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1 Introduction

The evolution of the diameter of a bounded set under the evolution of a stochastic flow has been
studied since the 1990’s (see [5], [6], [11], [17], [12] and the survey article [16] to name just a few
references). It is known to be linearly growing in time if the flow has a positive Lyapunov exponent.
Of course the considered diameter links to the the supremum of |¢,(x)| ranging over x in a subset of
RY. In the following we will consider the case where the flow is replaced by its spatial derivative. We
emphasize that we consider the asymptotics in time (the spatial asymptotics for a fixed time horizon
have been considered in [8] in a very general setting and in [2] in the particular one treated here).
If the flow has a positive top exponent it is known that the growth is at least exponentially fast which
is then true even for a singleton (this follows directly from the Multiplicative Ergodic Theorem). We
will show in the case of an isotropic Brownian flow (IBF) or an isotropic Ornstein-Uhlenbeck flow
(IOUF) that sup, |log HDxt H | grows at most linearly in time t where the supremum is taken over
x in a bounded subset of RY no matter what the top Lyapunov exponent is. This shows that the
growth of the norm of the derivative is indeed at most exponentially fast but it also gives some
insight into the distance of D¢, (x) to singularity by bounding supy<,<r t~Linf, log“Dxt” from
below in the liminf sense. This excludes super-exponential decay to singularity which might be
of interest especially if the top exponent is negative. Exponential bounds on the growth of spatial
derivatives play a role in the proof of Pesin’s formula for stochastic flows (see [13]). It has also been
conjectured that this should yield a new proof of the fact that the diameter grows at most linearly in
time (but there are much simpler proofs known for this - see the references given above). Despite
the fact that we can come up with an upper bound for the exponential growth rate we make no
claims about its optimality (and we conjecture that our bound is far from optimal).

1.1 Definition And Prerequisites

In this section we will recall the definition of an isotropic Brownian Flow (IBF) from [4] and an
Isotropic Ornstein-Uhlenbeck Flow (IOUF) from [2]. We will keep the convention of speaking of an
IOUF only if its drift ¢ is not equal to zero. (see [2] or [3] for a discusion of this issue).

Definition 1.1 (IBF and IOUF).

Let ¢ > 0 and F(t,x,w) be an isotropic Brownian field with a C*-covariance tensor i.e.
<Fi(-,x), Fj(~,y)>t = tb;j(x — y) where the function b(-) = b;;(-) : RY — R4 is four times continu-
ously differentiable with bounded derivatives up to order four and preserved by rigid motions (see [4]
or [7]). We define the semimartingale field V(t,x,w) := F(t,x,w) — cxt and an IOUF to be the
solution ¢ = ¢ (x, w) of the Kunita-type stochastic differential equation (SDE)

t t

V(du, ¢, (x)) =x + f F(du, ¢ ,,(x)) — cf ¢s.u(x)du. (D

S

¢5,t(x) =X +f

S

Note that the definition of b and [9, Theorem 3.1.3] imply

t

<81Fi(-,x.), akFJ(,y)>t = —f alakbi’j(xs —ys)dS. (2)
0

If one puts ¢ = 0 in (1) one gets the definition of an IBE
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We call ¢ the drift of ¢ and b the covariance tensor of ¢. Note that we write x, for ¢,(x) =
¢0,t(x) = ¢g(x,w) and xtl, ...,xf for its components. We will write the spatial derivatives as
O,x] == %qﬁé’t(x) and ||Dxt { = Hqut(x)“. The same notations are used for y, = ¢ ,(y, w) etc..
The assumptions on the smoothness of b ensure that the local characteristics (b,c-) are smooth
enough to guarantee the existence of a solution flow to (I) which can be shown to be of class C3°
for arbitrary 1 > & > 0 (see [9, Theorem 3.4.1]). In fact one has to choose a modification to get the
mentioned smoothness (which we do without change of notation). IOUFs have been studied in [7]

and in [2] and we will recall some facts that we use later.

Lemma 1.2 (some finite-dimensional marginals).
Let ¢ be an IOUF with drift ¢ and covariance tensor b and let x,y € RY. Then we have

1. ¢ is a Brownian flow (i.e. it has independent increments) and its law is invariant under orthog-
onal transformations.

2. The distance process {|x; — y;| : t € R, } solves the SDE

t
e = ¥l =|x—y|+J V2[1-By(lx, - y,))]dw,
0

t

1 —By(|x, —

+J (d—].) N(| s y5|)—C|Xs—ys|dS (3)
0 |Xs - ysl

for a standard Brownian motion (W,),>q. Therein By and By are the longitudinal and normal

correlation functions of b respectively (see [4] or Lemma[1.3). There are constants A > 0 and

& > 0 such that the following is true.

(a) There is a standard Brownian motion (W,),>q such that we have a.s. for all t > O that
[ — el < I — yle? UPososc Wetht,

(b) We have for each x,y € RY, T > 0 and q > 1 that

1/q
¢ |: sup |x, — }’th:| < 2fx - J’|e(l+%q62)T- 4
0<t<T
3. For x € R? the spatial derivative ajxi = % solves the following SDE.
J

t t
xl =5 +J > oxkaF (ds, x) - cf d;xlds. (5)

0k 0

We will use the symbol Zk as a shorthand for Zizl (also for multiple summation indeces).

Proof: [7, Proposition 7.1.1, Corollary 7.1.1 and p. 139] and [16, condition (H)]. O
Observe that we write E [X]? for (E [X])? which is different from E [X?]. We will use this conven-
tion throughout the whole paper. The following lemma gives some insight into the structure of b
which is known since [18].

Lemma 1.3 (local properties of b).
We have for i,j,k,l=1,...,d that:
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Xin

(By(Ix)) ~ By(IXD)222 ¢ for x #0
6;;B1(0)=6;;By(0)=0;; : else

the so-called longitudinal and transversal correlation functions defined by B, (r) = b%(re;),r >
0 and By(r) = bi’i(rej),r > 0,i # j. By and B are bounded C*- functions from [0,00) to
R with bounded derivatives up to order four. Letting 3, y := —BZN(O) denote their right-hand

1. bcanbewritten as b/ (x) = { where B; and By are

derivatives at zero we have the Taylor-expansions By y(r) = 1 — %[J’L’er +0(r*") for r — +0.
Both B; and fBy are strictly positive. Observe that our definition assumes the rigid-motion-part
of b to vanish (which is different from the definition in [10] where one has to assume a = 1 to
be consistent with our notation).

2. The partial dqivatives of b at 0 satisfy
09 b (0) = %(ﬁN — Br)(6ki61j + 0kj61i) — Bn 6k 6ij-

3. Thereis 0 <7 <1and C > 0 such that for x € R? with |x| < 7 we have
|3k 8, b (x) — 38,6 (0)| < C|x|*.

Proof: [7, Proposition 1.2.2]. O

Lemma 1.4 (a lemma on real functions).

Let f,g : [0,00) — [0,00) be increasing functions that are differentiable on (0,00). Let further f be
convex and g be concave. If we have for some t > 0 that f(t) > g(t) and f'(t) > g’(t) then we have
forall s > t that f(s) > g(s).

Proof: easy undergraduate exercise O
The following result is the main tool that allows for the estimation of suprema of the derivatives.
Observe that r, = r v 0 denotes the positive part of r € R.

Theorem 1.5 (Chaining Growth Theorem).
Let ¢ : [0,00) x RY x Q — R? be a continuous random field satisfying

1. There are A > 0 and B > 0 such that for all k > 0 and bounded S < R? we have
. (k=B)?
lim Supy_o 7 108 5UPyes P [ sUPg< <y 19, (0| > kT | < =5+

2. There exist A > 0,0 > 0,qo > 1 and ¢ > 0 such that for each x,y € R%, T > 0 and even q > q,

1/
we have that E [supo< < [1h.(x) — . (1)I7] " <

Clx — er(M%qUZ)T. ¢ may depend on q and d but neither on |x — y| nor on T.
Let E be a compact subset of R with box (see [16, page 19] for a definition; just note that a closed ball
in R4 has box dimension d) dimension A > 0. Then we have ,

g-d (d

limsupT_)oosup(,StSTsupXGE%lwt(xﬂ < Kas. where for Ay = 3 (E_A) we put K :=

B+A\/2A (A+02A+ NEN +2AA02) Cif A> A

B —I—A\/ZAd_LA (A + %O‘zd) . otherwise
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Proof: A complete proof can be found in [16] as Theorem 5.1. Observe that the change of ,q > 1
to ,even q > q,“ does not alter the statement at all, because the assumptions above guarantee the
same assumptions for ¢ > 1 with a change only in the value of ¢. The fact that we allow ¢ to depend
on g does not play any role because the proof in [16] is perfectly valid with g-depending ¢. We
will only briefly indicate what is involved in it. Choosing € > 0 and a sufficiently small r, > 0
one can cover = with at most e?’T(4+€) subsets of R? of diameter at most e ¥" < r,. Denote these
subsets by Z1,...,Era+e For fixed T the assumption supg<,<r SUPyex %|1/)t(x)| > k implies one of
the following to occur up to time T: one of the E; gets diameter at least one or the center of a =;
reaches a distance of kT — 1 from its original position. Hence we have for 6 > 0 that

0<t<T x€=

x
IF’|:sup sup|—Tt|>KT+5:|§Sl—I—S2 (6)

with §; := e’ T4+ max P [ sup [x,| = «xT — 1}

X€E 0<t<T

and S, := " T4 max p { sup diame¢,(E;) > 1} :
i 0<t<T
The chaining based result [16, Theorem 3.1] now shows that the two-point condition is sufficient
to control S, and the one-point-condition covers S;. In this way one obtains that the sum over
T € N of the right hand side of (6) is finite for some y and x which completes the proof via the
Borel-Cantelli-Lemma. The formula for the constant K is obtained via an optimization over y and
K. O

2 The Main Result

We are now ready to state the main result.

Theorem 2.1 (exponential growth of spatial derivatives).
Let ¢ be an IOUF or an IBF with b and c as above and let = be a compact subset of R? with box
dimension A > 0. Then
1
lim sup ( sup sup?Ilog HDxt” I) <K as. (7

T—o0 O0<t<T x€=

B +A\/2A (A +o2A+ota2 + 2AA02) CifA > Ay
B —l—A\/ZAﬁ (A + %O'Zd) : otherwise

where K :=

for Ay := ‘%d %—A),A: Pr, B = ﬁ—;—#W, A=A VA,VAgand 0 : =0,V 0,V 0.
The A; and o; depend only on b and d and will be specified later.

Proof: This follows directly from Theorem 1.5 applied to ¢ : [0,00) x RY x Q — R;

Y.(x,w) := log HDxt” if we can verify the following lemmas. We will only use 1 in the mean-
ing given above from now on. Note that we choose the matrix norm to be the Frobenius norm
I(a; i< j<all = ; ai% ].)1/ 2 for its computational simplicity although the special choice of a norm
is irrelevant because of to their equivalence.
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Lemma 2.2 (condition on the one-point motion).
We have for each bounded S c RY that

1 (k—B)
limsup — logsupP | sup [y, (x)|>kT | <———5— (8)
T—ooo I~ xes |ost<T 2A
for A and B as given in Theorem|2.1.
Lemma 2.3 (condition on the two-point motion).
We have for each x,y € R%, T > 0 and even q > qg := 4m[2(d1_2;)[3ﬁN_c_2ﬁL] v 3 that
L
1/q L
E Li“ET I (x) - wt(y)w} < élx — yly/get 21T ©
<t<

for A and o as given in Theorem 2.1 and ¢ := ¢, + C5 + C¢. The C; are constants that depend on b and
d and will be specified later.

The proofs of these lemmas will be given in the next sections. Observe that ¢ does not enter into the
constant K, so we do not need to pay attention to get a small value for it.

3 Proof Of Lemma 2.2: The One-Point Condition

Before proving Lemma 2.2 we will need to establish some facts on ||Dxt Hz

Lemma 3.1 (SDE for ||DxtH2).
Let x € RY and put M, :=2 fot Zi’j’k O Ft (ds, x,

k i
afxs aj X5

T Then we have
Xs

1. (M;):>0 is a continuous local martingale with
ﬁ»xskajxsiamxskamx

20681~ )t + 2061 + B Jg Diaom o

hence a true martingale.

i

tds = (M), < 4Pt as. forall t > 0 and

OcF' (ds, x;) 9;xk0;x!

s ]S

2. We have the SDE ||Dx,||* =d +2 [} 3, .,

+[(d = DBy + B, —2c] [, ||Px,||" ds
t 2 t 2
=d+ fo “st“ dM, + [(d —1)By + B — 2] fo HDXSH ds.

3. We have <||Dx.“2>t =2(B, — ﬁN)fot ||st||4ds
+2(By + Br) fot Zi,j,k,m 0;X 0, (O x{ Opx}ds.

4. P (x) =log HDxtH solves the SDE
d_
() = Llogd + I, + [ LB _ ] ¢ — L),
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Proof: Lemma1.2/and It6’s formula imply for ||DxtH2 = Zi’j(ajxi)z that

t
||Dxt|~2=d+22f 8jx;d6jx;+z<8jx.i>t. (10)
i,j JO i,j

By Lemma [1.2/this is equal to

t t
d+ ZZJ 3]x;3kFl (dS, Xs) ajxsk — ZCZJ (3]xsl)2d5
0 ij J0

i,j,k
t
+ZJ D oxloxkd (g F (d-x.), 0F (d-,x.)),
i,j YO Kkl

t t
=d + ZZJ O F' (ds,x,) 9x 9;xk — 2cf HstHst
k0 0
t
-> f 0;x13,xk8,8,b" (0) ds. (11)
i,1,k,l /O
Since we have by Lemma/1.3 that Zi’j’k’l Ot 3jxsl ajxfakal b (0)ds

= (f ik OxL0xE [(By — B1)6k:i61; — BnSx] ds which is nothing but

— [Br+(d—-1)By] fot “DXSHZ ds we also get from (11) that

t
||Dxt“2 =d + ZZJ OcF' (ds, x,) 8;x.9;xk
i,j,kJ0

“a f x| ds + B+ (d - 1)y ] f x| ds
0 0

t
—d+2 J Ipx,
0

Thus 2. is proved. 4. follows from this and It6’s formula since ), (x) = %log(”Dxt Hz). To prove 1.
and 3. we observe that by (2) and Lemma 1.3/ we have that (M), equals

t k i n l
0jx{ 05X O X ] Oy X
-4
i,j,k,l,m,nv 0

2ds.

2dM, + [B, + (d — 1By — 2c] j | Dx,
0

$8,0,b" (0)ds

o’

t 0 i\2 am n\2

=2(B; — By) Z M
0 ijl,m Dx;

ko via +ig vk
0 X 0;X ;O X ;O X

+2(/5L—ﬁN)J P

o ifim  [ox[
+4/3th Z ajxfﬁjxsié’maifamxsids (12)
0 ijEm [[Dx
t 2:xk8.x10. xka. xi
—2(B— Bt +2B+By) | Y 2 J”’; ’"”)i s
0 ijkm Xs
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This together with 2. proves 3. and 1. also follows from this and the next proposition. O

Proposition 3.2 (a simple estimate).

a-xkavxiamxi‘amx;
We have |35 ¢ W <1
Proof: The proof is just the combination of the triangle inequality with Schwarz’ inequality. We leave
the details to the reader. The reason why we state this fact as a proposition of its own is that we will
use it again. O
Now we can turn to the proof of Lemma/2.2. Since we can write M, = Wiy, for a standard Brownian
Motion (W,);>o we get with Lemma 3.1/ that

1 (d-1)By+p. 1 1 1
P, (x) zilogd + _f —c_ t+ > (W<M)t -5 (M)t)

1 [(d—1 + 1 1 1

<-logd + ()ﬂ—c t+—= sup (WS——s) (13)
2 L 2 0<s<4pyt 2
1 [(d—1 + i

i—logd+ ()ﬂ—c t++/Bt sup (WS— /3Lts)
2 L 2 | 0<s<1

where the latter means equality in distribution. Therefore we get for any k > 0 that

I:=P |: sup ¢, (x) > kT} (14

0<t<T

<P logd + sup {[w —c:| t+ /Bt sup (Ws - \/ﬁLtS))} > kT}
2 0<t<T 2 0<s<1

(d—1)By + B, —2c:| k logd
<P | sup t++tsup (W, —+/B.ts)) p > T — .
0<t<T |: 24/B; . 0<s<1 ( t ) VB 24/Bs

Here we distinguish between two cases to treat (14). If (d — 1)y + 3, —2c < 0 then we immediately
get (using 1 — &(t) < exp(—1/2t2))

k logd k logd
I§P|:ﬁsupWS> T 8 :|:]P>[supWS>—ﬁ— g :|

oss<t - /B _2\//5_L oss<1 /By 2,/B.T

27 klogd , (logd)?
=2 [1—q> (kﬁ— logd )} 526_%(1(/5_:_?5+4§T) (15)
VBL  24/B.T

which gives limsup;_, %logP [supOStST PY(x)> kT] < —ﬁ]@ =—
If [(d —1)By + B ] — 2¢ > 0 we get similarly to (15) that

2
limsup;_, ., %log}P [SuPosrsT P (x)> kTJ < —ﬁ [k - (d‘l)ﬁN# ]

+
We now only have to exclude the possibility that the modulus of the logarithm in
Y.(x) might become large due to a very small ||Dxt||. Observe, that (13) implies
Y (x) =2 1/2((d—1)By—Br—2¢c)t+1/2W yyy, . Distinguishing between the signs of (d—1) By —f,—2c

1 72
k2.
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we get with a completely analogous computation limsupy_, %logIE’> [infoc,<r Y (x) < —kT] <

-3 /5 [k M] R . This completes the proof of Lemma [2.2| O
L

4 Proof Of Lemma 2.3: The Two-Point Condition

4.1 General Estimates And Preparation

We now turn to the proof of Lemma [2.3]and start with a sketch of proof since it is rather technical.
It consists of four steps.

1. Derivation of a SDE for 1,(x) — ¢ .(y) involving X( )= ”i)i T~ ”%f”.

2. Derivation of a SDE for (X Eij Y2 for q=2.
3. Obtaining estimates of the type required in Lemma 2.3 for X Eij ). This is done for small |x — y|

estimating the probability for very fast increase in the beginning and with a Grénwall type
argument in the case this increase does not occur.

4. Obtaining the estimate for v,(x) —,(y) as integrated versions of the ones on the X//) using
the Burkholder-Davies-Gundy inequality.

Observe that we have by Lemma@

l

kA i
'l[) (x) 'l,b (.V) ZakF (ds xs) J s J s aFi (ds,ys) a]-ys aJ);s

Jox || T
(/D’L +8y) (° 0,yko,ylonyko,yl  0;xk0,x10,xk0,x!
i P - 7
o iim oy’ 1D
=:M, +A,. (16)

To further analyze the latter we first prove the following lemma.
Lemma 4.1 (general estimates for A, and ]\7[t ).
With M, and A, defined as above the following holds.
1. A.s. we have for all t > 0 that A, < (By + B.)t.
2. Introducing the abbreviation b (z) = 8,3,b"! (2) — 8,.0,b"! (0) we can write for the quadratic
variation of M

. 2
<1\7[> _/5L + By J ajxsajxs ajyslajysk
0 lk

1Dx I loslf

ﬁxﬁxka yla Y&
+2 Z J JSJS mzsb;(”n(xs—ys)deSCt
0 Ys

i,j,k,l,m,n

wherein we put ¢ := 28, +2d° max; ; y n SUP,cgd 9,.8,b" (2) < 0.
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Proof: 1. is clear by definition of A, and Proposition|3.2. Clearly <I\7I > . equals

p

i,j,k,l,m,n J

)

i,,k,Lm,n Y

2 J
i,j,k,l,m,n v 0

. + t
Using IT = (B, — By)t + % fo Zi’j’k,m

yields IT < (8, — Byt + @m = 23, t and since III < 2d° Max; | . n SUP,cprd 9,8, (2) t is clear
the first part of 2. follows. To prove the second part we have to rearrange (17) using the symmetry

and isotropy of of b.

(¥),

0
[
0
[
i.jJoLm,nJ0 ||D3’s|| Ipx[|”
[
0
[
0

t&‘xkﬁxa X; O X
s I aka bl (0)ds

o’
t 8]x;<3]x53my5 8mys

2= ¥l ]

,.0,b"! (xs — y5) ds

t

9y, 8Jy58 X0, x

>80, b (y, — x,) ds

t

0,¥k8,y18,y 0ny!
A

9,0,b" (0)ds

t

[ By — B )G+ 51050) — S lz}

(ajxskajxsa mXs Om x 3]ys 6]y58my5 5‘mys

U e I [yl
0;xk0,x10,y 8,,12}'5 8.8, b" (x, — y,) ds =: IT +I1I.
o lox]

Bxkc?xc? xké‘ xt

J7s 7J7s s+
[EXTR

3;yk8;yl8,yka,
lIpyl*

Oy Omy!

¥ f {a]xsa]xs_ajy;ajyf] [amxgamxj
tdmado LIpxl™ - pxl" I L o]

8]x58]xska Y, 8mys

[px|

bll (x

+2 Z J
i,j,k,l,m,nJ0

o[l

—y)ds=:1V+V.
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Since (again by Lemma(1.3) we have 8,3,b" (0) = %(/s’N —Br)(6k;iOn1 + 0116,i) — PnOinOi We get
that IV equals

BL—B (@x))* (B (Omx))?  (Omyl)?
%Z(|]2_]2)(| - = | ds

i,j,l,m HD ||D.ys
ﬁN Z J (ajxsajxs _ ajygajﬁk) (mesiﬁmyzcsk _ amysiamé’sk) ds
drmdo \[[px]* o IP[” o]
s f (a]xsa]xs - ajy;'ajysk) (amxskamx;'  Om skamy;') .
drmdo L[] oyl S o f® o
_ 2
L+/5Nf astaszs _ aJ'yslajyzsk (19)
0 i IID 7 ey
This completes the proof of Lemma _ O
This Lemma shows that we have to control terms like “ix I H%j:;”. We postpone this until we will

have derived the following estimate from Lemma(4.1.

Lemma 4.2 (a priori bounds for the 1-estimation ).

1. We have for each x,y € RY, T > 0 and q > 1that
1/ _5 .
E [supoec<r 9 (x) = (3)I7] ™ < (By + BL)T +2¢15v/278/q + 1VT.

2. We have for each x,y € RY, T > 0 and q > 1 that
1/q -~ 1.2
E [supo<,<r () =9, (0)I1] " < Gre(Mtzo)T
- 1 5
with Cy := Py + f +2e% 124/271¢, Ay :=1/e and o, :=4/2]e.

3. Let r > 0 be fixed. We have for any x,y € RY with |[x —y| > r, T > 0 and q¢ > 1 that
a1V < - (Ar+io?)T
E [supo<c<r 1) = (I1] " <& lx — yleMF 2707 for
— 1 341 =
€= [ﬁN + P +2e 127 % v2nc] and A1 and o as before.

Proof: Once again observe that by the triangle inequality

1/q 1/q 1/q
E [ sup |¢t(x)_¢t(.y)|qi| <E |: sup A%} +E |: sup Mf}
0<t<T 0<t<T 0<e<T

1/q
<(By+PB)T+E [ sup Mf} =:(By +BL)T +VI. (20)
0<t<T
Since we can write M, = W(jry and <M>t < ¢t a.s. we get using
~ - q r atl q+1
E [supoerTMﬂ <E [supOStSET Wtq] =(eT)> ﬁ@z 2
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that Stirling’s formula for the Gamma function implies

1
LD
VI<(2m) u2% r(qz )q VET < 2e"15v/278+/q + 1VT. 21)

Thus 1. follows. For the proof of 2. it is sufficient to observe that since for any t > 0 we have
t <e'/¢and v/t <1/4+t we also get

Fr
([D’N+/3L)T+26_%v2n5\/q+1ﬁ5 (ﬁN+[3L)ee+2e BV omie
[4+(g+1)
(By +Brles +2e BVamde ¢ < [ﬁN 4By +2ek 12 27'55] e%T. 22)
This proofs 2. and 3. follows from this by using Ix;—yl <1 O

Since we can now control the moments of 3,(x) — 4 ,(y) provided x and y are not too close to
each other we introduce the following stopping time. Let 7 be chosen according to Lemma (1.3 and
7 < 7 to be specified later. Remember that we assumed 7 < 1. We now define for x,y € R? with
|x — y| < r the stopping time
T := inf{|x, — y,| > 7}
>0

and assume r < 7 in the following (which ensures T > 0 a.s.).

4.2 Derivation Of Formula H

a‘xi ayl i
We now proceed to work on | I

Bx
- by proving the following proposition on
[ox[] ~ Toy [ >¥ PrOVING & Prop Mol

o]l

Proposition 4.3 (SDE for the direction of the derivative ).
We have the SDE

||Dx || J ZakF (ds, Xs) L 37 8, F* (ds,x,) T s

s o

1 1 t a‘x B+ By [~ x5 g dixg
+[(___),5N__m” gulanast,
LN N e A N DT v
alealxgamxfa x"0:x!

+ - (/5N+/3L) T T ds. (23)
0 klmn Hst

k
I x" 9 x; ﬁlxs

Proof: Since by It&’s formula

d(ﬁxl)s 1Jt ajx;' 9
— ——d||Dx.
el ah Tosl "2y oIk

1 ped (g ox|?) 5 g dxi ,
- = S d (||Dx. 24
2L ||DXS||3 SJ;) ||st||5 <|| X “ >s (24)
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we only have to note that by Lemmas 1.2/ and (3.1

(9 o |). -—2J‘ > 8xk8,x8,x72,2,6°" (0) ds
0 klmn

t
=B — ﬁN)J 9;x; + [J’N)f Zajxfamxsiamxfds
0 0 k,m

which combined with Lemmas/1.2/and /3.1 and put into yields

8~x§ t 5‘ x'

Lt 3.F (d I8 g
e, T g S
. ox 61x 8x
—J Zé’mF (ds,xs)—
0 kI,m ||D s”
A=D1y +p—2c [* G
2 o oxl] |
+/5N_f5L ' 9;x; ds_ﬁN"‘ﬁLJt ajxskalxslalxskds
2 Jo ||pxi| 2 Jo

38, - p )ft 9%
—(B, — ——ds
47 T g [lox|

3 ﬁxka x"0,,xk8, x"3:x!
+ (B +By) s
0 kzmn P

This proves Proposition 4.3.
Of course the latter implies

gx; 9y,
x| [|Py|

J tZ (a P (dovx) T P (d,3,) 12 )
= S, X ) T — s,
A x| T Iy
J Z (a Fk (ds X ) ﬁzxmazxska]xs _ 3 Fk (ds ) 31_)/5 3lys ﬁj_ys)
m IS S —_—
0

Lm ” ” ” ySH
1 1 gx. 9y}
+{(>-%)By-- - d
(G3)m il [ (e oo )
_ﬁN+ﬁLJt (@'Xfalxsiazx 9i¥s 313’5913’s)d5
2 0 ki ||st||3 ||D H
42 (ﬁN-i-ﬁL) (alxskalxsnamxski xsnajxs _ 8l.ykalynam a aJys) d
0 klmn HDXSH ||Dy5||
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Letting

‘ . 9. xk . ayk
I, := O F' (ds,x.) ——— — 3, F' (ds, y,) —=- |, (28)
t J Z( k ( st) ||st|| k ( SJ’s) HDJ’SH)
k
v = Y (aka (a5, ) EEXT g g y) B D25 %) 9
0 & x| A

we have to compute the cross variations to apply It6’s formula for powers to (27).

(VII),

dixko.x!  8.yka,y! -
:_f Z( s Y] s+ iYs J);s)akalbl,l(o)ds

0; xka 7] 8 l .
+f ( ]ys + ]ys ) akﬁlbl’l (Xs — ys) ds
0 ||Dys X

k,l
1s 9, 3jy§)
- (By — BL)6ki61; — PnOrr ] d
Jo(nbxu o) g o) o= o= e

‘ d;xka y N
+2J Z S ]ys [akalbl,l (xs_ys)_akalbl,l(o)] ds
0

szDX 1Dy
2
J-ys ]ys
ds + d
oo ] (unx >| HDysH> s ] Z(unx u unysu) 5
t k
_|_2f Z&‘bu (xs— y5) ds (30)
and similarly
(VIII), ﬁNf ( 0,x] 9 xk9;x! 91)’3"313’5313’;)2&
o ' T o Iy’
. 2
BL— f ( 3x ajy; )
+ ds (31)
2 o= [y
o Z J alxmalxka]xsapy 8)/3 Oyl k”(x ) ds
k,l,m,n,p,r v 0
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as well as

(VII,VIIL),

:ﬁL_[jNJt( ajxsi _ aj)’si )2ds
2 Jo \px|| - [|oy|

3 3

2 [ oyl )\ o,

.r(%é%ﬂ@%%ﬂ @ﬁ%ﬁ@#%ﬁ)yqx—yms
k,l,m,nvJO0 HDXSH ||Dys||3 HDys“ ||DXS||3 k,n \7ts s

Dy,

The combination of (30), (31) and (32) with (27) and It&’s formula now yields for X Eij )=

“ij%” the following (note that X Eij M means (X Eij Y2 ).
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0 Kkl
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Proposition 4.4 (formula H).
We have for q > q, that

(ij)q
Xt

t
:qf Xs(ij’q"lz (3kF (ds, x;) —— ”
0

k

o 9 xmg,xkd,x! 2 v™3,vka. vi
_qJ Xs(lj)q—lz (ampk (ds,xs)%_a Fk (ds, ;) %)
° S

a k
ar s 12 )

S

S

k,l,m s
B—By , d-1 1 o
+ [ ¢~ ——PBvqg—5Bq| | Xds
4 2 2 .
aq—-1) t (ij)g-2 (kj)2
+ by O X Zk:X ds

Bu+B [ (i))g-1 ajxkalxiazxk 3jykaz)’iazyk
—q 5 OXs]q Z s sss_ s sss ds

Kl s

. 6’x“8xk3»x 3 "o 3
+4q(q —1)/5 ﬁLJ Xs(u)q—ZZ (Z s 531 1Ys 9 Ys ) ds
0

on \_1 ||Dx ||Dys

—q(q— 1)/51\1 + ftxs(ij)q—z ZXs(kj) (alxs alxsajxs — alyskalysiijysi) ds
2 0 k,l | s ‘

Z (Z’)lealx:ﬁmxfﬁ X0 0%} 0, Oy Oy amysnajysi) d
s

Dy,

3 £
+ 248y +F1) J X (ha=1
0

k,l,m,n
9;x53,y!

+q(q—1)J xia=2 b (x — y) ds

o &xkam WYL0yl  8yko,xo,xloxl .,
_ q(q _ 1)J Xs(lj)Q*Z Z ( J7s ys -ys + -ys s J s ) b}l(,’ln (XS _ ys) ds
0 k,l,m,n ||D.ys s

gxrm alxkﬁxa 13,y 3;y!

t
+q(g-1) J X (a2 bEn (x, — ;) ds. (33)
0

k,l,m,n,p,r

Proof: There is nothing left to show. O
Proposition (4.4 will be useful to estimate the expectation in Lemma [2.3 on the event {T < 7}
but since this requires some additional preparations we will first consider the reversed case in the
following intermezzo.

4.3 Treating Small |x — y| And Large T

Since we obviously have from Schwarz’ inequality that

1
q —
E [Ozungwt(x)_’l/)t(y)lql]-{T>T}i| <E [ sup_ 1Y () — ¢, (mﬂ PIT > 1] (34
<t=<
it seems reasonable to compute some useful estimate for the tails of 7. We will also immediatly

specify conditions on r and 7. Assume first with Lemma|1.3|that # < 7 is small enough to ensure
that for any 0 < r < ¥ we have

V2[1-B(r)] <2y/B.r and (d — 1)@ —cr<[2(d-=1)By—c]r (35)
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Lemma 4.5 (tails of 7 ).

logL logL logL
If we assume q > q, then we have for T < —x lx=y1 =PI that P[T > 1] <
f 1=90 for TS Toapq M e/ To@—n—c—26,] . 1286a [T=r]=
2 2 2
sl — y1* /\;qux_y|4q-

Proof: Let X, = |x — y| + fot 24/ B X dW, + fot [2(d —1)By —c] X,ds i.e.
X, :=|x—ylexp {2\//3LWS +[2(d-1)By —c—26;] t} for some BM (W,),>o. Then we may start
with (see (3) and (35))

P[T>7]=P| sup |xt—yt|ZF:|§}P’|:sup Xth‘:| (36)

| 0<t<T 0<t<T

-
i [2(d—1)/3N—2/5L—c]+Tﬂ

=P | sup W, >

1
lo
_OSIST 2\/ ﬁL ( g |x

0g —
<P | sup W, > —2A _ [2(d—1)By — 2B, —c] VT | = IX.
0<t<1 24/B. T

Let first 2(d — 1)By — 2, — ¢ < 0. Then we have using 1 — ®(t) < e~1/2t" that

i P2
log =)

_ 1
x<2|1—0| — 2 | <2075 At
2/, T
|x — y| WIS 2
r r=d
log ——
forT < % (remember |x —y| <r < 7). Let now 2(d — 1)y — 23, —c¢ > 0. In this case we can
10g|x%y‘ logﬁ
use for T < that

B 4\/E[2(d_1)ﬁN_c_2ﬁL] 12869

log —~
IX =P | sup W, > b [2(d —1)By — 2B, —c] VT

0=<t<1 24/B. T

F F
log =5 log =,

<P | sup W, > —2 X —o|q_g| 2
0<t<1 44/B.T 44/ B, T

_F
log x 31

< 1 1 | F 2 _y |x — y| 3267
=<exp 2168, T Og|x—y| B 7

-yl lx—yl%
S22 (38)

The proof is complete.
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Lemma 4.6 (estimate for T after 7).
For |x — y| <r < e ¥ and arbitrary ¢ > q, and T > 0 we have

1/q
— 1 .2
[OSUP [P e(x) =, (}’)lqll{rx}} < Gylx — y[Pelhetza0)T (39)
<t<T
with Ay := A V1, 0y := V20,V 24/1288, V2 and
Co 1= V26, vV 1| Buthr + «/ZnEe_% v 2(BL+Bn) V %1/256cn[3’L
27 F P 1288, V166, F F

log 757 log 5 _ gty . .
Proof: If T < 580 " 5B 2y ——25,] — 1281q then we just have to combine Lemmas

and|4.5 with (34) to obtain

1/q -
|: sup W’ (X) w (y)lq]-]-{T>T}:| < |x yl 22qe(/\1+ [ Zq)T

0<t<T

log; )
which means we only have to consider the case T > 12;;5 Yl By Lemma 4.2 we first observe for

= that
0= 12869

1/q logleyl
E[ sup |wt(x)—wt(y)|q] < B+ P

0<t<T,

log : + e D r
+ 20 BV 1y M{m by VI

12869 — | 128p; v/ 168; lx — |
N A2+%a%q 1
ﬁN+/3L+«/ G i ( F ) EIra 40)
12863, /166, x =yl
A l(72 7
1 /5N+/5L+V Ge s X =yl 2gﬁquogm<-| — y|eMat3aodTo
7| 1288 Jiep, | 0¢ = T '
L L

1
Since f : T — Gylx — yle(A2+5qG§)T is a convex function and g : T — (By + BT +
5
2e”12+/27t¢4/q + 1/ T is concave one we may just check that f'(T,) > g'(Ty).

5 1
g'(To) = (By + B1) + e 121/256mé B, Jq(q+1)lo—f

lx=yI
N . A2+%0§q . A2+%a%q 1

CoT 1 2 r 1286 czr 7 1286,

<—WNy+zqo3) | —— (A2 + qa
2 2 lx — ¥l |x =y
A2+%U%q

_ 1, 3 1286, ,

=C(Ay+ -qo3) | —— lx =y = f'(To). (41)
2 lx — ¥l
Thus the proof of Lemma 4.6 is complete. O

To treat we finally need the following proposition.
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Proposition 4.7 (expectation of zero-mean- martingales on rare events).
Fori,j € {1,...,d} we define M, = M{" == [ X avir, — [ X QVIIL,. Then we have

1. M, is a zero-mean-martingale and we have any t > 0 that <1\V/I>t < ¢t as. for & = 4(d?+2d* +
d®) MaXy  yn,p SUP,epd O b™" (2).

2. Forall0 <t < T and q > q, we get that

E [M 1<y ] ‘

<lx —ylzq:%qe("?’*%"%q*"iqzﬁ =: f(T) for &5 := V2V [ =5 ep, VL As =5, 050= \/ 64fL v

(1286,)% and o, := /256,

Proof: 1. is clear from the definition of M except for the value of ¢. This value follows from (30),
(31) and (32) since <M> <(VII); + (VIII), + 2|{VII,VIII),|. For the proof of 2. first assume

log ——
T< 128"[;, X From Lemmal[4.5/we know that P [T > 7] < |x — y|4q% This combined with Schwarz’

inequality and 1. yields

[ [M11ren ]| =[E [0 ]| < [ (1), ] VRIT> 7]
5\/257’% < @ﬂeé (42)
724 724

which proves Proposition|4.7 in this case. We always have as above that

‘ [M 11{T<T}] ¢T =: g(T) and so we can conclude for the same T as before

8(To) = VlzsﬁLVIglx yI_V128/5L = y|

A3+ U3q+0'4q

() sa () (5
|lx — yl lx =yl r

eWNat3050+03a)To —; £ () (43)

— 2q
=l —y[M e

so now (with Lemma|1.4) we only have to establish the inequality g'(T,) < f’(T,) to complete the
proof of Proposition |4.7. The proof of this is as follows.

1 [128B;q¢ 1

g'(To) = —ﬁLﬂq < -+ 128p;q¢ (44)
2 log r 2

lx—yI
A: -%—l(r2q+cr2q2
|x — y| 2 1 F > legp’L . ,
< - As+ = 0q+o4q = f'(Ty).
F [x — vl
The proof is complete. O
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4.4 Evaluation Of Formula H

Now we are prepared to prove the following key result.

Lemma 4.8 (first estimate for 7 after T)
We have for even q > q if we assume 7 < —= the following.

1. For h(t) :=E [(maxi’jXEij)q Vix, — yth)ll{tsﬂ] the estimate holds

253d2q e(A3+(Av%ag)q+(§azwj)q2+d2;<q)t
h(t) < |x -yl

P24 Az +(AV %a%)q + (%62 Vo3 +d3k,

wherein k, behaves like a polynomial of degree 2 (w.r.t. growth of its modulus) in q and equals

|Bbug? - 1g g —16,q|

+{Cd6 + [ 2By + B +2C] d* + [2(By + B) + C] d® + Lrd}g?
—{Cd®+[2C - 2(By + ;)] d*+ Cd*+ 3Byd } q.

I [maxXEij)qll{Tsﬂ] < h(t) < &7 H|x — que(ASq“’ng)t
l’]

A3+(A\/%U§)q+( Givogi+d3k,

As:= Ay +Avio2—{cd®+ [20 - 2(By +£,)] d° + Cd - BBl g2} and

02:=162v o2+ {Cd®+ | 2By + ) +2C| d°+ [2(By +By)+C] d*

By 73 4 1BL—=Bnl 52
+eqd 4+ il g2},

- 28;,d%q
for C5 :=supg>3 ,

Proof: 2. follows obviously from 1. so we only have to prove this. Since the treatment of Proposi-
tion 4.4 leads to rather huge formulas we restrict ourselves to indicate how to computation is done
omitting terms when treating similar ones. We first multiply (33) with 11y} then we take expec-

tations and apply Fubini’s theorem. Recalling the short-hand B;{JZ (2) := 3,8,b" (2) — 8,9,b™ (0) we

get

J J Byt [
E [Xﬁ”)qn{tsﬂ] =qE [11&5T}M§”)] +...—q N2 LJ E [x(ha-1
0

axka xiax 0; 3 3
( 1 531 ]ys lys lys ) 11{tST}} dS “e
k,l

(1282
+q(q—1)f E |:Xl Jq—2
0

0; xkajys

b” (xs — ¥5) 11{t57}:| ds
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Applying the triangle inequality and using Lemma/1.3/we get

E XMy | < qE [ 1gparyit] o gt : ﬁLf Hx(lﬂq 1‘

0d; xké’lxsialx 9]3’5 9yi0,y!

11{t§’r}:| ds +...

I 2 o[

t . axkﬁy
_ (ij)g— ]s _ 2
+q(q-1)C JO E[X;J §:”Dx Mo ™ ¥l 11{@}} ds (48)

We recall the inequality |[ [a; — [1b;] < 3. la; — b;| < dmax; |a; — by| (valid for |a;| v |b;] < 1),
use that the expectation of a positive random variable is growing in the domain of integration and
conclude that the latter is less or equal to

qE [11{tST}Mt(ij)] +q ﬁN Fr J 3d°E [(rrl;a}st(ij)q V| xg —yslq) 11{55T}} ds
o )
t

+q(qg— 1)Cd2J

E [(mast(ij)q Vx, — ys|q) 11{59}} ds+... (49)
0 b

Summing up all the terms we suppressed we get that E [X gij ) 11{t§T}] is at most
E |1y MY
q {t<t} Ve
- d-1
+ [5L ﬁN qz _

t
E [(mast(ij)q Vx, — yslq) 11{s<r}] ds
4 0 b -
Q(q— 1) ' (ij)q q

+ ——Byd I’I}E}XXS V |xs — ¥l 11{s§r} ds

o \

+ ..

+qﬁN 5 ﬁLdef E Kma}m&(”)q VI, —yslq) 11{59}} ds

0
Lqq-1Pth : Piog J E [(maxxs(”)q v Ix —yslq) 11{551}} ds

0

39)

+ ..
+4q(q —1)/5N Prag J E [(maxxs(”)qles—yslq) 11{3<T}} ds
0 b )

1
Bng — EﬁLq

3 t .
+ Zq(ﬁN + I3L)5d4j E [(I??Xxs(l})q 4 |xs - yslq) 11{351'}i| ds
o ,
t
+q(g—1)(d?+2d*+d®cC f E |:(rrl;ejngs(”)q V|x, — y5|q) 11{@}} ds
o ,

t
=qE [11{t57}]\7[t(l])] +KqJ E [(n}e]l_st(ij)q V| x, —y3|q) 11{59}} ds.
0 ,
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This enables us to conclude with Proposition|4.7 and Lemma/1.2]
E |:II}E}XX£U)q 11{t§7:} \% |Xt - ythll{tST}i|

<>E [Xgij)qll{tfr}ll{tff}] +E [Ix; =y "] <E [Ix, = y.|]
L,J

t
+d*q ) E [11&57}1\715”)] +d%k, f E Kmaxxs(ii)q Vxs — yslq) 11{59}} ds
i 0 b

Cy 1 2 2 2 1.2-02
Sdqux _y|2qFqu(A3+20'3q+a4q )t +2q|x _y|qe(7tq+2q Gt

t
+ de'qf E [(rr}?xxs(ij)q \ |xs - ys|q) 11{s<r}i| ds
0 B

t
Sdquj E [(rrl;e;st(ij)q Vx, — yslq) 11{557}:| ds
0 .

285d? _
+ |X _ _)’|q (%) e(A3+(AV§0§)q+(%azvai)q2)r (50)
since we assumed 7 < 272 This now implies via Grénwall’s inequality (see [15, 1.§2.1] for an

appropriate version) that

53d2q e(A3+(lv%a%)q+(%(’rZVUi)q2+d2Kq)t

h(t) < |x — y|92—= .
Y1 A3+(Av%o%)q—i—(%&ZVoﬁ)qz—kdzxq

(51)

The proof is complete. O
The next lemma will be the last ingredient to the proof of Lemmal2.3.

Lemma 4.9 (second estimate for 7 after T).
We have for even q > q, that

E [supo<<r [ (x) = (3)11 10 <y ]
with Ag = As + 1, 06 := V205 and

e}

1 1, 1, .
- & V2d2Cilq™2 /B +By+VCdA3Cil 2 V2+2d* (B +y) - ..

Co :=SUPg>3 | = 29 *VPuthy o 1 PwtP) ) Therein Cq is the largest positive zero
-\ (Asqt+o3g?)d

1 12
1 < Egy/qlx — ylee 20T

1
of the Hermite polynomial of order 2q and can be estimated via C; < k,/4q+ 1 for some constant
k>0 (see [1] and [14]).

Proof: By the triangle inequality and the Burkholder-Davies-Gundy inequality, Lemma [4.1] and
Jensen’s inequality we have

1

1 1
q . q
E [ SUPTIibt(X)—wt(y)lqll{Tgf}] =E [ sup Mgll{rsf}}

0<t=< 0<t<T

7 1 ¢ = 1
+E [ sup A?11{T<T}} <GE [<M>%m} HE (A7, ]

0<t<T
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Q=

q

1 + TAT - 2 2
<Cq ME (J 4d* (maxXEl]) Vix, — _ytl) ds
V "2 o i
g L
1 TAT N 2 2114
+C4 V2E (Cd()f (m_axXEU) Vix, — ytl) ds)
0 v

1
TAT K
+ N q
+%E KM‘*J n}ﬁxXEU)VIXt —yfIdS) ]
. i

1 2 T B q
<V2d2Ci /B, + PyT B E [J (rr}axxgl]) V[x, _ytl) 11{r5r}d5]
0

5

1

1 q-2 T .. q q
+ \/EdBqu V2T 2 |:f (n}e}fo”) Vx, — ytl) 11{t57}ds:|
0 ,

1
q

T N q
(n}?xxf”)lef—yrl) 11{t57}d5} . (52)

+2d*(By + ﬁL)qu;lE U
0

Another application of Fubini’s theorem now yields that the latter is less or equal to (remember that
we chose even q > 3)

(«/Edzcj Bt Pyl +VCd3C VAT +2d%(By + /J’L)qu;l) (Jf, ne)ds)

Q=

(A5+%+0§q)7'

1 1 1
< («/Edchq VBL+ By + VT3 CI V2 + 2d4(By + ﬁL)) eyl e
(Asqt+o02q®) 72
The proof is complete. O
We now fix ¥ < 7 A 2712 subject to (35) and r < e 17 and conclude that since
SuUpg<;<7 [P (x) — Y (¥)|? is the sum of the terms supy<.<r|.(x) — 1/%(}’)|q11{T5r} and
supo<,<1 [P (x) — Y (¥)|?11{r-.; another triangle inequality with Lemmas and
completes the proof of Lemma 2.3 and hence of Theorem 2.1. O
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