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Abstract

We prove such a multivariate version of Bernstein’s inequality about the tail distribution
of degenerate U -statistics which is an improvement of some former results. This estimate
will be compared with an analogous bound about the tail distribution of multiple Wiener-Itô
integrals. Their comparison shows that our estimate is sharp. The proof is based on good
estimates about high moments of degenerate U -statistics. They are obtained by means of a
diagram formula which enables us to express the product of degenerate U -statistics as the
sum of such expressions.
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1 Introduction.

Let us consider a sequence of iid. random variables ξ1, ξ2, . . ., on a measurable space (X,X ) with
some distribution µ together with a real valued function f = f(x1, . . . , xk) of k variables defined
on the k-th power (Xk,X k) of the space (X,X ) and define with their help the U -statistics In,k(f),
n = k, k + 1, . . .,

In,k(f) =
1

k!

∑

1≤js≤n, s=1,...,k
js 6=js′ if s 6=s′

f (ξj1 , . . . , ξjk
) . (1)

We want to get good estimates on the probabilities P
(
n−k/2k!|In,k(f)| > u

)
for u > 0 under

appropriate conditions.

Let me first recall a result of Arcones and Giné (2) in this direction. They have proved the
inequality

P
(

k!n−k/2|In,k(f)| > u
)

≤ c1 exp






− c2u

2/k

σ2/k
(

1 + c3

(
un−k/2σ−(k+1)

)2/k(k+1)
)






(2)

for all u > 0 with some universal constants c1, c2 and c3 depending only on the order k of the
U -statistic In,k(f) defined in (1) if the function f satisfies the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, (3)

‖f‖2
2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2, (4)

and it is canonical with respect to the probability measure µ, i.e.
∫

f(x1, . . . , xj−1, u, xj+1, . . . , xk)µ( du) = 0 for all 1 ≤ j ≤ k

and xs ∈ X, s ∈ {1, . . . k} \ {j}.

A U -statistic defined in (1) with the help of a canonical function f is called degenerate in the
literature. Degenerate U -statistics are the natural multivariate versions of sums of iid. random
variables with expectation zero.

Actually Arcones and Giné formulated their result in a slightly different but equivalent form.
They called their estimate (2) a new Bernstein-type inequality. The reason for such a name is
that the original Bernstein inequality (see e.g. (3), 1.3.2 Bernstein inequality) states relation (2)
in the special case k = 1 with constants c1 = 2, c2 = 1

2 and c3 = 1
3 if the function f(x) satisfies

the conditions sup
x

|f(x)| ≤ 1,
∫

f(x)µ( dx) = 0 and
∫

f2(x)µ( dx) ≤ σ2. (Bernstein’s inequality

states a slightly stronger estimate in the case k = 1. It states this inequality with constants
c1 = 1, c2 = 1

2 and c3 = 1
3 if there is no absolute value inside the probability at the left-hand

side of (2).)

Our goal is to prove such an improvement of this result which gives the right value of the
parameter c2 in formula (2), and we also want to explain the probabilistic content of such an
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improvement. For this goal let us first make a more detailed comparison between Bernstein’s
inequality and estimate (2).

Let us consider the sum Sn =
n∑

j=1
ξj of iid. random variables ξ1, . . . , ξn such that Eξ1 = 0,

P (|ξ1| ≤ 1) = 1, and consider the probability pn(u) = P
(

1√
n
Sn > u

)

for all u > 0. Put

σ2 = Eξ2
1 . Bernstein’s inequality implies that

pn(u) ≤ exp

{

−
(

1 − Ku√
nσ2

)
u2

2σ2

}

for all 0 ≤ u ≤
√

nσ2

with some number K < 1. A similar estimate holds for 0 ≤ u ≤ C
√

nσ2 for any number
C > 0, but in the case u ≫ √

nσ2 only a much weaker inequality holds. (See Example 2.4
in (10) for an example where only a very weak estimate holds if u ≫ √

nσ2.) This means that
Bernstein’s inequality has the following perturbation type character. For small numbers u (if
0 < u < ε

√
nσ2 with some small ε > 0) the expression in the exponent of the upper bound

given for pn(u) is a small perturbation of −σ2

2 , of the expression suggested by the central limit
theorem. For u ≤ const.

√
nσ2 a similar bound holds, only with a worse constant in the exponent.

If u ≫ √
nσ2, then no good Gaussian type estimate holds for the probability pn(u).

Next I formulate the main result of this paper, Theorem 1, which is an estimate similar to that
of (2). But, as I will show, it is sharper, and it has a perturbation type character, similar to
Bernstein’s inequality.

Theorem 1. Let ξ1, . . . , ξn be a sequence of iid. random variables on a space (X,X ) with some
distribution µ. Let us consider a function f(x1, . . . , xk), canonical with respect to the measure µ

on the space (Xk,X k) which satisfies conditions (3) and (4) with some 0 < σ2 ≤ 1 together
with the degenerate U -statistic In,k(f) with this kernel function f . There exist some constants
A = A(k) > 0 and B = B(k) > 0 depending only on the order k of the U -statistic In,k(f) such
that

P (k!n−k/2|In,k(f)| > u) ≤ A exp






− u2/k

2σ2/k
(

1 + B
(
un−k/2σ−(k+1)

)1/k
)






(5)

for all 0 ≤ u ≤ nk/2σk+1.

Remark: Actually, the universal constant B > 0 can be chosen independently of the order k of
the degenerate U -statistic In,k(f) in inequality (5).

To understand the content of Theorem 1 better let us recall the following limit distribution
result about degenerate U -statistics, (see e.g. (4)). If the canonical function f of k variables
satisfies condition (4), then the degenerate U -statistics n−k/2In,k(f) converge in distribution to
the k-fold Wiener–Itô integral Jµ,k(f),

Jµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW (dxk), (6)

of the function f with respect to a white noise µW with reference measure µ. Here µ is the
distribution of the random variables ξj , j = 1, 2, . . . appearing in the U -statistics In,k(f). Let
me recall that a white noise µW with reference measure µ on (X,X ) is a set of jointly Gaussian
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random variables µW (A), A ∈ X , µ(A) < ∞, such that EµW (A) = 0, EµW (A)µW (B) =
µ(A ∩ B) for all A ∈ X and B ∈ X . The definition of Wiener–Itô integrals can be found for
instance in (6) or (8).

The above result suggests to describe the tail-distribution of the Wiener–Itô integral Jµ,k(f) and
to show that Theorem 1 gives such an estimate which the above mentioned limit theorem and
the tail distribution of Jµ,k(f) suggests. At this moment there appears an essential difference
between the problem discussed in Bernstein’s inequality and its multivariate version.

We want to estimate both the U -statistic In,k(f) and the Wiener–Itô integral Jµ,k(f) by
means of their variance. (Let me remark that the integral in formula (4) equals the vari-
ance of (k!)1/2Jµ,k(f), and it is asymptotically equal to the variance of (k!)1/2n−k/2In,k(f) for
large n. At least, this is the case if f is a symmetric function of its variables. But, since
In,k(f) = In,k(Sym f), Jµ,k(f) = Jµ,k(Sym f), and ‖Sym f‖2

2 ≤ ‖f‖2
2 we may restrict our at-

tention to this case.) But while the variance and expectation determines the distribution of a
Gaussian random variable, the distribution of a Wiener–Itô integral is not determined by its
variance and (zero) expectation. Hence if we want to compare the estimation of degenerate
U -statistics by means of their variance with a natural Gaussian counterpart of this problem,
then it is natural to consider first the following problem.

Find such an upper estimate for the tail distribution of Wiener–Itô integrals which holds for
all of them with a prescribed bound on their variances, and which is sharp in the following
sense. There is a Wiener–Itô integral whose variance is not larger than the prescribed bound,
and which satisfies a very similar lower estimate. Then the estimate for degenerate U -statistics
has to be compared with such an estimate for Wiener–Itô integrals. The following Theorem 2
and Example 3 give an estimate for Wiener–Itô integrals with the desired properties. (These
results were proven in (11).) They suggest to compare the upper bound in Theorem 1 with the

function const. exp
{

−1
2

(
u
σ

)2/k
}

with some appropriate constant.

Theorem 2. Let us consider a σ-finite measure µ on a measurable space together with a white
noise µW with reference measure µ. Let us have a real-valued function f(x1, . . . , xk) on the
space (Xk,X k) which satisfies relation (4) with some σ2 < ∞. Take the random integral Jµ,k(f)
introduced in formula (6). This random integral satisfies the inequality

P (k!|Jµ,k(f)| > u) ≤ C exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (7)

with an appropriate constant C = C(k) > 0 depending only on the multiplicity k of the integral.

Example 3. Let us have a σ-finite measure µ on some measure space (X,X ) together with
a white noise µW on (X,X ) with reference measure µ. Let f0(x) be a real valued function on
(X,X ) such that

∫
f0(x)2µ( dx) = 1, and take the function f(x1, . . . , xk) = σf0(x1) · · · f0(xk)

with some number σ > 0 and the Wiener–Itô integral Jµ,k(f) introduced in formula (6).

Then the relation
∫

f(x1, . . . , xk)2 µ( dx1) . . . µ( dxk) = σ2 holds, and the random integral Jµ,k(f)
satisfies the inequality

P (k!|Jµ,k(f)| > u) ≥ C̄
(

u
σ

)1/k
+ 1

exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (8)
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with some constant C̄ > 0.

By Theorem 1 there are some constants α > 0, C1 > 0, 1 > C2 > 0, C1α < 1 such that under
the conditions of this result

P (k!n−k/2|In,k(f)| > u) ≤ A exp

{

−1

2

(u

σ

)2/k
(

1 − C1

( u

nk/2σk+1

)1/k
)}

if 0 < u ≤ αnk/2σk+1

and

P (k!n−k/2|In,k(f)| > u) ≤ A exp

{

−C2

(u

σ

)2/k
}

if αnk/2σk+1 < u ≤ nk/2σk+1.

A comparison of these estimates with Theorem 2 and Example 3 shows that Theorem 1 has a
behaviour similar to that of Bernstein’s inequality. For relatively small numbers u > 0, more
precisely if 0 < u < εnk/2σk+1 with some ε > 0, the expression in the exponent at the right-hand

side of this estimate is very close to −1
2

(
u
σ

)2/k
, the term suggested by Theorem 2 and Example 3.

In the more general case u ≤ nk/2σk+1 a similar, but somewhat worse estimate holds. The term

−
(

u
σ

)2/k
in the upper estimate is multiplied by a constant C2 > 0 in this case which may be

much smaller than 1
2 . So the estimate of Theorem 1 has such a perturbation type character

which is missing from the estimate (2).

On the other hand it may seem that the estimate (2) has the advantage that it yields a
bound for the tail-distribution of a degenerate U -statistic for all numbers u > 0, while for-
mula (5) holds only under the condition 0 ≤ u ≤ nk/2σk+1. Nevertheless, formula (5) im-
plies such an estimate also for u > nk/2σk+1 which is not weaker than the inequality (2)
(at least if we do not bother about the value of the universal constants in these estimates).
To see this observe that relation (3) remains valid if σ2 is replaced by any σ̄2 ≥ σ2. As
a consequence, for nk/2 ≥ u > nk/2σk+1 relation (5) holds with the replacement of σ by

σ̄ =
(
un−k/2

)1/(k+1)
, since all conditions of Theorem 1 are satisfied with such a choice. It yields

that P (k!n−k/2|In,k(f)| > u) ≤ A exp
{

− 1
2(1+B)1/k

(
u
σ̄

)2/k
}

= Ae−(u2n)1/(k+1)/2(1+B)1/k
. On the

other hand, σ2/k
(

1 + c3

(
un−k/2σ−(k+1)

)2/k(k+1)
)

≥ c3u
2/k(k+1)n−1/(k+1), hence the right-hand

side of (2) can be bounded from below by c1e
−c2(u2n)1/(k+1)/c3 . Thus relation (5) implies relation

(1.2) if nk/2 ≥ u > nk/2σk+1 with possibly worse constants c̄1 = A, c2 and c̄3 = 2c2(1 +B)1/k. If
u > nk/2, then the left-hand side of (2) equals zero because of the boundedness of the function f ,
and relation (2) clearly holds.

Actually the condition u ≤ nk/2σk+1 was rather natural in Theorem 1. It can be shown that
in the case u ≫ nk/2σk+1 there are such degenerate U -statistics satisfying the conditions of
Theorem 1 for which the probability P (n−k/2k!In,k(f) > u) is much greater than the expres-
sion suggested by the limit theorem for degenerate U -statistics together with Theorem 2 and
Example 3. Such an example is presented in Examples 4.5 in (10) for k = 2. With some ex-
tra work similar examples of degenerate U -statistics of order k could also be constructed for
any k = 2, 3, . . ..
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Let me say some words about the method of proofs. Theorem 1 will be proved by means
of good estimates on high moments of degenerate U -statistics. These moment estimates will
be obtained with the help of a new type of diagram formula which enables us to write the
product of degenerate U -statistics as the sum of degenerate U -statistics. Such a formula may be
interesting in itself. It is a version of an important result about the representation of a product
of Wiener–Itô integrals in the form of sums of Wiener–Itô integrals. It makes possible to adapt
the methods in the theory of Wiener–Itô integrals to the study of degenerate U -statistics. It also
gives some insight why the tail distributions of degenerate U -statistics and Wiener–Itô integral
satisfy similar estimates.

This approach is essentially different from that of earlier papers in this field, e.g. from the proof
of paper (2). I had to choose a different method, because the technique of previous papers was
not strong enough to prove Theorem 1. They give only such weaker estimates for high moments
of degenerate U -statistics which are not sufficient for our purposes. This weakness has different
causes. First, previous proofs apply an estimate called Borell’s inequality in the literature, which
does not supply a sharp estimate in certain cases. This has the consequence that we can get only
a relatively weak estimate about high moments of degenerate U -statistics in such a way. (See
the end of my paper (11) for a more detailed discussion of this problem.) Beside this, earlier
papers in this field apply a method called the decoupling technique in the literature, and this
method has some properties which enable only the proof a weaker version of Theorem 1.

The decoupling technique contains some randomization procedure, and as a more careful analysis
shows, its application allows us to prove only relatively weak estimates. The randomization
procedure applied in the decoupling technique makes possible to reduce the estimation of the
degenerate U -statistic we want to bound to the estimation of another degenerate U -statistic
which can be better handled. But this new U -statistic has a larger variance than the original
one. As a consequence, this method cannot give such a good estimate which ‘resembles’ to the
limit distribution of the original U -statistic. Hence for relatively small numbers u it supplies a
weaker estimate for the distribution of degenerate U -statistics than formula 1.5.

Let me still remark that at recent time some new estimates are proved about the tail distribution
of degenerate U -statistics. (See (1), (5), (7).) They may supply a better bound in certain cases
with the help of some additional quantities related to the properties of the kernel function of
the U -statistic. Such problems will be not discussed in this paper, but I would remark that the
method of this paper may work also in such investigations. The diagram formula supplies a
better estimate for the moments of a degenerate U -statistic if its kernel function has some nice
properties. There is some hope that the recent results about the tail distribution of degenerate
U -statistics can be proved in such a way.

This paper consists of six sections. In Section 2 the proof of Theorem 1 is reduced to a moment
estimate for degenerate U -statistics formulated in that section. To understand the content of
this moment estimate better I also present its Wiener–Itô integral counterpart. Theorem 2
follows from this moment estimate for Wiener–Itô integrals in a standard way. This proof will
be omitted, since it can be found in (11). The proof of Example 3 can also be found in (11), hence
its proof will be also omitted. Sections 3, 4 and 5 contain the proof of the diagram formula for
the product of degenerate U -statistics needed in the proof of the moment estimate in Section 2.
The diagram formula about the product of two degenerate U -statistics is formulated in Section 3,
and its proof is given in Section 4. Section 5 contains the formulation and proof of the diagram
formula for the products of degenerate U -statistics in the general case. In Section 6 the moment
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estimate given is Section 2 is proved by means of the diagram formula. In such a way the proof
of Theorem 1 is completed.

2 The reduction of the proof of Theorem 1 to a moment esti-

mate.

Theorem 1 will be proved by means of the following

Proposition A. Let us consider a degenerate U -statistic In,k(f) of order k with sample size
n and with a kernel function f satisfying relations (3) and (4) with some 0 < σ2 ≤ 1. Fix a
positive number η > 0. There exist some universal constants A = A(k) >

√
2, C = C(k) > 0

and M0 = M0(k) ≥ 1 depending only on the order k of the U -statistic In,k(f) such that

E
(

n−k/2k!In,k(f)
)2M

≤ A (1 + C
√

η)2kM

(
2

e

)kM

(kM)kM σ2M

for all integers M such that kM0 ≤ kM ≤ ηnσ2. (9)

The constant C = C(k) in formula (9) can be chosen e.g. as C = 2
√

2 which does not depend
on the order k of the U -statistic In,k(f).

To understand the content of Proposition A better I formulate its Wiener–Itô integral counter-
part in the following

Proposition B. Let the conditions of Theorem 2 be satisfied for a multiple Wiener–Itô integral
Jµ,k(f) of order k. Then, with the notations of Theorem 2, the inequality

E (k!|Jµ,k(f)|)2M ≤ 1 · 3 · 5 · · · (2kM − 1)σ2M for all M = 1, 2, . . . (10)

holds.

By the Stirling formula Proposition B implies that

E(k!|Jµ,k(f)|)2M ≤ (2kM)!

2kM (kM)!
σ2M ≤ A

(
2

e

)kM

(kM)kMσ2M (11)

for any A >
√

2 if M ≥ M0 = M0(A). The right-hand side of formula (10) is almost as large as
the right-hand side of formula (11). Hence the estimate (11) gives an almost as good estimate
as Proposition B. We shall use this estimate in the sequel because of its simpler form.

Proposition B can be considered as a corollary of a most important result about Wiener–Itô
integrals called the diagram formula. This result enables us to rewrite the product of Wiener–Itô
integrals as a sum of Wiener–Itô integrals of different order. It got the name ‘diagram formula’
because the kernel functions of the Wiener–Itô integrals appearing in the sum representation
of the product of Wiener–Itô integrals are defined with the help of certain diagrams. As the
expectation of a Wiener–Itô integral of order k equals zero for all k ≥ 1, the expectation of the
product is equal to the sum of the constant terms (i.e. of the integrals of order zero) in the
diagram formula. In such a way the diagram formula yields an explicit (although somewhat
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complicated) formula about the moments of Wiener–Itô integrals. Proposition B can be proved
relatively simply by means of this relation. Since it is written down in paper (11), I omit the
details.

We shall see that there is such a version of the diagram formula which expresses the product of
degenerate U -statistics as a sum of degenerate U -statistics of different order by means of some
appropriately defined diagrams. Proposition A can be proved by means of this version of the
diagram formula similarly to Proposition B. The proof of Proposition A with the help of this
version of the diagram formula will be given in Section 6. The main difference between the
proof of Propositions A and B with the help of the corresponding diagram formula is that in
the case of degenerate U -statistics the diagram formula contains some additional new diagrams,
and their contribution also has to be estimated. It will be shown that if not too high moments
of U -statistics are calculated by means of the diagram formula, then the contribution of the new
diagrams is not too large.

To understand better the content of Proposition A let us compare formulas (9) and (11). These
estimates are very similar. The upper bound given for the 2M -th moment of a degenerate U -
statistic in formula (9) is less than AM -times the upper bound given for the 2M -th moment
of the corresponding Wiener–Itô integral in formula (11) with some universal constant A > 1.
Moreover, the constant A is very close to 1 if the parameter M is relatively small, if M ≤ εnσ2

with some small number ε > 0. But the estimate (9) holds only for not too large parameters M ,
because of the condition kM < ηnσ2 in it. Because of this condition Proposition A gives a much
worse bound for the 2M -th moment of a degenerate U -statistic if M ≫ nσ2 than inequality (11)
yields for the 2M -th moment of the corresponding Wiener–Itô integral. These properties of
the moment estimates in Proposition A are closely related to the behaviour of the estimate in
Theorem 1, in particular to the condition u ≤ nk/2σk+1 in it.

Theorem 2 can be proved by means of Proposition B and the Markov inequality P (|Jµ,k(f)| >

u) ≤ EJµ,k(f)2M

u2M with a good choice of the parameter M . This is a rather standard approach,
and this proof is written down in (11). Hence I omit it. Theorem 1 can be proved similarly with
the help of Proposition A and the Markov inequality, but in this case a more careful analysis is
needed to find the good choice of the parameter M with which the Markov inequality should be
applied. I work out the details.

Proof of Theorem 1 by means of Proposition A. We can write by the Markov inequality and
Proposition A with the choice η = kM

nσ2 that

P (k!n−k/2|In,k(f)| > u) ≤ E
(
k!n−k/2In,k(f)

)2M

u2M
(12)

≤ A




1

e
· 2kM

(

1 + C

√
kM√
nσ

)2
(σ

u

)2/k





kM

for all integers M ≥ M0 with some M0 = M0(k) and A = A(k).

We shall prove relation (5) with the help of estimate (12) first in the case D ≤ u
σ ≤ nk/2σk with

a sufficiently large constant D = D(k, C) > 0 depending on k and the constant C in (12). To
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this end let us introduce the numbers M̄ ,

kM̄ =
1

2

(u

σ

)2/k 1

1 + B
(u

σ )
1/k

√
nσ

=
1

2

(u

σ

)2/k 1

1 + B
(
un−k/2σ−(k+1)

)1/k
(13)

with a sufficiently large number B = B(C) > 0 and M = [M̄ ], where [x] means the integer part
of the number x.

Observe that
√

kM̄ ≤
(

u
σ

)1/k
,
√

kM̄√
nσ

≤
(
un−k/2σ−(k+1)

)1/k ≤ 1, and

(

1 + C

√
kM̄√
nσ

)2

≤ 1 + B

√
kM̄√
nσ

≤ 1 + B
(

un−k/2σ−(k+1)
)1/k

with a sufficiently large B = B(C) > 0 if u
σ ≤ nk/2σk. Hence

1

e
· 2kM

(

1 + C

√
kM√
nσ

)2
(σ

u

)2/k
≤ 1

e
· 2kM̄

(

1 + C

√
kM̄√
nσ

)2
(σ

u

)2/k

≤ 1

e
·

(

1 + C
√

kM̄√
nσ

)2

1 + B
(
un−k/2σ−(k+1)

)1/k
≤ 1

e
(14)

if u
σ ≤ nk/2σk. If the inequality D ≤ u

σ also holds with a sufficiently large D = D(B, k) > 0, then

M = [M̄ ] ≥ M0 because of the definition of [M̄ ] in formula (13) and the relation un−k/2σk+1 ≤ 1.
With such a choice the conditions of inequality (12) hold. By applying it together with inequality
(14) we get that

P (k!n−k/2|In,k(f)| > u) ≤ Ae−kM ≤ Aeke−kM̄

if D ≤ u
σ ≤ nk/2σk. This means that inequality (5) holds in this case with a pre-exponential

constant Aek. Since e−kM̄ is bounded from below for u
σ ≤ D relation (5) holds for all 0 ≤ u

σ ≤
nk/2σk with a possible increase of the pre-exponential coefficient Aek in it. Theorem 1 is proved.

Let us observe that the above calculations show that the constant B in formula (8) can be chosen
independently of the order k of the U -statistics In,k(f).

3 The diagram formula for the product of two degenerate U-

statistics.

To prove Proposition A we need a good identity which expresses the expectation of the product
of degenerate U -statistics in a form that can be better handled. Such an identity can be proved
by means of a version of the diagram formula for Wiener–Itô integrals where the product of
degenerate U -statistics is represented as the sum of degenerate U -statistics with appropriate
kernel functions. In such a formula the kernel functions of the sum representation are defined
with the help of some diagrams, and to get a useful result we also need a good estimate on their
L2-norm.
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We shall prove such a result. First we prove its special case about the product of two degenerate
U -statistics together with a good estimate on the L2-norm of the kernel functions in the sum
representation. Then the result in the general case can be obtained by induction.

In the case of the product of two degenerate U -statistics the result we want to prove can be ob-
tained with the help of the following observation. Let us have a sequence of iid. random variables
ξ1, ξ2, . . . with some distribution µ on a measurable space (X,X ) together with two functions
f(x1, . . . , xk1) and g(x1, . . . , xk2) on (Xk1 ,X k1) and on (Xk2 ,X k2) respectively which are canon-
ical with respect to the probability measure µ. We consider the degenerate U -statistics In,k1(f)
and In,k2(g) and want to express their normalized product k1!k2!n−(k1+k2)/2In,k1(f)In,k2(g) as
a sum of (normalized) degenerate U -statistics. This product can be presented as a sum of U -
statistics in a natural way. Then by writing each term of this sum as a sum of degenerate
U -statistics by means of the Hoeffding decomposition we get the desired representation of the
product. This result will be formulated in Theorem A.

In this Section Theorem A will be described together with the introduction of the notations
needed for its formulation. Its proof will be given in the next Section.

To define the kernel functions of the U -statistics appearing in the diagram formula for the
product of two U -statistics first we introduce a class of objects Γ(k1, k2) we shall call coloured
diagrams. We define graphs γ ∈ Γ(k1, k2) that contain the vertices (1, 1), (1, 2), . . . , (1, k1) which
we shall call the first row and (2, 1) . . . , (2, k2) which we shall call the second row of these graphs.
From each vertex there starts zero or one edge, and each edge connects vertices from different
rows. Each edge will get a colour +1 or −1. Γ(k1, k2) consists of all γ obtained in such a way.
These objects γ will be called coloured diagrams.

Given a coloured diagram γ ∈ Γ(k1, k2) let Bu(γ) denote the set of upper end-points (1, j) of
the edges of the graph γ, B(b,1)(γ) the set of lower end-points (2, j) of the edges of γ with colour
1, and B(b,−1)(γ) the set of lower end-points (2, j) of the edges of γ with colour −1. (The letter
‘b’ in the index was chosen because of the word below.) Finally, let Z(γ) denote the set of edges
with colour 1, W (γ) the set of edges with colour −1 of a coloured graph γ ∈ Γ(k1, k2), and let
|Z(γ)| and |W (γ)| denote their cardinality.

Given two functions f(x1, . . . , xk1) and g(x1, . . . , xk2) let us define the function

(f ◦ g)(x(1,1), . . . , x(1,k1), x(2,1), . . . , x(2,k2))

= f(x(1,1), . . . , x(1,k1))g(x(2,1), . . . , x(2,k2)) (15)

Given a function h(xu1 , . . . , xur) with coordinates in the space (X,X ) (the indices u1, . . . , ur are
all different) let us introduce its transforms Pujh and Qujh by the formulas

(Pujh)(xul
: ul ∈ {u1, . . . , ur} \ {uj}) =

∫

h(xu1 , . . . , xur)µ( dxuj ), 1 ≤ j ≤ r, (16)

and

(Qujh)(xu1 , . . . , xur) = h(xu1 , . . . , xur) −
∫

h(xu1 , . . . , xur)µ( dxuj ), 1 ≤ j ≤ r. (17)

At this point I started to apply a notation which may seem to be too complicated, but I think
that it is more appropriate in the further discussion. Namely, I started to apply a rather
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general enumeration u1, . . . , ur of the arguments of the functions we are working with instead of
their simpler enumeration with indices 1, . . . , r. But in the further discussion there will appear
an enumeration of the arguments by pairs of integers (l, j) in a natural way, and I found it
simpler to work with such an enumeration than to reindex our variables all the time. Let me
remark in particular that this means that the definition of the U -statistic with a kernel function
f(x1, . . . , xk) given in formula (1) will appear sometimes in the following more complicated,
but actually equivalent form: We shall work with kernel function f(xu1 , . . . , xuk

) instead of
f(x1, . . . , xk), the random variables ξj will be indexed by us, i.e. to the coordinate xus we shall
put the random variables ξjus

with indices 1 ≤ jus ≤ n, and in the new notation formula (1)
will look like

In,k(f) =
1

k!

∑

1≤jus≤n, s=1,...,k
jus 6=ju′

s
if us 6=u′

s

f
(

ξju1
, . . . , ξjuk

)

.

Let us define for all coloured diagrams γ ∈ Γ(k1, k2) the function αγ(1, j), 1 ≤ j ≤ k1, on the
vertices of the first row of γ as αγ(1, j) = (1, j) if no edge starts from (1, j), and αγ(1, j) = (2, j′)
if an edge of γ connects the vertices (1, j) and (2, j′). Given two functions f(x1, . . . , xk1) and
g(x1, . . . , xk2) together with a coloured diagram γ ∈ Γ(k1, k2) let us introduce, with the help of
the above defined function αγ(·) and (f ◦ g) introduced in (15) the function

(f ◦ g)γ(x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2)

= (f ◦ g)(xαγ(1,1), . . . , xαγ(1,k1), x(2,1), . . . , x(2,k2)). (18)

(In words, we take the function (f ◦ g), and if there is an edge of γ starting from a vertex (1, j),
and it connects this vertex with the vertex (2, j′), then the argument x(1,j) is replaced by the
argument x(2,j′) in this function.) Let us also introduce the function

(f ◦ g)γ

(
x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1)

)

=
∏

(2,j′)∈B(b,1)(γ)

P(2,j′)

∏

(2,j′)∈B(b,−1)(γ)

Q(2,j′)

(f ◦ g)γ

(
x(j,1), x(j′,2), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2

)
. (19)

(In words, we take the function (f ◦ g)γ and for such indices (2, j′) of the graph γ from which an
edge with colour 1 starts we apply the operator P(2,j′) introduced in formula (16) and for those
indices (2, j′) from which an edge with colour −1 starts we apply the operator Q(2,j′) defined
in formula (17).) Let us also remark that the operators P(2,j′) and Q(2,j′) are exchangeable for
different indices j′, hence it is not important in which order we apply the operators P(2,j′) and
Q(2,j′) in formula (19).

In the definition of the function (f ◦ g)γ those arguments x(2,j′) of the function (f ◦ g)γ which
are indexed by such a pair (2, j′) from which an edge of colour 1 of the coloured diagram γ starts
will disappear, while the arguments indexed by such a pair (2, j′) from which an edge of colour
−1 of the coloured diagram γ starts will be preserved. Hence the number of arguments in the
function (f ◦ g)γ equals k1 + k2 − 2|B(b,1)(γ)| − |B(b,−1)(γ)|, where |B(b,1)(γ)| and |B(b,−1)(γ)|
denote the cardinality of the lower end-points of the edges of the coloured diagram γ with colour
1 and −1 respectively, In an equivalent form we can say that the number of arguments of (f ◦g)γ

equals k1 + k2 − (2|Z(γ)| + |W (γ)|).
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Now we are in the position to formulate the diagram formula for the product of two degenerate
U -statistics.

Theorem A. Let us have a sequence of iid. random variables ξ1, ξ2, . . . with some distribution µ

on some measurable space (X,X ) together with two bounded, canonical functions f(x1, . . . , xk1)
and g(x1, . . . , xk2) with respect to the probability measure µ on the spaces (Xk1 ,X k1) and
(Xk2 ,X k2). Let us introduce the class of coloured diagrams Γ(k1, k2) defined above together
with the functions (f ◦ g)γ defined in formulas (15)—(19).

For all γ ∈ Γ the function (f ◦ g)γ is canonical with respect to the measure µ with k(γ) =
k1 + k2 − (2|Z(γ)| + |W (γ)|) arguments, where |Z(γ)| denotes the number of edges with colour
1 and |W (γ)| the number of edges with colour −1 of the coloured diagram γ. The product of
the degenerate U -statistics In,k1(f) and In,k2(g), n ≥ max(k1, k2), defined in (1) satisfies the
identity

k1!n−k1/2In,k1(f)k2!n−k2/2In,k2(g)

=
∑′(n)

γ∈Γ(k1,k2)

|Z(γ)|∏

j=1
(n − (k1 + k2) + |W (γ)| + |Z(γ)| + j)

n|Z(γ)| (20)

n−|W (γ)|/2 · k(γ)!n−k(γ)/2In,k(γ)((f ◦ g)γ),

where
∑′(n) means that summation is taken only for such coloured diagrams γ ∈ Γ(k1, k2) which

satisfy the inequality k1 + k2 − (|Z(γ)| + |W (γ)|) ≤ n, and
|Z(γ)|∏

j=1
equals 1 in the case |Z(γ)| = 0.

The L2-norm of the functions (f ◦ g)γ is defined by the formula

‖(f ◦ g)γ‖2
2

=

∫

(f ◦ g)2γ(x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1))

∏

(1,j) : j∈{1,...,k1}\Bu(γ)

µ( dx(1,j))
∏

(2,j′) : j′∈{1,...,k2}\B(b,1)

µ( dx(2,j′)).

If W (γ) = 0, then the inequality

‖(f ◦ g)γ‖2 ≤ ‖f‖2‖g‖2 (21)

holds. In the general case we can say that if the functions f and g satisfy formula (3), then the
inequality

‖(f ◦ g)γ‖2 ≤ 2|W (γ)| min(‖f‖2, ‖g‖2) (22)

holds. Relations (21) and (22) remain valid if we drop the condition that the functions f and g

are canonical.

Relations (21) and (22) mean in particular, that we have a better estimate for ‖(f ◦ g)γ‖2 in the
case when the coloured diagram γ contains no edge with colour −1, i.e. if |W (γ)| = 0, than in
the case when it contains at least one edge with colour −1.
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Let us understand how we define those terms at the right-hand side of (20) for which k(γ) = 0.
In this case (f ◦ g)γ is a constant, and to make formula (20) meaningful we have to define the
term In,k(γ)((f ◦ g)γ) also in this case. The following convention will be used. A constant c will
be called a degenerate U -statistic of order zero, and we define In,0(c) = c.

Theorem A can be considered as a version of the result of paper (9), where a similar diagram
formula was proved about multiple random integrals with respect to normalized empirical mea-
sures. Degenerate U -statistics can also be presented as such integrals with special, canonical
kernel functions. Hence there is a close relation between the results of this paper and (9). But
there are also some essential differences. For one part, the diagram formula for multiple random
integrals with respect to normalized empirical measures is simpler than the analogous result
about the product of degenerate U -statistics, because the kernel functions in these integrals
need not be special, canonical functions. On the other hand, the diagram formula for degener-
ate U -statistics yields a simpler formula about the expected value of the product of degenerate
U -statistics, because the expected value of a degenerate U -statistic of order k ≥ 1 equals zero,
while the analogous result about multiple random integrals with respect to normalized empirical
measures may not hold. Another difference between this paper and (9) is that here I worked
out a new notation which, I hope, is more transparent.

4 The proof of Theorem A.

The proof of Theorem A. Let us consider all possible sets {(u1, u
′
1), . . . , (ul, u

′
l)}, 1 ≤ l ≤

min(k1, k2) containing such pairs of integers for which us ∈ {1, . . . , k1}, u′
s ∈ {1, . . . , k2},

1 ≤ s ≤ l, all points u1, . . . , ul are different, and the same relation holds for the points u′
1, . . . , u

′
l,

too. Let us correspond the diagram containing two rows (1, 1), . . . , (1, k1) and (2, 1), . . . , (2, k2)
and the edges connecting the vertices (1, us) and (2, u′

s), 1 ≤ s ≤ l to the set of pairs
{(u1, u

′
1), . . . , (ul, u

′
l)}, and let Γ̄(k1, k2) denote the set of all (non-coloured) diagrams we can

obtain in such a way. Let us consider the product k1!In,k1(f)k2!In,k2(g), and rewrite it in the
form of the sum we get by carrying out a term by term multiplication in this expression. Let
us put the terms of this sum into disjoint classes indexed by the elements of the diagrams
γ̄ ∈ Γ̄(k1, k2) in the following way: A product f(ξj1 , . . . , ξjk1

)g(ξj′1
, . . . , ξj′k2

) belongs to the class

indexed by the graph γ̄ ∈ Γ̄(k1, k2) with edges {((1, u1), (2, u′
1)), . . . , ((1, ul), (2, u′

l))} if jus = j′u′

s
,

1 ≤ s ≤ l, for the indices of the random variables appearing in the above product, and no more
coincidence may exist between the indices j1, . . . , jk1 , j

′
1, . . . , j

′
k2

. With such a notation we can
write

n−k1/2k1!In,k1(f)n−k2/2k2!In,k2(g) =
∑′(n)

γ̄∈Γ̄

n−(k1+k2)/2k̄(γ̄)!In,k̄(γ̄)(f ◦ g)γ̄), (23)

where the functions (f ◦ g)γ̄ are defined in formulas (15) and (18). (Observe that a lthough
formula (18) was defined by means of coloured diagrams, the colours played no role in it. The
formula remains meaningful, and does not change if we replace the coloured diagram γ by the
diagram γ̄ we get by omitting the colours of its edges.) The quantity k̄(γ̄) equals the number
of such vertices of γ̄ from the first row from which no edge starts plus the number of vertices in
the second row, and the notation

∑′(n) means that summation is taken only for such diagrams
γ̄ ∈ Γ̄ for which n ≥ k̄(γ̄).
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Let the set V1 = V1(γ̄) consist of those vertices (1, u1) = (1, u1)γ ,. . . , (1, us1) = (1, us1)γ

of the first row {(1, 1), . . . , (1, k1)} of the diagram γ̄ from which no edge starts, and let
V2 = V2(γ̄) contain those vertices (2, v1) = (2, v1)γ ,. . . , (2, vs1) = (2, vs2)γ from the second
row {(2, 1), . . . , (2, k2)} of γ from which no edges start. Then k̄(γ̄) = s1 + k2, and the function
(f ◦ g)γ̄ has arguments of the form x(1,up), (1, up) ∈ V1 and x(2,v), 1 ≤ v ≤ k2.

Relation (23) is not appropriate for our goal, since the functions (f ◦ g)γ̄ in it may be non-
canonical. Hence we apply Hoeffding’s decomposition for the U -statistics In,k̄(γ̄)(f ◦ g)γ̄ in for-
mula (23) to get the desired representation for the product of degenerate U -statistics. Actually
some special properties of the function (f ◦ g)γ̄ enable us to simplify a little bit this decompo-
sition. (The Hoeffding decomposition is a simple but important result which gives an explicit
method to rewrite a general U -statistic in the form of sums of degenerate U -statistics. It has
an equivalent reformulation by which an arbitrary (kernel) function of several variables can be
rewritten as the sum of canonical functions with different number of variables. It has a concise
explanation for instance in the Appendix of (4). In the subsequent considerations I write down
what this result yields in the present situation.)

To carry out this procedure let us observe that a function f(xu1 , . . . , uuk
) is canonical if and only

if Pul
f(xu1 , . . . , xuk

) = 0 with the operator Pul
defined in (16) for all indices ul. Beside this, the

condition that the functions f and g are canonical implies the relations P(1,u)(f ◦ g)γ̄ = 0 for

(1, u) ∈ V1 and P(2,v)(f ◦ g)γ̄ = 0 for (2, v) ∈ V2. Moreover, these relations remain valid if we

replace the functions (f ◦ g)γ̄ by such functions which we get by applying the product of some
transforms P(2,v) and Q(2,v), (2, v) ∈ {(2, 1), . . . , (2, k2)} \ V2 for them with the transforms P

and Q defined in formulas (16) and (17). (Here we applied such transforms P and Q which are
indexed by those vertices of the second row of γ̄ from which some edge starts.)

Beside this, the transforms P(2,v) or Q(2,v) are exchangeable with the operators P(2,v′) or Q(2,v′)

if v 6= v′, P(2,v) + Q(2,v) = I, where I denotes the identity operator, and P(2,v)Q(2,v) = 0,
since P(2,v)Q(2,v) = P(2,v) − P 2

(2,v) = 0. The above relations enable us to make the following

decomposition of the function (f ◦ g)γ̄ to the sum of canonical functions (just as it is done in
the Hoeffding decomposition): Let us introduce the class of those coloured diagram Γ(γ̄) which
we can get by colouring all edges of the diagram γ either with colour 1 or colour −1. Some
calculation shows that

(f ◦ g)γ̄ =




∏

(2,v)∈{(2,1),...,(2,k2)}\V2

(P(2,v) + Q(2,v))



 (f ◦ g)γ̄ =
∑

γ∈Γ(γ̄)

(f ◦ g)γ , (24)

where the function (f ◦ g)γ is defined in formula (19). We get the right-hand side of relation
(24) by carrying out the multiplications for the middle term of this expression, and exploiting
the properties of the operators P(2,v) and Q(2,v). Moreover, these properties also imply that
the functions (f ◦ g)γ are canonical functions of their variables x(1,u), (1, u) ∈ V1 and x(2,v),
(2, v) ∈ B(b,−1)(γ) ∪ V2. Indeed, the above properties of the operators P(2,v) and Q(2,v) imply
that P(1,u)(f ◦ g)γ = 0 if (1, u) ∈ V1, and P(2,v)(f ◦ g)γ = 0 if (2, v) ∈ B(b,−1)(γ) ∪ V2.

Let Z(γ) denote the set of edges of colour 1, W (γ) the set of edges of colour −1 in the coloured
diagram γ, and let |Z(γ)| and W (γ)| be their cardinality. Then (f ◦g)γ is a (canonical) function
with k(γ) = k1 + k2 − (|W (γ)| + 2|Z(γ)|) variables, and formula (24) implies the following
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representation of the U -statistic In,k̄(γ̄)

(
f ◦ g)γ̄

)
in the form of a sum of degenerate U -statistics:

n−(k1+k2)/2k̄(γ̄)!In,k̄(γ̄)

(
(f ◦ g)γ̄

)

= n−(k1+k2)/2
∑

γ∈Γ(γ̄)

Jn(γ)n|Z(γ)|k(γ)!In,k(γ) ((f ◦ g)γ) (25)

with Jn(γ) = 1 if |Z(γ)| = 0, and

Jn(γ) =

|Z(γ)|∏

j=1
(n − (k1 + k2) + |W (γ)| + |Z(γ)| + j)

n|Z(γ)| if |Z(γ)| > 0.

The coefficient Jn(γ)n|Z(γ)| appeared in formula (25), since if we apply the decomposition
(24) for all terms (f ◦ g)γ̄(ξj(1,u)

, ξj(2,v)
, (1, u) ∈ V1, (2, v) ∈ {1, . . . k2}) of the U -statistic

k̄(γ̄)!In,k(γ̄)

(
(f ◦ g)γ̄

)
, then each term

(f ◦ g)γ(ξj(1,u)
, ξj(2,v)

, (1, u) ∈ V1, (2, v) ∈ V2 ∪ V1)

of the U -statistic In,k(γ) ((f ◦ g)γ) appears Jn(γ)n|Z(γ)| times. (This is so, because k̄(γ) = k1 +
k2 − (|W (γ)| + 2|Z(γ)|) variables are fixed in the term (f ◦ g)γ from the k(γ̄) = k1 + k2 −
(|W (γ)| + |Z(γ)|) variables in the term (f ◦ g)γ̄ , and to get formula (25) from formula (24) the
indices of the remaining |Z(γ)| variables can be freely chosen from the indices 1, . . . , n, with the
only restriction that all indices must be different.)

Formula (20) follows from relations (23) and (25). To see that we wrote the right power of n in
this formula observe that

n−(k1+k2)/2n|Z(γ)| = n−k(γ)/2n−|W (γ)|/2.

To prove inequality (21) in the case |W (γ)| = 0 let us estimate first the value of the function
(f ◦ g)2γ(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ V2) by means of the Schwarz inequality. We get that

(f ◦ g)2γ(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ V2)

≤
∫

f2(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ B(b,1)(γ))
∏

(2,v)∈B(b,1)(γ)

µ( dx(2,v))

∫

g2(x(2,v), (2, v) ∈ V2 ∪ B(b,1)(γ), )
∏

(2,v)∈B(b,1)(γ)

µ( dx(2,v))

=
∏

(2,v)∈B(b,1)(γ)

P(2,v)f
2(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ B(b,1)(γ))

∏

(2,v)∈B(b,1)(γ)

P(2,v)g
2(x(2,v), (2, v) ∈ V2 ∪ B(b,1)(γ)) (26)

with the operators P defined in formula (16).

Let us observe that the two functions at the right-hand side of (26) are functions of different
arguments. The first of them depends on the arguments x(1,u), (1, u) ∈ V1, the second one on the
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arguments x(2,v), (2, v) ∈ V2. Beside this, as the operators P appearing in their definition are
contraction in L1-norm, these functions are bounded in L1 norm by ‖f‖2

2 and ‖g‖2
2 respectively.

Because of the above relations we get formula (21) by integrating inequality (26) and applying
Fubini’s theorem.

To prove inequality (22) let us introduce, similarly to formula (17), the operators

Q̃ujh(xu1 , . . . , xur) = h(xu1 , . . . , xur) +

∫

h(xu1 , . . . , xur)µ( dxuj ), 1 ≤ j ≤ r,

in the space of functions h(xu1 , . . . , xur) with coordinates in the space (X,X ). (The indices
u1, . . . , ur are all different.) Observe that both the operators Q̃uj and the operators Puj defined
in (16) are positive, i.e. these operators map a non-negative function to a non-negative function.
Beside this, Quj ≤ Q̃uj , i.e. Q̃uj −Quj is a non-negative operator, and the norms of the operators
Q̃uj

2 and Puj are bounded by 1 both in the L1(µ), the L2(µ) and the supremum norm.

Let us define the function

(f̃ ◦ g)γ

(
x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1)

)

=
∏

(2,j′)∈B(b,1)(γ)

P(2,j′)

∏

(2,j′)∈B(b,−1)(γ)

Q̃(2,j′)

(f ◦ g)γ

(
x(j,1), x(j′,2), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2

)

with the notation of Section 3. We have defined the function (f̃ ◦ g)γ with the help of (f ◦ g)γ

similarly to the definition of (f ◦g)γ in (19), only we have replaced the operators Q(2,j′) by Q̃(2,j′)

in it.

We may assume that ‖g‖2 ≤ ‖f‖2. We can write because of the properties of the operators Puj

and Q̃uj listed above and the condition sup |f(x1, . . . , xk)| ≤ 1 that

|(f ◦ g)γ | ≤ ( ˜|f | ◦ |g|)γ ≤ (1̃ ◦ |g|)γ , (27)

where ‘≤’ means that the function at the right-hand side is greater than or equal to the function
at the left-hand side in all points, and 1 denotes the function which equals identically 1. Because
of relation (27) to prove relation (22) it is enough to show that

‖(1̃ ◦ |g|)γ‖2 =

∥
∥
∥
∥
∥
∥

∏

(2,j)∈B(b,1)(γ)

P(2,j)

∏

(2,j)∈B(b,−1)(γ)

Q̃(2,j) |g(x(2,1), . . . , x(2,k2))|

∥
∥
∥
∥
∥
∥

2

≤ 2|W (γ)|‖g‖2. (28)

But this inequality trivially holds, since the norm of all operators P(2,j) in formula (28) is bounded

by 1, the norm of all operators Q̃(2,j) is bounded by 2 in the L2(µ) norm, and |B(b,−1)| = |W (γ)|.

5 The diagram formula for the product of several degenerate

U-statistics.

The product of more than two degenerate U -statistics can also be expressed in the form of a sum
of degenerate U -statistics by means of a recursive application of Theorem A. We shall present
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this result in Theorem B and prove it together with an estimate about the L2-norm of the kernel
functions of the degenerate U -statistics appearing in Theorem B. This estimate will be given in
Theorem C. Since the expected value of all degenerate U -statistics of order k ≥ 1 equals zero,
the representation of the product of U -statistics in the form of a sum of degenerate U -statistics
implies that the expected value of this product equals the sum of the constant terms in this
representation. In such a way we get a formula for the expected value of a product of degenerate
U -statistics which together with Theorem C will be sufficient to prove Proposition A. But the
formula we get in this way is more complicated than the analogous diagram formula for products
of Wiener–Itô integrals. To overcome this difficulty it is useful to work out a good “book-keeping
procedure”.

Let us have a sequence of iid. random variables ξ1, ξ2, . . . taking values on a measurable space
(X,X ) with some distribution µ, and consider L functions fl(x1, . . . , xkl

) on the measure spaces
(Xkl ,X kl), 1 ≤ l ≤ L, canonical with respect to the measure µ. We want to represent the
product of L ≥ 2 normalized degenerate U -statistics n−kl/2kl!In,kl

(fkl
) in the form of a sum

of degenerate U -statistics similarly to Theorem A. For this goal I define a class of coloured
diagrams Γ(k1, . . . , kL) together with some canonical functions Fγ = Fγ(fk1 , . . . , fkL

) depending
on the diagrams γ ∈ Γ(k1, . . . , kL) and the functions fl(x1, . . . , xkl

), 1 ≤ l ≤ L.

The coloured diagrams will be graphs with vertices (l, j) and (l, j, C), 1 ≤ l ≤ L, 1 ≤ j ≤ kl,
and edges between some of these vertices which will get either colour 1 or colour −1. The set
of vertices {(l, j), (l, j, C), 1 ≤ j ≤ kl} will be called the l-th row of the diagrams. (The vertices
(l, j, C) are introduced, because it turned out to be useful to take a copy (l, j, C) of some vertices
(l, j). The letter C was chosen to indicate that it is a copy.) From all vertices there starts either
zero or one edge, and edges may connect only vertices in different rows. We shall call all vertices
of the form (l, j) permissible, and beside this some of the vertices (l, j, C) will also be called
permissible. Those vertices will be called permissible from which some edge may start.

We shall say that an edge connecting two vertices (l1, j1) with (l2, j2) or (a permissible) vertex
(l1, j1, C) with another vertex (l2, j2) such that l2 > l1 is of level l2, and (l2, j) will be called the
lower end-point of such an edge. (The coloured diagrams we shall define contain only edges with
lower end-points of the form (l, j).) We shall call the restriction γ(l) of the diagram γ to level
l that part of a diagram γ which contains all of its vertices together with those edges (together
with their colours) whose levels are less than or equal to l, and tells which of the vertices (l′, j, C)
are permissible for 1 ≤ l′ ≤ l. We shall define the diagrams γ ∈ Γ(k1, . . . , kL) inductively by
defining their restrictions γ(l) to level l for all l = 1, 2, . . . , L. Those diagrams γ will belong
to Γ(k1, . . . , kL) whose restrictions γ(l) can be defined through the following procedure for all
l = 1, 2, . . . , L.

The restriction γ(1) of a diagram γ to level 1 contains no edges, and no vertex of the form
(1, j, C), 1 ≤ j ≤ k1, is permissible. If we have defined the restrictions γ(l − 1) for some
2 ≤ l ≤ L, then those diagrams will be called restrictions γ(l) at level l which can be obtained
from a restriction γ(l−1) in the following way: Take the vertices (l, j), 1 ≤ j ≤ kl, from the l-th
row. From each of these vertices there starts either zero or one edge, and they get either colour 1
or colour −1. The other end-point of these edges must be such a vertex (l′, j′) or a permissible
vertex (l′, j′, C) with some 1 < l′ < l which is not an end-point of a vertex in γ(l − 1). We
define γ(l) first by adjusting the coloured edges constructed in the above way to the (coloured)
edges of γ(l − 1), and then defining the set of permissible vertices in γ(l). It contains beside
the permissible vertices of γ(l − 1) and the vertices (l, j), 1 ≤ j ≤ kl, those vertices (l, j, C) for
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which (l, j) is the lower end-point of an edge with colour −1 in γ(l). Γ(k1, . . . , kL) will consist
of all coloured diagrams γ = γ(L) obtained in such a way.

Given a coloured diagram γ ∈ Γ(k1, . . . , kL) we shall define recursively some (canonical) functions
Fl,γ with the help of the functions f1, . . . , fl for all 1 ≤ l ≤ L in the way suggested by Theorem A.
Then we put Fγ = FL,γ and give the desired representation of the product of the degenerate
U -statistics with the help of U -statistics with kernel functions Fγ and constants Jn(l, γ), γ ∈
Γ(k1, . . . , kL), 1 ≤ l ≤ L.

Let us fix some coloured diagram γ ∈ Γ(k1, . . . , kL) and introduce the following notations: Let
B(b,−1)(l, γ) denote the set of lower end-points of the form (l, j) of edges with colour −1 and
B(b,1)(l, γ) the set of lower end-points of the form (l, j) with colour 1. Let U(l, γ) denote the
set of those permissible vertices (l′, j) and (l′, j, C) with l′ ≤ l from which no edge starts in the
restriction γ(l) of the diagram γ to level l, i.e. either no edge starts from this vertex, or if some
edge starts from it, then its other end-point is a vertex (l′, j) with l′ > l. Beside this, given some
integer 1 ≤ l1 < l let U(l, l1, γ) denote the restriction of U(l, γ) to its first l1 rows, i.e. U(l, l1, γ)
consists of those vertices (l′, j) and (l′, j, C) which are contained in U(l, γ), and l′ ≤ l1. We shall
define the functions Fl(γ) with arguments of the form x(l′,j) and x(l′,j,C) with (l′, j) ∈ U(l, γ)
and (l′, j, C) ∈ U(l, γ). For this end put first

F1,γ(x(1,1), . . . , x(k1,1)) = f1(x(1,1), . . . , x(k1,1)). (29)

To define the function Fl,γ for l ≥ 2 first we introduce a function αl,γ(·) on the set of vertices in
U(l − 1, γ) in the following way. If a vertex (l′, j′) or (l′, j′, C) in U(γ, l − 1) is such that it is
connected to no vertex (l, j), 1 ≤ j ≤ kl, then αl,γ(l′, j′) = (l′, j′), αl,γ(l′, j′, C) = (l′, j′, C) and
if (l′, j′) is connected to a vertex (l, j), then αl,γ(l′, j′) = (l, j), if (l′, j′, C) is connected with a
vertex (l, j), then αl,γ(l′, j′, C) = (l, j). We define, similarly to the formula (18) the functions

F̄l,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ), x(l,j), 1 ≤ j ≤ kl)

= Fl−1,γ(xαl,γ(l′,j′), xαl,γ(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l − 1, γ))

fl(x(l,1), . . . , x(l,kl)), (30)

i.e. we take the function Fl−1,γ ◦ fl and replace the arguments of this function indexed by such
a vertex of γ which is connected by an edge with a vertex in the l-th row of γ by the argument
indexed with the lower end-point of this edge.

Then we define with the help of the operators Puj and Quj introduced in (16) and (17) the
functions

¯̄Fl,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ),

x(l,j), j ∈ {1, . . . , kl} \ B(l,1)(l, γ))

=
∏

(l,j)∈B(b,1)(l,γ)

P(l,j)

∏

(l,j)∈B(b,−1)(l,γ)

Q(l,j)F̄l,γ(x(l′,j′), x(l′,j′,C),

(l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ), x(l,j), 1 ≤ j ≤ kl), (31)

similarly to the formula (19), i.e. we apply for the function F̄l(γ) the operators P(l,j) for those
indices (l, j) which are the lower end-points of an edge with colour 1 and the operators Q(l,j) for
those indices (l, j) which are the lower end-points of an edge with colour −1.
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Finally we define the function Fl,γ simply by reindexing some arguments of the function ¯̄Fl,γ to
get a function which is indexed by the vertices in U(l, γ). To this end we define the function
Al,γ(·) on the set of vertices {(l, j) : (l, j) ∈ {(l, 1), . . . , (l, kl)}\B(b,1)(l, γ) as Al,γ(l, j) = (l, j, C) if
(l, j) ∈ B(b,−1)(l, γ), and Al,γ(l, j) = (l, j) if (l, j) ∈ {(l, 1), . . . , (l, kl)}\(B(b,1)(l, γ)∪B(b,−1)(l, γ)).
Then we put

Fl,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, γ))

= ¯̄Fl,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ),

xAl,γ(l,j), (l, j) ∈ {(l, 1), . . . , (l, kl)} \ B(b,1)(l, γ)). (32)

Now we can formulate the following generalization of Theorem A.

Theorem B. Let us have a sequence of iid. random variables ξ1, ξ2, . . . with some distribution
µ on a measurable space (X,X ) together with L ≥ 2 bounded functions fl(x1, . . . , xkl

) on the
spaces (Xkl ,X kl), 1 ≤ l ≤ L, canonical with respect to the probability measure µ. Let us
introduce the class of coloured diagrams Γ(k1, . . . , kL) defined above together with the functions
Fγ = FL,γ(f1, . . . , fL) defined in formulas (29)—(32).

Put k(γ(l)) =
l∑

p=1
kp−

l∑

p=2
(2|B(b,1)(p, γ)|+ |B(b,−1)(p, γ)|), where |B(b,1)(p, γ)| denotes the number

of lower end-points in the p-th row of γ with colour 1 and |B(b,−1)(p, γ)| is the number of lower
end-points in the p-th row of γ with colour −1, 1 ≤ l ≤ L, and define k(γ) = k(γ(L)). Then
k(γ(l)) is the number of variables of the function Fl,γ, 1 ≤ l ≤ L.

The functions Fγ are canonical with respect to the measure µ with k(γ) variables, and the product
of the degenerate U -statistics In,kl

(f), n ≥ max
1≤l≤L

kl, defined in (1) satisfies the identity

L∏

l=1

kl!n
−kl/2In,kl

(fkl
) (33)

=
∑′(n, L)

γ∈Γ(k1,...,kL)

(
L∏

l=1

Jn(l, γ)

)

n−|W (γ)|/2 · k(γ)!n−k(γ)/2In,k(γ)(Fγ),

where |W (γ)| =
L∑

l=2

|B(b,−1)(l, γ)| is the number of edges with colour −1 in the coloured diagram

γ, and
∑′(n, L) means that summation is taken for those γ ∈ Γ(k1, . . . , kL) which satisfy the

relation k(γ(l − 1)) + kl − (|B(b,1)(l, γ)| + |B(b,−1)(l, γ)|) ≤ n for all 2 ≤ l ≤ L. Beside this, the
constants Jn(l, γ), 1 ≤ l ≤ L, in formula (33) are defined by the relations Jn(1, γ) = 1, and

Jn(l, γ) =

|B(b,1)(l,γ)|
∏

j=1
(n − (k(γ(l − 1)) + kl) + |B(b,−1)(l, γ)| + |B(b,1)(l, γ)| + j)

n|B(b,1)(l,γ)| , (34)

2 ≤ l ≤ L, if |B(b,1)(l, γ)| ≥ 1, and Jn(l, γ) = 1 if |B(b,1)(l, γ)| = 0, where |B(b,1)(l, γ)| and
|B(b,−1)(l, γ)| denote the number of those edges in γ with colour 1 and with colour −1 respectively
whose lower end-points are in the l-th row of γ.
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Let Γ̄(k1, . . . , kL) denote the class of those coloured diagrams of Γ(k1, . . . , kL) for which every
permissible vertex is the end-point of some edge. A coloured diagram γ ∈ Γ(k1, . . . , kL) satis-
fies the relation γ ∈ Γ̄(k1, . . . , kL) if and only if k(γ) = 0. In this case Fγ is constant, and
In,k(γ)(Fγ) = Fγ. For all other coloured diagrams γ ∈ Γ(k1, . . . , kL) k(γ) ≥ 0. The identity

E

(
L∏

l=1

kl!n
−kl/2In,kl

(fkl
)

)

=
∑′(n, L)

γ∈Γ̄(k1,...,kL)

(
L∏

l=1

Jn(l, γ)

)

n−|W (γ)|/2 · Fγ (35)

holds.

Theorem B can be deduced relatively simply from Theorem A by induction with respect to the
number L of the functions. Theorem A contains the results of Theorem B in the case L = 2.
A simple induction argument together with the formulas describing the functions Fl,γ by means
of the functions Fl−1,γ and fl and Theorem A imply that all functions Fγ in Theorem B are
canonical. Finally, an inductive procedure with respect to the number L of the functions fl

shows that relation (33) holds. Indeed, by exploiting that formula (33) holds for the product of
the first L − 1 degenerate U -statistics, then multiplying this identity with the last U -statistic
and applying for each term at the right-hand side Theorem A we get that relation (33) also
holds for the product L degenerate U -statistics.

A simple inductive procedure with respect to l shows that for all 2 ≤ l ≤ L the diagram γ(l)

contains k(γ(l)) =
l∑

p=1
kl −

l∑

p=2
(2|B(b,1)(p, γ)| + |B(b,−1)(p, γ)|) permissible vertices in its first

l rows which are not an end-point of an edge in γ(l). In particular, k(γ) = 0 if and only if
γ ∈ Γ̄(k1, . . . , kL) with the class of coloured diagrams Γ̄(k1, . . . , kL) introduced at the end of
Theorem B. Since EIn,k(f) = 0 for all degenerate U -statistics of order k ≥ 1, this property
together with relation (33) imply identity (35).

In the proof of Proposition A we shall also need an estimate formulated in Theorem C. It is a
simple consequence of inequalities (21) and (22) in Theorem A.

Theorem C. Let us have L functions fl(x1, . . . , xkl
) on the spaces (Xkl ,X kl), 1 ≤ l ≤ L,

which satisfy formulas (3) and (4) (if we replace the index k by index kl in these formulas),
but these functions need not be canonical. Let us take a coloured diagram γ ∈ Γ(k1, . . . , kL) and
consider the function Fγ = FL,γ(f1, . . . , fL) defined by formulas (29)—(33). The L2-norm of the
function Fγ (with respect to a power of the measure µ to the space, where Fγ is defined) satisfies
the inequality ‖Fγ‖2 ≤ 2|W (γ)|σ(L−U(γ)), where |W (γ)| denotes the number of edges of colour
−1, and U(γ) the number of rows which contain a lower vertex of colour −1 in the coloured
diagram γ.

Proof of Theorem C. We shall prove the inequality

‖Fl,γ‖2 ≤ 2|W (l,γ)|σ(l−U(l,γ)) for all 1 ≤ l ≤ L, (36)

where |W (l, γ)| denotes the number of edges with colour 1, and U(l, γ) is the number of rows
containing a lower point of an edge with colour −1 in the coloured diagram γ(l). Formula
(36) will be proved by means of induction with respect to l. It implies Theorem C with the
choice l = L.
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Relation (36) clearly holds for l = 1. To prove this relation by induction with respect to l for
all 1 ≤ l ≤ L let us first observe that sup 2−|W (l,γ)||Fl,γ | ≤ 1 for all 1 ≤ l ≤ L. This relation can
be simply checked by induction with respect to l.

If we know relation (36) for l − 1, then it follows for l from relation (21) if |B(b,−1)(l, γ)| = 0,
that is if there is no edge of colour −1 with lower end-point in the l-th row. Indeed, in this case
‖Fl,γ(f1, . . . , fl)‖2 ≤ ‖Fl−1,γ‖2‖fl‖2 ≤ ‖Fl−1,γ(f1, . . . , fl−1)‖2 · σ, |W (l, γ)| = |W (l − 1, γ)|, and
U(l, γ) = U(l − 1, γ). Hence relation (36) holds in this case.

If |B(b,−1)(l, γ)| ≥ 1, then we can apply formula (22) for the expression ‖Fl,γ‖2 = ‖ ¯̄Fl,γ‖2 =
‖(Fl−1,γ ◦ fl)γ̃(l)‖2, where γ̃(l) is that coloured diagram with two rows whose first row consists
of the indices of the variables of the function Fl−1,γ , its second row consists of the vertices (l, j),
1 ≤ j ≤ kl, and γ̃(l) contains the edges of γ between these vertices together with their colour.
Then relation (22) implies that

‖Fl,γ‖2 ≤ 2|B(b,−1)|‖Fl−1,γ‖2 ≤ 2(|W (l−1,γ)|+|B(b,−1)(l,γ)|)σ(l−1−U(l−1,γ))

if |B(b,−1)(l, γ)| ≥ 1. Beside this, |W (l−1, γ)|+|B(b,−1)(l, γ)| = |W (l, γ)|, and l−1−U(l−1, γ) =
l − U(l, γ) in this case. Hence relation (36) holds in this case, too.

6 The proof of Proposition A.

Proof of Proposition A. We shall prove relation (9) by means of identity (35) and Theorem C with
the choice L = 2M and fl(x1, . . . , xkl

) = f(x1, . . . , xk) for all 1 ≤ l ≤ 2M . We shall partition
the class of coloured diagrams γ ∈ Γ(k, M) = Γ̄(k, . . . , k

︸ ︷︷ ︸

2M times

) with the property that all permissible

vertices are the end-points of some edge to classes Γ(k, M, p), 1 ≤ p ≤ M , in the following way:
γ ∈ Γ(k, M, p) for a coloured diagram γ ∈ Γ(k, M) if and only if it has 2p permissible vertices
of the form (l, j, C). (A coloured diagram γ ∈ Γ(k, M) has even number of such vertices.) First
we prove the following estimate:

There exists some constant A = A(k) > 0 and threshold index M0 = M0(k) such that for all
M ≥ M0 and 0 ≤ p ≤ kM the cardinality |Γ(k, M, p)| of the set Γ(k, M, p) can be bounded from

above by A22p
(
2kM
2p

) (
2
e

)kM
(kM)kM+p.

We can bound the number of coloured diagrams in Γ(k, M, p) by calculating first the number of
choices of the 2p permissible vertices from the 2kM vertices of the form (l, j, C) which we adjust
to the 2kM permissible vertices (l, j) and then by calculating the number of such graphs whose
vertices are the above chosen permissible vertices, and from all vertices there starts exactly one
edge. (Here we allow to connect vertices from the same row. Observe that by defining the set
of permissible vertices (l, j, C) in a coloured diagram γ we also determine the colouring of its
edges.) Thus we get that |Γ(k, M, p)| can be bounded from above by

(
2kM
2p

)
1 · 3 · 5 · · · (2kM +

2p − 1) =
(
2kM
2p

) (2kM+2p)!
2kM+p(kM+p)!

. (The appearance of the factor 1 · 3 · 5 · · · (2kM + 2p − 1) in

this estimate can be explained in a standard way. Let us list the 2kM + 2p vertices in some
order. The first vertex can be connected with 2kM + 2p − 1 vertices by an edge. Then the
first vertex from which no edge starts can be connected with 2kM + 2p− 3 vertices. Continuing
this procedure we get the above product for the number of possible system of edges between
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the already fixed vertices.) We can write by the Stirling formula, similarly to the estimation

of the right-hand side of formula (10) that (2kM+2p)!
2kM+p(kM+p)!

≤ A
(

2
e

)kM+p
(kM + p)kM+p with

some constant A >
√

2 if M ≥ M0 with some M0 = M0(A). Since p ≤ kM we can write

(kM + p)kM+p ≤ (kM)kM
(
1 + p

kM

)kM
(2kM)p ≤ (kM)kM+pep2p. The above inequalities imply

that

|Γ(k, M, p)| ≤ A

(
2kM

2p

)(
2

e

)kM

(kM)kM+p22p if M ≥ M0, (37)

as we have claimed.

Observe that for γ ∈ Γ(k, M, p) the quantities introduced in the formulation of Theorems B
and C satisfy the relations |W (γ)| = 2p, |Fγ | = ‖Fγ‖2 and U(γ) ≤ |W (γ)| = 2p. Hence by

Theorem C we have n−|W (γ)|/2|Fγ | ≤ 2pn−pσ2M−U(γ) ≤ 2p
(
nσ2

)−p
σ2M ≤ ηp2p(kM)−pσ2M if

kM ≤ ηnσ2 and σ2 ≤ 1.

This estimate together with relation (35) and the fact that the constants Jn(l, γ) defined in (34)
are bounded by 1 imply that for kM ≤ ηnσ2

E
(

n−k/2k!In,k(fk)
)2M

≤
∑

γ∈Γ(k,M)

n−|W (γ)|/2 · |Fγ |

≤
kM∑

p=0

|Γ(k, M, p)|ηp2p(kM)−pσ2M .

Hence by formula (37)

E
(

n−k/2k!In,k(fk)
)2M

≤ A

(
2

e

)kM

(kM)kMσ2M
kM∑

p=0

(
2kM

2p

)(

2
√

2η
)2p

≤ A

(
2

e

)kM

(kM)kMσ2M
(

1 + 2
√

2η
)2kM

if kM ≤ ηnσ2. Thus we have proved Proposition A with C = 2
√

2.
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