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Abstract

We consider a model of a population of fixed size N in which each individual gets replaced at rate

one and each individual experiences a mutation at rate µ. We calculate the asymptotic distribu-

tion of the time that it takes before there is an individual in the population with m mutations.

Several different behaviors are possible, depending on how µ changes with N . These results

have applications to the problem of determining the waiting time for regulatory sequences to

appear and to models of cancer development.
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1 Introduction

It is widely accepted that many types of cancer arise as a result of not one but several mutations.

For example, Moolgavkar and Luebeck [26] write that “the concept of multistage carcinogenesis

is one of the central dogmas of cancer research", while Beerenwinkel et. al. [5] write that “the

current view of cancer is that tumorigenesis is due to the accumulation of mutations in oncogenes,

tumor suppressor genes, and genetic instability genes." The idea that several mutations are required

for cancer goes back at least to 1951, when Muller [28] wrote, “There are, however, reasons for

inferring that many or most cancerous growths would require a series of mutations in order for

cells to depart sufficiently from the normal." Three years later, Armitage and Doll [2] proposed a

simple mathematical multi-stage model of cancer. Motivated by the goal of explaining the power law

relationship between age and incidence of cancer that had been observed by Fisher and Holloman

[12] and Nordling [29], they formulated a model in which a cell that has already experienced k−1

mutations experiences a kth mutation at rate uk. They showed that asymptotically as t → 0, the

probability that the mth mutation occurs in the time interval [t, t + d t] is given by

r(t) d t =
u1u2 . . . um tm−1

(m− 1)!
d t. (1)

They fit their model to data from 17 different types of cancer, and found that for many types of

cancer the incidence rate r(t) increases like the fifth or sixth power of age, suggesting that perhaps

6 or 7 mutations are involved in cancer progression. Because of concerns that having 6 or 7 stages

may not be biologially plausible, Armitage and Doll [3] later proposed a two-stage model as an

alternative. A more general two-stage model was proposed by Moolgavkar and Knudson [24], who

demonstrated that two-stage models are flexible enough to fit a wide range of data if one allows for

the possibilities that the number of healthy cells with no mutations may change over time, and that

cells with one mutation may divide rapidly, causing the second mutation, and therefore the onset of

cancer, to happen more quickly than it otherwise would.

Since the seminal papers of Armitage and Doll, multi-stage models have been applied to a number

of different types of cancer. Knudson [19; 15] discovered that retinoblastoma is a result of getting

two mutations. Multi-stage models of colon cancer have been studied extensively. Moolgavkar and

Luebeck [26] argued that a three-stage model fit the available data slightly better than a two-stage

model. Later in [22], they found a good fit to a four-stage model. Calabrese et. al. [6] worked with

data from 1022 cancers from 9 hospitals in Finland and estimated that between 4 and 9 mutations

are required for cancer, with fewer mutations being required for hereditary cancers than for sporadic

(nonhereditary) cancers. A recent study [32] of over 13,000 genes from breast and colon cancers

suggests that as many as 14 mutations may be involved in colon cancer and as many as 20 may be

involved in breast cancer. Multi-stage models have also been fit to data on lung cancer [13] and

T-cell leukemia [31]. See [20] for a recent survey of applications of multi-stage cancer models.

In this paper, we formulate a simple mathematical model and calculate the asymptotic distribution

of the time that it takes for cancer to develop. Our model is as follows. Consider a population of

fixed size N . We think of the individuals in the population as representing N cells, which could

develop cancer. We assume that the population evolves according to the Moran model [27]. That is,

each individual independently lives for an exponentially distributed amount of time with mean one,

and then is replaced by a new individual whose parent is chosen at random from the N individuals

in the population (including the one being replaced). These births and deaths represent cell division
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and cell death. We also assume that each individual independently experiences mutations at times

of a rate µ Poisson process, and each new individual born has the same number of mutations as its

parent. We refer to an individual that has j mutations as a type j individual, and a mutation that

takes an individual’s number of mutations from j − 1 to j as a type j mutation. Let X j(t) be the

number of type j individuals at time t. For each positive integer m, let τm = inf{t : Xm(t) > 0} be

the first time at which there is an individual in the population with m mutations. We view τm as

representing the time that it takes for cancer to develop. Clearly τ1 has the exponential distribution

with rate Nµ because the N individuals are each experiencing mutations at rate µ. Our goal in this

paper is to compute the asymptotic distribution of τm for m≥ 2.

When a new mutation occurs, eventually either all individuals having the mutation die, causing

the mutation to disappear from the population, or the mutation spreads to all individuals in the

population, an event which we call fixation. Because a mutation initially appears on only one

individual and is assumed to offer no selective advantage or disadvantage, each mutation fixates

with probability 1/N . Once one mutation fixates, the problem reduces to waiting for m−1 additional

mutations. However, it is possible for one individual to accumulate m mutations before any mutation

fixates in the population, an event which is sometimes called stochastic tunneling (see [17]). It is

also possible for there to be j fixations, and then for one individual to get m− j mutations that do

not fixate. Because there are different ways to get m mutations, the limiting behavior is surprisingly

complex, as the form of the limiting distribution of τm depends on how µ varies as a function of N .

There is another source of biological motivation for this model coming from the evolution of reg-

ulatory sequences. Regulatory sequences are short DNA sequences that control how genes are ex-

pressed. Getting a particular regulatory sequence would require several mutations, so to understand

the role that regulatory sequences play in evolution, one needs to understand how long it takes be-

fore these mutations occur. See Durrett and Schmidt [8; 9] for work in this direction.

In addition to this motivation from biology, there is mathematical motivation for studying this model

as well. The model is simple and natural and, as will be seen from the results, gives rise to different

asymptotic behavior depending on how µ scales as a function of N . In particular, the usual diffusion

scaling from population genetics in which Nµ tends to a constant is just one of several regimes.

This paper can be viewed as a sequel to [10], in which the authors considered a more general

model in which an individual with k − 1 mutations experiences a kth mutation at rate uk. The

model considered here is the special case in which uk = µ for all k, so we are assuming that all

mutation rates are the same. However, whereas in [10] results were obtained only for specific

ranges of the mutation rates uk, here we are able to obtain all possible limiting behaviors for the

case in which the mutation rates are the same. We also emphasize that although our model accounts

for cell division and cell death, we assume that the rates of cell division and cell death are the same,

unlike many models in the biology literature which specify that individuals with between 1 and m−1

mutations have a selective advantage, allowing their numbers to increase rapidly (see, for example,

[3; 24; 25; 26; 5]). As we explain below, several special cases of our results have previously

appeared in the biology literature, especially for the two-stage models when m = 2. However, here

we are able to give complete asymptotic results for all m, as well as to provide rigorous proofs of

the results. We state our main results in section 2. Proofs are given in sections 3, 4, and 5.
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2 Main results

In this section, we state our results on the limiting behavior of the waiting time for an individual

to acquire m mutations, and we explain the heuristics behind the results. Many of the heuristics

are based on approximation by branching processes. In the Moran model, if k individuals have a

mutation, then the number of individuals with the mutation is decreasing by one at rate k(N −

k)/N (because the k individuals with the mutation are dying at rate k, and the probability that

the replacement individual does not have a mutation is (N − k)/N) and is increasing by one at

rate k(N − k)/N (because the N − k individuals without a mutation are dying at rate one, and the

replacement individual has a mutation with probability k/N). Therefore, when k is much smaller

than N , the number of individuals with a given mutation behaves approximately like a continuous-

time branching process in which each individual gives birth and dies at rate one.

To keep track of further mutations, it is natural to consider a continuous-time multitype branching

process in which initially there is a single type 1 individual, each individual gives birth and dies at

rate 1, and a type j individual mutates to type j+1 at rate µ. If p j denotes the probability that there

is eventually a type j individual in the population, then

p j =
1

2+µ
(2p j − p2

j ) +
µ

2+µ
p j−1. (2)

To see this result, condition on the first event. With probability 1/(2+µ), the first event is a death,

and there is no chance of getting a type j individual. With probability 1/(2+ µ), the first event is

a birth, in which case each individual has a type j descendant with probability p j and therefore the

probability that at least one has a type j descendant is 2p j− p2
j . With probability µ/(2+µ), the first

event is a mutation to type 2, in which case the probability of a type j descendant is p j−1 because

j−1 further mutations are needed. Equation (2) can be rewritten as p2
j +µp j −µp j−1 = 0, and the

positive solution is

p j =
−µ+
p

µ2+ 4µp j−1

2
.

When µ is small, the second term under the square root dominates the numerator, and we get

p j ≈
p

µp j−1. Since p1 = 1, the approximation p j ≈ µ
1−2−( j−1)

follows by induction.

Because the Moran model can be approximated by a branching process when the number of mutant

individuals is much smaller than N , this result suggests that under appropriate conditions, the prob-

ability that a type 1 individual in the population has a type m descendant should be approximately

µ1−2−(m−1)

. Proposition 1 below, which is a special case of Proposition 4.1 in [10], establishes that

this approximation is indeed valid. Here and throughout the paper, the mutation rate µ depends

on N even though we do not record this dependence in the notation. Also, if f and g are two

functions of N , we write f (N)∼ g(N) if f (N)/g(N)→ 1 as N →∞. We also write f (N)≪ g(N) if

f (N)/g(N)→ 0 as N →∞ and f (N)≫ g(N) if f (N)/g(N)→∞ as N →∞.

Proposition 1. Consider a model which is identical to the model described in the introduction, except

that initially there is one individual of type 1 and N − 1 individuals of type 0, and no further type 1

mutations are possible. Let qm be the probability that a type m individual eventually is born. Suppose

that Nµ1−2−(m−1)

→∞ as N →∞, and that there is a constant a > 0 such that N aµ→ 0. Then

qm ∼ µ
1−2−(m−1)

.
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Note that qm is the probability that a given type 1 individual eventually has a type m descendant.

Because a number of our arguments involve considering each type 1 mutation and its descendants

separately from other type 1 mutations, this result will be used repeatedly.

To understand the order of magnitude of qm another way, recall that the probability that the total

progeny of a critical branching process exceeds M is of order M−1/2 (see, for example, [14]), so

if there are L independent branching processes, the most successful will have a total progeny of

order L2. Furthermore, the sum of the total progenies of the L processes will also be of order

L2. Therefore, if there are L type 1 mutations, the number of descendants they produce will be of

order L2. Each type 1 descendant will experience a type 2 mutation before dying with probability

approximately µ, so this should lead to on the order of L2µ type 2 mutations. It follows that the

number of type 2 descendants should be on the order of L4µ2, and this will lead to on the order

of L4µ3 type 3 mutations. Repeating this reasoning, we see that the number of type m mutations

should be of order L2m−1

µ2m−1−1. By setting this expression equal to one and solving for L, we see

that it should take on the order of µ−(1−2−(m−1)) type 1 mutations before one of these mutations gets

a type m descendant. That is, the probability that a type 1 individual has a type m descendant is of

order µ1−2−(m−1)

.

2.1 Gamma limits when Nµ→ 0

Because mutations occur at times of a Poisson process of rate Nµ, there will be approximately NµT

mutations by time T . We have seen that after a mutation occurs, the number of individuals with the

mutation behaves approximately like a critical branching process. By a famous result of Kolmogorov

[21], the probability that a critical branching process survives for time t is of order 1/t. This means

that if we have NµT independent critical branching processes, the most successful will survive for

a time which is of order NµT . Therefore, all mutations that appear before time T should either die

out or fixate after being in the population for a time of order NµT . If Nµ ≪ 1, then this time is

much smaller than the time T that we have to wait for the mutation. Therefore, when Nµ ≪ 1,

we can consider each mutation separately and determine whether either it fixates or gives birth

to a type m descendant without fixating. We can ignore the time that elapses between when the

original mutation appears, and when either it fixates or the descendant with m mutations is born.

The importance of the condition Nµ≪ 1 was previously noted, for example, in [17] and [18].

We have already seen that a mutation fixates with probability 1/N and gives birth to a type j

descendant with probability approximately µ1−2−( j−1)

. Therefore, fixation of some mutation will

happen first if Nµ1−2−( j−1)

→ 0 as N →∞ or, equivalently, if µ≪ N−2 j−1/(2 j−1−1). This leads to the

following result when Nµ≪ 1. Note that when m = 2, the result in part 1 of the theorem matches

(12.12) of [30], while the result in part 3 matches (12.14) of [30]; see also section 3 of [18], section

4 of [16], and Theorem 1 of [9].

Theorem 2. Let Z1, Z2, . . . be independent random variables having the exponential distribution with

rate 1, and let Sk = Z1+ · · ·+ Zk, which has a gamma distribution with parameters (k, 1).

1. If µ≪ N−2, then µτm→d Sm−1.

2. If N−2 j−1/(2 j−1−1)≪ µ≪ N−2 j/(2 j−1) for some j = 2, . . . , m− 1, then µτm→d Sm− j .

3. If N−2m−1/(2m−1−1)≪ µ≪ N−1, then Nµ2−2−(m−1)

τm→d Z1.
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To understand this result, note that in part 1 of the theorem, when µ≪ N−2, fixation occurs before

any individual gets two mutations without a fixation. Therefore, to get m mutations, we have to wait

for m−1 different mutations to fixate, and this is the sum of m−1 independent exponential waiting

times. The exponential random variables have rate parameter µ, because there are mutations at

rate Nµ and each fixates with probability 1/N , so mutations that fixate occur at rate µ. Once m− 1

fixations have occurred, the mth mutation occurs quickly, at rate Nµ rather than at rate µ, so only

the waiting times for the m− 1 fixations contribute to the limiting distribution. For part 2 of the

theorem, when N−2 j−1/(2 j−1−1) ≪ µ≪ N−2 j/(2 j−1) for some j = 2, . . . , m− 1, fixation occurs before

an individual can accumulate j+ 1 mutations, but an individual can accumulate j mutations before

fixation. Therefore, we wait for m− j fixations, and then the remaining j mutations happen without

fixation. Because the j mutations without fixation happen on a faster time scale, the limit is a sum

of m− j exponential random variables. In part 3, we get m mutations before the first fixation, and

there is an exponential waiting time until the first mutation that is successful enough to produce

an offspring with m mutations. Mutations happen at rate Nµ, and mutations are successful with

probability approximately µ1−2−(m−1)

, which explains the time-scaling factor of Nµ2−2−(m−1)

.

Part 3 of Theorem 2 is the special case of Theorem 2 of [10] in which u j = µ for all j. Condition

(i) of that theorem becomes the condition µ ≪ N−1, while condition (iv) becomes the condition

N−2m−1/(2m−1−1)≪ µ. Parts 1 and 2 of Theorem 2 above are proved in section 3.

2.2 The borderline cases

Theorem 2 does not cover the cases when µ is of the order N−2 j−1/(2 j−1−1) for some j. On this time

scale, for the reasons discussed in the previous section, we can still neglect the time between when

a mutation first appears in the population and when it either fixates or dies out because this time

will be much shorter than the time we had to wait for the mutation to occur. However, fixations

happen on the same time scale as events in which an individual gets j mutations without fixation.

Therefore, to get to m mutations, we start with m− j fixations. Then we can either have another

fixation (followed by j − 1 additional mutations, which happen on a faster time scale) or we can

get j mutations without any fixation. The waiting time is the sum of m− j independent exponential

random variables with rate µ and another exponential random variable having the faster rate λ jµ.

The last exponential random variable comes from waiting for a mutation that either fixates or has a

descendant with j − 1 additional mutations but does not fixate. This leads to the following result.

Theorem 3. Suppose µ ∼ AN−2 j−1/(2 j−1−1) for some j = 2, . . . , m and some constant A > 0. Let

Z1, Z2, . . . be independent exponential random variables having the exponential distribution with rate

1, and let Sk = Z1+ · · ·+Zk. Let Y be independent of Z1, Z2, . . . , and assume that Y has the exponential

distribution with rate λ j , where

λ j =

∞
∑

k=1

A2k(1−2−( j−1))

(k− 1)!(k− 1)!

� ∞
∑

k=1

A2k(1−2−( j−1))

k!(k− 1)!
. (3)

Then µτm→d Sm− j + Y .

This result when j = m is the special case of Theorem 3 of [10] in which u j = µ for all j. As will be

seen in section 3, the result for j ≤ m− 1 follows easily from the result when j = m.
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To explain where the formula for λ j comes from, we review here the outline of the proof of Theorem

3 in [10]. Assume that we already have m− j fixations, and now we need to wait either for another

fixation or for a mutation that will have a descendant with j − 1 additional mutations. We can not

approximate the probability of the latter event by µ1−2−( j−1)

in this case because to get j − 1 further

mutations, the number of individuals with the original mutation will need to be of order N , so the

branching process approximation does not hold. Instead, we consider a model in which there is

one individual with a mutation at time zero, and X (t) denotes the number of individuals with the

mutation at time t. At time t, the individuals with the mutation each experience further mutations

at rate µ, and these further mutations each have probability approximately µ1−2−( j−2)

of having an

offspring with j total mutations. Therefore, at time t, successful mutations are happening at rate

γX (t), where

γ≈ µ ·µ1−2−( j−2)

= µ2(1−2−( j−1)).

At time t, the jump rate of the process is 2X (t)(N − X (t))/N . Therefore, by making a time-change,

we can work instead with a continuous-time simple random walk (Y (t), t ≥ 0) which jumps at rate

one, and the mutation rate at time t becomes

γY (t) ·
N

2Y (t)(N − Y (t))
=

γ

2(1− Y (t)/N)
.

Therefore, the probability that there is no fixation and no further successful mutation is approxi-

mately

E

�

exp

�

−

∫ T

0

γ

2(1− Y (t)/N)
d t

�

1{Y (T )=0}

�

,

where T = inf{t : Y (t) ∈ {0, N}}. Simple random walk converges to Brownian motion, so if instead

of starting with just one mutant individual we assume that Y (0) = ⌊N x⌋, where 0< x < 1, then the

above expression is approximately

u(x) = E

�

exp

�

−
A2(1−2−( j−1))

2

∫ U

0

1

1− B(s)
ds

�

1{B(U)=0}

�

, (4)

where U = inf{t : B(t) ∈ {0,1}} and (B(t), t ≥ 0) is Brownian motion started at x . Here we are

also using that N2γ ∼ A2(1−2−( j−1)), where the factor of N2 comes from the time change in replacing

random walk with Brownian motion. Since the probability that we get either fixation or a successful

mutation is 1− u(x), and we need to take a limit as the number of mutants at time zero gets small,

we have

λ j = lim
x→0

1− u(x)

x
.

Thus, the problem reduces to evaluating the Brownian functional (4). One can obtain a differential

equation for u(x) using the Feynman-Kac formula, and then get a series solution to the differential

equation, from which the formula (3) follows. Details of this argument occupy section 6 of [10].

2.3 Rapid mutations

It remains to handle the case when Nµ9 0. With this scaling, fixation will not occur before time

τm. However, the waiting time between the type 1 mutation that will eventually produce a type
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m descendant and the actual appearance of the type m descendant can no longer be ignored. As a

result, waiting times are no longer sums of exponential random variables. Instead, we obtain the

following result. The m = 2 case of part 3 is equivalent to the special case of Theorem 1 in [10]

when u1 = u2 = µ.

Theorem 4. We have the following limiting results when Nµ9 0.

1. If µ≫ N−2/m, then

lim
N→∞

P(τm > N−1/mµ−1 t) = exp

�

−
tm

m!

�

.

2. If N−1/(1+(m− j−2)2−( j+1))≪ µ≪ N−1/(1+(m− j−1)2− j) for some j = 1, . . . , m− 2, then

lim
N→∞

P(τm > N−1/(m− j)µ−1−(1−2− j)/(m− j) t) = exp

�

−
tm− j

(m− j)!

�

.

3. If µ∼ AN−1/(1+(m− j−1)2− j) for some j = 1, . . . , m− 1 and some constant A> 0, then

lim
N→∞

P(τm > µ
−(1−2− j) t) = exp

�

−
A1+(m− j−1)2− j

(m− j − 1)!

∫ t

0

(t − s)m− j−1
1− e−2s

1+ e−2s
ds

�

.

We now explain the intuition behind these results. Recall that X j(t) is the number of individuals

with j mutations at time t. Because there are N individuals getting mutations at rate µ, we have

E[X1(t)]≈ Nµt for small t. Each of these individuals acquires a second mutation at rate µ, so

E[X2(t)]≈ µ

∫ t

0

Nµs ds =
Nµ2 t2

2
.

Repeating this reasoning, we get E[X j(t)]≈ Nµ j t j/ j!.

When the mutation rate is sufficiently large, there is a Law of Large Numbers, and the fluctuations

in the number of individuals with j mutations are small relative to E[X j(t)]. In this case, X j(t)

is well approximated by its expectation. When the mutation rate is sufficiently small, most of the

time there are no individuals with j mutations in the population, and when an individual gets a jth

mutation, this mutation either dies out or, with probability qm− j+1, produces a type m descendant

on a time scale much faster than τm. In this case, the problem reduces to determining how long we

have to wait for a jth mutation that is successful enough to produce a type m descendant. There is

also a borderline case in which we get stochastic effects in the limit both from the number of type j

individuals in the population and from the time between the appearance of a type j individual that

will eventually have a type m descendant and the birth of the type m descendant.

If the mutation rate is fast enough so that Xm−1(t) ≈ E[Xm−1(t)] up to time τm, then since each

individual with m− 1 mutations gets an mth mutation at rate µ, we get

P(τm > t)≈ exp

�

−µ

∫ t

0

Nµm−1sm−1

(m− 1)!
ds

�

= exp

�

−
Nµm tm

m!

�

. (5)

This leads to the result in part 1 of Theorem 4 if we substitute N−1/mµ−1 t in place of t in (5). In

this regime, mutations are happening fast enough that births and deaths do not affect the limiting
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result, and we get the same result that we would get if τm were simply the first time that one

of N independent rate µ Poisson processes reaches the value m. Consequently, as can be seen by

integrating (1), this result agrees with the result of Armitage and Doll [2], who did not consider

cell division and cell death in their original model. The result when m = 2 agrees with a result in

section 4 of [16], and with (12.18) of [30].

Next, suppose mutation rates are fast enough so that Xm− j−1(t)≈ E[Xm− j−1(t)] up to time τm, but

slow enough that the time between the appearance of a “successful" type m− j individual that will

have a type m descendant and the birth of the type m descendant is small relative to τm. Then each

type m− j − 1 individual experiences “successful" mutations at rate µq j+1 ≈ µ
2−2− j

by Proposition

1, so

P(τm > t)≈ exp

�

−µ2−2− j

∫ t

0

Nµm− j−1sm− j−1

(m− j − 1)!
ds

�

= exp

�

−
Nµm− j+1−2− j

tm− j

(m− j)!

�

.

This leads to the result in part 2 of Theorem 4. The borderline cases are handled by part 3 of

Theorem 4.

To understand where the boundaries between the different types of behavior occur, first recall that

the number of type k individuals born by time t is of the order Nµk tk. Because each individual gives

birth and dies at approximately rate one, the number of births and deaths of type k individuals by

time t is of order Nµk tk+1. Because the standard deviation of the position of a random walk after

M steps is of order M1/2, the standard deviation of the number of type k individuals by time t is of

order N1/2µk/2 t(k+1)/2. Therefore, we have Xk(t) ≈ E[Xk(t)] whenever N1/2µk/2 t(k+1)/2≪ Nµk tk

or, equivalently, whenever 1≪ Nµk tk−1. See Proposition 11 below for a precise statement of this

result.

Each type k individual experiences a mutation that will have a type m descendant at rate

µqm−k ≈ µ
2−2−(m−k−1)

. Therefore, the expected number of such mutations by time t is of the or-

der Nµk tk ·µ2−2−(m−k−1)

· t = Nµk+2−2−(m−k−1)

tk+1. This expression is of order one when t is of order

N−1/(k+1)µ−1−(1−2−(m−k−1))/(k+1), which is consequently the order of magnitude of the time we have

to wait for one such mutation to occur. It now follows from the result of the previous paragraph that

Xk(t)≈ E[Xk(t)] up to time τm whenever

1≪ Nµk(N−1/(k+1)µ−1−(1−2−(m−k−1))/(k+1))k−1. (6)

The expression on the right-hand side of (6) can be simplified to (N2µ2+(k−1)2−(m−k−1)

)1/(k+1), so (6)

is equivalent to the condition

µ≫ N−1/(1+(k−1)2−(m−k)). (7)

This condition can be compared to the condition for part 2 of Theorem 4, which entails that (7)

holds for k = m− j−1 but not for k = m− j, and therefore the number of type m− j−1 individuals,

but not the number of type m− j individuals, is approximately deterministic through time τm.

If instead µ is of the order N−1/(1+(m− j−1)2− j) for some j = 1, . . . , m− 1, then on the relevant time

scale the number of individuals of type m − j − 1 behaves deterministically, but the number of

individuals of type m− j has fluctuations of the same order as the expected value. As a result, there

are stochastic effects from the number of type m− j individuals in the population. In this case, there

are also stochastic effects from the time between the birth of type m− j individual that will have
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a type m descendant and the time that the type m descendant is born. Calculating the form of the

limiting distribution in these borderline cases involves working with a two-type branching process.

This branching process is very similar to a process analyzed in chapter 3 of [33], which explains

the resemblance between part 3 of Theorem 4 and (3.20) of [33]. Similar analysis using generating

functions of branching processes that arise in multi-stage models of cancer has been carried out in

[23; 25; 26]. The work in [25] allows for time-dependent parameters, while a three-stage model is

analyzed in [26].

2.4 The case m= 3

To help the reader understand the different limiting behaviors, we summarize here the results when

m = 3. There are 9 different limiting regimes in this case; in general for the waiting time to get m

mutations, there are 4m− 3 limiting regimes. Below Z1 and Z2 have the exponential distribution

with mean one, and Y1 and Y2 have the exponential distributions with mean λ2 and λ3 respectively,

where λ2 and λ3 are given by (3). The random variables Z1, Z2, Y1, and Y2 are assumed to be

independent.

• If µ ≪ N−2, then by part 1 of Theorem 2, µτ3 →d Z1 + Z2. We wait for two fixations, and

then the third mutation happens quickly.

• If µ ∼ AN−2, then by the j = 2 case of Theorem 3, µτ3→d Z1 + Y1. We wait for one fixation,

then either a second fixation (after which the third mutation would happen quickly) or a

second mutation that will not fixate but will have a descendant that gets a third mutation.

• If N−2≪ µ≪ N−4/3, then by the j = 2 case of part 2 of Theorem 2, µτ3→d Z1. We wait for

one fixation, and then the other two mutations happen quickly.

• If µ ∼ AN−4/3, then by the j = 3 case of Theorem 3, µτ3→d Y2. We wait either for a fixation

(after which the other two mutations would happen quickly) or a mutation that will not fixate

but will have a descendant with two additional mutations.

• If N−4/3≪ µ≪ N−1, then by part 3 of Theorem 2, Nµ7/4τ3→d Z1. Fixation does not happen

before time τ3, but we wait an exponentially distributed time for a mutation that is successful

enough to have a descendant with three mutations.

• If µ∼ AN−1, then by the j = 2 case of part 3 of Theorem 4,

P(µ3/4τ3 > t)→ exp

�

− A

∫ t

0

1− e−2s

1+ e−2s
ds

�

.

• If N−1 ≪ µ ≪ N−2/3, then by the j = 1 case of part 2 of Theorem 4, P(N1/2µ5/4τ3 > t) →

exp(−t2/2). The number of individuals with one mutation is approximately deterministic,

and the stochastic effect comes from waiting for a second mutation that is successful enough

to have a descendant with a third mutation.

• If µ∼ AN−2/3, then by the j = 1 case of part 3 of Theorem 4,

P(µ1/2τ3 > t)→ exp

�

− A3/2

∫ t

0

(t − s)
1− e−2s

1+ e−2s
ds

�

.
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• If µ≫ N−2/3, then by part 1 of Theorem 4, P(N1/3µτ3 > t)→ exp(−t3/6). The number of

individuals with two mutations is approximately deterministic, and the stochastic effect comes

from waiting for the third mutation.

2.5 Power law asymptotics and implications for cancer modeling

Because the probability that an individual develops a particular type of cancer during his or her

lifetime is small, it seems unlikely that it will be possible to observe the full limiting distribution of

the waiting time for cancer from data on cancer incidence. Instead, we will observe only the left tail

of this distribution. Consequently, what is likely to be most relevant for applications are asymptotic

formulas as t → 0. Throughout this subsection, write f (t) ≈ g(t) to mean that f (t)/g(t)→ 1 as

t → 0. Recall that if S j is the sum of j independent exponential random variables with mean one,

then P(S j ≤ t) ≈ t j/ j!. This fact, combined with the approximation 1− exp(−tm− j/(m− j)!) ≈

tm− j/(m− j)!, allows us to deduce the following corollary of Theorems 2 and 4.

Corollary 5. We have the following asymptotic formulas as t → 0:

1. If µ≪ N−2, then

lim
N→∞

P(τm ≤ µ
−1 t)≈

tm−1

(m− 1)!
.

2. If N−2 j−1/(2 j−1−1)≪ µ≪ N−2 j/(2 j−1) for some j = 2, . . . , m− 1, then

P(τm ≤ µ
−1 t)≈

tm− j

(m− j)!
.

3. If N−2m−1/(2m−1−1)≪ µ≪ N−1, then

P(τm ≤ N−1µ−2+2−(m−1)

t)≈ t.

4. If N−1/(1+(m− j−2)2−( j+1))≪ µ≪ N−1/(1+(m− j−1)2− j) for some j = 1, . . . , m− 2, then

lim
N→∞

P(τm ≤ N−1/(m− j)µ−1−(1−2− j)/(m− j) t)≈
tm− j

(m− j)!
.

5. If µ≫ N−2/m, then

lim
N→∞

P(τm ≤ N−1/mµ−1 t)≈
tm

m!
.

By integrating (1), we see that the result in part 5 of the corollary, which says that the probability

of getting cancer by time t behaves like C tm, agrees with the result of Armitage and Doll. However,

parts 1 through 4 of the corollary show that in an m-stage model of cancer, the probability of getting

cancer by time t could behave like C t j for any j = 1,2, . . . , m, depending on the relationship be-

tween µ and N . This range of behavior can occur because not all of the m events required for cancer

are necessarily “rate limiting". For example, when part 2 of the corollary applies, there are m− j

fixations, and then the remaining j mutations happen on a much faster time scale. Consequently,
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it is not possible to deduce the number of mutations required for cancer just from the power law

relationship between age and cancer incidence.

Corollary 5 also shows that in our m-stage model, the probability of getting cancer by time t will

never behave like C t j for j > m. However, as noted by Armitage and Doll (see [1; 2]), higher

powers could arise if the mutation rate, instead of being constant, increases over time like a power

of t. Also, the probability of getting cancer by time t could increase more rapidly than tm if cells

with mutations have a selective advantage over other cells, allowing their number to increase more

rapidly than our model predicts. This explains, in part, the success of two-stage models in fitting a

wide variety of cancer incidence data, as documented in [24].

3 Proof of Theorems 2 and 3

Recall that part 3 of Theorem 2 is a special case of Theorem 2 of [10], so we need to prove only

parts 1 and 2. We begin by recording three lemmas. Lemma 6, which just restates (3.6), (3.8), and

Lemma 3.1 of [10], bounds the amount of time that a mutation is in the population before it dies

out or fixates. Lemma 7 complements Proposition 1. Lemma 8 is a direct consequence of part 3 of

Theorem 2. In these lemmas and throughout the rest of the paper, C denotes a positive constant not

depending on N whose value may change from line to line.

Lemma 6. Consider a model of a population of size N in which all individuals are either type 0 or

type 1. The population starts with just one type 1 individual and evolves according to the Moran model,

so each individual dies at rate one and then gets replaced by a randomly chosen individual from the

population. Let X (t) be the number of type 1 individuals at time t. Let T = inf{t : X (t) ∈ {0, N}}. Let

Lk be the Lebesgue measure of {t : X (t) = k}. Then for k = 1, . . . , N − 1,

E[Lk] =
1

k
. (8)

Also,

E[T] ≤ C log N (9)

and for all 0≤ t ≤ N,

P(T > t)≤ C/t. (10)

Lemma 7. Consider the model of Proposition 1. Let q′m be the probability that a type m individual

is born at some time, but that eventually all individuals have type zero. Suppose Nµ1−2−(m−1)

→ 0 as

N →∞. Then

q′m≪ 1/N .

Proof. The event that all individuals eventually have type zero has probability (N −1)/N regardless

of the mutation rate. On this event, reducing the mutation rate can only reduce the probability of

eventually getting a type m individual. Therefore, it suffices to prove the result when

Nµ1−2−(m−2)

→∞. (11)

If a type m individual eventually is born, then some type 2 mutation must have a type m descendant.

By (8), for k = 1, . . . , N−1, the expected amount of time for which there are k individuals of nonzero
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type is 1/k. While there are k individuals of nonzero type, type 2 mutations occur at rate at most kµ.

On the event that there is no fixation, the number of individuals of nonzero type never reaches N ,

and the expected number of type 2 mutations while there are fewer than N individuals of nonzero

type is at most
N−1
∑

k=1

1

k
· kµ≤ Nµ.

When (11) holds, we can apply Proposition 1 to see that if m ≥ 3 then each type 2 mutation has

probability at most Cµ1−2−(m−2)

of having a type m descendant. This inequality holds trivially if

m= 2. It follows that

q′m ≤ (Nµ)(Cµ
1−2−(m−2)

) = CNµ2−2−(m−2)

,

and therefore Nq′m ≤ C(Nµ1−2−(m−1)

)2→ 0, as claimed.

Lemma 8. Suppose j ≥ 2. If N−2 j−1/(2 j−1−1)≪ µ≪ 1/N, then for all ε > 0,

lim
N→∞

P(τ j < εµ
−1) = 1.

Proof. Part 3 of Theorem 2 gives limN→∞ P(Nµ2−2−( j−1)

τ j ≤ t) = 1− e−t for all t > 0. The result

follows immediately because µ≪ Nµ2−2−( j−1)

by assumption.

Proof of parts 1 and 2 of Theorem 2. Suppose either j = 1 and µ ≪ N−2, or j = 2, . . . , m − 1 and

N−2 j−1/(2 j−1−1) ≪ µ ≪ N−2 j/(2 j−1). Let γi be the time of the ith mutation, so the points (γi)
∞
i=1

form a rate Nµ Poisson process on [0,∞). Call the ith mutation bad if at time γi , there is another

mutation in the population that has not yet died out or fixated. Otherwise, call the mutation good.

For all i, let ξi = 1 if the ith mutation fixates, and let ξi = 0 otherwise. We have P(ξi = 1) = 1/N

for all i, but the random variables (ξi)
∞
i=1 are not independent because if two mutations are present

at the same time on different individuals, at most one of the mutations can fixate.

Let (ξ̃i)
∞
i=1 be a sequence of i.i.d. random variables, independent of the population process, such

that P(ξ̃i = 1) = 1/N and P(ξ̃i = 0) = (N − 1)/N for all i. Define another sequence (ξ′i)
∞
i=1 such

that ξ′i = ξi if the ith mutation is good and ξ′i = ξ̃i if the ith mutation is bad. If the ith mutation is

good, then P(ξi = 1|(ξ′
k
)i−1

k=1
) = 1/N , so (ξ′i)

∞
i=1 is an i.i.d. sequence. Let σ1 = inf{γi : ξi = 1} and

for k ≥ 2, let σk = inf{γi > σk−1 : ξi = 1}. Likewise, let σ′1 = inf{γi : ξ′i = 1} and for k ≥ 2, let

σ′
k
= inf{γi > σk−1 : ξ′i = 1}. The points γi for which ξ′i = 1 form a Poisson process of rate µ, so

µσ′m− j has the gamma distribution with parameters (m− j, 1).

Let ε > 0, and choose t large enough that

P(σ′m− j > µ
−1 t)< ε. (12)

Note that because µσ′m− j has a gamma distribution for all N , here t does not depend on N . The

expected number of mutations by time µ−1 t is (Nµ)(µ−1 t) = N t. After a mutation occurs, the

number of individuals descended from this mutant individual evolves in the same way as the num-

ber of type 1 individuals in Lemma 6. Therefore, by (9), the expected amount of time, before

time µ−1 t, that there is a mutation in the population that has not yet disappeared or fixated is at

most C(N log N)t. Therefore, the expected number of bad mutations before time µ−1 t is at most
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(Nµ)(C(N log N)t) = C(N2 log N)µt. If a bad mutation occurs at time γi , the probability that either

ξi or ξ′i equals one is at most 2/N , so

P(ξi = ξ
′
i for all i such that γi ≤ µ

−1 t)≥ 1− 2C(N log N)µt.

Because µ≪ 1/(N log N), it follows by letting ε→ 0 that

lim
N→∞

P(σ′m− j = σm− j) = 1. (13)

Thus, µσm− j →d Sm− j . To complete the proof, it remains to show that

µ(τm−σm− j)→p 0. (14)

We first prove that

lim
N→∞

P(τm < σm− j) = 0 (15)

If τm < σm− j , then before time σm− j , there must be a type k mutation for some k ≤ m− j that

does not fixate but has a type m descendant. We will bound the probability of this event. Recall that

the expected number of mutations before time µ−1 t is N t. Because µ≪ N−2 j/(2 j−1), we can apply

Lemma 7 with j + 1 in place of m to get that the probability that a type m− j mutation does not

fixate but has a type m descendant is asymptotically much smaller than 1/N . Thus, the probability

that before time µ−1 t, there is a type k mutation for some k ≤ m− j that does not fixate but has

a type m descendant is asymptotically much smaller than (N t)(1/N), and therefore goes to zero as

N →∞. Combining this result with (12) and (13) gives (15).

We now prove (14). Choose ε > 0. Let γ̃i be the time when the mutation at time γi disappears or

fixates. By (9), we have E[γ̃i − γi] ≤ C log N . It follows from Markov’s Inequality that P(γ̃i − γi >

µ−1ε) ≤ C log N/(µ−1ε). Because the expected number of mutations by time µ−1 t is N t, another

application of Markov’s Inequality gives

P(γ̃i − γi > µ
−1ε for some i such that γi < µ

−1 t)≤ N t ·
C log N

µ−1ε
=

C t

ε
(N log N)µ,

which goes to zero as N → ∞. Therefore, in view of (12) and (13), if ζ is the time when the

mutation at time σm− j fixates, we have

µ(ζ−σm− j)→p 0 (16)

Now (14) will be immediate from (15) and (16) once we show that for all ε > 0,

lim
N→∞

P(µ(τm− ζ)> ε) = 0. (17)

When j ≥ 2, equation (17) follows from Lemma 8 because after timeσm− j , at most j more mutations

are needed before we reach time τm. When j = 1, we reach the time τm as soon as there is another

mutation after time σm− j , so τm − ζ is stochastically dominated by an exponentially distributed

random variable with rate Nµ. It follows that (17) holds in this case as well.

Most of the work involved in proving Theorem 3 is contained in the proof of the following result,

which is a special case of Lemma 7.1 of [10].
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Lemma 9. Suppose µ∼ AN−2 j−1/(2 j−1−1) for some j = 2, . . . , m and some constant A> 0. Consider the

model of Proposition 1. Let q′j be the probability that either a type j individual is born at some time, or

eventually all individuals in the population have type greater than zero. Then limN→∞ Nq′j = λ j , where

λ j > 1 is given by (3).

Proof of Theorem 3. The proof is similar to the proof of parts 1 and 2 of Theorem 2. Define the

sequences (γi)
∞
i=1, (ξi)

∞
i=1, (ξ̃i)

∞
i=1 and (ξ′i)

∞
i=1 as in the proof of parts 1 and 2 of Theorem 2. Also

define a sequence (ζi)
∞
i=1 of {0,1}-valued random variables such that ζ1 = 1 if the mutation at time

γi either fixates or has a descendant that gets j − 1 additional mutations. Let (ζ̃i)
∞
i=1 be a sequence

of i.i.d. random variables, independent of the population process, such that P(ζ̃i = 1) = λ j/N and

P(ζ̃i = 0) = (N − λ j)/N for all i, and ζ̃i = 1 whenever ξ̃i = 1. Let ζ′i = ζi if the ith mutation is

good, and let ζ′i = ζ̃i otherwise. Let σ0 = 0. For k = 1, . . . , m− j, let σk = inf{γi > σk−1 : ξi = 1}.

Let σm− j+1 = inf{γi > σm− j : ζi = 1}. Define σ′1, . . . ,σ′m− j+1 in the same way using the random

variables ξ′i and ζ′i . It is clear from the construction that σ′m− j+1 has the same distribution as

Sm− j + Y . By the same argument used in the proof of parts 1 and 2 of Theorem 2, with a bound of

2λ j/N replacing the bound of 2/N , we get

lim
N→∞

P(σ′m− j+1 = σm− j+1) = 1,

which implies µσm− j+1→d Sm− j + Y . This argument also gives that the mutation at time σm− j+1 is

good with probability tending to one as N →∞.

We next claim that

lim
N→∞

P(τm < σm− j+1) = 0. (18)

If σm− j < γi < σm− j+1, then by the definition of σm− j+1, no descendant of the mutation at time γi

can have a type m descendant. Therefore, if τm < σm− j+1, then before time σm− j there must be

a type k mutation for some k ≤ m− j that does not fixate but has a type m descendant. Because

µ≪ N−2 j/(2 j−1), the probability of this event goes to zero by the same argument given in the proof

of parts 1 and 2 of Theorem 2, which implies (18).

It remains only to prove

µ(τm−σm− j+1)→p 0. (19)

Let ε > 0, and choose t large enough that P(σ′m− j+1 > µ
−1 t)< ε. Let ε > 0. By the same argument

given in the proof of parts 1 and 2 of Proposition 2, the probability that some mutation before time

µ−1 t takes longer than µ−1ε to die out or fixate tends to zero as N →∞. Therefore, if ζ is the time

when the mutation at time σm− j+1 dies out or fixates, then µ(ζ−σm− j+1)→p 0. If the mutation at

time σm− j+1 fixates, then only j−1 more mutations are needed before we reach time τm. Therefore,

conditional on this fixation, when j ≥ 3 we get µ(τm − ζ)→p 0 by applying Lemma 8 with j − 1 in

place of j, while the result µ(τm − ζ)→p 0 is immediate when j = 2. Alternatively, if the mutation

at time σm− j+1 does not fixate and the mutation at time σm− j+1 is good, then τm ≤ ζ. Because the

mutation at time σm− j+1 is good with probability tending to one as n→∞, we conclude (19).

4 Proof of parts 1 and 2 of Theorem 4

The first step in the proof of Theorem 4 is to establish conditions, stated in Proposition 11 below,

under which the number of type k individuals is essentially deterministic, in the sense that it can be
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well approximated by its expectation. It will follow that when µ≫ N−2/m, the number of individuals

with type m − 1 is approximately deterministic until time τm. Since each type m − 1 individual

experiences a type m mutation at rate µ, the approximately deterministic behavior of the type m−1

individuals leads easily to a proof of part 1 of Theorem 4. When instead N−1/(1+(m− j−2)2−( j+1)) ≪

µ≪ N−1/(1+(m− j−1)2− j), the number of individuals of type m− j−1 is approximately deterministic up

to time τm, as will be shown in Lemma 12 below. The remainder of the proof of part 2 of Theorem

4 involves using a Poisson approximation technique to calculate the distribution of the time we have

to wait for one of the type m− j − 1 individuals to have a type m− j mutation that will give rise to

a type m descendant.

We begin with a lemma bounding the expected number of type k individuals. Recall that X j(t)

denotes the number of type j individuals at time t, and X j(0) = 0 for all j ≥ 1.

Lemma 10. Let Yk(t) =
∑∞

j=k X j(t) be the number of individuals of type k or higher at time t. For all

k ≥ 0 and t ≥ 0, we have E[Xk(t)]≤ E[Yk(t)]≤ Nµk tk/k!.

Proof. The first inequality is obvious, so it suffices to show E[Yk(t)] ≤ Nµk tk/k!. We proceed

by induction. Since Y0(t) ≤ N for all t ≥ 0, the result is true for k = 0. Suppose k ≥ 1 and

E[Yk−1(t)] ≤ Nµk−1 tk−1/(k − 1)! for all t ≥ 0. The expected number of type k mutations before

time t is at most

µ

∫ t

0

E[Xk−1(s)] ds ≤

∫ t

0

Nµksk−1

(k− 1)!
ds =

Nµk tk

k!
.

Because individuals of type k and higher give birth and die at the same rate, it follows that

E[Yk(t)]≤ Nµk tk/k!.

Proposition 11. Suppose k ≥ 0 and T is a time that depends on N. Assume that as N →∞, we have

µT → 0, NµkT k−1→∞, and NµkT k→∞. Then for all ε > 0,

lim
N→∞

P

�

max
0≤t≤T

¯

¯

¯

¯

Xk(t)−
Nµk tk

k!

¯

¯

¯

¯

> εNµkT k

�

= 0. (20)

Proof. We prove the result by induction and begin with k = 0. Individuals of type one or higher

are always being born and dying at the same rate. Since new individuals of type one or higher also

appear because of type 1 mutations, the process (N − X0(t), t ≥ 0) is a bounded submartingale. Let

ζ= inf{t : N−X0(t)> εN}. By the Optional Sampling Theorem, we have E[N−X0(T )|ζ≤ T]≥ εN .

Since the rate of type 1 mutations is always bounded by Nµ, we have E[N − X0(T )] ≤ NµT .

Therefore,

P

�

max
0≤t≤T

|X0(t)− N |> εN

�

= P(ζ≤ T )≤
E[N − X0(T )]

E[N − X0(T )|ζ≤ T]
≤

NµT

εN
→ 0

as N →∞ because µT → 0. It follows that when k = 0, (20) holds for all ε > 0.

Let k ≥ 1. Assume that (20) holds with k − 1 in place of k. Let Bk(t) be the number of type k

mutations up to time t. Let Sk(t) be the number of times, until time t, that a type k individual gives

birth minus the number of times that a type k individual dies. Note that Xk(t) = Bk(t)− Bk+1(t) +

Sk(t), so
¯

¯

¯

¯

Xk(t)−
Nµk tk

k!

¯

¯

¯

¯

≤ Bk+1(t) + |Sk(t)|+

¯

¯

¯

¯

Bk(t)−
Nµk tk

k!

¯

¯

¯

¯

. (21)

1457



Therefore, it suffices to show that with probability tending to one as N →∞, the three terms on the

right-hand side of (21) stay below εNµkT k/3 for t ≤ T .

By Lemma 10, for 0≤ t ≤ T ,

E[Bk+1(t)] = µ

∫ T

0

E[Xk(t)] d t ≤
Nµk+1T k+1

(k+ 1)!
.

By Markov’s Inequality,

P

�

max
0≤t≤T

Bk+1(t)>
ε

3
NµkT k

�

= P

�

Bk+1(T )>
ε

3
NµkT k

�

≤
3µT

ε(k+ 1)!
→ 0 (22)

as N →∞ because µT → 0.

Note that S(0) = 0, and since type k individuals give birth and die at the same rate, the process

(S(t), 0 ≤ t ≤ T ) is a martingale. By Wald’s Second Equation, E[S(T )2] is the expected number of

births plus deaths of type k individuals (not counting replacements of a type k individual by another

type k individual) up to time T , which by Lemma 10 is at most

2

∫ T

0

E[Xk(t)] d t ≤
2NµkT k+1

(k+ 1)!
.

Therefore, by the L2-Maximal Inequality for martingales,

E
�

max
0≤t≤T

|S(t)|2
�

≤ 4E[S(T )2]≤
8NµkT k+1

(k+ 1)!
.

Now using Chebyshev’s Inequality,

P

�

max
0≤t≤T

|Sk(t)|>
ε

3
NµkT k

�

≤
8NµkT k+1

(k+ 1)!

�

3

εNµkT k

�2

=
72

(k+ 1)!NµkT k−1
→ 0 (23)

as N →∞ because NµkT k−1→∞.

To bound the third term in (21), note that type k− 1 individuals mutate to type k at rate µ. There-

fore, there exist inhomogeneous Poisson processes (N1(t), t ≥ 0) and (N2(t), t ≥ 0) whose intensi-

ties at time t are given by Nµk tk−1/(k− 1)!− εNµkT k−1/6 and Nµk tk−1/(k− 1)!+ εNµkT k−1/6

respectively such that on the event that

max
0≤t≤T

¯

¯

¯

¯

Xk−1(t)−
Nµk−1 tk−1

(k− 1)!

¯

¯

¯

¯

≤
ε

6
Nµk−1T k−1, (24)

we have N1(t) ≤ Bk(t) ≤ N2(t) for 0 ≤ t ≤ T . To achieve this coupling, one can begin with

points at the times of type k mutations. To get (N1(t), t ≥ 0), when there is a type k mutation

at time t, remove this point with probability [Nµk tk−1/(k − 1)! − εNµkT k−1/6]/µXk−1(t−). To

get (N2(t), t ≥ 0), add points of a time-inhomogeneous Poisson process whose rate at time t is

[Nµk tk−1/(k− 1)!+ εNµkT k−1/6]−µXk−1(t).

Note that

E[N1(t)] =

∫ t

0

�

Nµksk−1

(k− 1)!
−
εNµkT k−1

6

�

ds =
Nµk tk

k!
−
ε

6
NµkT k−1 t (25)
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and likewise

E[N2(t)] =
Nµk tk

k!
+
ε

6
NµkT k−1 t.

The process (N1(t)− E[N1(t)], t ≥ 0) is a martingale, and

E
�

(N1(T )− E[N1(T )])
2
�

= E[N1(T )] =
NµkT k

k!
−
ε

6
NµkT k. (26)

Therefore, Chebyshev’s Inequality and the L2-Maximal Inequality for martingales give

P

�

max
0≤t≤T

¯

¯N1(t)− E[N1(t)]
¯

¯>
ε

6
NµkT k

�

≤
36E
�

max0≤t≤T |N1(t)− E[N1(t)]|
2
�

(εNµkT k)2

≤
144E
�

(N1(T )− E[N1(T )])
2
�

(εNµkT k)2
→ 0 (27)

as N →∞ by (26) because NµkT k→∞. Combining (25) with (27) gives

lim
N→∞

P

�

max
0≤t≤T

¯

¯

¯

¯

N1(t)−
Nµk tk

k!

¯

¯

¯

¯

>
ε

3
NµkT k

�

= 0. (28)

The same argument gives

lim
N→∞

P

�

max
0≤t≤T

¯

¯

¯

¯

N2(t)−
Nµk tk

k!

¯

¯

¯

¯

>
ε

3
NµkT k

�

= 0. (29)

as N → ∞. By the induction hypothesis, the event in (24) occurs with probability tending to one

as N → ∞, so N1(t) ≤ Bk(t) ≤ N2(t) for 0 ≤ t ≤ T with probability tending to one as N → ∞.

Therefore, equations (28) and (29) imply that

lim
N→∞

P

�

max
0≤t≤T

¯

¯

¯

¯

Bk(t)−
Nµk tk

k!

¯

¯

¯

¯

>
ε

3
NµkT k

�

= 0. (30)

The result follows from (21), (22), (23), and (30).

Proof of part 1 of Theorem 4. Suppose µ ≫ N−2/m, and let T = N−1/mµ−1 t. As N → ∞, we have

µT = N−1/m t → 0, Nµm−1T m−2 = N2/mµtm−2 →∞, and Nµm−1T m−1 = N1/m tm−1 →∞. There-

fore, by Proposition 11, if ε > 0, then with probability tending to one as N →∞,

max
0≤s≤T

¯

¯

¯

¯

Xm−1(s)−
Nµm−1sm−1

(m− 1)!

¯

¯

¯

¯

≤ εNµm−1T m−1. (31)

Because each type m− 1 individual experiences a type m mutation at rate µ, the random variable

V =

∫ τm

0

µXm−1(s) ds

has an exponential distribution with mean one. When (31) holds, we have

NµmT m

m!
− εNµmT m ≤

∫ T

0

µXm−1(s) ds ≤
NµmT m

m!
+ εNµmT m.
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It follows that

lim sup
N→∞

P(τm > T )≤ lim sup
N→∞

P

�

V >
NµmT m

m!
− εNµmT m

�

= P

�

W >
tm

m!
− εtm

�

= exp

�

−
tm

m!
+ εtm

�

,

and likewise

lim inf
N→∞

P(τm > T )≥ lim inf
N→∞

P

�

V >
NµmT m

m!
+ εNµmT m

�

= exp

�

−
tm

m!
− εtm

�

.

Because these bounds hold for all ε > 0, the result follows.

We now work towards proving part 2 of Theorem 4. For the rest of this section, we assume that

N−1/(1+(m− j−2)2−( j+1))≪ µ≪ N−1/(1+(m− j−1)2− j) (32)

for some j = 1, . . . , m−2. This condition implies that Nµ→∞ and µ→ 0 as N →∞, and therefore

Nµ1−2− j

→∞. (33)

Also, for the rest of this section, t is fixed and

T = N−1/(m− j)µ−1−(1−2− j)/(m− j) t. (34)

This means that

Nµm− j T m− j = µ−(1−2− j) tm− j . (35)

Let ε > 0. Let GN be the event that

max
0≤s≤T

¯

¯

¯

¯

Xm− j−1(s)−
Nµm− j−1sm− j−1

(m− j − 1)!

¯

¯

¯

¯

≤ εNµm− j−1T m− j−1.

The next lemma shows that GN occurs with high probability, indicating that on the time scale of

interest, the number of individuals with m− j − 1 mutations stays close to its expectation.

Lemma 12. We have limN→∞ P(GN ) = 1.

Proof. We need to verify the conditions of Proposition 11 with m− j − 1 in place of k. By (33), as

N →∞,

µT = N−1/(m− j)µ−(1−2− j)/(m− j) t = (Nµ1−2− j

)−1/(m− j) t → 0. (36)

Also, using the first inequality in (32),

Nµm− j−1T m− j−2 = N1−(m− j−2)/(m− j)µm− j−1−(m− j−2)−(m− j−2)(1−2− j)/(m− j) tm− j−2

= N2/(m− j)µ2/(m− j)+(m− j−2)2− j/(m− j) tm− j−2

= (Nµ1+(m− j−2)2−( j+1)

)2/(m− j) tm− j−2→∞. (37)

Using the second inequality in (32) and the fact that m− j + 1− 2− j > 1+ (m− j − 1)2− j ,

T = (Nµm− j+1−2− j

)−1/(m− j) t ≫ (N1−(m− j+1−2− j)/(1+(m− j−1)2− j))−1/(m− j) t →∞.

This result and (37) imply Nµm− j−1T m− j−1→∞, which, in combination with (36) and (37), gives

the lemma.
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The rest of the proof of part 2 of Theorem 4 is similar to the proof of Theorem 2 in [10]. It depends

on the following result on Poisson approximation, which is part of Theorem 1 of [4] and was used

also in [10].

Lemma 13. Suppose (Ai)i∈I is a collection of events, where I is any index set. Let W =
∑

i∈I 1Ai
be

the number of events that occur, and let λ = E[W] =
∑

i∈I P(Ai). Suppose for each i ∈ I , we have

i ∈ βi ⊂ I . Let Fi = σ((A j) j∈I \βi
). Define

b1 =
∑

i∈I

∑

j∈βi

P(Ai)P(A j),

b2 =
∑

i∈I

∑

i 6= j∈βi

P(Ai ∩ A j),

b3 =
∑

i∈I

E
�

|P(Ai|Fi)− P(Ai)|
�

.

Then |P(W = 0)− e−λ| ≤ b1+ b2+ b3.

We will use the next lemma to get the second moment estimate needed to bound b2. When we apply

this result, the individuals born at times t1 and t2 will both have the same type. We use different

types in the statement of the lemma to make it easier to distinguish the descendants of the two

individuals. This result is Lemma 5.2 of [10].

Lemma 14. Fix times t1 < t2. Consider a population of size N which evolves according to the Moran

model in which all individuals initially have type 0. There are no mutations, except that one individual

becomes type 1 at time t1, and one type 0 individual (if there is one) becomes type 2 at time t2. Fix a

positive integer L ≤ N/2. For i = 1,2, let Yi(t) be the number of type i individuals at time t and let Bi

be the event that L ≤maxt≥0 Yi(t)≤ N/2. Then

P(B1 ∩ B2)≤ 2/L2.

Lemma 15. Consider the model introduced in Proposition 1. Assume Nµ1−2− j

→∞ as N →∞. We

define the following three events:

1. Let R1 be the event that eventually a type j + 1 individual is born.

2. Let R2 be the event that the maximum number of individuals of nonzero type at any time is

between εµ−1+2− j

and N/2.

3. Let R3 be the event that all individuals still alive at time ε−1µ−1+2− j

have type zero.

Let q̄ j+1 = P(R1 ∩ R2 ∩ R3). Then there exists a constant C, not depending on ε, such that q j+1 −

Cεµ1−2− j

≤ q̄ j+1 ≤ q j+1.

Proof. Because q j+1 = P(R1), the inequality q̄ j+1 ≤ q j+1 is immediate. We need to show that

P(R1 ∩ (R
c
2 ∪ Rc

3)) ≤ Cεµ1−2− j

. Because ε−1µ−1+2− j

≤ N for sufficiently large N , we have P(Rc
3) ≤

Cεµ1−2− j

by (10). It remains to show that P(R1 ∩ Rc
2)≤ Cεµ1−2− j

.

The probability that the number of individuals of nonzero type ever exceeds N/2 is at most 2/N ≪

εµ1−2− j

. By (8) and the fact that each type 1 individual experiences type 2 mutations at rate µ,
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the expected number of type 2 mutations while there are k individuals of nonzero type is at most

(kµ)(1/k) = µ. Therefore, the expected number of type 2 mutations while there are fewer than

εµ−1+2− j

individuals of nonzero type is at most εµ2− j

. The probability that a given type 2 mutation

has a type j + 1 descendant is at most Cµ1−2−( j−1)

by Proposition 1. It now follows, using Markov’s

Inequality, that the probability that some type 2 mutation that occurs while there are fewer than

εµ−1+2− j

individuals of nonzero type has a type j + 1 descendant is at most Cεµ2− j+1−2−( j−1)

=

Cεµ1−2− j

. Thus, P(R1 ∩ Rc
2)≤ Cεµ1−2− j

. The result follows.

We now define the events to which we will apply Lemma 13. Divide the interval [0, T] into M

subintervals of equal length called I1, I2, . . . , IM , where M will tend to infinity with N . Because type

m− j−1 individuals experience type m− j mutations at rate µ, we can construct an inhomogeneous

Poisson process K on [0, T] whose intensity at time s is given by

Nµm− jsm− j−1

(m− j − 1)!
+ εNµm− j T m− j−1 (38)

such that on the event GN , all the times of the type m− j mutations before time T are points of K . Let

Di be the event that there is a point of K in the interval Ii . Let ξ1,ξ2, . . . ,ξM be i.i.d. {0,1}-valued

random variables, independent of K and the population process, such that P(ξi = 1) = q̄ j+1 for all

i, where q̄ j+1 comes from Lemma 15. Let Ai be the event that Di occurs, and one of the following

occurs:

• The first point of K in Ii is the time of a type m− j mutation, and the three events defined

in Lemma 15 hold. That is, the type m− j mutation eventually has a type m descendant, the

maximum number of descendants that it has in the population at any future time is between

εµ−1+2− j

and N/2, and it has no descendants remaining a time ε−1µ−1+2− j

after the mutation

occurs.

• There is no mutation at the time of the first point of K in Ii , and ξi = 1.

Let W =
∑M

i=1 1Ai
be the number of the events Ai that occur, and let λ= E[W].

Lemma 16. We have lim supN→∞ |P(W = 0)− e−λ|= 0.

Proof. Let βi be the set of all j ≤ M such that the distance between the intervals Ii and I j is at most

ε−1µ−1+2− j

. Define b1, b2, and b3 as in Lemma 13. We need to show that b1, b2, and b3 all tend to

zero as N →∞.

It is clear from properties of Poisson processes that the events D1, . . . , DM are independent, and it is

clear from the construction that P(Ai|Di) = q̄ j+1 for all i. The events A1, . . . ,AM are not independent

because mutations in two intervals Ih and Ii may have descendants alive at the same time. However,

if Ii = [a, b], then the third event in Lemma 15 guarantees that whether or not Ai has occurred is

determined by time b+ε−1µ−1+2− j

, and therefore Ai is independent of all Ah with h /∈ βi . It follows

that b3 = 0.

The length |Ii | of the interval Ii is T/M . In view of (38),

P(Di)≤ CNµm− j T m− j−1|Ii |= CNµm− j T m− j/M . (39)
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Because (33) holds, we can apply Proposition 1 to get q̄ j+1 ≤ q j+1 ≤ Cµ1−2− j

. Therefore, using also

(35),

P(Ai) = P(Di)q̄ j+1 ≤
CNµm− j+1−2− j

T m− j

M
≤

C

M

for all i. There are at most 2(1+ ε−1µ−1+2− j

/|Ii |)≤ Cε−1µ−1+2− j

M/T indices in βi . It follows that

b1 ≤ M

�

Cε−1µ−1+2− j

M

T

��

C

M

�2

≤ Cε−1µ−1+2− j

T−1

≤ Cε−1µ−1+2− j

N1/(m− j)µ1+(1−2− j)/(m− j)

= Cε−1(Nµ1+2− j(m− j−1))1/(m− j)→ 0 (40)

as N →∞, using the second inequality in (32).

To bound b2, suppose h 6= i. Suppose Dh and Di both occur. If the first points of the Poisson process

in Ih and Ii are times of type m− j mutations, then for Ah ∩Ai to occur, the event B1 ∩ B2 in Lemma

14 must occur with L = εµ−1+2− j

. It follows that

P(Ah ∩ Ai |Dh ∩ Di)≤max{2/(εµ−1+2− j

)2, q̄2
j+1} ≤ Cε−2µ2−2−( j−1)

.

Therefore, using (39), (35), and the fact that P(Dh ∩ Di) = P(Dh)P(Di) by independence,

P(Ah ∩ Ai)≤ P(Dh)P(Di)P(Ah ∩ Ai |Dh ∩ Di)≤

�

CNµm− j T m− j

M

�2

(Cε−2µ2−2−( j−1)

)≤
C

ε2M2
.

Thus, by reasoning as in (40), we get

b2 ≤ M

�

Cε−1µ−1+2− j

M

T

��

C

ε2M2

�

→ 0

as N →∞, which completes the proof.

Lemma 17. Let σm be the time of the first type m− j mutation that will have a type m descendant.

Then

lim
N→∞

P(σm > T ) = exp

�

−
tm− j

(m− j)!

�

.

Proof. We claim there is a constant C , not depending on ε, such that for sufficiently large N ,

¯

¯

¯

¯

λ−
tm− j

(m− j)!

¯

¯

¯

¯

≤ Cε, (41)

where λ comes from Lemma 16, and

|P(W = 0)− P(σm > T )| ≤ Cε. (42)

The result follows from this claim by letting ε→ 0 and applying Lemma 16.
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Recall that we have divided the interval [0, T] into the subintervals I1, . . . , IM . By letting M tend

to infinity sufficiently rapidly as N tends to infinity, we can ensure that the expected number of

points of the Poisson process K that are in the same subinterval as some other point tends to zero as

N →∞. Therefore,
∑M

i=1 P(Di) is asymptotically equivalent to the expected number of points of K .

That is,

M
∑

i=1

P(Di)∼

∫ T

0

Nµm− jsm− j−1

(m− j − 1)!
+ εNµm− j T m− j−1 ds =

Nµm− j T m− j

(m− j)!
+ εNµm− j T m− j . (43)

Now

λ=

M
∑

i=1

P(Ai) = q̄ j+1

M
∑

i=1

P(Di),

so using Proposition 1, the second inequality in Lemma 15, (43), and (35),

lim sup
N→∞

λ≤ lim sup
N→∞

µ1−2− j

�

Nµm− j T m− j

(m− j)!
+ εNµm− j T m− j

�

=
tm− j

(m− j)!
+ tm− jε. (44)

Likewise, dropping the second term and using the first inequality in Lemma 15, we get

lim inf
N→∞

λ≥ lim inf
N→∞

(1− Cε)µ1−2− j

�

Nµm− j T m− j

(m− j)!

�

=
tm− j(1− Cε)

(m− j)!
. (45)

Equations (44) and (45) imply (41).

It remains to prove (42). The only way to have W > 0 and σm > T is if for some i, there is a point

of K in Ii that is not the time of a type m− j mutation and ξi = 1. On GN , points of K that are not

mutation times occur at rate at most 2εNµm− j T m− j−1. Because the Poisson process runs for time T

and P(ξi = 1) = q̄ j+1 ≤ Cµ1−2− j

by Lemma 15 and Proposition 1, we have, using (35),

P(W > 0 and σm > T )≤ P(Gc
N ) + CεNµm− j+1−2− j

T m− j ≤ P(Gc
N ) + Cε. (46)

We can have W = 0 with σm ≤ T in two ways. One possibility is that two points of K occur in the

same subinterval, an event whose probability goes to zero if M goes to infinity sufficiently rapidly

with N . The other possibility is that some type m− j mutation before time T could have a type m

descendant but fail to satisfy one of the other two conditions of Lemma 15. The probability of this

event is at most

P(Gc
N ) + CNµm− j T m− j(q j+1− q̄ j+1)≤ P(Gc

N ) + CεNµm− j+1−2− j

T m− j ≤ P(Gc
N ) + Cε (47)

by Lemma 15 and (35). Equation (42) follows from (46), (47), and Lemma 12.

Proof of part 2 of Theorem 4. Recall the definition of T from (34). Define σm to be the time of the

first type m− j mutation that will have a type m descendant. Then σm ≤ τm, and by Lemma 17, it

suffices to show that

lim
N→∞

P(σm < T and τm−σm > δN−1/(m− j)µ−1−(1−2− j)/(m− j)) = 0 (48)

for all δ > 0. The event in (48) can only occur if some type m− j mutation before time T either

fixates or takes longer than time δN−1/(m− j)µ−1−(1−2− j)/(m− j) to disappear from the population. By
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Lemma 10, before time T the expected rate of type m − j mutations is at most CNµm− j T m− j−1,

so the expected number of type m− j mutations by time T is at most CNµm− j T m− j . Because the

probability that a mutation fixates is 1/N , the probability that some type m− j mutation before time

T fixates is at most Cµm− j T m− j , which goes to zero as N →∞ because µT → 0 by (36).

Next, note that δN−1/(m− j)µ−1−(1−2− j)/(m− j) ≪ N , which can be seen by dividing both sides by N

and observing that δ(Nµ)−1(Nµ1−2− j

)−1/(m− j) → 0 because Nµ → ∞ and Nµ1−2− j

→ ∞. There-

fore, for sufficiently large N , we can apply (10) to show that the probability that a given muta-

tion lasts longer than time δN−1/(m− j)µ−1−(1−2− j)/(m− j) before disappearing or fixating is at most

Cδ−1N1/(m− j)µ1+(1−2− j)/(m− j). Thus, the probability that some mutation before time T lasts this

long is at most

Cδ−1N1/(m− j)µ1+(1−2− j)/(m− j) · Nµm− j T m− j ≤ Cδ−1N1/(m− j)µ1+(1−2− j)/(m− j)µ−(1−2− j) tm− j

= Cδ−1(Nµ1+(m− j−1)2− j

)1/(m− j) tm− j → 0

by the second inequality in (32), and (48) follows.

5 Proof of part 3 of Theorem 4

Throughout this section, we assume

µ∼ AN−1/(1+(m− j−1)2− j) (49)

for some j = 1, . . . , m− 1, as in part 3 of Theorem 4. Also, let T = µ−(1−2− j) t. Then

lim
N→∞

Nµm− j T m− jµ1−2− j

= lim
N→∞

Nµ1+(m− j−1)2− j

tm− j = A1+(m− j−1)2− j

tm− j . (50)

We first show that the number of individuals of type m− j−1 is approximately deterministic through

time T .

Lemma 18. Let ε > 0. Let GN (ε) be the event that

max
0≤s≤T

¯

¯

¯

¯

Xm− j−1(s)−
Nµm− j−1sm− j−1

(m− j − 1)!

¯

¯

¯

¯

≤ εNµm− j−1T m− j−1.

Then limN→∞ P(GN (ε)) = 1.

Proof. As in the proof of Lemma 12, we need to check the conditions of Proposition 11 with m− j−1

in place of k. Because µ→ 0 as N →∞, we have

µT = µ2− j

t → 0 (51)

as N →∞. Also, using that µ∼ AN−1/(1+(m− j−1)2− j)≫ N−1/(1+(m− j−2)2− j), we have

Nµm− j−1T m− j−2 = Nµm− j−1µ−(1−2− j)(m− j−2) tm− j−2 = Nµ1+(m− j−2)2− j

tm− j−2→∞

as N → ∞. Since T → ∞ as N → ∞, we also have Nµm− j−1T m− j−1 → ∞ as N → ∞, and the

lemma follows.
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Although the number of type m− j−1 individuals is approximately deterministic, there are stochas-

tic effects both from the number of type m− j individuals in the population and from the time that

elapses between the appearance of the type m− j mutation that will have a type m descendant and

the birth of the type m descendant. Further complicating the proof is that because births and deaths

occur at the same time in the Moran model, the fates of two type m − j mutations that occur at

different times are not independent, nor is the number of type m− j individuals in the population

independent of whether or not the type m− j+ 1 mutations succeed in producing a type m descen-

dant. Our proof is very similar to the proof of Proposition 4.1 in [10] and involves a comparison

between the Moran model and a two-type branching process. To carry out this comparison, we

introduce five models.

Model 1: This will be the original model described in the introduction.

Model 2: This model is the same as Model 1 except that there are no type 1 mutations and no

individuals of types 1, . . . , m− j − 1. Instead, at times of an inhomogeneous Poisson process whose

rate at time s is Nµm− jsm− j−1/(m− j − 1)!, a type zero individual (if there is one) becomes type

m− j.

Model 3: This model is the same as Model 2, except that type m− j + 1 mutations are suppressed

when there is another individual of type m− j + 1 or higher already in the population.

Model 4: This model is the same as Model 3, except that two changes are made so that the evolution

of type m− j + 1 individuals and their offspring is decoupled from the evolution of the type m− j

individuals:

• Whenever there would be a transition that involves exchanging a type m− j individual with

an individual of type k ≥ m− j+1, we instead exchange a randomly chosen type 0 individual

with a type k individual.

• At the times of type m− j + 1 mutations, a randomly chosen type 0 individual, rather than a

type m− j individual, becomes type m− j + 1.

Model 5: This model is a two-type branching process with immigration. Type m − j individuals

immigrate at times of an inhomogeneous Poisson process whose rate at time s is Nµm− jsm− j−1/(m−

j − 1)!. Each individual gives birth at rate 1 and dies at rate 1, and type m− j individuals become

type m at rate µq j , where q j comes from Proposition 1.

For i = 1,2,3,4,5, let Yi(s) be the number of type m− j individuals in Model i at time s, and let

Zi(s) be the number of individuals in Model i at time s of type m − j + 1 or higher. Let ri(s) be

the probability that through time s, there has never been a type m individual in Model i. Note that

r1(T ) = P(τm > T ), so to prove part 3 of Theorem 4, we need to calculate limN→∞ r1(T ). We will

first find limN→∞ r5(T ) and then bound |ri(T )− ri+1(T )| for i = 1,2,3,4.
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5.1 A two-type branching process with immigration

Here we consider Model 5. Our analysis is based on the following lemma concerning two-type

branching processes, which is proved in section 2 of [10]; see equation (2.4).

Lemma 19. Consider a continuous-time two-type branching process started with a single type 1 indi-

vidual. Each type 1 individual gives birth and dies at rate one, and mutates to type 2 at rate r. Let f (t)

be the probability that a type 2 individual is born by time t. If r and t depend on N with r → 0 and

r1/2 t → s as N →∞, then

lim
N→∞

r−1/2 f (t) =
1− e−2s

1+ e−2s
.

Lemma 20. We have

lim
N→∞

r5(T ) = exp

�

−
A1+(m− j−1)2− j

(m− j − 1)!

∫ t

0

(t − s)m− j−1
1− e−2s

1+ e−2s
ds

�

. (52)

Proof. Let g(w) be the probability that in Model 5, a type m− j individual that immigrates at time

w has a type m descendant by time T . Because type m − j individuals immigrate at times of an

inhomogeneous Poisson process whose rate at time w is Nµm− jwm− j−1/(m− j − 1)!, we have

r5(T ) = exp

�

−
1

(m− j − 1)!

∫ T

0

Nµm− jwm− j−1 g(w) dw

�

. (53)

Making the substitution s = µ1−2− j

w, we get

∫ T

0

Nµm− jwm− j−1 g(w) dw =

∫ t

0

Nµ1+(m− j−1)2− j

sm− j−1 g(µ−(1−2− j)s)µ−(1−2− j) ds. (54)

As N → ∞, we have Nµ1+(m− j−1)2− j

→ A1+(m− j−1)2− j

by (49). Note also that g(µ−(1−2− j)s) =

f (µ−(1−2− j)(t − s)), where f is the function in Lemma 19 when r = µq j . Also, by Proposition 1,

µq j ∼ µ · µ
1−2−( j−1)

= (µ1−2− j

)2, so r−1/2 ∼ µ−(1−2− j) and r1/2µ−(1−2− j)(t − s) → t − s as N → ∞.

Therefore, by Lemma 19,

lim
N→∞

g(µ−(1−2− j)s)µ−(1−2− j) =
1− e−2(t−s)

1+ e−2(t−s)
.

Using also (54) and the Dominated Convergence Theorem,

lim
N→∞

∫ T

0

Nµm− jwm− j−1 g(w) dw = A1+(m− j−1)2− j

∫ t

0

sm− j−1
1− e−2(t−s)

1+ e−2(t−s)
ds. (55)

The result follows from (53) and (55) after interchanging the roles of s and t − s.
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5.2 Bounding the number of individuals of type m− j and higher

We begin with the following lemma, which bounds in all models the expected number of individuals

in the models having type m− j or higher.

Lemma 21. For i = 1,2,3,4,5, we have

max
0≤s≤T

E[Yi(s) + Zi(s)]≤ CNµm− j T m− j . (56)

Also, for all five models, the expected number of type m − j + 1 mutations by time T is at most

CNµm− j+1T m− j+1.

Proof. Because each type m − j individual experiences type m − j + 1 mutations at rate µ, the

second statement of the lemma follows easily from the fact that E[Yi(s)] ≤ CNµm− j T m− j , which is

a consequence of (56).

To prove (56), first note that because births and deaths occur at the same rate, in all five models

E[Yi(s) + Zi(s)] is the expected number of individuals of types m− j and higher that appear up to

time s as a result of mutations, or immigration in the case of Model 5. For i = 2,3,5, these mutation

or immigration events occur at times of a rate Nµm− jsm− j−1/(m− j − 1)! Poisson process (unless

they are suppressed in Model 2 or 3 because no type zero individuals remain), so (56) holds. In

Model 1, the mutation rate depends on the number of type m− j− 1 individuals, but (56) holds by

Lemma 10.

Model 4 is different because type 0 rather than type m− j individuals are replaced at the times of

type m− j+1 mutations. The above argument still gives E[Y4(s)]≤ CNµm− j T m− j for s ≤ T because

type m− j individuals give birth and die at the same rate. Thus, the expected number of type m− j+1

mutations by time T is at most CNµm− j+1T m− j+1. It follows that E[Z4(s)] ≤ CNµm− j+1T m− j+1 ≪

Nµm− j T m− j for s ≤ T , using the fact that µT → 0 as N → ∞ by (51). Therefore, (56) holds for

Model 4 as well.

Lemma 21 easily implies the following bound on the maximum number of individuals of type m− j

or higher through time T . The lemma below with f (N) = 1/N implies that with probability tending

to one as N →∞, the number of individuals of type m− j or higher does not reach N before time

T .

Lemma 22. Suppose f is a function of N such that Nµ(m− j)2− j

f (N) → 0 as N → ∞. Then for

i = 1,2,3,4,5, as N →∞ we have

max
0≤s≤T

(Yi(s) + Zi(s)) f (N)→p 0. (57)

Proof. Because individuals of type m − j or higher give birth and die at the same rate, and they

can appear but not disappear as a result of mutations, the process (Yi(s) + Zi(s), 0 ≤ s ≤ T ) is a

nonnegative submartingale for i = 1,2,3,4,5. By Doob’s Maximal Inequality, for all δ > 0,

P

�

max
0≤s≤T

(Yi(s) + Zi(s))>
δ

f (N)

�

≤
E[Yi(T ) + Zi(T )] f (N)

δ
. (58)

Since Nµm− j T m− j = Nµ(m− j)2− j

tm− j , equation (56) implies that if Nµ(m− j)2− j

f (N)→ 0 as N →∞,

then the right-hand side of (58) goes to zero as N →∞ for all δ > 0, which proves (57).
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5.3 Comparing Models 1 and 2

In this subsection, we establish the following result which controls the difference between Model 1

and Model 2. The advantage to working with Model 2 rather than Model 1 is that the randomness

in the rate of the type m− j mutations is eliminated.

Lemma 23. We have limN→∞ |r1(T )− r2(T )|= 0.

Proof. Lemma 22 with f (N) = 1/N implies that with probability tending to one as N →∞, up to

time T there is always at least one type 0 individual in Model 2, so hereafter we will make this

assumption. In this case, a type m− j individual replaces a randomly chosen type 0 individual in

Model 2 at times of a Poisson process K whose rate at time s is Nµm− jsm− j−1/(m − j − 1)!. We

will first compare Model 2 to another model called Model 2′, which will be the same as Model 2

except that type m − j individuals arrive at times of a Poisson process K ′ whose rate at time s is

max{0, Nµm− jsm− j−1/(m− j − 1)!− εNµm− j T m− j−1}, where ε > 0 is fixed.

Models 2 and 2′ can be coupled so that births and deaths occur at the same times in both models, and

each point of K ′ is also a point of K . Consequently, a coupling can be achieved so that if an individual

has type k ≥ m− j in Model 2′, then it also has type k in Model 2. With such a coupling, the only

individuals whose types are different in the two models are those descended from individuals that

in Model 2 became type m− j at a time that is in K but not K ′. The rate of points in K but not

K ′ is bounded by εNµm− j T m− j−1. The probability that a given type m− j individual has a type m

descendant is at most Cµ1−2− j

by Proposition 1. Therefore, the probability that there is a type m

individual in Model 2 but not Model 2′ before time T is bounded by

εNµm− j T m− j · Cµ1−2− j

≤ Cε, (59)

using (50). Therefore, letting r2′(T ) denote the probability that there is no type m individual in

Model 2′ by time T ,

|r2(T )− r2′(T )| ≤ Cε. (60)

We now compare Model 1 and Model 2′. These models can be coupled so that births and deaths in

the two models happen at the same times and, on GN (ε), there is a type m− j mutation in Model

1 at all of the times in K ′. This coupling can therefore achieve the property that on GN (ε), any

individual of type k ≥ m− j in Model 2′ also has type k in Model 1. The only individuals in Model 1

of type k ≥ m− j that do not have the same type in Model 2′ are those descended from individuals

that became type m− j at a time that is not in K ′. On GN (ε), the rate of type m− j mutations at

times not in K ′ is bounded by 2εNµm− j T m− j−1. Therefore, by the same calculation made in (59),

the probability that GN (ε) occurs and that Model 1 but not Model 2′ has a type m descendant by

time T is at most Cε. This bound and Lemma 18 give

|r1(T )− r2′(T )| ≤ Cε. (61)

The result follows from (60) and (61) after letting ε→ 0.

5.4 Comparing Models 2 and 3

In this subsection, we establish the following lemma.
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Lemma 24. We have limN→∞ |r2(T )− r3(T )|= 0.

The advantage to working with Model 3 rather than Model 2 is that in Model 3, descendants of

only one type m− j + 1 mutation can be present in the population at a time. As a result, each type

m− j+1 mutation independently has probability q j of producing a type m descendant. With Model

2, there could be dependence between the outcomes of different type m− j + 1 mutations whose

descendants overlap in time.

The only difference between Model 2 and Model 3 is that some type m − j + 1 mutations are

suppressed in Model 3. Therefore, it is easy to couple Model 2 and Model 3 so that until there are

no type 0 individuals remaining in Model 2, the type of the ith individual in Model 2 is always at

least as large as the type of the ith individual in Model 3, with the only discrepancies involving

individuals descended from a type m− j + 1 mutation that was suppressed in Model 3. Because

Lemma 22 with f (N) = 1/N implies that the probability that all type zero individuals disappear by

time T goes to zero as N →∞, Lemma 24 follows from the following result.

Lemma 25. In Model 2, the probability that some type m− j + 1 mutation that occurs while there is

another individual of type m− j + 1 or higher in the population has a type m descendant tends to zero

as N →∞.

Proof. By Lemma 21, the expected number of type m − j + 1 mutations by time T is at most

CNµm− j+1T m− j+1. By (9), the expected amount of time, before time T , that there is an individual

in the population of type m− j + 1 or higher is at most CNµm− j+1T m− j+1(log N).

By Lemma 22 with f (N) = 1/(Nµm− j T m− j log N), the probability that the number of type m− j

individuals stays below Nµm− j T m− j log N until time T tends to one as N →∞. On this event, the

expected number of type m− j + 1 mutations by time T while there is another individual in the

population of type m− j + 1 or higher is at most

hN = (CNµm− j+1T m− j+1 log N)(Nµm− j T m− j log N)µ.

The probability that a given such mutation produces a type m descendant is q j ≤ Cµ1−2−( j−1)

by

Proposition 1, so the probability that at least one such mutation produces a type m descendant is at

most

hN q j ≤ C(µT (log N)2)[Nµm− j T m− jµ1−2− j

]2.

Because µT (log N)2 = µ2− j

(log N)2→ 0 as N →∞ and Nµm− j T m− jµ1−2− j

stays bounded as N →∞

by (50), the lemma follows.

5.5 Comparing Models 3 and 4

In both Model 3 and Model 4, each type m− j + 1 mutation independently has probability q j of

producing a type m descendant. The advantage to Model 4 is that whether or not a given type

m− j+1 mutation produces a type m descendant is decoupled from the evolution of the number of

type m− j individuals.

We first define a more precise coupling between Model 3 and Model 4. We will assume throughout

the construction that there are fewer than N/2 individuals in each model with type m− j or higher.
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Eventually this assumption will fail, but by Lemma 22, the assumption is valid through time T with

probability tending to one as N →∞, which is sufficient for our purposes.

For both models, the N individuals will be assigned labels 1, . . . , N in addition to their types. Let

L be a Poisson process of rate N on [0,∞), and let I1, I2, . . . and J1, J2, . . . be independent random

variables, uniformly distributed on {1, . . . , N}. Let K be an inhomogeneous Poisson process on [0,∞)

whose rate at time s is Nµm− jsm− j−1/(m− j−1)!, and let L1, . . . , LN be independent rate µ Poisson

processes on [0,∞). In both models, if s is a point of K , then at time s we choose an individual at

random from those that have type 0 in both models to become type m− j. Birth and death events

occur at the times of L. At the time of the mth point of L, in both models we change the type of the

individual labeled Im to the type of the individual labeled Jm. In Model 4, if Im has type m− j and

Jm has type k ≥ m− j + 1, then we choose a type 0 individual to become type m− j to keep the

number of type m− j individuals constant. Likewise, in Model 4, if Im has type k ≥ m− j + 1 and

Jm has type m− j, then we choose a type m− j individual to become type 0. In both models, the

individual labeled i experiences mutations at times of Li , with the exceptions that type 0 individuals

never get mutations and mutations of type m− j individuals are suppressed when there is already

an individual of type m− j + 1 or higher in the population. Also, in Model 4, if s is a point of Li

and the individual labeled i has type m− j at time s−, then in addition to changing the type of the

individual labeled i, we choose a type 0 individual to become type m− j so that the number of type

m− j individuals stays constant.

Note that by relabeling the individuals, if necessary, after each transition, we can ensure that for

all s ≥ 0, at time s there are min{Y3(s), Y4(s)} integers i such that the individual labeled i has type

m− j in both models. The rearranging can be done so that no individual has type m− j in one of

the models and type m− j + 1 or higher in the other. Also, with this coupling, if a type m− j + 1

mutation occurs at the same time in both models, descendants of this mutation will have the same

type in both models. In particular, if the mutation has a type m descendant in one model, it will

have a type m descendant in the other.

Let W (s) = Y3(s)− Y4(s), which is the difference between the number of type m− j individuals in

Model 3 and the number of type m− j individuals in Model 4. There are three types of events that

can cause the process (W (s), 0≤ s ≤ T ) to jump:

• When a type m− j individual experiences a mutation in Model 3 and becomes type m− j+1,

there is no change to the number of type m− j individuals in Model 4. At time s, such changes

occur at rate either 0 or µY3(s), depending on whether or not there is already an individual in

Model 3 of type m− j + 1 or higher.

• When one of the individuals that is type m− j in one process but not the other experiences a

birth or death, the W process can increase or decrease by one. If Y3(s) > Y4(s), then at time

s, both increases and decreases are happening at rate |W (s)|(N − |W (s)|)/N because the W

process changes unless the other individual involved in the exchange also has type m− j in

Model 3 but not Model 4. If Y4(s) > Y3(s), then increases and decreases are each happening

at rate |W (s)|(N − |W (s)| − Z4(s))/N because in Model 4, transitions exchanging a type m− j

individual with an individual of type m− j + 1 or higher are not permitted.

• The number of type m− j individuals changes in Model 3 but not Model 4 when there is an

exchange involving one of the individuals that has type m− j in both models and one of the
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individuals that has type m− j+1 or higher in Model 4. Changes in each direction happen at

rate Z4(s)min{Y3(s), Y4(s)}/N .

Therefore, the process (W (s), 0 ≤ s ≤ T ) at time s is increasing by one at rate λ(s) and decreasing

by one at rate λ(s) + γ(s), where

0≤ γ(s)≤ µY3(s) (62)

and

λ(s) =
|W (s)|(N − |W (s)| − Z4(s)1{Y4(s)>Y3(s)}

)

N
+

Z4(s)min{Y3(s), Y4(s)}

N
. (63)

The next lemma bounds the process (W (s), 0≤ s ≤ T ).

Lemma 26. For 0≤ s ≤ t, let

WN (s) =
1

Nµ(m− j)2− j
W (sµ−(1−2− j)).

Then as N →∞,

max
0≤s≤t
|WN (s)| →p 0. (64)

Proof. The proof is similar to the proof of Lemma 4.6 in [10]. We use Theorem 4.1 in chapter 7 of

[11] to show that the processes (WN (s), 0 ≤ s ≤ t) converge as N →∞ to a diffusion (X (s), 0 ≤ s ≤

t) which satisfies the stochastic differential equation

dX (s) = b(X (s)) + a(X (s)) dB(s) (65)

with b(x) = 0 and a(x) = 2A−1−(m− j−1)2− j

|x | for all x , where A is the constant from (49). The

Yamada-Watanabe Theorem (see, for example, (3.3) on p. 193 of [7]) gives pathwise uniqueness

for this SDE, which implies that the associated martingale problem is well-posed.

For all N and all s ∈ [0, t], define

BN (s) =−
1

Nµ(m− j)2− j

∫ s

0

γ(rµ−(1−2− j))

µ1−2− j
dr =−

1

Nµ1+(m− j−1)2− j

∫ s

0

γ(rµ−(1−2− j)) dr

and

AN (s) =
1

(Nµ(m− j)2− j
)2µ1−2− j

∫ s

0

�

2λ(rµ−(1−2− j)) + γ(rµ−(1−2− j))
�

dr.

At time s, the process (WN (s), 0 ≤ s ≤ t) experiences positive jumps by 1/(Nµ(m− j)2− j

) at

rate λ(sµ−(1−2− j))µ−(1−2− j) and negative jumps by the same amount at the slightly larger rate

(λ(sµ−(1−2− j)) + γ(sµ−(1−2− j)))µ−(1−2− j). Therefore, letting MN (s) = WN (s)− BN (s), the processes

(MN (s), 0≤ s ≤ t) and (M2
N (s)− AN (s), 0≤ s ≤ t) are martingales. We claim that as N →∞,

sup
0≤s≤t

|BN (s)| →p 0 (66)

and

sup
0≤s≤t

¯

¯

¯

¯

AN (s)− 2A−1−(m− j−1)2− j

∫ s

0

|WN (r)| dr

¯

¯

¯

¯

→p 0. (67)
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The results (66) and (67) about the infinitesimal mean and variance respectively enable us to deduce

from Theorem 4.1 in chapter 7 of [11] that as N →∞, the processes (WN (s), 0 ≤ s ≤ T ) converge

in the Skorohod topology to a process (X (s), 0 ≤ s ≤ T ) satisfying (65). Because WN (0) = 0 for all

N , we have X (0) = 0, and therefore X (s) = 0 for 0≤ s ≤ T . The result (64) follows.

To complete the proof, we need to establish (66) and (67). Equation (62) and Lemma 22 with

f (N) = t/(Nµ(m− j−1)2− j

) imply that as N →∞,

sup
0≤s≤t

|BN (s)| ≤
t

Nµ(m− j−1)2− j
max

0≤s≤T
Y3(s)→p 0,

which proves (66).

To prove (67), note that

AN (s)− 2A−1−(m− j−1)2− j

∫ s

0

|WN (r)| dr

=

∫ s

0

2λ(rµ−(1−2− j)) + γ(rµ−(1−2− j))

(Nµ(m− j)2− j
)2µ1−2− j

−
2A−1−(m− j−1)2− j

|W (rµ−1−2− j

)|

Nµ(m− j)2− j
dr.

It therefore follows from (62) and (63) that

sup
0≤s≤t

¯

¯

¯

¯

AN (s)− 2A−1−(m− j−1)2− j

∫ s

0

|WN (r)| dr

¯

¯

¯

¯

≤ sup
0≤s≤t

∫ s

0

¯

¯

¯

¯

2

(Nµ(m− j)2− j
)2µ1−2− j

−
2A−1−(m− j−1)2− j

Nµ(m− j)2− j

¯

¯

¯

¯

|W (rµ−(1−2− j))| dr

+ sup
0≤s≤t

∫ s

0

2W (rµ−(1−2− j))2+ 2|W (rµ−(1−2− j))|Z4(rµ
−(1−2− j))

N(Nµ(m− j)2− j
)2µ1−2− j

dr

+ sup
0≤s≤t

∫ s

0

2Z4(rµ
−(1−2− j))min{Y3(rµ

−(1−2− j)), Y4(rµ
−(1−2− j))}

N(Nµ(m− j)2− j
)2µ1−2− j

dr

+ sup
0≤s≤t

∫ s

0

µY3(rµ
−(1−2− j))

(Nµ(m− j)2− j
)2µ1−2− j

dr. (68)

We need to show that the four terms on the right-hand side of (68) each converge in probability to

zero. Because t is fixed, in each case it suffices to show that the supremum of the integrand over

r ∈ [0, t] converges in probability to zero as N →∞. We have

sup
0≤s≤T

¯

¯

¯

¯

2

(Nµ(m− j)2− j
)2µ1−2− j

−
2A−1−(m− j−1)2− j

Nµ(m− j)2− j

¯

¯

¯

¯

|W (s)|

= sup
0≤s≤T

¯

¯

¯

¯

2

Nµ1+(m− j−1)2− j
−

2

A1+(m− j−1)2− j

¯

¯

¯

¯

·
|W (s)|

Nµ(m− j)2− j
→p 0

by Lemma 22 because |W (s)| ≤ max{Y3(s), Y4(s)} and the first factor goes to zero as N → ∞ by

(49). Thus, the first term in (68) converges in probability to zero. Also, Nµ1−2− j

→∞ as N →∞,
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so Lemma 22 gives

sup
0≤s≤T

W (s)2+ |W (s)|Z4(s)

N(Nµ(m− j)2− j
)2µ1−2− j

= sup
0≤s≤T

�

|W (s)|

Nµ(m− j)2− j
(Nµ1−2− j

)1/2

��

|W (s)|+ Z4(s)

Nµ(m− j)2− j
(Nµ1−2− j

)1/2

�

→p 0,

which is enough to control the second term in (68). The same argument works for the third term,

using Z4(s)Y4(s) in the numerator of the left-hand side in place of W (s)2+ |W (s)|Z4(s). Finally,

sup
0≤s≤T

µY3(s)

(Nµ(m− j)2− j
)2µ1−2− j

=
µY3(s)

Nµ(m− j)2− j
·

1

Nµ1+(m− j−1)2− j
→p 0

by Lemma 22 because µ→ 0 as N →∞ and Nµ1+(m− j−1)2− j

is bounded away from zero as N →∞

by (49). Therefore, the fourth term on the right-hand side of (68) converges in probability to zero,

which completes the proof of (67).

Lemma 27. In both Model 3 and Model 4, the probability that there is a type m− j+1 mutation before

time T that has a type m descendant born after time T converges to zero as N →∞.

Proof. The same argument works for both models. Let ε > 0. By Lemma 21, the expected number

of type m− j + 1 mutations by time T is at most Nµm− j+1T m− j+1. Since Nµ1−2− j

→∞ as N →∞,

we have εT ≪ N . Therefore, by (10), the probability that a given mutation stays in the population

for a time at least εT before dying out or fixating is at most C/(εT ). It follows that the probability

that some type m− j + 1 mutation before time T lasts for a time at least εT is at most

Cε−1Nµm− j+1T m− j ≤ Cε−1Nµ1+(m− j)2− j

→ 0

as N →∞ by (49). Thus, with probability tending to one as N →∞, all type m− j + 1 mutations

that have a descendant alive at time T originated after time (1− ε)T .

Arguing as above, the expected number of type m− j+1 mutations between times (1−ε)T and T is

at most εNµm− j+1T m− j+1, and the probability that a given such mutation has a type m descendant

is q j ≤ Cµ1−2−( j−1)

by Proposition 1. Thus, the probability that some type m− j+1 mutation between

times (1− ε)T and T has a type m descendant is at most

CεNµm− j+1T m− j+1µ1−2−( j−1)

≤ CεNµ1+(m− j−1)2− j

≤ Cε (69)

by (49). The lemma follows by letting ε→ 0.

Lemma 28. We have limN→∞ |r3(T )− r4(T )|= 0.

Proof. For i = 3,4, let Di be the event that no type m− j+1 mutation that occurs before time T has

a type m descendant. By Lemma 27, it suffices to show that

lim
N→∞
|P(D3)− P(D4)|= 0. (70)

Recall that Model 3 and Model 4 are coupled so that when a type m− j + 1 mutation occurs at the

same time in both models, it will have a type m descendant in one model if and only if it has a type
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m descendant in the other. Therefore, |P(D3) − P(D4)| is at most the probability that some type

m− j + 1 mutation that occurs in one process but not the other has a type m descendant. There

are two sources of type m − j + 1 mutations that occur in one process but not the other. Some

type m− j+ 1 mutations are suppressed in one model but not the other because there is already an

individual of type m− j+1 or higher in the population. That the probability of some such mutation

having a type m descendant goes to zero follows from the argument used to prove Lemma 25, which

is also valid for Model 3 and Model 4. The other type m− j+1 mutations that appear in one process

but not the other occur when one of the |W (s)| individuals that has type m− j in one model but not

the other gets a mutation. Let ε > 0. By Lemma 26, for sufficiently large N ,

P

�

max
0≤s≤T

|W (s)| ≤ εNµ(m− j)2− j

�

> 1− ε.

Therefore, on an event of probability at least 1−ε, the expected number of type m− j+1 mutations

that occur in one model but not the other and have a type m descendant is at most

εNµ(m− j)2− j

q j ≤ CεNµ1+(m− j−1)2− j

≤ Cε

by Proposition 1 and (49). The result follows by letting ε→ 0.

5.6 Comparing Models 4 and 5

In both Model 4 and Model 5, type m− j individuals appear at times of a Poisson process whose rate

at time s is Nµm− jsm− j−1/(m− j−1)!. In both models, type m− j individuals experience mutations

that will lead to type m descendants at rate µq j . The two models differ in the following three ways:

• In Model 4, some type m− j+1 mutations are suppressed because there is another individual

of type m− j + 1 or higher already in the population.

• In Model 4, some time elapses between the time of the type m − j + 1 mutation that will

produce a type m descendant, and the time that the type m− j + 1 descendant appears.

• In Model 4, when there are k individuals of type m− j and ℓ individuals of type m− j + 1

or higher, the rate at which the number of type m− j individuals increases (or decreases) by

one is k(N − ℓ)/N because the number of type m− j individuals changes only when a type

m− j individual is exchanged with a type 0 individual. This rate is simply k in Model 5. An

additional complication is that the factor (N − ℓ)/N is not independent of whether previous

type m− j + 1 mutations are successful in producing type m descendants.

We prove Lemma 29 below by making three modifications to Model 4 to eliminate these differences,

and then comparing the modified model to Model 5. Lemmas 20, 23, 24, 28, and 29 immediately

imply part 3 of Proposition 4.

Lemma 29. We have limN→∞ |r4(T )− r5(T )|= 0.

Proof. We obtain Model 4′ from Model 4 by making the following modifications. First, whenever

a type m − j + 1 mutation is suppressed in Model 4 because there is another individual in the

population of type m− j + 1 or higher, in Model 4′ we add a type m individual with probability q j .
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Second, whenever a type m− j+1 mutation occurs in Model 4 that will eventually produce a type m

descendant, we change the type of the mutated individual in Model 4′ to type m immediately. Third,

for every type m− j+1 mutation in Model 4′, including the events that produce a type m individual

that were added in the first modification, if there are ℓ individuals of type m− j or higher in the

population, then we suppress the mutation with probability ℓ/N . This means that at all times, every

type m− j individual in Model 4′ experiences a mutation that will produce a type m descendant at

rate µq j(N−ℓ)/N , while new type m− j individuals appear and disappear at rate k(N−ℓ)/N . Note

that the number of type m− j individuals is always the same in Model 4′ as in Model 4. Let r4′(T )

be the probability that there is a type m individual in Model 4′ by time T .

Lemma 25, whose proof is also valid for Model 4′, implies that with probability tending to one as

N → ∞, the first modification above does not cause a type m individual to be added to Model 4′

before time T . Lemma 27 implies this same result for the second modification. As for the third

modification, let ε > 0, and let DN be the event that the number of individuals of type m − j or

higher in Model 4 stays below εN through time T . By Lemma 22, we have limN→∞ P(DN ) = 1. By

Lemma 21, the expected number of type m− j+1 mutations by time T is at most CNµm− j+1T m− j+1.

On DN , we always have ℓ/N < ε, so the probability that DN occurs and a type m− j+1 mutation that

produces a type m descendant in Model 4 gets suppressed in Model 4′ is at most CNµm− j+1T m− j+1 ·

q jε≤ Cε, using (69) and Proposition 1. Thus,

lim sup
N→∞

|r4(T )− r4′(T )|< ε. (71)

It remains to compare Model 4′ and Model 5. In Model 5, when there are k type m− j individuals,

the rates that type m− j individuals appear, disappear, and give rise to a type m individual are k, k,

and kµq j respectively, as compared with k(N − ℓ)/N , k(N − ℓ)/N , and kµq j(N − ℓ)/N respectively

in Model 4′. Consequently, Model 4′ is equivalent to Model 5 slowed down by a factor of (N−ℓ)/N ,

which on DN stays between 1− ε and 1. We can obtain a lower bound for r4′(T ) by considering

Model 5 run all the way to time T , so r4′(T )≥ r5(T ). An upper bound for r4′(T ) on DN is obtained by

considering Model 5 run only to time T (1−ε), so r ′4(T )≤ r5((1−ε)T )+P(Dc
N ). Now limN→∞ r5((1−

ε)T ) is given by the right-hand side of (52) with (1−ε)t in place of t. Therefore, by letting N →∞

and then ε→ 0, we get

lim
N→∞
|r4′(T )− r5(T )|= 0,

which, combined with (71), proves the lemma.
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