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Abstract

We prove a sharp inequality conjectured by Bobkov on the measure of dilations of Borel sets in

the Euclidean space by a s-concave probability measure. Our result gives a common generaliza-

tion of an inequality of Nazarov, Sodin and Volberg and a concentration inequality of Guédon.

Applying our inequality to the level sets of functions satisfying a Remez type inequality, we de-

duce, as it is classical, that these functions enjoy dimension free distribution inequalities and

Kahane-Khintchine type inequalities with positive and negative exponent, with respect to an ar-

bitrary s-concave probability measure.

Key words: dilation; localization lemma; Remez type inequalities; log-concave measures; large

deviations; small deviations; Khintchine type inequalities; sublevel sets.

AMS 2000 Subject Classification: Primary 46B07; 46B09; 60B11; 52A20; 26D05.

Submitted to EJP on June 4, 2008, final version accepted August 5, 2009.

2068

DOI: 10.1214/EJP.v14-695

1

http://dx.doi.org/10.1214/EJP.v14-695


1 Introduction

The main purpose of this paper is to establish a sharp inequality, conjectured by Bobkov in [B3],

comparing the measure of a Borel set in Rn with a s-concave probability measure and the measure

of its dilation. Among the s-concave probability measures are the log-concave ones (s = 0) and

thus the Gaussian ones, so that it is expected that they satisfy good concentration inequalities and

large and small deviations inequalities. This is indeed the case and these inequalities as well as

Kahane-Khintchine type inequalities with positive and negative exponent are deduced. By using

a localization theorem in the form given by Fradelizi and Guédon in [FG], we exactly determine

among s-concave probability measures µ on Rn and among Borel sets F in Rn, with fixed measure

µ(F), what is the smallest measure of the t-dilation of F (with t ≥ 1). This infimum is reached for

a one-dimensional measure which is s-affine (see the definition below) and F = [−1,1]. In other

terms, it gives a uniform upper bound for the measure of the complement of the dilation of F in

terms of t, s and µ(F).

The resulting inequality applies perfectly to sublevel sets of functions satisfying a Remez inequality,

i.e. functions such that the t-dilation of any of their sublevel sets is contained in another of their

sublevel set in a uniform way (see section 2.3 below). The main examples of such functions f

are the seminorms ( f (x) = ‖x‖K , where K is a centrally symmetric convex set in Rn), the real

polynomials in n-variables ( f (x) = P(x) = P(x1, . . . , xn), with P ∈ R[X1, . . . , Xn]) and more

generally the seminorms of vector valued polynomials in n-variables ( f (x) = ‖
∑N

j=1 Pj(x)e j‖K ,

with P1, . . . , PN ∈ R[X1, . . . , Xn] and e1, . . . , eN ∈ R
n). Other examples are given in section 3. For

these functions we get an upper bound for the measures of their sublevel sets in terms of the

measure of other sublevel sets. This enables to deduce that they satisfy large deviation inequalities

and Kahane-Khintchine type inequalities with positive exponent. But the main feature of the

inequality obtained is that it may also be read backward. Thus it also implies small deviation

inequalities and Kahane-Khintchine type inequalities with negative exponent.

Before going in more detailed results and historical remarks, let us fix the notations. Given non-

empty subsets A, B of the Euclidean space Rn and λ ∈ R, we set A+ B = {x + y; x ∈ A, y ∈ B},

λA= {λx; x ∈ A}, A to be the closure of A and Ac = {x ∈ Rn; x /∈ A}. For all s ∈ [−∞, 1], we say

that a measure µ in Rn is s-concave if the inequality

µ(λA+ (1−λ)B)≥ [λµs(A) + (1−λ)µs(B)]1/s

holds for all compact subsets A, B ⊂ Rn such that µ(A)µ(B) > 0 and all λ ∈ [0,1]. The limit cases

are interpreted by continuity, thus the right hand side of this inequality is equal to min(µ(A),µ(B))

for s = −∞ and µ(A)λµ(B)1−λ for s = 0. Notice that an s-concave measure is t-concave for all

t ∈ [−∞, s]. In particular, all these measures belong to the class of convex measures (the −∞-

concave measures in the terminology of Borell). For a probability measure µ, supp (µ) denotes its

support. For γ ∈ [−1,+∞], a function ψ : Rn→ R+ is γ-concave if the inequality

ψ(λx + (1−λ)y)≥ [λψγ(x) + (1−λ)ψγ(y)]1/γ (1)

holds for all x and y such that ψ(x)ψ(y) > 0 and all λ ∈ [0,1], where the limit cases γ = 0 and

γ = +∞ are also interpreted by continuity, for example the +∞-concave functions are constant

on their support, which is convex. The link between the s-concave probability measures and the

γ-concave functions is described in the work of Borell [Bor2].
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Theorem [Bor2] Let µ be a measure in Rn, let G be the affine hull of supp (µ), set d = dim G and m

the Lebesgue measure on G. Then for s ∈ [−∞, 1/d], µ is s-concave if and only if dµ = ψdm, where

0≤ψ ∈ L1
loc
(Rn, dm) and ψ is γ-concave with γ= s/(1− sd) ∈ [−1/d,+∞].

According to this theorem, we say that a measure µ is s-affine when its density ψ is γ-affine, with

γ= s/(1− sd), i.e. when ψ satisfies equality in (1), for all x and y such that ψ(x)ψ(y)> 0 and all

λ ∈ [0,1]. Let us give some examples of convex measures. A Dirac measure is s-concave for any s,

the uniform measure on a convex set K in Rn is 1/n-concave and the Cauchy distribution on Rn is

−1-concave, since its density

cn

�

1+ ‖x‖22

�− n+1

2 ,

where ‖ · ‖2 denotes the Euclidean norm, is −1

n+1
-concave.

In [Bor1], Borell started the study of concentration properties of s-concave probability measures.

He noticed that for any centrally symmetric convex set K the inclusion K c ⊃ 2

t+1
(tK)c + t−1

t+1
K holds

true. From the definition of s-concavity he deduced that for every s-concave measure µ

µ(K c)≥

�

2

t + 1
µ
�

(tK)c
�s
+

t − 1

t + 1
µ(K)s

�1/s

. (2)

From this very easy but non-optimal concentration inequality, Borell showed that seminorms satisfy

large deviation inequalities and Kahane-Khintchine type inequalities with positive exponent. The

same method was pushed forward in 1999 by Latała [L] to deduce a small ball probability for

symmetric convex sets which allowed him to get a Kahane-Khintchine inequality until the geometric

mean.

In 1991, Bourgain [Bou] used the Knothe map [K] to transport sublevel sets of polynomials. He

deduced that, with respect to 1/n-concave measure on Rn (i.e. uniform measure on convex bodies),

the real polynomials in n-variables satisfy some distribution and Kahane-Khintchine type inequalities

with positive exponent. The same method was used by Bobkov in [B2] and recently in [B3] to

generalize the result of Bourgain to s-concave measures and arbitrary functions, by using a "modulus

of regularity" associated to the function. But the concentration inequalities obtained in all these

results using Knothe transport map are not optimal.

In 1993, Lovász and Simonovits [LS] applied the localization method (using bisection arguments)

to get the sharp inequality between the measure of a symmetric convex body K and the measure of

its dilation, for a log-concave probability measure µ

µ
�

(tK)c
�

≤ µ(K c)
t+1

2 . (3)

This improves inequality (2) of Borell in the case s = 0. The localization method itself was further

developped in 1995 by Kannan, Lovász and Simonovits [KLS] in a form more easily applicable. In

1999, Guédon [G] applied the localization method of [LS] to generalize inequality (3) to the case

of s-concave probability measures, getting thus a full extension of inequality (2). Guédon proved

that if µ(tK)< 1 then

µ(K c)≥

�

2

t + 1
µ
�

(tK)c
�s
+

t − 1

t + 1

�1/s

(4)

and deduced from it the whole range of sharp inequalities (large and small deviations and Kahane-

Khintchine) for symmetric convex sets. In 2000, Bobkov [B1] used the localization in the form
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given in [KLS] and the result of Latała [L] to sharpen the result of Bourgain on polynomials, with

log-concave measures and proved that polynomials satisfy a Kahane-Khintchine inequality until the

geometric mean. In 2000 (published in 2002 [NSV1]), Nazarov, Sodin and Volberg used the same bi-

section method to prove a "geometric Kannan-Lovász-Simonovits lemma" for log-concave measures.

They generalized inequality (3) to arbitrary Borel set

µ(F c
t )≤ µ(F

c)
t+1

2 , (5)

where F c
t is the complement of Ft , the t-dilation of F , which is defined by

Ft = F ∪

�

x ∈ Rn; there exists an interval I ∋ x s.t. |I |<
t + 1

2
|F ∩ I |

�

,

where | · | denotes the (one dimensional) Lebesgue measure and t ≥ 1. Notice that this definition

of t-dilation is not the original definition of Nazarov, Sodin and Volberg [NSV1]. In the later, they

introduced an auxiliary compact convex set K and used λ instead of t+1

2
. The definition given

above is the complement of their original one inside K . Our definition is more intrinsic because

the auxiliary set has disappeared. See section 2.1 for a more detailed comparison between the two

definitions and the analysis of the topological properties of the dilation.

In [NSV1], Nazarov, Sodin and Volberg also noticed that t-dilation is well suited for sublevel sets

of functions satisfying a Remez type inequality and deduced from the concentration inequality (5)

that these functions satisfy the whole range of sharp inequalities (large and small deviations and

Kahane-Khintchine). The paper [NSV1] had a large diffusion (already as a preprint) and interested

many people. For example, Carbery and Wright [CW] and Alexander Brudnyi [Br3] directly applied

the localization as presented in [KLS] to deduce distributional inequalities and Kahane-Khintchine

type inequalities for the norm of vector valued polynomials in n-variables and functions with

bounded Chebyshev degree, respectively.

Our main result is the following theorem which extends inequality (4) of Guédon to arbitrary Borel

sets (since as we shall see in section 2, if F is a centrally symmetric convex set K then Ft = tK) and

inequality (5) of Nazarov, Sodin and Volberg to the whole range of s-concave probability measures.

It establishes a conjecture of Bobkov [B3] (who also proved in [B3] a weaker inequality). After

we had proven these results, we learned from Bobkov that, using a different method, Bobkov and

Nazarov [BN] simultaneously and independently proved Theorem 1.

Theorem 1. Let F be a Borel set in Rn and t ≥ 1. Let s ∈ (−∞, 1] and µ be a s-concave probability

measure on Rn. Let

Ft = F ∪

�

x ∈ Rn; there exists an interval I ∋ x s.t. |I |<
t + 1

2
|F ∩ I |

�

.

If µ(Ft)< 1 then

µ(F c)≥

�

2

t + 1
µ(F c

t )
s +

t − 1

t + 1

�1/s

. (6)
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Inequality (6) is sharp. For example, there is equality in (6) if n= 1, F = [−1,1] and µ is of density

ψ(x) =
(a− sx)

1

s
−1

+

(a+ s)
1

s

1[−1,+∞)(x), with a >max(−s, st),

with respect to the Lebesgue measure on R, where a+ =max(a, 0), for every a ∈ R. Notice that this

measure µ is s-affine on its support (which is [−1, a/s] if s > 0 and [−1,+∞) if s ≤ 0).

As noticed by Bobkov in [B3], in the case s ≤ 0, the right hand side term in inequality (6) vanishes

if µ(F c
t ) = 0, hence the condition µ(Ft) < 1 may be cancelled. But in the case s > 0, the situation

changes drastically. This condition is due to the fact that a s-concave probability measure measure,

with s > 0, has necessarily a bounded support. From this condition we directly deduce the following

corollary, which was noticed by Guédon [G] in the case where F is a centrally symmetric convex set.

Corollary 1. Let F be a Borel set in Rn. Let s ∈ (0,1] and µ be a s-concave probability measure on Rn.

Denote by V the (convex compact) support of µ. Then

V ⊂ Ft for every t ≥
1+µ(F c)s

1−µ(F c)s
.

Proof: From Theorem 1, if µ(Ft)< 1 then

µ(F c)≥

�

2

t + 1
µ(F c

t )
s +

t − 1

t + 1

�1/s

>

�

t − 1

t + 1

�1/s

,

which contradicts the hypothesis on t. Hence µ(Ft) = 1, thus µ(Ft) = 1. It follows that V ⊂ Ft .

In section 2, we study some general properties of dilation and determine its effect on examples.

The case of convex sets is treated in section 2.2, the case of sublevel sets of the seminorm of a

vector valued polynomial in section 2.3 and the case of sublevel sets of a Borel measurable function

in section 2.4. In section 2.4, we also give a functional version of Theorem 1 and we investigate

the relationship between Remez inequality and inclusion of sublevel sets. In section 3, we deduce

distribution and Kahane-Khintchine inequalities for functions of bounded Thebychev degree.

Section 4 is devoted to the proof of Theorem 1. The main tool for the proof is the localization

theorem in the form given by Fradelizi and Guédon in [FG].

2 Properties and examples of the dilation

2.1 General properties and comparison of definitions

We first establish some basic properties of the dilation of a Borel set F ,

Ft = F ∪

�

x ∈ Rn; there exists an interval I ∋ x s.t. |I |<
t + 1

2
|F ∩ I |

�

,
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with t ≥ 1, then we study some topological properties of the dilation, finally we compare our

definition with the one given in [NSV1].

Let us start with basic properties. For any t ≥ 1, one has Ft ⊃ F , with equality for t = 1. In the

definition of the dilation, we may assume that the interval I has x as an endpoint, because if the end

points of I are a and b and neither [a, x] nor [x , b] satisfies the inequality then I could not satisfy

it. Moreover the t-dilation is affine invariant, i.e. for any affine transform A : Rn → Rn, we have

(AF)t = A(Ft). The definition of the t-dilation is one-dimensional in the sense that, if we denote by

D the set of affine lines in Rn, then

Ft =
⋃

D∈D

(F ∩ D)t .

We establish now some topological properties of the dilation. For any x , y in Rn, we denote by νx ,y

the Lebesgue measure on the interval [x , y] normalized so that its total mass is ‖x− y‖2 and by ϕF ,

the function defined on R2 by

ϕF (x , y) = νx ,y(F) = |F ∩ [x , y]|.

With these notations and the previous observation, one has

Ft = F ∪

�

x ∈ Rn; ∃ y ∈ Rn νx ,y(F)>
2

t + 1
‖x − y‖2

�

= F ∪Π1

�

Φt(F)
�

,

where Π1 : Rn × Rn → Rn, defined by Π1(x , y) = x , for every (x , y) ∈ Rn × Rn denotes the first

projection and

Φt(F) =

�

(x , y) ∈ Rn×Rn; ϕF (x , y)>
2

t + 1
‖x − y‖2

�

.

If F is open in Rn, then 1F is lower semi-continuous on Rn, hence there exists an increasing sequence

of continuous functions ( fk)k on Rn such that 1F = supk fk. By the monotone convergence theorem,

we get

ϕF (x , y) =

∫

1F dνx ,y =

∫

sup
k

fkdνx ,y = sup
k

∫

fkdνx ,y .

Since, for every continuous function f on Rn, the function (x , y) 7→
∫

f dνx ,y is continuous on R2n,

we deduce that ϕF is lower semi-continuous on R2n. This implies that the set Φt(F) is open in R2n,

thus its projection Π1

�

Φt(F)
�

is open and the dilation Ft = F ∪Π1

�

Φt(F)
�

is open in Rn.

Notice also that for every x ∈ F , if one chooses y in a neighborhood of x so that [x , y] ⊂ F , then

νx ,y(F) = ‖x − y‖2 >
2

t+1
‖x − y‖2, for every t > 1. Hence, for an open set F and t > 1, the

definition of Ft can be simplified to

Ft =

�

x ∈ Rn; ∃ y ∈ Rn |[x , y]|<
t + 1

2
|F ∩ [x , y]|

�

. (7)

If F is closed in Rn, then ϕF is upper semi-continuous on R2n. Writing

Φt(F) =
⋃

k≥1

�

(x , y) ∈ Rn×Rn; ϕF (x , y)≥
2

t + 1
‖x − y‖2+

1

k

�
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we see that Φt(F) is an Fσ set in R2n. Thus the dilation Ft = F ∪Π1

�

Φt(F)
�

is an Fσ set in Rn.

Moreover, if (Fk)k is an increasing sequence of Borel sets in Rn, then

ϕ∪k Fk
= sup

k

ϕFk
hence Φt

�

∪kFk

�

= ∪kΦt(Fk).

And if (Fk)k is a decreasing sequence of Borel sets in Rn, then

ϕ∩k Fk
= inf

k
ϕFk

hence Φt

�

∩kFk

�

= ∩kΦt(Fk).

Using either transfinite induction on the Baire class of F or the monotone class theorem we deduce

that for every Borel set F , ϕF is Borel measurable, hence Φt(F) is a Borel set in R2n thus Ft =

F ∪Π1

�

Φt(F)
�

is analytic, therefore Lebesgue measurable in Rn.

In dimension 1, we have more regularity. For any Lebesgue measurable set F ⊂ R, the function ϕF

is continuous on R2, hence the set Φt(F) is open in R2, thus its projection Π1

�

Φt(F)
�

is open and

its dilation Ft = F ∪Π1

�

Φt(F)
�

is Lebesgue measurable in R.

Now we compare the definition of the dilation as given above with the original definition of [NSV1].

Given a Borel subset A of a (Borel) convex set K in Rn and a number λ > 1, they define

A(λ) =

�

x ∈ A; |A∩ I | ≥

�

1−
1

λ

�

|I | for any interval I s.t. x ∈ I ⊂ K

�

and they prove that for any log-concave measure µ supported in K one has µ (A(λ)) ≤ µ(A)λ. The

relationship with our definition is the following: if we define F = K \ A then A(λ) = K \ F2λ−1. Let

us establish this relationship. For every interval I ⊂ K , one has |I |= |A∩ I |+ |F ∩ I | hence

A(λ) =
�

x ∈ A; |I | ≥ λ|F ∩ I | for any interval I s.t. x ∈ I ⊂ K
	

.

Let x ∈ A(λ) and I ∋ x be any interval, then J := I ∩ K is an interval such that x ∈ J ⊂ K , hence

|I | ≥ |J | ≥ λ|F ∩ J |= λ|F ∩ I |, since F ⊂ K . Thus

A(λ) =
�

x ∈ A; |I | ≥ λ|F ∩ I | for any interval I s.t. x ∈ I
	

.

On the other hand, with our definition of dilation, one gets

K \ F2λ−1 =
�

x ∈ K; x /∈ F and |I | ≥ λ|F ∩ I | for any interval I ∋ x
	

=
�

x ∈ A; |I | ≥ λ|F ∩ I | for any interval I s.t. x ∈ I
	

= A(λ).

Since µ is supported on K , one deduces that µ(A(λ)) = µ(F c
2λ−1
), hence the statement of Theorem

1 may equivalently be stated in terms of A(λ). As said before, we prefer our definition because it is

more intrinsic, the dilation of a set doesn’t depend of any auxilliary set. For example, as seen below,

with our definition, the dilation of an (open) symmetric convex set F is Ft = t F . But, with the

definition of [NSV1], the corresponding relation is the following: if one has A⊂ K , with K convex

and K \ A open and convex then A(λ) = K \ (2λ− 1)A.
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2.2 Dilation of convex sets

Fact 1. Let K be an open convex set then, for every t ≥ 1,

Kt = K +
t − 1

2
(K − K) =

t + 1

2
K +

t − 1

2
(−K) (8)

and if moreover K is centrally symmetric then Kt = tK.

Proof: For t = 1, the equalities are obvious, so we assume t > 1. The second equality in (8) deduces

from the convexity of K . To prove the equality of the sets in (8), we prove both inclusions:

Let x ∈ Kt . Since K is open and t > 1, from (7), there exists a point a ∈ Rn such that |[a, x]| <
t+1

2
|K ∩ [a, x]|. Since K is convex it follows that K ∩ [a, x] is an interval. Denote by b and c its

endpoints. We may assume that c ∈ (b, x] and b ∈ [a, c). Hence there is λ ∈ (0,1] such that

c = (1−λ)b+λx . This gives

‖c − b‖2

λ
= ‖x − b‖2 ≤ ‖x − a‖2 <

t + 1

2
‖c− b‖2 .

Thus 1

λ
< t+1

2
. Therefore

x = c +

�

1

λ
− 1

�

(c − b) ∈ K +

�

1

λ
− 1

�

(K − K)⊂ K +
t − 1

2
(K − K) .

Conversely, let x ∈ t+1

2
K + t−1

2
(−K). If x ∈ K , the result is obvious so we assume that x /∈ K . There

exists b, c ∈ K such that x = t+1

2
c+ t−1

2
(−b). Since K is convex we deduce that the set [b, x]∩ K is

an interval with b as an endpoint. Since K is open there exists d ∈ Rn such that [b, x]∩ K = [b, d)

and we have c ∈ [b, d). Then

|[b, x]|= ‖x − b‖2 =
t + 1

2
‖c − b‖2 <

t + 1

2
‖d − b‖2 =

t + 1

2
|K ∩ [b, x]| .

Therefore x ∈ Kt .

If moreover K is centrally symmetric it is obvious that Kt = tK .

Remarks:

1) It is not difficult to see that if we only assume that K is convex (and not necessarily open) then

the same proof shows actually that

Kt = relint

�

K +
t − 1

2
(K − K)

�

= relint

�

t + 1

2
K +

t − 1

2
(−K)

�

,

where relint(A) is the relative interior of A, i.e. the interior of A relative to its affine hull.

2) The family of convex sets described by (8) where introduced by Hammer [H], they may be

equivalently defined in the following way. Let us recall that the support function of a convex set K

in the direction u ∈ Sn−1 is defined by hK(u) = supx∈K〈x ,u〉 and that an open convex set K is equal

to the intersection of the open slabs containing it:

K =
⋂

u∈Sn−1

�

x ∈ Rn; −hK(−u)< 〈x ,u〉< hK(u)
	

.
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The width of K in direction u ∈ Sn−1 is defined by wK(u) = hK(u) + hK(−u). Then for every t ≥ 1,

Kt =
⋂

u∈Sn−1

�

x; −hK(−u)−
t − 1

2
wK(u)< 〈x ,u〉< hK(u) +

t − 1

2
wK(u)

�

.

Moreover, since this definition can be extended to the values t ∈ (0,1), it enables thus to define the

t-dilation of an open convex set for 0 < t < 1 and in the symmetric case, the equality Kt = tK is

still valid for t ∈ (0,1). Using that the family of convex sets (Kt)t>0 is absorbing, Minkowski defined

what is now called the "generalized Minkowski functional" of K:

αK(x) = inf
�

t > 0; x ∈ Kt

	

Notice that αK is convex and positively homogeneous. If moreover K is centrally symmetric

then Kt = tK , which gives αK(x) = ‖x‖K . We shall see in the next section how this notion was

successfully used in polynomial approximation theory (see for example [RS]).

From Fact 1, Theorem 1 and Corollary 1, we deduce the following corollary.

Corollary 2. Let K be a closed convex set in Rn and t ≥ 1. Let s ∈ (−∞, 1] and µ be a s-concave

probability measure on Rn. Denote by V the support of µ.

i) If µ
�

K + t−1

2
(K − K)

�

< 1 then

µ(K c)≥

�

2

t + 1
µ
�

�

K +
t − 1

2
(K − K)

�c
�s

+
t − 1

t + 1

�1/s

.

ii) If s > 0 then

V ⊂ K +
µ(K c)s

1−µ(K c)s
(K − K)

iii) If s > 0 and K is centrally symmetric then

V ⊂
1+µ(K c)s

1−µ(K c)s
K

Applying iii) to the uniform probability measure on V we deduce that for every closed convex sets

V and K in Rn, with K symmetric

V ⊂
|V |

1

n + |V ∩ K c |
1

n

|V |
1

n − |V ∩ K c |
1

n

K .

2.3 Dilation of sublevel sets of the seminorm of vector valued polynomials

Let P be a polynomial of degree d, with n variables and with values in a Banach space E, that is

P(x1, ..., xn) =

N
∑

k=1

Pk(x1, ..., xn)ek ,
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where e1, ..., eN ∈ E and P1, ..., PN are real polynomials with n variables and degree at most d. Let K

be a centrally symmetric convex set in E, and denote by ‖ · ‖K the seminorm defined by K in E and

let c > 0 be any constant. The following fact was noticed and used by Nazarov, Sodin and Volberg

in [NSV1], in the case of real polynomials.

Fact 2. Let P be a polynomial of degree d, with n variables and with values in a Banach space E and

let t ≥ 1. Let K be a centrally symmetric convex set in E and c > 0. Then

{x ∈ Rn; ‖P(x)‖K < c}t ⊂ {x ∈ R
n; ‖P(x)‖K < c Td(t)},

where Td is the Chebyshev polynomial of degree d, i.e.

Td(t) =

�

t +
p

t2− 1
�d

+
�

t −
p

t2− 1
�d

2
,

for every t ∈ R such that |t| ≥ 1.

This fact is actually a reformulation, in terms of dilation, of the Remez inequality [R] which asserts

that for every real polynomial Q of degree d and one variable, for every interval I in R and every

Borel subset J of I ,

sup
I

|Q| ≤ Td

�

2
|I |

|J |
− 1

�

sup
J

|Q|.

Let us prove the inclusion. Let F = {x ∈ Rn; ‖P(x)‖K < c} and let x0 ∈ Ft . Notice that F is open.

There exists an interval I = [a, b] containing x0 such that |I |< t+1

2
|F ∩ I |. The key point is that

‖P
�

(1−λ)a+λb
�

‖K = sup
ξ∈K∗

ξ
�

P
�

(1−λ)a+λb
�

�

= sup
ξ∈K∗

Qξ(λ),

where K∗ = {ξ ∈ E∗;∀ x ∈ K ,ξ(x)≤ 1} is the polar of K and

Qξ(λ) = ξ
�

P
�

(1−λ)a+λb
�

�

is a real polynomial of one variable and degree at most d. Let J := {λ ∈ [0,1]; (1−λ)a+λb ∈ F},

then |J |= |F ∩ I |/|I |. Applying Remez inequality to Qξ we have

sup
λ∈[0,1]

Qξ(λ)≤ Td

�

2

|J |
− 1

�

sup
λ∈J

|Qξ(λ)|= Td

�

2|I |

|F ∩ I |
− 1

�

sup
x∈F∩I

|ξ
�

P(x)
�

|.

Taking the supremum, using that Td is increasing on [1,+∞) and the definition of F , we get

‖P(x0)‖K ≤ sup
[0,1]

‖P
�

(1−λ)a+λb
�

‖K = sup
[0,1]

sup
ξ∈K∗

Qξ(λ)

≤ Td

�

2|I |

|F ∩ I |
− 1

�

sup
ξ∈K∗

sup
x∈F∩I

ξ
�

P(x)
�

< Td(t) sup
x∈F∩I

‖P(x)‖K ≤ cTd(t).

Remark: Notice that the Chebyshev polynomial of degree one is T1(t) = t. Hence if we take the

polynomial P(x) = x =
∑

x iei , where (e1, ..., en) is the canonical orthonormal basis of Rn, we see
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that the case of vector valued polynomials generalizes the case of symmetric convex sets.

Fact 2 has an interesting reformulation in terms of polynomial inequalities in real approximation

theory. It may be written in the following way. Denote by P n
d
(E) the set of polynomials of degree d,

with n variables and with values in a Banach space E. Let P ∈ P n
d
(E) and K be a symmetric convex

set in E. Let F be a Borel set in Rn and t > 1. For x ∈ Ft

‖P(x)‖K ≤ Td(t) sup
z∈F

‖P(z)‖K .

Let us assume that the Borel set F in Rn has the property that, for each x in Rn, there is an affine

line D containing x such that |F ∩ D| > 0, which is the case if F has non-empty interior. Then
⋃

t>1 Ft = R
n. In this case, we may define for every x ∈ Rn the "generalized Minkowski functional"

of F at x as

αF (x) = inf{t > 1; x ∈ Ft}.

Using this quantity, we get the following reformulation of Fact 2.

Corollary 3. Let F be a Borel set in Rn. Let P ∈ P n
d
(E) and K be a centrally symmetric convex set in

E. For every x in Rn,

‖P(x)‖K ≤ Td

�

αF (x)
�

sup
z∈F

‖P(z)‖K .

Let us introduce the notations coming from approximation theory. With the notations of the corol-

lary, we define

Cd(F, x , K) = sup{‖P(x)‖K ; P ∈ P n
d (E), sup

x∈F

‖P(x)‖K ≤ 1, n≥ 1}.

Then the inequality may be written in the following form.

Cd(F, x , K) = Td

�

αF (x)
�

.

For F being convex and the polynomial P being real valued, this is a theorem of Rivlin-Shapiro

[RS] (see also an extension in [RSa1] and [RSa2]). We get thus an extension of their theorem to

non-convex sets F .

Applying Theorem 1 to the level set of a polynomial we get the following corollary, which was proved

in the case s = 0 by Nazarov, Sodin and Volberg in [NSV1] and in the case d = 1 and P(x) = x by

Guédon in [G].

Corollary 4. Let P be a polynomial of degree d, with n variables and with values in a Banach space E

and let t ≥ 1. Let K be a centrally symmetric convex set in E and c > 0. Let s ≤ 1 and µ be a s-concave

probability measure on Rn. If µ({x; ‖P(x)‖K ≥ cTd(t)})> 0, then

µ({x; ‖P(x)‖K ≥ c})≥

�

2

t + 1
µ({x; ‖P(x)‖K ≥ cTd(t)})

s +
t − 1

t + 1

�1/s

.

For s = 0,

µ({x; ‖P(x)‖K ≥ cTd(t)})≤ µ({x; ‖P(x)‖K ≥ c})
t+1

2 .
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Applying Corollary 1, we get the following extension of a theorem of Brudnyi and Ganzburg [BG]

(which treats the case of probability measures µ which are uniform on a convex body). It is a

multi-dimensional version of Remez inequality.

Corollary 5. Let P be a polynomial of degree d, with n variables and with values in a Banach space E.

Let K be a centrally symmetric convex set in E. Let s ∈ (0,1], µ be a s-concave probability measure on

R
n and let V be the support of µ. Then, for every measurable ω ⊂ V

sup
x∈V

‖P(x)‖K ≤ Td

�

1+µ(ωc)s

1−µ(ωc)s

�

sup
x∈ω
‖P(x)‖K ≤

�

4

sµ(ω)

�d

sup
x∈ω
‖P(x)‖K .

Proof: We apply Corollary 1 to F = {x; ‖P(x)‖K ≤ supx∈ω ‖P(x)‖K} and Fact 2 to deduce that

V ⊂ Ft ⊂ {x ∈ R
n; ‖P(x)‖K ≤ Td(t) sup

x∈ω
‖P(x)‖K}, ∀ t ≥

1+µ(F c)s

1−µ(F c)s
.

Since ω ⊂ F , we may apply the preceding inclusion to t =
1+µ(ωc)s

1−µ(ωc)s
and this gives the first inequality.

The second one follows using that Td(t)≤ (2t)d for every t ≥ 1 and easy computations.

2.4 Dilation of sublevel sets of Borel measurable functions

In Fact 1 and Fact 2 we saw the effect of dilation on convex sets and level sets of vector valued

polynomials. We want to describe now the most general case of level sets of Borel measurable

functions. As in Fact 2, we shall see in the following proposition that for any Borel measurable

function, an inclusion between the dilation of the level sets is equivalent to a Remez type inequality.

Proposition 1. Let f : Rn → R be a Borel measurable function and t > 1. Let u f (t) ∈ [1,+∞). The

following are equivalent.

i) For every interval I in Rn and every Borel subset J of I such that |I |< t|J |,

sup
I

| f | ≤ u f (t) sup
J

| f |.

ii) For every λ > 0,

�

x ∈ Rn; | f (x)| ≤ λ
	

2t−1 ⊂
¦

x ∈ Rn; | f (x)| ≤ λu f (t)
©

.

We shall say that a non-decreasing function u f : (1,+∞)→ [1,+∞) is a Remez function of f if it

satisfies i) or ii) of the previous proposition, for every t > 1 and that it is the optimal Remez function

of f if it is the smallest Remez function of f .

For example, using i), the Remez inequality asserts that if we take f (x) = ‖P(x)‖K where P is a

polynomial of degree d, with n variables and with values in a Banach space E and K is a symmetric

convex set then t 7→ Td(2t − 1) is a Remez function of f . Using ii) and Fact 1, we get that

u f (t) = 2t − 1 is the optimal Remez function of f (x) = ‖x‖K .

Proof of Proposition 1:

i) =⇒ ii): Let F = {x ∈ Rn; | f (x)| ≤ λ} and let x ∈ F2t−1. There exists an interval I containing x

such that |I |< t|F ∩ I |. Hence

| f (x)| ≤ sup
I

| f | ≤ u f (t) sup
F∩I

| f | ≤ λu f (t).
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ii) =⇒ i): Let I be an interval in Rn and J be a Borel subset of I such that |I |< t|J |. Let λ = supJ | f |

and let x ∈ I , then J ⊂ {| f | ≤ λ} ∩ I hence

|I |< t|J | ≤ t|{| f | ≤ λ} ∩ I |,

thus x ∈ {| f | ≤ λ}2t−1. From ii) we get | f (x)| ≤ λu f (t). This gives i).

Applying Theorem 1 to the level set of a Borel measurable function, we get the following.

Theorem 2. Let f : Rn→ R be a Borel measurable function and u f : (1,+∞)→ [1,+∞) be a Remez

function of f . Let s ∈ (−∞, 1] and µ be a s-concave probability measure on Rn. Let t > 1 and λ > 0.

If µ({x; | f (x)| ≥ λu f (t)})> 0, then

µ({x; | f (x)|> λ})≥

�

1

t
µ({x; | f (x)|> λu f (t)})

s + 1−
1

t

�1/s

. (9)

For s = 0,

µ({x; | f (x)|> λu f (t)})≤ µ
�

{x; | f (x)|> λ}
�t

.

Remark: Theorem 2 improves a theorem given by Bobkov in [B3]. As in [B3], notice that Theorem

2 is a functional version of Theorem 1. As a matter of fact, we may follow the proof given by Bobkov.

If a Borel subset F of Rn and u> 1 are given, we apply Theorem 2 to t = u+1

2
, λ = 1 and

f = 1 on F, f = 2 on Fu \ F and f = 4 on F c
u .

Using ii) of Proposition 1 it is not difficult to see that u f (t) = 2. Then inequality (6) follows from

inequality (9).

Applying Corollary 1, in the similar way as in Corollary 5 and using Proposition 1 instead of Fact 2,

we get the following.

Corollary 6. Let f : Rn → R be a Borel measurable function. Let u f : (1,+∞) → [1,+∞) be a

Remez function of f . Let s ∈ (0,1] and µ be a s-concave probability measure on Rn. Let ω ⊂ Rn be

measurable, then

‖ f ‖L∞(µ) ≤ sup
ω
| f | u f

�

1

1−µ(ωc)s

�

≤ sup
ω
| f | u f

�

1

sµ(ω)

�

.

Instead of using u f , Bobkov in [B2] and [B3] introduced a related quantity, the "modulus of regu-

larity" of f ,

δ f (ǫ) = sup
x ,y
|{λ ∈ [0,1]; | f ((1−λ)x +λy)| ≤ ǫ| f (x)|}|, for 0< ǫ ≤ 1.

It is not difficult to see that

δ f (ǫ) = sup
x ,y

|{z ∈ [x , y]; | f (z)| ≤ ǫ sup[x ,y] | f |}|

|[x , y]|
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and thus

δ f (ǫ) = sup

�

|J |

|I |
; J ⊂ I ,where I is an interval andsup

J

| f | ≤ ǫ sup
I

| f |

�

.

Hence δ f is the smallest function satisfying that for every interval I and every Borel subset J of I

|J |

|I |
≤ δ f

�

supJ | f |

supI | f |

�

,

which is a Remez-type inequality. For smooth enough functions, the relationship between u f , the

optimal Remez function of f and δ f is given by

δ f (ǫ) =
1

u−1
f
(1/ǫ)

,

where u−1
f

is the reciprocal function of u f . Hence if f (x) = ‖P(x)‖K where P is a polynomial of

degree d, with n variables and with values in a Banach space E and K is a symmetric convex set

then, using that u f (t)≤ Td(2t − 1) and Td(t)≤ 2d−1 td , for every |t| ≥ 1, we get

u f (t)≤ Td(2t − 1)≤ 2d−1(2t − 1)d ≤ (4t)d

and

δ f (ǫ)≤
2

T−1
d
(1/ǫ) + 1

≤ 4

�ǫ

2

�1/d

≤ 4ǫ1/d , (10)

for every |t| ≥ 1. For f (x) = ‖x‖K , we get δ f (ǫ) =
2ǫ

ǫ+1
as noticed by Bobkov in [B2]. Notice that

inequalities (10) improve the previous bound given by Bobkov in [B2] and [B3].

The interest of the quantity δ f comes from the next corollary, which was conjectured by Bobkov in

[B3] (for s = 0, it deduces from [NSV1] as noticed in [B2]).

Corollary 7. Let f : Rn → R be a Borel measurable function and 0 < ǫ ≤ 1. Let s ≤ 1 and µ be a

s-concave probability measure on Rn. Let λ < ‖ f ‖L∞(µ), then

µ({| f | ≥ λǫ})≥
�

δ f (ǫ)µ({| f | ≥ λ})
s + 1−δ f (ǫ)

�1/s
(11)

and if µ is log-concave (i.e. for s = 0) then

µ({| f | ≥ λǫ})≥ µ({| f | ≥ λ})δ f (ǫ).

Proof: We apply Theorem 1 to the set F = {| f | < λǫ} and t = 2

δ f (ǫ)
− 1. Let x ∈ Ft , there exists an

interval I containing x such that

|I |<
t + 1

2
|F ∩ I |=

|F ∩ I |

δ f (ǫ)
.

From the definition of δ f , this implies that

f (x)≤ sup
I

| f |<
1

ǫ
sup
F∩I

| f | ≤ λ.

Hence Ft ⊂ {| f |< λ}. This gives the result.
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3 Distribution and Kahane-Khintchine type inequalities

It is classical that from an inequality like inequality (9) (or in its equivalent form (11)), it is possible

to deduce distribution and Kahane-Khintchine type inequalities. Due to its particular form, this type

of concentration inequality may be read forward or backward and thus permits to deduce both small

and large deviations inequalities.

3.1 Functions with bounded Chebyshev degree

Before stating these inequalities, let us define an interesting set of functions, the functions f such

that their Remez function u f is bounded from above by a power function, i.e. there exists A> 0 and

d > 0 satisfying u f (t)≤ (At)d , for every t > 1 which means that for every interval I in Rn and every

Borel subset J of I

sup
I

| f | ≤

�

A|I |

|J |

�d

sup
J

| f |.

In this case, the smallest power satisfying this inequality is called the Chebyshev degree of f and

denoted by d f and the best constant corresponding to this degree is denoted by A f . This is also

equivalent to assume that δ f (ǫ) ≤ A f ǫ
1/d f , for every 0 < ǫ < 1. Notice that if f has bounded

Chebyshev degree (i.e. d f <+∞) then | f |1/d f has Chebyshev degree one and A
| f |

1/d f = A f . For such

functions inequality (9) becomes, for every t > 1,

µ({| f |1/d f > λ})≥

�

1

t
µ({x; | f (x)|1/d f > λA f t})s + 1−

1

t

�1/s

(12)

and for s = 0

µ({x; | f (x)|1/d f > λA f t})≤ µ({| f |1/d f > λ})t . (13)

For example if f (x) = ‖x‖K then u f (t) = 2t − 1 hence d f = 1 and A f = 2. If f (x) = ‖P(x)‖K
where P is a polynomial of degree d, with n variables and with values in a Banach space E and K

is a symmetric convex set then d f = d and A f = 4. More generally, following [NSV1] and [CW],

if f = eu, where u : Rn → R is the restriction to Rn of a plurisubharmonic function ũ : Cn → R

such that lim sup|z|→+∞
ũ(z)

log |z|
≤ 1, then d f = 1 and A f = 4. Another type of example was given by

Nazarov, Sodin and Volberg in [NSV1]: if

f (x) =

d
∑

k=1

ckei〈xk,x〉,

with ck ∈ C and xk ∈ R
n then d f = d. Finally, Alexander Brudnyi in [Br1], [Br2], [Br3] (see also

Nazarov, Sodin and Volberg [NSV2]) proved also that for any r > 1, for any holomorphic function

f on BC(0, r)⊂ Cn, the open complex Euclidean of radius r centered at 0, the Chebyshev degree of

f is bounded.

2082



3.2 Small deviations and Kahane-Khintchine type inequalities for negative exponent

Let us start with the following small deviation inequality, which was proved by Guédon [G] in the

case where f = ‖ · ‖K and by Nazarov, Sodin and Volberg [NSV1] in the case where s = 0. It was

proved in a weaker form and conjectured in this form by Bobkov in [B3]. This type of inequality is

connected to small ball probabilities.

Corollary 8. Let f : Rn → R be a Borel measurable function and 0 < ǫ ≤ 1. Let s ≤ 1 and µ be a

s-concave probability measure on Rn. Let λ < ‖ f ‖L∞(µ), then

µ({| f | ≤ λǫ})≤ δ f (ǫ)×
1−µ({| f | ≥ λ})s

s
. (14)

In particular, if µ is log-concave (i.e. for s = 0) then

µ({| f | ≤ λǫ})≤ δ f (ǫ)× log
�

1/µ({| f | ≥ λ})
�

.

Proof: Let s 6= 0. The proof given by Guédon in [G] works here also. We reproduce it here for

completeness. Since s ≤ 1 the function x 7→ (1− x)1/s is convex on (−∞, 1], hence

(1− x)1/s ≥ 1−
x

s
.

The result follows from inequality (11) and the inequality above applied to x = δ f (ǫ)(1−µ({| f | ≥

λ})s). For s = 0 the result follows by taking limits or can be proved along the same lines.

In the case of functions with bounded Chebyshev degree, inequality (14) take a simpler form and, by

integrating on level sets, it immediately gives an inverse Hölder Kahane-Khintchine type inequality

for negative exponent. Thus, we get the following corollary, generalizing a theorem of Guédon [G]

(for f = ‖.‖K) and Nazarov, Sodin and Volberg [NSV1] (for s = 0).

Corollary 9. Let f : Rn → R be a Borel measurable function with bounded Chebyshev degree. Let

s ≤ 1 and µ be a s-concave probability measure on Rn. Denote by M f the µ-median of | f |1/d f and

denote cs := (1− 2−s)/s, for s 6= 0 and c0 = ln 2. Then for every 0< ǫ < 1

µ({| f |
1

d f ≤ M f ǫ})≤ A f csǫ, (15)

and for every −1< q < 0,

‖| f |
1

d f ‖Lq(µ) ≥ M f

�

1−
qA f cs

q+ 1

�1/q

≥ M f e
−

Af cs

q+1 . (16)

Proof: Inequality (15) deduces from inequality (14) by taking λ = M f . The proof of inequality (16)

is then standard, we apply inequality (15)
∫

Rn

| f (x)|
q

d f dµ(x) = −q

∫ +∞

0

tq−1µ

�

{x; | f (x)|
1

d f ≤ t}

�

d t

≤ −q

∫ M f

0

tq
A f cs

M f

d t − q

∫ +∞

M f

tq−1d t

= M
q

f

�

1−
qA f cs

q+ 1

�

.

Then we take the q-th root (recall that q < 0) to get inequality (16).
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3.3 Large deviations and Kahane-Khintchine type inequalities for positive exponent

On the contrary to the small deviations case, the behaviour of large deviations of a function with

bounded Chebyshev degree with respect to a s-concave probability measure heavily depends on the

range of s, mainly on the sign of s. But all behaviours follow from inequality (12) applied to λ = M f ,

the µ-median of | f |1/d f , which gives, for every s ≤ 1, s 6= 0,

µ({| f |
1

d f ≥ A f M f t})≤
�

1− t(1− 2−s)
�

1

s

+
(17)

and for s = 0,

µ({| f |
1

d f ≥ A f M f t})≤ 2−t .

For s ≥ 0, it follows from inequality (17) that | f |1/d f has exponentially decreasing tails and a stan-

dard argument implies an inverse Hölder inequality.

Corollary 10. Let f : Rn → R be a Borel measurable function with bounded Chebyshev degree. Let

0 ≤ s ≤ 1 and µ be a s-concave probability measure on Rn. Denote by M f the µ-median of | f |1/d f and

denote cs := (1− 2−s)/s, for s > 0 and c0 = ln 2. Then for every t > 1

µ({| f |
1

d f ≥ A f M f t})≤
�

1− scs t
�

1

s

+ ≤ e−cs t ≤ e−
t

2 (18)

and for every p > 0,

‖| f |
1

d f ‖Lp(µ) ≤ A f M f

 

1+
pB(p, 1+ 1

s
)

(scs)
p

!
1

p

≤ A f M f

�

1+ 2pΓ(p+ 1)
�

1

p . (19)

Proof: Inequality (18) deduces from inequality (17). The proof of inequality (19) is then standard,

we write
∫

Rn

| f (x)|
p

d f dµ(x) = p

∫ +∞

0

t p−1µ

�

{x; | f (x)|
1

d f ≥ t}

�

d t

and we apply inequality (18) as in the proof of Corollary 9.

For s < 0 the situation changes drastically, inequality (17) only implies that the tail of | f |1/d f de-

creases as t1/s, which is the sharp behaviour if we take the example of measure µ on R given after

Theorem 1 and f (x) = |x |.

Corollary 11. Let f : Rn → R be a Borel measurable function with bounded Chebyshev degree. Let

s ≤ 0 and µ be a s-concave probability measure on Rn. Denote by M f the µ-median of | f |1/d f and

denote ds := (2−s − 1)1/s. Then for every t > 1

µ({| f |1/d f ≥ A f M f t})≤ t
1

s

�

2−s − 1+
1

t

�
1

s

≤ ds t
1

s . (20)

and for every 0< p <−1

s
,

‖| f |1/d f ‖Lp(µ) ≤ A f M f

 

1+ ds

p

p+ 1

s

!
1

p

. (21)

Proof: Inequality (20) deduces from inequality (17). The proof of inequality (21) is then standard.
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4 Proof of Theorem 1

While in [B2] and [B3], Bobkov used an argument based on a transportation argument, going back

to Knothe [K] and Bourgain [Bou], our proof follows the same line of argument as Lovász and

Simonovits in [LS], Guédon in [G], Nazarov, Sodin and Volberg in [NSV1], Brudnyi in [Br3] and

Carbery and Wright in [CW], the geometric localization theorem, which reduces the problem to

the dimension one. The main difference with these proofs is that the geometric localization is used

here in the presentation given by Fradelizi and Guédon in [FG] which don’t use an infinite bisection

method but prefers to see it as an optimization theorem on the set of s-concave measures satisfying

a linear constraint and the application of the Krein-Milman theorem. Let us recall the main theorem

of [FG].

Theorem [FG] Let n be a positive integer, let K be a compact convex set in Rn and denote by P (K) the

set of probability measures in Rn supported in K. Let f : K → R be an upper semi-continuous function,

let s ∈ [−∞, 1

2
] and denote by Pf the set of s-concave probability measures λ supported in K satisfying

∫

f dλ ≥ 0. Let Φ :P (K)→ R be a convex w∗-upper semi-continuous function. Then

sup
λ∈Pf

Φ(λ)

is achieved at a probability measure ν which is either a Dirac measure at a point x such that

f (x) ≥ 0, or a probability measure ν which is s-affine on a segment [a, b], such that
∫

f dν = 0 and
∫

[a,x]
f dν > 0 on (a, b) or

∫

[x ,b]
f dν > 0 on (a, b).

Remarks:

1) In Theorem [FG] and in the following, we say that a measure ν is s-affine on a segment [a, b] if

its density ψ satisfies that ψγ is affine on [a, b], where γ= s

1−s
.

2) Notice that in Theorem [FG] it is assumed that s ≤ 1

2
. If 1

2
< s ≤ 1, as follows from Theorem

[Bor1], the set of s-concave measures contains only measures whose support is one-dimensional

and the Dirac measures. Moreover, a quick look at the proof of Theorem [FG] shows that the

conclusions of the theorem remain valid except the fact that the measure ν is s-affine. It would be

interesting to know if Theorem [FG] may be fully extended to 1

2
< s ≤ 1.

The proof of Theorem 1 splits in two steps. The first step consists in the application of Theorem

[FG] to reduce to the one-dimensional case and the second step is the proof of the one-dimensional

case:

Step 1: Reduction to the dimension 1.

Let F be a Borel set in Rn and t > 1. Let s ∈ (−∞, 1] and µ be a s-concave probability measure on

R
n such that µ(F c

t )> 0. Our aim is to prove that

µ(F c)≥

�

2

t + 1
µ(F c

t )
s +

t − 1

t + 1

�1/s

i.e. µ(F)≤ 1−

�

2

t + 1
µ(F c

t )
s +

t − 1

t + 1

�1/s

.
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By a standard approximation, we may assume that µ is compactly supported. We denote by K its

support which is a convex set in Rn and by G, the affine subspace generated by K . Notice that in

the proof of this inequality, we always may assume that F ⊂ K (if we replace F by F̃ := F ∩ K , then

µ(F̃) = µ(F) and F̃t ⊂ Ft , hence µ(F̃ c
t )≥ µ(F

c
t )).

From Theorem [Bor1] of Borell stated in the introduction, µ is absolutely continuous with respect to

the Lebesgue measure on G. Using the regularity of the measure, we may assume that F is compact

in K . To satisfy the other semi-continuity hypothesis, we would need Ft to be open. Since this is not

necessarily the case, we introduce an auxiliary open set O such that Ft ⊂ O and µ(Oc) > 0. Define

θ ∈ R, f : Rn→ R and Φ :P (K)→ R by

θ = µ(Oc)> 0, f = 1Oc − θ and Φ(λ) = λ(F), ∀λ ∈ P (K).

Since F is closed and O is open, the functions f and Φ are upper semi-continuous. With these

definitions, the set Pf defined in the statement of the preceding theorem is

Pf = {λ ∈ P (K); λ is s−concave and λ(Oc)≥ θ}.

Since µ ∈ Pf , if we prove that

sup
λ∈Pf

Φ(λ)≤ 1−

�

2

t + 1
θ s +

t − 1

t + 1

�1/s

, (22)

we will get that for any open set O containing Ft such that µ(Oc)> 0

µ(F)≤ 1−

�

2

t + 1
µ(Oc)s +

t − 1

t + 1

�1/s

.

Taking the supremum on such open set O and using the regularity of µ, it will give the result.

From Theorem [FG], to establish inequality (22) it is enough to prove it for two types of particular

measure ν:

- the measure ν is a Dirac measure at a point x such that f (x) ≥ 0. It implies that 1Oc (x) ≥ θ > 0,

thus x /∈ O, hence x /∈ F , since F ⊂ Ft ⊂ O. Therefore Φ(δx) = δx(F) = 0. This proves inequality

(22) in this case.

- the measure ν is s-concave on a segment [a, b], such that
∫

f dν = 0 and
∫

[a,x]
f dν > 0 on (a, b)

or
∫

[x ,b]
f dν > 0 on (a, b). Without loss of generality we may assume that

∫

[x ,b]
f dν > 0 on (a, b).

Hence these conditions give

ν(Oc) = θ and ν(Oc ∩ [x , b]) > ν(Oc)ν([x , b]), ∀x ∈ (a, b) .

As explained at the beginning of the proof, we may assume that F ⊂ [a, b]. We also assume that

[a, b] ⊂ R, with a < b. It is easy to see that for F ⊂ R, its dilation Ft is open. Hence we may choose

O = Ft and get rid of the auxiliary set O. So we have

ν(F c
t ) = θ and ν(F c

t ∩ [x , b]) > ν(F c
t )ν([x , b]), ∀x ∈ (a, b) . (23)

Letting x tends to b and using that Ft is open, the second condition implies that b /∈ Ft .

2086



Let us see now why we may assume that a ∈ F . Since F is closed, if a /∈ F , then a′ := inf F > a.

Let ν ′ be the probability measure, which is the restriction of ν to the interval [a′, b], i.e. ν ′ =

ν|[a′,b]/ν([a
′, b]). Then

ν ′(F c) =
ν(F c ∩ [a′, b])

ν([a′, b])
=
ν(F c)− ν([a, a′])

1− ν([a, a′])
≤ ν(F c)

and from the second condition in (23)

ν ′(F c
t ) =

ν(F c
t ∩ [a

′, b])

ν([a′, b])
> ν(F c

t ).

This ends the first step. We showed that to prove Theorem 1 for any s-concave measure µ and any

Borel set F , it is enough to prove it for the s-concave probability measures ν which are supported

on a segment [a, b] ⊂ R, with b /∈ Ft , a ∈ F and F ⊂ [a, b]. Moreover for s ≤ 1

2
, we also may

assume that ν is s-affine.

Step 2: Proof in dimension 1.

Let us start with a joint remark with Guédon:

In the case where F is convex, it is now easy to conclude, which enables us to recover the result of

Guédon [G]. From the convexity of F and Ft there exists c < d such that F = [a, c] and Ft ∩[a, b] =

[a, d) and we have a < c < d < b. Using that d /∈ Ft and the definition of Ft , for any interval I

containing d, we have |I | ≥ t+1

2
|F ∩ I |. For I = [a, d], this gives d − a ≥ t+1

2
(c − a) and so

c ≤
2

t + 1
d +

�

t − 1

t + 1

�

a hence [c, b] ⊃
2

t + 1
[d, b] +

t − 1

t + 1
[a, b].

Since ν is s-concave, we get

ν([c, b])≥

�

2

t + 1
ν([d, b])s +

t − 1

t + 1
ν([a, b])s

�1/s

.

This ends the proof in this case since ν(F c) = ν([c, b]), ν(F c
t ) = ν([d, b]) and ν([a, b]) = 1.

The general case is more complicate. The proof of Nazarov, Sodin and Volberg [NSV1], to treat the

log-concave (s = 0) one-dimensional case, extends directly to the case s ≤ 1, with some suitable

adaptations in the calculations, so we don’t reproduce it here. But for s ≤ 1

2
, using that ν may be

assumed s-affine, we can shorten the proof (in fact, we only use the monotonicity of the density of

ν).

Since Ft is open in R, it is the countable union of disjoint intervals. By approximation, we may

assume that there are only a finite number of them. Since a ∈ F ⊂ Ft and b /∈ Ft , we can write

Ft ∩ [a, b] = [a0, b0)∪

 

N
⋃

i=1

(ai , bi)

!

with ai < bi < ai+1, 0≤ i ≤ N − 1,

where a0 = a. Let Fi = F ∩ (ai, bi). Denote by ψ the density of ν with respect to the Lebesgue

measure. There are two cases:
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- If ψ is non-decreasing: this is the easiest case. Let 0≤ i ≤ N . Since bi /∈ Ft , using the definition of

Ft , it follows that for every interval I containing bi , we have |I | ≥ t+1

2
‖F ∩ I |. Let x ∈ (ai, bi), if we

apply it to I = [x , bi] we get

|[x , bi]| ≥
t + 1

2
|[x , bi]∩ F |.

Hence the function ρ := 1− t+1

2
1F satisfies

∫ bi

x
ρ(u)du≥ 0. Integrating by parts this gives

∫ bi

ai

ρ(u)ψ(u)du=ψ(ai)

∫ bi

ai

ρ(x)d x +

∫ bi

ai

 

∫ bi

x

ρ(u)du

!

ψ′(x)d x ≥ 0.

Hence ν
�

(ai, bi)
�

≥ t+1

2
ν(Fi) and since Ft = ∪(ai, bi) and F = ∪Fi , it follows that ν(Ft)≥

t+1

2
ν(F).

Therefore, using the comparison between the s-mean (with s ≤ 1) and the arithmetic mean, we

conclude that

ν(F c)≥
2

t + 1
ν(F c

t ) +
t − 1

t + 1
≥

�

2

t + 1
ν(F c

t )
s +

t − 1

t + 1

�1/s

.

- If ψ is non-increasing: We first prove that, for each 0≤ i ≤ N

ν(F c
i )≥

�

2

t + 1
ν((ai, bi)

c)s +
t − 1

t + 1

�1/s

. (24)

For i ≥ 1, we have ai /∈ Ft and it is similar as the previous case. Indeed, for every x ∈ (ai, bi),

|[ai , x]| ≥ t+1

2
|[ai , x] ∩ F | and an integration by parts gives that ν

�

(ai, bi)
�

≥ t+1

2
ν(Fi). From the

comparison of the means, inequality (24) follows.

For i = 0, we have a0 = a ∈ F . We define F ′0 = [a0, c0], where c0 is chosen such that |F ′0| = |F0|.

Since ψ is non-increasing, we have ν(F ′0)≥ ν(F0) and since b0 /∈ Ft ,

|[a0, b0]| ≥
t + 1

2
|[a0, b0]∩ F |=

t + 1

2
|F0|=

t + 1

2
|F ′0|=

t + 1

2
|[a0, c0]|.

Hence b0− a0 ≥
t+1

2
(c0− a0). As in the joint remark with Guédon given before, we get that

ν([c0, b])≥

�

2

t + 1
ν([b0, b])s +

t − 1

t + 1
ν([a0, b])s

�1/s

.

Therefore we get inequality (24) for i = 0:

ν(F c
0)≥ ν(F

′c
0 ) = ν([c0, b])≥

�

2

t + 1
ν((a0, b0)

c)s +
t − 1

t + 1

�1/s

.

The inequality (24) may be written ν(Fi) ≤ ϕ(ν
�

ai , bi)
�

, for 0 ≤ i ≤ N , where ϕ : [0,1]→ [0,1] is

defined by

ϕ(x) = 1−

�

2

t + 1
(1− x)s +

t − 1

t + 1

�1/s

.

From Minkowski inequality for the s-mean, with s ≤ 1, the function ϕ is convex on [0,1]. Denote

λi = ν(
�

ai , bi)
�

/ν(Ft). Using that ϕ(0) = 0 and the convexity of ϕ we get

ν(Fi)≤ ϕ(ν
�

ai , bi)
�

= ϕ
�

λiν(Ft)
�

≤ λiϕ
�

ν(Ft)
�

.
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Summing on i and using that
∑N

i=1λi = 1, we conclude that

ν(F)≤ ϕ
�

ν(Ft)
�

.

This is the result.
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