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Abstract

We consider a superprocess in a random environment represented by a random measure which
is white in time and colored in space with correlation kernel g(x, y). Suppose that g(x, y)
decays at a rate of |x− y|−α, 0 ≤ α ≤ 2, as |x− y| → ∞. We show that the process, starting
from Lebesgue measure, suffers longterm local extinction. If 0 ≤ α < 2, then it even suffers
finite time local extinction. This property is in contrast with the classical super-Brownian
motion which has a non-trivial limit when the spatial dimension is higher than 2. We also
show in this paper that in dimensions d = 1, 2 superprocess in random environment suffers
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local extinction for any bounded function g.
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1 Introduction

A system of branching particles whose branching probabilities depend on the random envi-
ronment the particles are in is studied by Mytnik [20]. More specifically, the particles in
this system move according to independent Brownian motions (with diffusion coefficient 2κ)
in R

d. At conditionally (given environment ξ) independent exponential times, each particle will
split into two with probability 1

2 + 1
2
√

n
((−√

n) ∨ ξ(t, x) ∧ √
n), and will die with probability

1
2 − 1

2
√

n
((−√

n) ∨ ξ(t, x) ∧√
n), where ξ(t, x) is a random field satisfying

Eξ(t, x) = 0, Eξ(t, x)ξ(s, y) = δ(t − s)g(x, y), t ≥ 0, x ∈ R
d

g is a covariance function. Let Ck
b (Rd) (respectively C∞

b (Rd)) denote the collection of all bounded
continuous functions on R

d with bounded continuous derivatives up to order k (respectively with
bounded derivatives of all orders). For all φ ∈ Cb(R

d), let 〈µ, φ〉 = 〈φ, µ〉 denote the integral of
φ with respect to the measure µ. 〈f, g〉 also means the integral of fg with respect to Lebesgue
measure whenever it exists. Also let ∆ be the d-dimensional Laplacian operator. It was proved
in [20] that the high-density limit of the above system converges to a measure-valued process X
which is a solution to the following martingale problem (MP): ∀ φ ∈ C2

b (Rd),

Mφ
t ≡ 〈Xt, φ〉 − 〈µ, φ〉 −

∫ t

0
〈Xs, κ∆φ〉 ds, t ≥ 0 (1.1)

is a continuous martingale with quadratic variation process

〈

Mφ
〉

t
= 2σ2

∫ t

0

〈

Xs, φ
2
〉

ds (1.2)

+

∫ t

0

∫

Rd

∫

Rd

g(x, y)φ(x)φ(y)Xs(dx)Xs(dy)ds, t ≥ 0.

The uniqueness of the solution to the MP (1.1-1.2) is established in [20] by a limiting duality
argument. Later, for the case of

g(x, y) =
n

∑

i=1

hi(x)hi(y),

the uniqueness is re-established in Crisan [2] by conditional log-Laplace transform.

It is well known that the SBM starting from Lebesgue measure suffers longtime local extinction
when d = 2, and finite time local extinction when d = 1. It is persistent for d ≥ 3. The aim
of this paper is to study the local extinction of this process X. To this end, we need to study
the conditional log-Laplace transform for the process X as well as that of its occupation time
process

∫ t
0 Xsds.

For the rest of the paper let us fix the following assumption on the function g.

Assumption 1 There exist some constants c̃1 , c̃2 ≥ 0, and α ≥ 0 such that for all x, y ∈ R
d,

c̃1(|x − y|−α ∧ 1) ≤ g(x, y) ≤ c̃2.
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We now come to the main results of this paper which describe the conditions for the longtime
local extinction for the superprocess in random environments denoted by X.

Theorem 1.1. Fix κ, σ2 > 0 and g satisfying Assumption 1 for some

α ∈ [0, 2),

and c̃1 , c̃2 > 0. Let X be a solution to the martingale problem (MP) with X0 = µ being the
Lebesgue measure. Then X suffers local extinction in finite time, that is for any compact subset
K of R

d, there exists a random time N , such that

Xt(K) = 0, ∀t ≥ N.

Unfortunately for α = 2 we have a weaker result.

Theorem 1.2. Fix κ, σ2 > 0, and g satisfying Assumption 1 for

α = 2

and some constants c̃1 , c̃2 > 0. Let X be a solution to the martingale problem (MP) with X0 = µ
being the Lebesgue measure. Then, for any compact subset K of R

d,

lim
t→∞

Xt(K) = 0, in probability.

The above theorems hold in any dimension. This contrasts already mentioned behavior of the
classical super-Brownian motion starting at Lebesgue measure — finite time local extinction in
dimension d = 1, long-term local extinction in dimension d = 2 and persistence in dimensions
d ≥ 3. In fact in low dimensions we can recover the extinction results for any bounded function
g.

Theorem 1.3. Fix κ, σ2 > 0 and g satisfying Assumption 1 for c̃1 = 0 and some c̃2 ≥ 0. Let
X be a solution to the martingale problem (MP) with X0 = µ being the Lebesgue measure.

(a) Let d = 1. Then X suffers local extinction in finite time, that is for any compact subset
K of R

d, there exists a random time N , such that

Xt(K) = 0, ∀t ≥ N.

(b) Let d = 2. Then, for any compact subset K of R
d,

lim
t→∞

Xt(K) = 0, in probability.

The rest of the paper is devoted to the proof of the above results.

Here we would like to give several comments on the results and the strategy of the proof.
The proof of Theorem 1.3 is relatively easy and is based on comparison with the classical
super-Brownian motion. The important part of the proofs of Theorems 1.1, 1.2 relies on the
comparison of the process X with another process which can be formally described as a solution
to the following SPDE
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∂φ(t, x)

∂t
= κ∆φ(t, x) + φ(t, x)Ẇ (t, x), (1.3)

where Ẇ is a Gaussian noise white in time whose covariance function in space is given by g.
For the precise definition of φ go to (2.7) in Section 2. From Corollary 2.16 and Lemma 2.19
one may easily conclude that X converges to zero whenever φ converges to zero as time goes to
infinity. To get the local extinction of φ we adopt the ideas from Mueller and Tribe [19] (see
Proposition 2 there). The crucial estimate is proved in Lemma 2.20. In Section 3 we use that
lemma to show the local extinction of φ which allows to complete the proof of Theorem 1.2.

The proof of finite time local extinction of X (Theorem 1.1) essentially requires a finer analysis
of the rate of convergence of φ to zero as time goes to infinity. This is done in Section 4 again
with the help of the estimate from Lemma 2.20. In fact here we also have to use the branching
structure of the process X and to play a bit with its Laplace transform in order to push through
the Borel-Cantelli argument.

A few words about the possible extensions of the above result are in order. As we have mentioned
already, an essential part of the argument is based on the analysis of the longterm behavior of
the process φ satisfying (1.3). This equation has been extensively studied in the literature
under name of Anderson model. In the recent years there were a number of papers studying
the Lyapunov exponent for this model (see e.g. Carmona and Viens [1], Tindel and Viens [22],
Florescu and Viens [8]). It is easy to conclude from the above results that for a large class of
homogeneous noises and for all κ sufficiently small

φt(x) → 0, a.s., as t → ∞,

for any fixed x. If one can extend this for the integral setting, that is, to show that

φt(K) → 0, a.s., as t → ∞

then it seems possible also to extend Theorem 1.2 for a larger class of noises and small κ (we
also discuss this issue in Remark 3.2). In order to extend Theorem 1.1 one may need even more
delicate estimates (see Remark 4.3).

Here we would like to say a few words about what we expect to happen in the case of more
rapid decay of correlation function g. Suppose the decay is faster than |x − y|−α for some
α > 2. As we have established in Theorem 1.3, in dimensions d = 1, 2 nothing different from
the super-Brownian motion case happens. As for the case of d ≥ 3, the situation is a bit
more complicated. Note that the equation (1.3) was studied by Dawson and Salehi [6] in the
case of homogeneous noise Ẇ , that is, g(x, y) = q(x − y) for some function q. They proved
(see Theorem 3.4 and Remark 4.2 in [6]) that if q(0) is sufficiently small, then there exists a
non-trivial limiting longterm distribution of a solution to (1.3). This and the fact that super-
Brownian motion starting at the Lebesgue measure persists in dimensions d ≥ 3 allows us to
make the following conjecture

Conjecture 1.4. Let d ≥ 3. Fix α > 2, κ, σ2 > 0 and

g(x, y) = q(x − y) ≤ c̃2(|x − y|−α ∧ 1).
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Let X be a solution to the martingale problem (MP) with X0 = µ being the Lebesgue measure.
Then for c̃2 sufficiently small Xt survives as t → ∞, namely, Xt converges weakly to some
random measure X∞ such that E(X∞) = µ.

We do not settle this conjecture in the current paper. Another interesting question that is left
unresolved in the current paper: whether it is possible to get a stronger result in Theorem 1.2,
namely
Does the finite time local extinction hold in the case of α = 2 and d ≥ 3?
Unfortunately our method of proof does not allow us to answer this question. In fact, we even
do not have a conjecture here. So this is left for a future investigation.

In this paper, we shall use c, c1 , c2 , . . . to denote non-negative constants whose values are not of
a concern and can be changed from place to place. We also will need the following notation. For
a set Γ ⊂ R

d, let Γc be the complement of Γ. Let Bb = Bb(R
d) be the family of all bounded Borel

measurable functions on R
d and M(Rd) be the set of Radon measures on Rd. Let C∞

0 = C∞
0 (Rd)

be the set of continuous infinitely differentiable functions with compact support. Let E1, E2 be
two metric spaces. Then C(E1, E2) denotes the collection of all continuous functions from E1 to
E2. In general if F is a set of functions, write F+ or F+ for non-negative functions in F .

The rest of the paper is organized as follows. In Section 2 we deduce the log-Laplace equation
for the process X and study its properties. The proof of Theorems 1.2, 1.3 is given in Section 3.
Theorem 1.1 is proved in Section 4.

2 Stochastic log-Laplace equation

Conditional log-Laplace transforms for a special case of g have been studied by Crisan [2]. For a
related model, they have been investigated by Xiong [23]. It is demonstrated in Xiong [24] that
the conditional log-Laplace transform is a powerful tool in the study of the longterm behavior
for the superprocess under a stochastic flow.

In this paper, we shall study the current model by making use of the log-Laplace transform. In
this section, we derive the stochastic log-Laplace equation for X as well as for its occupation
measure process. We shall see in this paper that the conditional log-Laplace transform plays an
important role in the study of the local extinction for the current model.

Let S0 be the linear span of the set of functions {g(x, ·) : x ∈ R
d}. We define an inner product

on S0 by
〈g(x, ·), g(y, ·)〉

H
= g(x, y). (2.1)

Let H be the completion of S0 with respect to the norm ‖·‖H corresponding to the inner product
〈·, ·〉

H
. Then H is a Hilbert space which is called the reproducing kernel Hilbert space (RKHS)

corresponding to the covariance function g. We refer the reader to Kallianpur [13], p. 139 for
more details on RKHS.

By (2.1), it is easy to show that ∀ φ ∈ Cb(R
d),

∥

∥

∥

∥

∫

Rd

g(x, ·)φ(x)Xs(dx)

∥

∥

∥

∥

2

H

=

∫

Rd

∫

Rd

g(x, y)φ(x)φ(y)Xs(dx)Xs(dy).
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Then the MP (1.1-1.2) becomes

Mφ
t ≡ 〈Xt, φ〉 − 〈µ, φ〉 −

∫ t

0
〈Xs, κ∆φ〉 ds

is a continuous martingale with quadratic variation process

〈

Mφ
〉

t
= 2σ2

∫ t

0

〈

Xs, φ
2
〉

ds +

∫ t

0

∥

∥

∥

∥

∫

Rd

g(x, ·)φ(x)Xs(dx)

∥

∥

∥

∥

2

H

ds.

For the convenience of the reader, we roughly recall the definition of an H-cylindrical Brownian
motion (H-CBM) and its stochastic integrals. We refer the reader to the book of Kallianpur and
Xiong [14] for more details.

An H-CBM Wt is a family of real-valued Brownian motions {Bh
t : h ∈ H} such that ∀ βi ∈

R, hi ∈ H, i = 1, 2, t ≥ 0,

Bβ1h1+β2h2
t = β1B

h1
t + β2B

h2
t a.s.

and
〈

Bh1 , Bh2

〉

t
= 〈h1, h2〉H

t.

For an H-valued square-integrable predictable process f , the stochastic integral with respect to
W is

∫ t

0
〈f(s, ·), dWs〉H

=
∞

∑

i=1

∫ t

0
〈f(s, ·), hi〉H

dBhi
s

where {hi : i = 1, 2, · · · } is a complete orthonormal basis of H.

Definition 2.1. Let X be a measure-valued process and let Wt be an H-CBM defined on the
same stochastic basis (Ω,F , P,Ft). Denote by P

W the conditional probability given W and define
the σ-field Gt ≡ Ft ∨ FW

∞ , where FW
∞ is the σ-field generated by W . X is a solution to CMP

with Wt if

Nφ
t ≡ 〈Xt, φ〉 − 〈µ, φ〉 −

∫ t

0
〈Xs, κ∆φ〉 ds (2.2)

−
∫ t

0

〈
∫

Rd

g(x, ·)φ(x)Xs(dx), dWs

〉

H

is a continuous (P,Gt)-martingale with quadratic variation process

〈

Nφ
〉

t
= 2σ2

∫ t

0

〈

Xs, φ
2
〉

ds. (2.3)

The proof of the following proposition will be postponed later in Proposition 2.17.

Proposition 2.2. The CMP has a solution.

Now we discuss the relation between CMP and the MP.

Lemma 2.3. If X is a solution to the CMP with Wt, then X is a solution to the MP.
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Proof: It is clear that Nφ
t is also a (P,Ft)-martingale. Denote

N̂φ
t =

∫ t

0

〈
∫

Rd

g(x, ·)φ(x)Xs(dx), dWs

〉

H

.

Then Mφ
t = Nφ

t + N̂φ
t is a (P,Ft)-martingale. Note that for t > s and h ∈ H,

E(Nφ
t Bh

t |Fs) = E

(

E(Nφ
t Bh

t |Gs)|Fs

)

= E

(

Bh
t E(Nφ

t |Gs)|Fs

)

= E

(

Bh
t Nφ

s |Fs

)

= Nφ
s Bh

s .

Thus
〈

Nφ, W
〉

t
= 0 which implies that

〈

Nφ, N̂φ
〉

t
= 0. Therefore

〈

Mφ
〉

t
=

〈

Nφ
〉

t
+

〈

N̂φ
〉

t

= 2σ2

∫ t

0

〈

Xs, φ
2
〉

ds +

∫ t

0

∥

∥

∥

∥

∫

Rd

g(x, ·)φ(x)Xs(dx)

∥

∥

∥

∥

2

H

ds.

Corollary 2.4. If X is a solution to the MP, then X is equal in distribution to a process Y that
solves CMP (Y may be defined on a different probability space).

Proof: Let Y be a solution to the CMP with the same initial distribution as X. Note that Y
exists by Proposition 2.2. Then, by the previous lemma, Y is also a solution to the MP. By the
uniqueness of Theorem 3.1 in Mytnik [20], we see that X = Y in distribution.

Next, we consider the following backward SPDE:

ψs,t(x) = φ(x) +

∫ t

s
κ∆ψr,t(x)dr (2.4)

+

∫ t

s

〈

g(x, ·)ψr,t(x), d̂Wr

〉

H

−
∫ t

s
σ2ψ2

r,t(x)dr, 0 ≤ s ≤ t

where
∫

. . . d̂Wr is the backward Itô integral as defined by (e.g. [16], Section 3.4), i.e., for
f : [0, t] × Ω → H being square-integrable and f̃(s) ≡ f(t − s) being predictable, we define

∫ t

0
f(s)d̂Ws =

∫ t

0
f̃(s)dWs

where Ws ≡ Wt−s − Wt is a backward H-CBM. Roughly speaking, backward Itô integral is
obtained by taking the right endpoints instead of the left ones in the approximating Riemann
sum.
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Remark 2.5. Here we would like to make the following convention. Throughout this paper, by
a solution to the SPDE we mean solution to the “weak” form of the equation. That is, when we
claim that ψs,t solves (2.4), rigorously we mean that for any test function f ∈ C∞

b (Rd),

〈ψs,t, f〉 = 〈φ, f〉 +

∫ t

s
〈ψr,t, κ∆f〉 dr (2.5)

+

∫ t

s

〈
∫

Rd

g(x, ·)ψr,t(x)f(x) dx, d̂Wr

〉

H

−
∫ t

s
σ2

〈

ψ2
r,t, f

〉

dr.

Let us fix t > 0 and define
ψs ≡ ψt−s,t , 0 ≤ s ≤ t.

Then it is easy to check that ψs solves the following forward version of (2.4):

ψs(x) = φ(x) +

∫ s

0

(

κ∆ψr(x) − σ2(ψr(x))2
)

dr (2.6)

+

∫ s

0
〈g(x, ·)ψr(x), dWr〉H

, s ∈ [0, t],

for some H-cylindrical Brownian motion W. For our purposes we will often use version (2.6) to
simplify the exposition. Also note, (2.6) can be considered on all s ≥ 0.

To make use of Kotelenez’s results (Theorems 3.2, 3.3 and 3.4 in [15]), we introduce some
notations. For ρ > d, let

Hρ =

{

f : R
d → R; f is measurable and

‖f‖2
ρ =

∫

Rd f2(x)
(

1 + |x|2
)− ρ

2 dx < ∞

}

.

(Note that there is a typo in [15] for this definition.) Since ρ > d, we have 1 ∈ Hρ.

Let
W ′

t(x) = 〈g(x, ·), Wt〉H
, t ≥ 0.

Note that

E

∫

Rd

|W ′
t(x)|2

(

1 + |x|2
)− ρ

2 dx = t

∫

Rd

g(x, x)
(

1 + |x|2
)− ρ

2 dx < ∞.

Thus W ′
t is a regular Hρ-valued cylindrical Brownian motion and (2.6) can be written in the

form of (1.3) in [15]:

ψt(x) = φ(x) +

∫ t

0

(

κ∆ψs(x) − σ2(ψs(x))2
)

ds

+

∫ t

0
ψs(x)dW ′

s(x) , t ∈ [0, t].

In (1.3) of [15], two equations are considered. In our case, the second equation will be the
following linear equation

φt(x) = φ(x) +

∫ t

0
κ∆φs(x)ds +

∫ t

0
〈g(x, ·)φs(x), dWs〉H

, t ≥ 0. (2.7)
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This equation can also be written in the form of (1.3) in [15]:

φt(x) = φ(x) +

∫ t

0
κ∆φs(x)ds +

∫ t

0
φs(x)dW ′

s(x), t ≥ 0.

It is easy to verify the conditions in Theorems 3.2, 3.3 and 3.4 in [15]. Thus, we have the
following

Lemma 2.6. The SPDEs (2.6) and (2.7) have unique H
+
ρ -valued solutions ψt and φt such that

ψt(x) ≤ φt(x), ∀ t ≥ 0 and x ∈ R
d, a.s..

Now we proceed to proving the continuity of ψt. Let X0 be the collection of measurable functions
φ such that

0 ≤ φ(x) ≤ cϕϕ1(x), ∀ x ∈ R
d,

where cϕ is a constant (may depend on φ) and ϕt(x) is the density of a normal random vector
with mean 0 and covariance matrix tI.

Lemma 2.7. Suppose that φ ∈ X0, then for some c1 = c1(t),

E (ψt(x1) · · ·ψt(xn)) ≤ c1Π
n
i=1ϕ2κt+1(xi).

Proof: For simplicity of notation, we take n = 2, x1 = x and x2 = y. By Itô’s formula (use test
function if necessary), we have

d (φt(x)φt(y)) = κ (φt(x)∆φt(y) + φt(y)∆φt(x)) dt

+g(x, y)φt(x)φt(y)dt + d(mart.)

Let
ut(x, y) = E (φt(x)φt(y)) .

Then
∂tut(x, y) = κ∆2dut(x, y) + g(x, y)ut(x, y),

where ∆2d is the 2d-dimensional Laplacian operator. By Feymann-Kac formula, we get

ut(x, y) = E(x,y)

(

φ(Xt)φ(Yt) exp

(
∫ t

0
g(Xs, Ys)ds

))

≤ ec̃2t
E(x,y) (φ(Xt)φ(Yt))

≤ c1ϕ2κt+1(x)ϕ2κt+1(y),

where X and Y are independent d-dimensional Brownian motions with diffusion coefficient 2κ,
and c1 = c2

ϕec̃2t. Now we are done by Lemma 2.6.

Theorem 2.8. Suppose that φ ∈ X0, then (2.6) has a unique non-negative solution ψ ∈
C((0,∞) × R

d, R+) a.s. Further, for any T > 0 and λ ∈ R , we have

E

(

sup
t≤T, x∈Rd

eλ|x|ψt(x)p

)

< ∞. (2.8)
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Proof: The existence and uniqueness of the solution to (2.6) is proved in Lemma 2.6. Now we
prove its smoothness and (2.8). By the convolution form, we have

ψt(x) = T κ
t φ(x) −

∫ t

0
T κ

t−sψ
2
s(x)ds

+

∫ t

0

∫

Rd

ϕ2κ(t−s)(x − y)ψs(y) 〈g(y, ·), dWs〉H
dy, (2.9)

where {T κ
t , t ≥ 0} is the semigroup with generator κ∆. The continuity of the first two terms is

easy. We denote the last term by Y (t, x). Note that for any α ∈
(

0, 1
2

)

and |x| < |y|, we have

|ϕt(x) − ϕt(y)| ≤ cϕt(x)t−α|y − x|α.

Since the quadratic variation process of

Y (t, x + h) − Y (t, x)

=

∫ t

0

∫

Rd

(

ϕ2κ(t−s)(x + h − y) − ϕ2κ(t−s)(x − y)
)

ψs(y) 〈g(y, ·), dWs〉H
dy

equals to
∫ t

0

∣

∣

∣

∣

∫

Rd

(

ϕ2κ(t−s)(x − y + h) − ϕ2κ(t−s)(x − y)
)

ψs(y)g(y, ·)dy

∣

∣

∣

∣

2

H

ds,

we have

E

(

|Y (t, x + h) − Y (t, x)|2n
)

≤ cE

{(

∫ t

0

∣

∣

∣

∣

∫

Rd

(

ϕ2κ(t−s)(x − y + h) − ϕ2κ(t−s)(x − y)
)

ψs(y)g(y, ·)dy

∣

∣

∣

∣

2

H

ds

)n}

= cE{(
∫ t

0

∫

R2d

(

ϕ2κ(t−s)(x − y + h) − ϕ2κ(t−s)(x − y)
)

×
(

ϕ2κ(t−s)(x − z + h) − ϕ2κ(t−s)(x − z)
)

ψs(y)ψs(z)g(y, z)d(y, z)ds)n}

≤ c

∫ t

0
ds1 · · ·

∫ t

0
dsn

∫

(Rd)2n

Πn
i=1ϕ2κ(t−si)(x − yi)ϕ2κ(t−si)(x − zi)(t − si)

−2α|h|2α

×EΠn
i=1ψsi(yi)ψsi(zi)d(y, z).

By Lemma 2.7, we can continue the above estimate with

E

(

|Y (t, x + h) − Y (t, x)|2n
)

≤ c

∫ t

0
ds1 · · ·

∫ t

0
dsn

∫

(Rd)2n

Πn
i=1ϕ2κ(t−si)(x − yi)ϕ2κ(t−si)(x − zi)(t − si)

−2α|h|2α

×Πn
i=1ϕ1+2κsi(yi)ϕ1+2κsi(zi)d(y, z)

= c

∫ t

0
ds1 · · ·

∫ t

0
dsn

(

Πn
i=1(t − si)

−2α
)

|h|2nαϕ1+2κt(x)2n

≤ c|h|2nαe−n|x|2 .

Similarly, we can prove that

E (|Y (t + u, x) − Y (t, x)|n) ≤ c|u|nαe−n|x|2 .
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Take n large such that nα > 2+d, by a generalized Kolmogorov’s theorem, we get the continuity
of Y in (t, x). Further, for any λ ∈ R, we have

E

(

sup
0≤t≤T, x∈Rd

(

|Y (t, x)|peλ|x|
)

)

< ∞.

The same inequality holds for the first term of (2.9) and the second term is negative. (2.8)
follows by taking λ = 0.

Now we proceed by constructing a process X that solves the CMP from Definition 2.1. We will
also show that ψ0,t is the conditional log-Laplace transform of the process X. To this end, we
consider the approximations for X and ψs,t.

Let ǫ > 0. In the intervals [2iǫ, (2i + 1)ǫ], i = 0, 1, 2, · · · , Xǫ is a SBM with initial Xǫ
2iǫ, i.e.,

M ǫ
t (φ) ≡ 〈Xǫ

t , φ〉 − 〈Xǫ
2iǫ, φ〉 −

∫ t

2iǫ
〈Xǫ

s, κ∆φ〉 ds

is a continuous martingale with quadratic variation process

〈M ǫ(φ)〉t = 4σ2

∫ t

2iǫ

〈

Xǫ
s, φ

2
〉

ds;

and in the intervals [(2i + 1)ǫ, 2(i + 1)ǫ], it is the solution to the following linear SPDE:

〈Xǫ
t , φ〉 =

〈

Xǫ
(2i+1)ǫ, φ

〉

+

∫ t

(2i+1)ǫ
〈Xǫ

s, κ∆φ〉 ds +

∫ t

(2i+1)ǫ
〈Xǫ

s(gφ), dW ǫ
s 〉H

,

here µ(f) also denote the integral of f with respect to the measure µ, and

W ǫ
t =

√
2

∫ t

0
1Ac(s)dWs, (2.10)

while A = {s : 2iǫ ≤ s ≤ (2i + 1)ǫ, i = 0, 1, 2, · · · }. It is easy to see that {Xǫ, W ǫ} is a solution
to the following approximate martingale problem for X (AMPX): W ǫ is as in (2.10);

Bǫ,h
t =

√
2

∫ t

0
1Ac(s)dBh

s

and

〈Xǫ
t , φ〉 = 〈µ, φ〉 +

∫ t

0
〈Xǫ

s, κ∆φ〉 ds + M1,ǫ
t (φ) + M2,ǫ

t (φ)

where M1,ǫ
t (φ), M2,ǫ

t (ψ) are uncorrelated martingales satisfying

〈

M1,ǫ(φ)
〉

t
= 4σ2

∫ t

0

〈

Xǫ
s, φ

2
〉

1A(s)ds,

〈

M1,ǫ(φ), Bǫ,h
〉

t
= 0,

〈

M2,ǫ(φ)
〉

t
= 2

∫ t

0
‖Xǫ

s(gφ)‖2
H
1Ac(s)ds

and
〈

M2,ǫ(φ), Bǫ,h
〉

t
= 2

∫ t

0
Xǫ

s (〈g, h〉
H

φ) 1Ac(s)ds

where g(x) ≡ g(x, ·) ∈ H.
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Lemma 2.9. Suppose that µ(Rd) < ∞. Then, {Xǫ} is tight in C(R+,MF (Rd)).

Proof: Note that
〈Xǫ

t , 1〉 = 〈µ, 1〉 + M1,ǫ
t (1) + M2,ǫ

t (1).

By Burkholder-Davis-Gundy inequality, we get

E sup
s≤t

〈Xǫ
t , 1〉4 ≤ 8 〈µ, 1〉4 + 8

(

4

4 − 1

)4

E

(

4σ2

∫ t

0
〈Xǫ

s, 1〉 1A(s)ds

)2

+8

(

4

4 − 1

)4

E

(
∫ t

0
c̃2
2 〈Xǫ

s, 1〉2 1Ac(s)ds

)2

≤ c1 + c2

∫ t

0
E 〈Xǫ

s, 1〉4 ds.

It follows from Gronwall’s inequality that

E sup
s≤t

〈Xǫ
t , 1〉4 ≤ c3. (2.11)

Next, for 0 < s < t and φ ∈ C2
ℓ (Rd), we have

E |〈Xǫ
t , φ〉 − 〈Xǫ

s, φ〉|4

= E

∣

∣

∣

∣

∫ t

s
〈Xǫ

r , κ∆φ〉 dr +

∫ t

s
1A(r) 〈Xǫ

r(gφ), dWr〉H
+

∫ t

s
1Ac(r)dM ǫ

r (φ)

∣

∣

∣

∣

4

≤ 8E

∣

∣

∣

∣

∫ t

s
〈Xǫ

r , κ∆φ〉 dr

∣

∣

∣

∣

4

+ 8

(

4

4 − 1

)4

E

(
∫ t

s
‖Xǫ

s(gφ)‖2
H
1Ac(s)ds

)2

+8

(

4

4 − 1

)4

E

(

4σ2

∫ t

s

〈

Xǫ
s, φ

2
〉

1A(s)ds

)2

≤ c4|t − s|2, (2.12)

where C2
ℓ (Rd) is the collection of C2

b (Rd) functions with limit at ∞. Note that the constant c4

in (2.12) depends on ‖φ‖2,∞ only, where

‖φ‖2,∞ =
∑

|β|≤2

sup
x

|Dβφ(x)|,

β = (β1, · · · , βd) is a multiindex and |β| = β1 + · · ·+βd. We can take a sequence {fn} in C2
ℓ (Rd)

such that ‖fn‖2,∞ ≤ 1 for all n ≥ 1. The weak topology of MF (R̄d) is given by the metric ρ
defined by

ρ(µ, ν) ≡
∞

∑

n=1

e−n (|〈µ − ν, fn〉| ∧ 1) ,

where R̄
d is the compactification of R

d. By (2.12), it is easy to show that

Eρ(Xǫ
t , X

ǫ
s)

4 ≤ c4|t − s|2. (2.13)

The tightness of Xǫ in C(R+,MF (R̄d)) follows from (2.11) and (2.13) (cf. Corollary 16.9 in
Kallenberg [12], p313).
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If R → ∞, then
E (Xǫ

t (φR)) = X0(T
κ
t φR) → 0,

where φR(x) = 0 for |x| ≤ R, φR(x) = 1 for |x| ≥ R+1 and connected by lines for x in between.
Then for any t ≥ 0, we have Xt({∞}) = 0. By the continuity of X, we get that almost surely,
Xt({∞}) = 0 for all t ≥ 0. Thus, Xǫ is tight in C(R+,MF (Rd)).

To study the tightness of W ǫ, we need to define a space for which W ǫ take their values. Let
{hj , j = 1, 2, · · · } be a complete orthonormal basis of H. For any h ∈ H, we define norms ‖h‖i,
i = 1, 2, by

‖h‖2
i ≡

∞
∑

j=1

j−2i 〈h, hj〉2H .

Let Bi be the completion of H with respect to ‖ · ‖i. Then H ⊂ B1 ⊂ B2 and the injections are
compact.

Lemma 2.10. {W ǫ} is tight in C(R+, B2).

Proof: Note that

E sup
r≤t

‖W ǫ
r‖2

1 = E sup
r≤t

∞
∑

j=1

j−2

(√
2

∫ r

0
1Ac(s)dB

hj
s

)2

≤ 2
∞

∑

j=1

j−2
E sup

r≤t

(√
2

∫ r

0
1Ac(s)dB

hj
s

)2

≤ 2
∞

∑

j=1

j−24E

∫ t

0
1Ac(s)ds

≤ 16t.

Since the injection from B1 to B2 is compact, {x ∈ B2 : ‖x‖1 ≤ K} is compact in B2. Thus,
{W ǫ} satisfies the compact containment condition in B2.

Similarly, we can prove that, for any s < t and ǫ > 0,

E

(

‖W ǫ
t − W ǫ

s‖4
2

)

≤ E

(

‖W ǫ
t − W ǫ

s‖4
1

)

≤ c(t)|t − s|2.

The tightness of {W ǫ} in C(R+, B2) follows easily.

Lemma 2.11. Suppose that µ is finite. Let (X0, W 0) be any limit point of {(Xǫ, W ǫ)}. Then
(X0, W 0) satisfy the following joint martingale problem (JMP): W 0 = {B0,h : h ∈ H} is an
H-CBM and

Mt(φ) ≡
〈

X0
t , φ

〉

− 〈µ, φ〉 −
∫ t

0

〈

X0
s , κ∆φ

〉

ds

is a continuous martingale with quadratic covariation processes

〈M(φ)〉t =

∫ t

0

(

2σ2
〈

X0
s , φ2

〉

+ ‖X0
s (gφ)‖2

H

)

ds

and
〈

M(φ), B0,h
〉

t
=

∫ t

0
X0

s (〈g, h〉
H

φ) ds.

Moreover, X0 satisfies MP (1.1-1.2).
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Proof: Immediate from the previous lemmas and the convergence of all the terms in AMPX to
the corresponding terms in JMP.

Now we define an approximation ψǫ
s,t of ψs,t in two cases. Note that in our construction the

process ψǫ
s,t will be independent of Xǫ conditionally on W ǫ. First, we suppose that 2kǫ ≤ t <

(2k + 1)ǫ. Then for 2kǫ ≤ s ≤ t, we define

ψǫ
s,t = φ +

∫ t

s

(

κ∆ψǫ
r,t − 2σ2(ψǫ

r,t)
2
)

dr.

For (2k − 1)ǫ ≤ s ≤ 2kǫ,

ψǫ
s,t = ψǫ

2kǫ,t +

∫ 2kǫ

s
κ∆ψǫ

r,tdr +

∫ 2kǫ

s
ψǫ

r,t

〈

g, d̂W ǫ
r

〉

H

.

The definition continues in this pattern. For the case of (2k + 1)ǫ ≤ t < 2(k + 1)ǫ, the definition
is modified in an obvious manner.

Since the behavior of the processes Xǫ
s and ψǫ

s,t does not depend on W ǫ we get

E
W ǫ

µ

(

e−〈Xǫ
t ,φ〉|Xǫ

2kǫ

)

= e−〈Xǫ
2kǫ,ψ

ǫ
2kǫ,t〉.

Hence,

E
W ǫ

µ e−〈Xǫ
t ,φ〉 = E

W ǫ

µ e−〈Xǫ
2kǫ,ψ

ǫ
2kǫ,t〉.

By Corollary 3.3 in Crisan and Xiong [3] (cf. Corollary 6.6.21 in Xiong [25] for the detailed
proof for the case when Wt is a finite dimensional Brownian motion), we have

〈

Xǫ
2kǫ, ψ

ǫ
2kǫ,t

〉

=
〈

Xǫ
(2k−1)ǫ, ψ

ǫ
(2k−1)ǫ,t

〉

, P − a.s..

Therefore,

E
W ǫ

µ e−〈Xǫ
t ,φ〉 = E

W ǫ

µ e
−

D

Xǫ
(2k−1)ǫ

,ψǫ
(2k−1)ǫ,t

E

.

Continuing this pattern, we get

E
W ǫ

µ e−〈Xǫ
t ,φ〉 = e−〈µ,ψǫ

0,t〉. (2.14)

Note again that in our construction the process ψǫ
s,t is independent of Xǫ conditionally on W ǫ.

Lemma 2.12. We endow H0 with weak topology. Then for any t > 0, {ψǫ
·,t} is tight in

C([0, t], H0).

Proof: For simplicity of presentation, we will consider the forward version of the equations. Also,
we assume that t = k′ǫ. We will consider the case of k′ = 2k only, since the other case can be
treated similarly. Let W

ǫ
s = W ǫ

t−s − W ǫ
t . Then, for 2iǫ ≤ s ≤ (2i + 1)ǫ, 0 ≤ i < k,

ψǫ
s = ψǫ

2iǫ +

∫ s

2iǫ
κ∆ψǫ

rdr +

∫ s

2iǫ
ψǫ

r 〈g, dW
ǫ
r〉H

, (2.15)

and for (2i + 1)ǫ ≤ s ≤ 2(i + 1)ǫ, 0 ≤ i < k,

ψǫ
s = ψǫ

(2i+1)ǫ +

∫ s

(2i+1)ǫ

(

κ∆ψǫ
r − 2σ2(ψǫ

r)
2
)

dr. (2.16)
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It is easy to show that the solution of (2.15) is an increasing functional of the initial condition
ψǫ

2iǫ; and the solution of (2.16) is less than φǫ
s given by

φǫ
s = φǫ

(2i+1)ǫ +

∫ s

(2i+1)ǫ
κ∆φǫ

rdr, (2i + 1)ǫ ≤ s ≤ 2(i + 1)ǫ.

provided that φǫ
(2i+1)ǫ ≥ ψǫ

(2i+1)ǫ. For 2iǫ ≤ s ≤ (2i + 1)ǫ, we define ψǫ
s by (2.15) with ψǫ

2iǫ

replaced by φǫ
2iǫ. Then, ψǫ

s ≤ φǫ
s for all s ∈ [0, t].

Note that

φǫ
s = φ +

∫ s

0
κ∆φǫ

rdr +

∫ s

0
1Ac(r)φǫ

r 〈g, dW
ǫ
r〉H

.

Applying Theorem 2.8 (taking σ2 = 0) in each small interval of length ǫ used in the definition
of ψǫ, we get

sup
s≤t

E‖φǫ
s‖2p

0 < ∞, ∀p > 0. (2.17)

Let Zδ,ǫ
s = T κ

δ φǫ
s. By applying Itô’s formula in order to get an expression for (Zδ,ǫ

s )2 and
integrating we get

‖Zδ,ǫ
s ‖2

0 = ‖T κ
δ φ‖2

0 + 2

∫ s

0

〈

Zδ,ǫ
r , κ∆Zδ,ǫ

r

〉

dr

+2

∫ s

0
1Ac(r)

〈〈

T κ
δ (φǫ

rg), Zδ,ǫ
r

〉

, dW
ǫ
r

〉

H

+

∫ s

0
1Ac(r)‖T κ

δ (φǫ
rg)‖2

H0⊗H
dr

≤ ‖T κ
δ φ‖2

0 + 2

∫ s

0

〈〈

T κ
δ (φǫ

rg), Zδ,ǫ
r

〉

, dW
ǫ
r

〉

H

+

∫ s

0
‖T κ

δ (φǫ
rg)‖2

H0⊗H
dr.

Taking δ → 0, it can be easily derived with the help of (2.17) that all the terms in the above
inequality converge and we get

‖φǫ
s‖2

0 ≤ ‖φ‖2
0 + 2

∫ s

0
〈〈φǫ

rg, φǫ
r〉 , dW

ǫ
r〉H

+

∫ s

0
‖φǫ

r‖2
0c̃

2
2dr.

By Burkholder-Davis-Gundy inequality, we get

E sup
r≤s

‖φǫ
r‖2p

0 ≤ c1 + c2

∫ s

0
E‖φǫ

r‖2p
0 dr. (2.18)

By (2.17) we immediately see that the last term in (2.18) is bounded, hence, by Gronwall’s
inequality, we have

E sup
r≤s

‖ψǫ
r‖2p

0 ≤ E sup
r≤s

‖φǫ
r‖2p

0 ≤ c1e
c2t. (2.19)

Note that

ψǫ
t = φ +

∫ t

0
κ∆ψǫ

rdr +

∫ t

0
1Ac(r)ψǫ

r 〈g, dW
ǫ
r〉H

− 2σ2

∫ t

0
1A(r)(ψǫ

r)
2dr,
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and (2.8) easily holds with ψt replaced by ψǫ
t . Then for any f ∈ H0 ∩ C2

b (Rd), we have

E |〈ψǫ
t − ψǫ

s, f〉|2p
0 ≤ 32p−1

E

∣

∣

∣

∣

∫ t

s
〈ψǫ

r, κ∆f〉 dr

∣

∣

∣

∣

2p

+32p−1
E

∣

∣

∣

∣

∫ t

s
1Ac(r) 〈〈ψǫ

rg, f〉 , dW
ǫ
r〉H

∣

∣

∣

∣

2p

+32p−1
E

∣

∣

∣

∣

2σ2

∫ t

s
1A(r)

∫

ψǫ
r(x)2|f(x)|dxdr

∣

∣

∣

∣

2p

≤ c3|t − s|p. (2.20)

The tightness of {ψǫ} then follows from (2.19) and (2.20) with p > 1.

Corollary 2.13. Let ψǫ be a solution to (2.15)-(2.16). Then {ψǫ} is tight in C(R+, H0).

Proof: Immediate from the previous lemma.

Lemma 2.14. Suppose that (ψ0, W
0) be a limit point of (ψǫ, W

ǫ). Then

ψ0
s = φ +

∫ s

0

(

κ∆ψ0
r − σ2(ψ0

r )
2
)

dr +

∫ s

0
ψ0

r

〈

g, dW
0
r

〉

H
. (2.21)

Similarly, let {ψ0
·,t, W

0) be a limit point of {ψǫ
·,t, W

ǫ). Then

ψ0
s,t = φ +

∫ t

s

(

κ∆ψ0
r,t − σ2(ψ0

r,t)
2
)

dr +

∫ t

s
ψ0

r,t

〈

g, d̂W 0
r,t

〉

H

.

Proof: Note that for any f ∈ C2
0(Rd),

N ǫ
t (f) ≡ 〈ψǫ

t , f〉 − 〈φ, f〉 −
∫ t

(

〈ψǫ
r, κ∆f〉 − 1A(r)

〈

2σ2(ψǫ
r)

2, f
〉)

dr

is a martingale with

〈N ǫ(f)〉t = 2

∫ t

0
1Ac(r) 〈ψǫ

r, fg〉2
H0⊗H

dr

and for any h ∈ H,
〈

N ǫ(f), B
ǫ,h

〉

t
= 2

∫ t

0
1Ac(r) 〈ψǫ

r, 〈h, g〉
H

f〉 dr.

Passing to the limit, we see that

Nt(f) ≡
〈

ψ0
t , f

〉

− 〈φ, f〉 −
∫ t

0

(〈

ψ0
r , κ∆f

〉

−
〈

σ2(ψ0
r )

2, f
〉)

dr

is a martingale with

〈N(f)〉t =
∞

∑

j=1

∫ t

0

〈

ψ0
r , fgj

〉2

0
dr,

〈

B
0,hj , B

0,hk

〉

t
= δjkt
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and
〈

N(f), B
0,hj

〉

t
=

∫ t

0

〈

ψ0
r , gjf

〉

dr,

where gj = 〈g, hj〉H
. Similar to Theorem 3.3.6 in Kallianpur and Xiong [14], there exists an

H-CBM W such that

Nt(f) =
∞

∑

j=1

∫ t

0

〈

ψ0
r , gjf

〉

dB
hj
r

and
B

0,hj

t = B
hj

t .

Thus, W = W 0 and hence, (2.21) holds.

With the above preparation, we can prove the following theorem for the Laplace transform of
X.

Theorem 2.15. The backward SPDE (2.4) has a pathwise unique non-negative solution ψs,t(x)
for any φ ∈ X0. Moreover, there exists a triple (X0, W 0, ψ0) such that X and X0 have the same
law, and for any µ ∈ M(Rd), we have

E
W 0

µ exp
(

−
〈

X0
t , φ

〉)

= exp
(

−
〈

µ, ψ0
0,t

〉)

. (2.22)

Proof: First, we suppose µ is finite. Making use of Lemmas 2.9, 2.10, 2.11, 2.12 and 2.14, it
follows from (2.14) that for F being a real valued continuous function on C([0, t], B2), we have

E

(

exp
(

−
〈

µ, ψ0
0,t

〉)

F (W 0)
)

= lim
ǫ→0

E

(

exp
(

−
〈

µ, ψǫ
0,t

〉)

F (W ǫ)
)

= lim
ǫ→0

E (exp (−〈Xǫ
t , φ〉)F (W ǫ))

= E

(

exp
(

−
〈

X0
t , φ

〉)

F (W 0)
)

.

The conclusion for general µ follows from a limiting argument.

We will abuse the notation a bit by dropping the superscript 0 in (2.22).

Corollary 2.16. For any f ∈ X0 ,

Eµe−〈Xt,f〉 ≥ Ee−〈µ,φt〉. (2.23)

where φ is a solution to (2.7) with initial condition φ0 = f .

Proof By Lemma 2.6 and Theorem 2.15, the result is immediate.

As another consequence of the theorem, we now prove that the CMP has a solution.

Proposition 2.17. If (X, W ) is a solution to the JMP, then it is a solution to the CMP.

Proof: Let Mt(φ) be defined by JMP with superscript 0 dropped. Define

M1
t (φ) = Mt(φ) −

∫ t

0
〈Xs(gφ), dWs〉H

.
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Then for any φ ∈ Cb(R
d) and h ∈ H, we have

〈

M1(φ), Bh
〉

t
= 0.

Note that M1
t can be regarded as a martingale in the dual of a nuclear space Φ′ (e.g., the space

of Schwarz distributions). It follows from the martingale representation theorem (cf. Theorem
3.3.6 in Kallianpur and Xiong [14]) that there exists a Φ′-valued Brownian motion W such that

M1
t =

∫ t

0
f(s)dWs

where f is an appropriate integrand. Further, W and W are uncorrelated and hence, inde-
pendent. Thus, M1

t is a conditional martingale given W . Thus, (X, W ) is a solution to the
CMP.

Proof of Proposition 2.2: It follows immediately from the above Proposition 2.17 and Lemma
2.11.

Now we consider the log-Laplace transform for the occupation measure process.

Theorem 2.18. ∀f, ϕ ∈ X0 and µ ∈ M(Rd)

Eµ exp

(

−〈Xt, f〉 −
∫ t

0
〈Xs, ϕ〉 ds

)

≥ exp (−〈µ, Vt〉) . (2.24)

where Vt(·) ≡ Vt(ϕ, f, ·) is the unique solution to the following nonlinear PDE:

{

∂
∂tVt = κ∆Vt − σ2V 2

t + ϕ
V0 = f.

(2.25)

Proof To simplify the notation and the exposition we present the proof only for the case of
f = 0. However for a general non-negative f the proof goes along the same lines.

Fix arbitrary ϕ ∈ B+
b and t > 0, n > 1. Denote ti = i

n t, i = 1, . . . , n. First we show that there

exists a non-negative function-valued functional V
(n)
s (ϕ) such that

Eµ exp

(

− 1

n

n
∑

i=1

〈Xti , ϕ〉
)

≥ exp
(

−
〈

µ, V
(n)
t (ϕ)

〉)

, (2.26)

where V (n) satisfies:

V
(n)
t−s =

n − i

n
ϕ +

∫ t

s
κ∆V

(n)
t−rdr −

∫ t

s
σ2(V

(n)
t−r)

2dr, (2.27)

for s ∈ [ti, ti+1), i = 0, 1, · · · , n − 1.

For simplicity of notation, we consider the case n = 2, and replace ϕ by 2ϕ. By Theorem 2.15,

E
W
µ exp (−〈Xt1 , ϕ〉 − 〈Xt2 , ϕ〉) = E

W
µ exp (−〈Xt1 , ϕ + ψt1,t2(ϕ)〉) (2.28)
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where ψs,t2 , s ∈ [t1, t2], is the unique solution to the following backward SPDE:

ψs,t2(x) = ϕ(x) +

∫ t2

s
κ∆ψr,t2(x)dr (2.29)

+

∫ t2

s

〈

g(x, ·)ψr,t2(x), d̂Wr

〉

H

−
∫ t2

s
σ2ψ2

r,t2(x)dr.

By (2.8) and Assumption 1, we have

E

∫ t2

0
‖g(x, ·)ψr,t2(x)‖2

H
dr = E

∫ t2

0
g(x, x)ψr,t2(x)2dr

≤ T c̃2 sup
0≤t≤T

sup
x∈Rd

Eψt(x)2 < ∞.

Thus,

s 7→
∫ t2

s

〈

g(x, ·)ψr,t2(x), d̂Wr

〉

H

is a backward martingale (not just a local martingale) on [0, t2] and hence we can take expectation
on both sides of (2.29) to get

Eψs,t2(x) ≤ ϕ(x) +

∫ t2

s
κ∆Eψr,t2(x)dr −

∫ t2

s
σ2(Eψr,t2(x))2dr.

Hence

Eψs,t2(x) ≤ Vt2−s(0, ϕ, x). (2.30)

By Jensen’s inequality, we can continue (2.28) with

E
W
µ exp (−〈Xt1 , ϕ〉 − 〈Xt2 , ϕ〉) = E

W
µ E

W
µ (exp (−〈Xt1 , ϕ + ψt1,t2(ϕ)〉) |Ft1)

≥ E
W
µ exp

(

−E
W
µ (〈Xt1 , ϕ + ψt1,t2(ϕ)〉 |Ft1)

)

≥ E
W
µ exp (−〈Xt1 , ϕ + Vt2−t1(0, ϕ)〉)

= exp (−〈µ, ψ0,t1(ϕ + Vt2−t1(0, ϕ))〉) .

Similar to (2.30), we then have

Eµ exp (−〈Xt1 , ϕ〉 − 〈Xt2 , ϕ〉) ≥ exp (−〈µ, Vt1(0, ϕ + Vt2−t1(0, ϕ))〉) .

Let

V (2)
s =

{

Vt2−s(0, ϕ) if t1 ≤ s ≤ t2
Vt1−s(0, ϕ + Vt2−t1(0, ϕ)) if 0 ≤ s ≤ t1.

This proves (2.27) for n = 2. The general case follows by induction. As we have mentioned the
proof for arbitrary f, ϕ ∈ B+

b follows along the same lines.

Next we prove the following self-duality for φt.

Lemma 2.19. Suppose that φ̃t , φt satisfy (2.7) with initial conditions φ0, φ̃0 ∈ B+
b . Then

∀ λ > 0,

Ee−λ〈φt,φ̃0〉 = Ee−λ〈φ̃t,φ0〉. (2.31)
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Proof The result is immediate from Theorems 2.15 with σ2 = 0.

The next lemma is crucial for the proof of Theorems 1.1 and 1.2. Let {Rt}t≥0 be a strictly
positive non-decreasing function. Also define

Γt = {x ∈ R
d : |x| < Rt}.

Lemma 2.20. Let φt be a solution to (2.7), and φ0 ∈ B+
b be with compact support. Then there

exist constants c1 , c2 > 0 such that

E 〈φt, 1〉
1
2 ≤ 〈φ0, 1〉

1
2 e

−c2
R t
0

1
Rα

s
ds

+ c1

∫ t

0

1

Rα
s

(

∫

Γc
s

T κ
s φ0(x)dx

)
1
2

e
−c2

R t
s

1
Rα

r
dr

ds. (2.32)

Proof Apply Itô’s formula to obtain

〈φt, 1〉
1
2 = 〈φ0, 1〉

1
2 +

1

2

∫ t

0
〈φt, 1〉−

1
2

〈
∫

Rd

g(x, ·)φs(x)dx, dWs

〉

H

−1

8

∫ t

0
〈φs, 1〉−

3
2

∫

Rd

∫

Rd

g(x, y)φs(x)φs(y)dxdyds.

Let πt(x) = φt(x)
〈φt,1〉 . Then, by Assumption 1,

E 〈φt, 1〉
1
2 ≤ 〈φ0, 1〉

1
2 − 1

8
E

∫ t

0
〈φs, 1〉

1
2

(
∫

Γs

∫

Γs

c(2Rs)
−απs(x)πs(y)dxdy

)

ds

≤ 〈φ0, 1〉
1
2 − c2

∫ t

0

1

Rα
s

E 〈φs, 1〉
1
2 ds

+c1

∫ t

0

1

Rα
s

E

(

〈φs, 1〉
1
2

∫

Γc
s

πs(x)dx

)

ds

≤ 〈φ0, 1〉
1
2 − c2

∫ t

0

1

Rα
s

E 〈φs, 1〉
1
2 ds

+c1

∫ t

0

1

Rα
s

E







(

∫

Γc
s

φs(x)dx

)
1
2







ds

≤ 〈φ0, 1〉
1
2 − c2

∫ t

0

1

Rα
s

E 〈φs, 1〉
1
2 ds

+c1

∫ t

0

1

Rα
s

(

∫

Γc
s

T κ
s φ0(x)dx

)
1
2

ds

Then, by Gronwall’s inequality, we are done.

3 Proof of Theorems 1.2, 1.3

Without loss of generality, we may assume that K = B(0, 1), the unit ball in R
d. Fix ψ0 = 1B(0,1).

Recall that X0 = µ is Lebesgue measure.
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Let Y be the classical super-Brownian motion starting at Lebesgue measure µ, that is Y is a
solution to the martingale problem (MP) with g ≡ 0. Let Vt(·) be as in Theorem 2.18. It is well
known (see e.g. Theorem 3.1 of Iscoe [10]) that Vt is a log-Laplace transform of Yt. Hence from
Theorem 2.18 we immediately get

Eµ exp

(

−〈Xt, f〉 −
∫ t

0
〈Xs, φ〉 ds

)

(3.1)

≥ Eµ exp

(

−〈Yt, f〉 −
∫ t

0
〈Ys, φ〉 ds

)

, ∀f, φ ∈ X0, t ≥ 0.

Now we are ready to give a

Proof of Theorem 1.3 (b) Fix f = ψ0 = 1B(0,1) , φ = 0 in (3.1). By Theorem 3.1 of
Dawson [4], the classical super-Brownian motion exhibits longterm local extinction, and hence
the right hand side converges to 1 as t → ∞. Hence, 〈Xt, f〉 convergence 0, and the part (b) of
the theorem follows.

Proof of Theorem 1.3 (a) It follows from the proof of Theorem 3 of Iscoe [11] that it is
enough to show

lim
t→∞

P

(
∫ ∞

t
Xs(ψ0) ds = 0

)

= 1. (3.2)

However the left hand side of (3.2) equals to

lim
t→∞

lim
m→∞

Eµ exp

(

−m

∫ ∞

t
〈Xs, ψ0〉

)

ds. (3.3)

Hence by (3.1) it is enough to show that

lim
t→∞

lim
m→∞

Eµ exp

(

−m

∫ ∞

t
〈Ys, ψ0〉

)

ds = 1. (3.4)

(3.4) follows from the proof of Theorem 3 of Iscoe [11].

Proof of Theorem 1.2 By Theorem 2.15, we have

Eµ exp (−〈Xt, ψ0〉) = E exp (−〈ψt, 1〉) (3.5)

and 〈ψt, 1〉 satisfies the following equation:

〈ψt, 1〉 = 〈ψ0, 1〉 +

∫ t

0

〈
∫

Rd

g(x, ·)ψs(x)dx, dWs

〉

H

−
∫ t

0

∫

Rd

σ2ψ2
s(x)dxds.

By Lemma 2.6 we know that
ψt ≤ φt , t ≥ 0,
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where φt solves (2.7) with φ0 = ψ0. This and Lemma 2.20 imply

E 〈ψt, 1〉
1
2 ≤ 〈ψ0, 1〉

1
2 e

−c2
R t
0

1
Rα

s
ds

+ c1

∫ t

0

1

Rα
s

(

∫

Γc
s

T κ
s ψ0(x)dx

)
1
2

e
−c2

R t
s

1
Rα

r
dr

ds. (3.6)

Take Rt = max {
√

|t log log t|, 1}. Fix arbitrary ǫ ∈ (0, 1). Then it is easy to check that there
exists a constant c such that

∫ t

s

1

R2
r

dr ≥ c ((log t)ǫ − (log s)ǫ) .

for all t sufficiently large. Hence, by (3.6),

E 〈ψt, 1〉
1
2 ≤ 〈ψ0, 1〉

1
2 e−c(log t)ǫ

+c1e
−c2(log t)ǫ

∫ t

0

1

max {|s log log s|, 1}ec| log s|ǫds

→ 0, as t → ∞. (3.7)

(3.7) implies that Zt ≡ 〈ψt, 1〉 converges to 0 in probability, and hence also weakly. Zt is
non-negative, therefore from the definition of the weak convergence we get

lim
t→∞

E

[

e−Zt
]

= E

[

e−Z∞
]

= 1.

This and (3.5) in turn imply that

Ee−Xt(ψ0) → 1, as t → ∞.

Hence Xt(B(0, 1)) → 0 in probability as t → ∞ and we are done.

Remark 3.1. When ψt is replaced by the Anderson model (cf. (2.7)) φt, the estimate (3.7) was
given by Mueller and Tribe [19]. In fact, the proof of the theorem is inspired by this estimate.

Remark 3.2. Here we would like to make a remark about the possible extensions of Theorem 1.2.
As we have already mentioned in the Introduction, the Anderson model (2.7) was considered in
a number of papers in the recent years (see e.g. Carmona and Viens [1], Tindel and Viens [22],
Florescu and Viens [8]). Although it was investigated in the Stratonovich setting the reformula-
tion of their results for the Itô equation considered here is possible in some cases. For example,
let the Gaussian noise be homogeneous, that is g(x, y) = g(x − y), and the Fourier transform ĝ
of g satisfies

∫

Rd

|λ|β ĝ(dλ) < ∞ (3.8)

for some β > 0. Then it can be deduced from Theorem 2 of Carmona and Viens [1] that there
exists a constant c such that for all κ sufficiently small

lim sup
t→∞

t−1 log φ(t, x) ≤ c

log κ−1
− g(0)

2
, a.s., ∀x. (3.9)
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Note that the correction term g(0)/2 comes from the Itô formulation of the equation. From (3.9)
we get that for κ sufficiently small

lim
t→∞

φ(t, x) = 0, a.s., ∀x. (3.10)

Therefore to prove Theorem 1.2 in the case when κ is small and the noise satisfy condition (3.8)
it is sufficient to extend (3.9) to the integral setting:

lim sup
t→∞

t−1 log

(
∫

K
φ(t, x) dx

)

≤ c

log κ−1
− g(0)

2
, a.s., (3.11)

for any compact set K. (3.11) is an open problem, and if it is resolved one would be able to
establish longterm local extinction for a larger class of random environments.

4 Finite time local extinction: Proof of Theorem 1.1

In the following lemma we state that the superprocess in random environment possesses the
“branching” property.

Lemma 4.1. Let X1, X2 be PW -conditionally independent solutions to the conditional martin-
gale problem (2.2), (2.3) with initial conditions µ1 , µ2 ∈ M(Rd) respectively. Then

X ≡ X1 + X2

solves the conditional martingale problem (2.2), (2.3) with initial condition µ = µ1 + µ2.

Proof: By (2.2), for i = 1, 2,

N i,φ
t ≡

〈

Xi
t , φ

〉

− 〈µi, φ〉 −
∫ t

0

〈

Xi
s, κ∆φ

〉

ds

−
∫ t

0

〈
∫

Rd

g(x, ·)φ(x)Xi
s(dx), dWs

〉

H

are continuous conditionally independent P
W -martingales with quadratic variation processes

〈

N i,φ
〉

t
= 2σ2

∫ t

0

〈

Xi
s, φ

2
〉

ds.

Hence, Nφ
t = N1,φ

t + N2,φ
t is a continuous P

W -martingales with quadratic variation process
〈

Nφ
〉

t
=

〈

N1,φ
〉

t
+

〈

N2,φ
〉

t

= 2σ2

∫ t

0

〈

Xs, φ
2
〉

ds.

.

By the previous lemma we can represent our process X starting with Lebesgue initial conditions
as a sum of two processes:

X
d
= Xn + X̃n , (4.1)
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where

Xn
0 (dx) = 1B(0,n)(x)dx, X̃n

0 (dx) = 1B(0,n)c(x)dx, (4.2)

and B(0, n) is the ball in R
d with center 0 and radius n.

Lemma 4.2. Suppose 0 ≤ α < 2 and η is a constant satisfying

η >
2 − α

2 + α
and

α(1 + η)

2
< 1. (4.3)

Also fix θ > 1 such that

θ
1 + η

2
> 1. (4.4)

Then
P(Xn

nθ 6= 0) ≤ cn−θ,

for all n sufficiently large.

Proof Fix arbitrary m > 0. By Theorem 2.18 and the Markov property we have

Ee−〈Xn
t ,1〉m ≥ Ee

−
D

Xn
t/2

,vm
t/2,t

E

(4.5)

where vm
s,t solves the following equation:

vm
s,t(x) = m +

∫ t

s
κ∆vm

r,t(x)dr −
∫ t

s
σ2vm

r,t(x)2dr, 0 ≤ s ≤ t, x ∈ R
d.

Note that (see e.g. (II.5.12) of [21])

lim
m→∞

vm
s,t =

1

σ2(t − s)
. (4.6)

By (4.5) and (4.6), we have

P(Xn
t = 0) = lim

m→∞
Ee−〈Xn

t ,1〉m

≥ Ee
− 2

σ2t

D

Xn
t/2

,1
E

. (4.7)

Set lt ≡ 2/tσ2. Then, by Corollary 2.16 we can continue (4.7) with

P(Xn
t = 0) ≥ Ee

−
D

φ
lt
t/2

,1B(0,n)

E

where φlt is a solution to (2.7) with φ0 = lt. Let φ̃0(·) = 1B(0,n)(·). Then by the self-duality
Lemma 2.19 we get

P(Xn
t = 0) ≥ Ee−lt〈φ̃t/2,1〉,

where φ̃ is a solution to (2.7) with initial condition φ̃0.
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Therefore,

P(Xn
nθ 6= 0) ≤ E

(

1 − e
−l

nθ

D

φ̃
nθ/2

,1
E)

≤ 1 − e−l
nθ + P

(

〈

φ̃nθ/2, 1
〉

1
2

> 1

)

≤ lnθ + E

[

〈

φ̃nθ/2, 1
〉

1
2

]

. (4.8)

Let δ = 1 − α(1+η)
2 . Fix

Rt = max {t(1+η)/2, 1} (4.9)

where η is a constant satisfying (4.3). Hence from Lemma 2.20 we get

E

[

〈

φ̃nθ/2, 1
〉

1
2

]

≤ cnd/2e−c2nθδ

+ c1

∫ nθ/2

0
s−

α(1+η)
2

(

∫

Γc
s

T κ
s φ̃0(x)dx

)
1
2

e−c2((nθ/2)δ−sδ) ds

= cnd/2e−c2nθδ
+ c1

∫ nθ′

0
s−

α(1+η)
2

(

∫

Γc
s

T κ
s φ̃0(x)dx

)
1
2

e−c2((nθ/2)δ−sδ) ds

+ c1

∫ nθ/2

nθ′
s−

α(1+η)
2

(

∫

Γc
s

T κ
s φ̃0(x)dx

)
1
2

e−c2((nθ/2)δ−sδ) ds

≡ I1,n + I2,n + I3,n (4.10)

where θ′ ∈ (0, θ) is chosen such that

θ′
1 + η

2
> 1. (4.11)

Since
∫

Rd T κ
s φ̃0(x)dx ≤ cnd, we can easily get

I2,n ≤ nd/2+θ′δe−c2nθδ
. (4.12)

Now we will bound I3,n. For this purpose we have to bound
∫

Γc
s
T κ

s φ̃0(x)dx. First, note that for

s ≥ nθ′ and large n, we have

Rs = s
1+η
2 ≥ nθ′ 1+η

2 >> n (4.13)

where the last inequality follows by (4.11). Let ξt be the Brownian motion with diffusion
coefficient 2κ. Then we can easily get that

∫

Γc
s

T κ
s φ̃0(x)dx =

∫

B(0,n)
P ( |ξs| > Rs| ξ0 = y) dy. (4.14)
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It follows from (4.11) and (4.13) that there exists a positive constant c such that

|Rs − y| > cRs , ∀y ∈ B(0, n), s ≥ nθ′ . (4.15)

Also from (4.13) we have

Rs >>
√

s. (4.16)

(4.15), (4.16) imply that

P ( |ξs| > Rs| ξ0 = y) ≤ c1e
−c2(Rs/

√
s)2 , ∀y ∈ B(0, n),

and hence from (4.14) we immediately get
∫

Γc
s

T κ
s φ̃0(x)dx ≤ c1n

de−c2(Rs/
√

s)2 .

This implies that

I3,n ≤ c1

∫ nθ/2

nθ′
s−

α(1+η)
2 nd/2ec3nθ′η

ds

≤ nd/2+θδe−c3nθ′η
. (4.17)

Now combine (4.10), (4.12), (4.17) to get

E

[

〈

φ̃nθ/2, 1
〉

1
2

]

≤ cn−θ (4.18)

for all n sufficiently large. Now substitute this bound into (4.8), recall that lnθ = cn−θ and this
finishes the proof.

Proof of Theorem 1.1 As in the proof of Theorem 1.2, we take the compact set to be the
unit ball. Recall X̃n is the process starting at X̃n

0 (dx) = 1B(0,n)c(x)dx. Fix φ ∈ C∞
0 such that

φ(x) =

{

1, x ∈ B(0, 1),
0, x ∈ Bc(0, 2).

Then

P

(

∫ (n+1)θ

0
X̃n

s (B(0, 1))ds = 0

)

= lim
m→∞

E

(

exp

(

−m

∫ (n+1)θ

0

〈

X̃n
s , 1B(0,1)

〉

ds

))

≥ lim
m→∞

E

(

exp

(

−m

∫ (n+1)θ

0

〈

X̃n
s , φ

〉

ds

))

≥ lim
m→∞

E

(

exp

(

−
∫

B(0,n)c

V m
(n+1)θ(x)dx

))

(4.19)
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where (4.19) follows by Theorem 2.18 and V m
t (·) = Vt(mφ, 0, ·) (recall that Vt satisfies (2.25)).

Note that V m
t increases to V ∞

t . In the end we will be interested in the limiting behavior of the
expression (4.19) as n → ∞. Hence we may assume without loss of generality that n ≥ 10.
Now we will apply Lemma 3.5 of Dawson et al [5]. Although that lemma was proved for the
particular case of κ = σ2 = 1/2, it can be easily generalized to our case, in a way that it implies
the following (we fix R = 2, r = 4 in that lemma):

V ∞
t (x) ≤ cP(T4 ≤ t|ξ0 = x), ∀|x| > 4

where
T4 = inf{t : |ξt| ≤ 4},

and ξt is a Brownian motion with diffusion coefficient 2κ. As

P(T4 ≤ t|ξ0 = x) ≤ P

(

sup
s≤t

|ξs| > |x| − 4

∣

∣

∣

∣

ξ0 = 0

)

≤ c1e
−c2|x|2/t, ∀|x| ≥ 10,

we have
V ∞

t (x) ≤ c1e
−c2|x|2/t, ∀|x| ≥ 10. (4.20)

>From (4.19) and (4.20), we get

P

(

∫ (n+1)θ

0
X̃n

s (B(0, 1))ds = 0

)

≥ exp

(

−
∫

B(0,n)c

V ∞
(n+1)θ(x)dx

)

≥ exp

(

−
∫

B(0,n)c

c1e
−c2|x|2/(n+1)θ

dx

)

≥ e−e−nδ′

(4.21)

for some 0 < δ′ < 2 − θ.

Now put together Lemma 4.2 and (4.1), (4.2), (4.21) to get

P

(

Xt(B(0, 1)) 6= 0, ∃t ∈ [nθ, (n + 1)θ]
)

≤ P

(

Xn
nθ 6= 0 or

∫ (n+1)θ

0
X̃n

s (B(0, 1))ds 6= 0

)

≤ cn−θ + c(1 − e−e−nδ′

). (4.22)

The last expression is summable in n. Hence, by Borel-Cantelli’s lemma, a.s., there exists N(ω)
such that

Xt(B(0, 1)) = 0, ∀t ≥ N(ω).
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Remark 4.3. As in Remark 3.2 we would like to mention a possibility to extend Theorem 1.1
to the case where κ is small and the homogeneous noise satisfies condition (3.8). Here it is

not enough to show (3.11). One should also prove that P

(〈

φ̃nθ/2, 1
〉

> 1
)

converges to zero

sufficiently fast in order to apply Borel-Cantelli argument.
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