distribution for D. For finite-state chains, such calculations are straight-
forward (see for example [10], pp. 24–25). For infinite-state absorbing chains such as the one we
have created here, some truncation is necessary to achieve lower and upper bounds. This can be
done using ideas similar to those used in the proof of Theorem 5.1; we omit further details.

The upshot is that is takes an average of 6.07912690331468130722 . . . steps to reach coalescence.
This is much closer to the lower bound given by Theorem 5.1 of 5 than to the upper bound of 15.
Our exact calculations confirm results we obtained from simulations. Ten million trials (which took
only a few minutes to run and tabulate using Mathematica code that was effortless to write) gave
an estimate of 6.07787 with a standard error of 0.00184. The algorithm took only a single Markov
chain step about 17.4% of the time; more than four steps about 47.6% of the time; more than eight
steps about 23.4% of the time; and more than twenty-seven steps about 1.0% of the time. In the
ten million trials, the largest number of steps needed was 112.

Similar simulations for small values of β led us to conjecture, for some constant c near 1, the
refinement

E T (β) = 1+ (1+ o(1)) c β as β → 0 (14)

of (9). The expansion (14) (which, while not surprising, demonstrates extremely efficient perfect
simulation of Vervaat perpetuities when β is small) does in fact hold with

c =
∞
∑

i=1

2−i ln(i+ 1)≈ 1.016. (15)

We will prove next that the right side of (14) provides a lower bound on E T (β). Our proof that it
also provides an upper bound uses the same absorbing-state approach we used to compute E T (β)
numerically in the case β = 1 and is rather technical, so we omit it here.

Using (13) and (12) together with the inequality e−x ≥ 1− x for x ≥ 0 we find

E T (β)− 1

β
> E

�

1− (D−1+ 1)−β

β

�

. (16)

Application of the dominated convergence theorem to the right side of (16) gives the lower bound
in (14), where c = E ln(D−1+ 1) is given by the series (15).

6 Related work

An unpublished early draft of this paper has been in existence for a number of years. Perfect sim-
ulation of Vervaat perpetuities has been treated independently by Kendall and Thönnes [9]; their
approach is quite similar (but not identical) to ours. One main difference is their use of the multi-
shift coupler of Wilson [16] rather than the multigamma coupler. The simulation with (in our
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notation) β = 10 reported in their Section 3.5 suggests that, unlike ours, their algorithm is reason-
ably fast even when β is large; it would be very interesting to have a bound on the expected running
time of their algorithm to that effect.

The early draft of this paper considered only the Dickman distribution and used an integer-valued
dominating chain D with a stationary distribution that is Poisson shifted to the right by one unit.
Luc Devroye, who attended a lecture on the topic by the first author of this paper in 2004, and his
student Omar Fawzi have very recently improved this approach to such an extent that the expected
number of Markov chain steps they require to simulate from the Dickman distribution is proven
to be less than 2.32; see [2]. It is not entirely clear that their algorithm is actually faster than
ours, despite the larger average number 6.08 of steps for ours (recall the penultimate paragraph
of Section 5), since it is possible that one step backwards in time using their equation (1) takes
considerably longer than our simple up/down choice (recall step 2 in the algorithm at the end of
Section 4).
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