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Abstract

We consider finite-state time-nonhomogeneous Markov chains whose transition matrix at
time n is I + G/nζ where G is a “generator” matrix, that is G(i, j) > 0 for i, j distinct, and
G(i, i) = −∑

k 6=i G(i, k), and ζ > 0 is a strength parameter. In these chains, as time grows,
the positions are less and less likely to change, and so form simple models of age-dependent
time-reinforcing schemes. These chains, however, exhibit a trichotomy of occupation behav-
iors depending on parameters.
We show that the average occupation or empirical distribution vector up to time n, when
variously 0 < ζ < 1, ζ > 1 or ζ = 1, converges in probability to a unique “stationary” vector
νG, converges in law to a nontrivial mixture of point measures, or converges in law to a
distribution µG with no atoms and full support on a simplex respectively, as n ↑ ∞. This
last type of limit can be interpreted as a sort of “spreading”between the cases 0 < ζ < 1 and
ζ > 1.
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In particular, when G is appropriately chosen, µG is a Dirichlet distribution, reminiscent of
results in Pólya urns.

Key words: laws of large numbers, nonhomogeneous, Markov, occupation, reinforcement,
Dirichlet distribution.
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1 Introduction and Results

In this article, we study asymptotic occupation laws for a class of finite space time-
nonhomogeneous Markov chains where, as time increases, positions are less likely to change.
Although these chains feature simple age-dependent time-reinforcing dynamics, some different,
perhaps unexpected, asymptotic occupation behaviors emerge depending on parameters. A spe-
cific case, as in Example 1.1, was first introduced in Gantert [7] in connection with the analysis
of certain simulated annealing laws of large numbers phenomena.

Example 1.1. Suppose there are only two states 1 and 2, and that the chain moves between the
two locations in the following way: At large times n, the chain switches places with probability
c/n, and stays put with complementary probability 1 − c/n for c > 0. The chain, as it ages, is
less inclined to leave its spot, but nonetheless switches infinitely often. It can be seen that the
probability of being in state 1 tends to 1/2 regardless of the initial distribution. One may ask,
however, how the average occupation, or frequency up to time n of state 1, n−1

∑n
i=1 11(Xi),

behaves asymptotically as n ↑ ∞. For this example, it was shown in [7] and Ex. 4.7.1 [27],
surprisingly, that the frequency could not converge to a constant, or even more generally con-
verge in probability to a random variable, without further investigation of the limit properties.
However, a quick consequence of our results is that the frequency of state 1 converges in law to
the Beta(c, c) distribution (Theorem 1.4).

More specifically, we consider a general version of this scheme with m ≥ 2 possible locations,
and moving and staying probabilities G(i, j)/nζ and 1 − ∑

k 6=i G(i, k)/nζ from i → j 6= i and
i → i respectively at time n where G = {G(i, j)} is an m × m matrix and ζ > 0 is a strength

parameter. After observing the location probability vector, 〈PG,ζ
π (Xn = k) : 1 ≤ k ≤ m〉, tends

to a vector νG,π,ζ, as n ↑ ∞, which depends on G, ζ, and initial probability π when ζ > 1,
but does not depend on ζ and π, νG,π,ζ = νG, when ζ ≤ 1 (Theorem 1.1), the results on the
limit of the average occupation or empirical distribution vector, n−1

∑n
i=1〈11(Xi), . . . , 1m(Xi)〉,

as n ↑ ∞, separate into three cases depending on whether 0 < ζ < 1, ζ = 1, or ζ > 1.

When 0 < ζ < 1, following [7], the empirical distribution vector is seen to converge to νG in
probability; and when more specifically 0 < ζ < 1/2, this convergence is proved to be a.s. When
ζ > 1, as there are only a finite number of switches, the position eventually stabilizes and the
empirical distribution vector converges in law to a mixture of point measures (Theorem 1.2).

Our main results are when ζ = 1. In this case, we show the empirical distribution vector
converges in law to a non-atomic distribution µG, with full support on a simplex, identified by
its moments (Theorems 1.3 and 1.5). When, in particular, G takes form G(i, j) = θj for all
i 6= j, that is when the transititions into a state j are constant, µG takes the form of a Dirichlet
distribution with parameters {θj} (Theorem 1.4). The proofs of these statements follow by the
method of moments, and some surgeries of the paths.

The heuristic, with respect to the asymptotic empirical distribution behavior, is that when
0 < ζ < 1 the chance of switching is strong and sufficient mixing gives a deterministic limit, but
when ζ > 1 there is little movement and the chain gets stuck in finite time. The boundary case
ζ = 1 is the intermediate “spreading” situation leading to non-atomic limits. For example, with
respect to Ex. 1.1, when the switching probability at time n is c/nζ , the Beta(c, c) limit when
ζ = 1 interpolates, as c varies on (0,∞), between the point measure at 1/2, the weak frequency
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Figure 1: Beta(c, c) occupation law of state 1 in Ex. 1.1.

limit of state 1 when 0 < ζ < 1, and the fair mixture of point measures at 0 and 1, the limit
when ζ > 1 and starting at random (cf. Fig. 1).

In the literature, there are only a few results on laws of large numbers-type asymptotics
for time-nonhomogeneous Markov chains, often related to simulated annealing and Metropolis
algorithms which can be viewed in terms of a generalized model where ζ = ζ(i, j) is a non-
negative function. These results relate to the cases, “max ζ(i, j) < 1” or when the “landscape
function” has a unique minimum, for which the average occupation or empirical distribution
vector limits are constant [7], Ch. 7 [27], [10]. See also Ch. 1 [15], [18],[26]; and texts [5],
[13],[14] for more on nonhomogeneous Markov chains. In this light, the non-degenerate limits
µG found here seem to be novel objects. In terms of simulated annealing, these limits suggest
a more complicated asymptotic empirical distribution picture at the “critical” cooling schedule
when ζ(i, j) = 1 for some pairs i, j in the state space with respect to general “landscapes.”

The advent of Dirichlet limits, when G is chosen appropriately, seems of particular interest,
given similar results for limit color-frequencies in Pólya urns [4], [8], as it hints at an even larger
role for Dirichlet measures in related but different “reinforcement”-type models (see [16], [21],
[20], and references therein, for more on urn and reinforcement schemes). In this context, the set
of “spreading” limits µG in Theorem 1.3, in which Dirichlet measures are but a subset, appears
intriguing as well (cf. Remarks 1.4, 1.5 and Fig. 2).

In another vein, although different, Ex. 1.1 seems not so far from the case of independent
Bernoulli trials with success probability 1/n at the nth trial. For such trials much is known
about the spacings between successes, and connections to GEM random allocation models and
Poisson-Dirichlet measures [25], [1], [2], [3], [22], [23].

We also mention, in a different, neighbor setting, some interesting but distinct frequency limits
have been shown for arrays of time-homogeneous Markov sequences where the transition matrix
Pn for the nth row converges to a limit matrix P [6], [9], Section 5.3 [14]; see also [19] which
comments on some “metastability” concerns.

We now develop some notation to state results. Let Σ = {1, 2, . . . ,m} be a finite set of m ≥ 2
points. We say a matrix M = {M(i, j) : 1 ≤ i, j ≤ m} on Σ is a generator matrix if M(i, j) ≥ 0
for all distinct 1 ≤ i, j ≤ m, and M(i, i) = −∑

j 6=i M(i, j) for 1 ≤ i ≤ m. In particular, M is
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a generator with nonzero entries if M(i, j) > 0 for 1 ≤ i, j ≤ m distinct, and M(i, i) < 0 for
1 ≤ i ≤ m.

To avoid technicalities, e.g. with reducibility, we work with the following matrices,

G =

{

G ∈ R
m×m : G is a generator matrix with nonzero entries

}

,

although extensions should be possible for a larger class. For G ∈ G, let n(G, ζ) =
⌈max1≤i≤m |G(i, i)|1/ζ⌉, and define for ζ > 0

PG,ζ
n =

{
I for 1 ≤ n ≤ n(G, ζ)

I + G/nζ for n ≥ n(G, ζ) + 1

where I is the m × m identity matrix. Then, for all n ≥ 1, PG,ζ
n is ensured to be a stochastic

matrix.

Let π be a distribution on Σ, and let P
G,ζ
π be the (nonhomogeneous) Markov measure on the

sequence space ΣN with Borel sets B(ΣN) corresponding to initial distribution π and transition

kernels {PG,ζ
n }. That is, with respect to the coordinate process, X = 〈X0,X1, . . .〉, we have

P
G,ζ
π (X0 = i) = π(i) and the Markov property

P
G,ζ
π (Xn+1 = j|X0,X1, . . . ,Xn−1,Xn = i) = PG,ζ

n+1(i, j)

for all i, j ∈ Σ and n ≥ 0. Our convention then is that PG,ζ
n+1 controls “transitions” between times

n and n + 1. Let also E
G,ζ
π be expectation with respect to P

G,ζ
π . More generally, Eµ denotes

expectation with respect to measure µ.

Define the average occupation or empirical distribution vector, for n ≥ 1,

Zn = 〈Z1,n, · · · , Zm,n〉 where Zk,n =
1

n

n∑

i=1

1k(Xi)

for 1 ≤ k ≤ m. Then, Zn is an element of the m − 1-dimensional simplex,

∆m =

{

x :

m∑

i=1

xi = 1, 0 ≤ xi ≤ 1 for 1 ≤ i ≤ m

}

.

The first result is on convergence of the position of the process. For G ∈ G, let νG be the
stationary vector corresponding to G (of the associated continuous time homogeneous Markov
chain), that is the unique left eigenvector, with positive entries, normalized to unit sum, of the
eigenvalue 0.

Theorem 1.1. For G ∈ G, ζ > 0, initial distribution π, and k ∈ Σ,

lim
n→∞

P
G,ζ
π

(
Xn = k

)
= νG,π,ζ(k)

where νG,π,ζ is a probability vector on Σ depending in general on ζ, G, and π. When 0 < ζ ≤ 1,
νG,π,ζ does not depend on π and ζ and reduces to νG,π,ζ = νG.
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Remark 1.1. For ζ > 1, with only finitely many moves, actually Xn converges a.s. to a random
variable with distribution νG,π,ζ . Also, νG,π,ζ is explicit when G = VGDGV −1

G is diagonalizable
with DG diagonal and DG(i, i) = λG

i , the ith eigenvalue of G, for 1 ≤ i ≤ m. By calculation,

νG,π,ζ = πt
∏

n≥1 PG,ζ
n = πtVGD′V −1

G with D′ diagonal and D′(i, i) =
∏

n≥n(G,ζ)+1(1 + λG
i /nζ).

We now consider the cases ζ 6= 1 with respect to average occupation or empirical distribution
vector limits. Let i be the basis vector i = 〈0, . . . , 0, 1, 0, . . . , 0〉 ∈ ∆m with a 1 in the ith
component and δi be the point measure at i for 1 ≤ i ≤ m.

Theorem 1.2. Let G ∈ G, and π be an initial distribution. Under P
G,ζ
π , as n ↑ ∞, we have that

Zn −→ νG

converges to the vector νG in probability when 0 < ζ < 1; when more specifically 0 < ζ < 1/2,

this convergence is P
G,ζ
π -a.s.

However, when ζ > 1, Zn converges P
G,ζ
π a.s. to a random variable, and

lim
n→∞

Zn
d
=

m∑

i=1

νG,π,ζ(i)δi .

Remark 1.2. Simulations suggest that actually a.s. convergence might hold also on the range
1/2 ≤ ζ < 1 (with worse convergence rates as ζ ↑ 1).

Let now γ1, . . . , γm ≥ 0, be integers such that γ̄ =
∑m

i=1 γi ≥ 1. Define the list A = {ai :
1 ≤ i ≤ γ̄} = {1, . . . , 1

︸ ︷︷ ︸

γ1

, 2, . . . , 2
︸ ︷︷ ︸

γ2

, . . . ,m, . . . ,m
︸ ︷︷ ︸

γm

}. Let S(γ1, . . . , γm) be the γ̄! permutations of A,

although there are only
( γ̄
γ1,γ2,··· ,γm

)
distinct permutations; that is, each permutation appears

∏m
k=1 γk! times.

Note also, for G ∈ G, being a generator matrix, all eigenvalues of G have non-positive real
parts (indeed, I + G/k is a stochastic matrix for k large; then, by Perron-Frobenius, the real
parts of its eigenvalues satisfy −1 ≤ 1 + Re(λG

i )/k ≤ 1, yielding the non-positivity), and so the
resolvent (xI − G)−1 is well defined for x ≥ 1.

We now come to our main results on the average occupation or empirical distribution vector
limits when ζ = 1

Theorem 1.3. For ζ = 1, G ∈ G, and initial distribution π, we have under P
G,ζ
π as n ↑ ∞ that

Zn
d−→ µG

where µG is a measure on the simplex ∆m characterized by its moments: For 1 ≤ i ≤ m,

EµG

(
xi

)
= lim

n→∞
E

G,ζ
π

(
Zi,n

)
= νG(i),

and for integers γ1, . . . , γm ≥ 0 when γ̄ ≥ 2,

EµG

(

xγ1
1 · · · xγm

m

)

= lim
n→∞

E
G,ζ
π

(

Zγ1
1,n · · ·Zγm

m,n

)

=
1

γ̄

∑

σ∈S(γ1,...,γm)

νG(σ1)

γ̄−1
∏

i=1

(

iI − G

)−1

(σi, σi+1).
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Remark 1.3. However, as in Ex. 1.1 and [7], when ζ = 1 as above, Zn cannot converge in
probability to a random variable (as the tail field ∩nσ{Xn,Xn+1, . . .} is trivial by Theorem 1.2.13
and Proposition 1.2.4 [15] and (2.3), but the limit distribution µG is not a point measure by say
Theorem 1.5 below). This is in contrast to Pólya urns where the color frequencies converge a.s.

We now consider a particular matrix under which µG is a Dirichlet distribution. For
θ1, . . . , θm > 0, define

Θ =








θ1 − θ̄ θ2 θ3 · · · θm

θ1 θ2 − θ̄ θ3 · · · θm
...

...
. . . · · · ...

θ1 θ2 θ3 · · · θm − θ̄








where θ̄ =
∑m

l=1 θl. It is clear Θ ∈ G. Recall identification of the Dirichlet distribution by
its density and moments; see [17], [24] for more on these distributions. Namely, the Dirichlet
distribution on the simplex ∆m with parameters θ1, . . . , θm (abbreviated as Dir(θ1, . . . , θm)) has
density

Γ(θ̄)

Γ(θ1) · · ·Γ(θm)
xθ1−1

1 · · · xθm−1
m .

The moments with respect to integers γ1, . . . , γm ≥ 0 with γ̄ ≥ 1 are

E

(

xγ1
1 · · · xγm

m

)

=

∏m
i=1 θi(θi + 1) · · · (θi + γi − 1)

∏γ̄−1
i=0 (θ̄ + i)

, (1.1)

where we take θi(θi + 1) · · · (θi + γi − 1) = 1 when γi = 0.

Theorem 1.4. We have µΘ = Dir(θ1, . . . , θm).

Remark 1.4. Moreover, by comparing the first few moments in Theorem 1.3 with (1.1), one
can check µG is not a Dirichlet measure for many G’s with m ≥ 3. However, when m = 2, then
any G takes the form of Θ with θ1 = G(2, 1) and θ2 = G(1, 2), and so µG = Dir(G(2, 1), G(1, 2)).

We now characterize the measures {µG : G ∈ G} as “spreading” measures different from the
limits when 0 < ζ < 1 and ζ > 1.

Theorem 1.5. Let G ∈ G. Then, (1) µG(U) > 0 for any non-empty open set U ⊂ ∆m. Also,
(2) µG has no atoms.

Remark 1.5. We suspect better estimates in the proof of Theorem 1.5 will show µG is in fact
mutually absolutely continuous with respect to Lebesgue measure on ∆m. Of course, in this
case, it would be of interest to find the density of µG. Meanwhile, we give two histograms, found
by calculating 1000 sample averages, each on a run of time-length 10000 starting at random on
Σ at time n(G, 1) (= 3, 1 respectively), in Figure 2 of the empirical density when m = 3 and G
takes forms

Gleft =





−3 1 2
2 −3 1
1 2 −3



 , and Gright =





−.4 .2 .2
.3 −.6 .3
.5 .5 −1



 .
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Figure 2: Empirical µG densities under Gleft and Gright respectively.

To help visualize plots, ∆3 is mapped to the plane by linear transformation f(x) =
x1f(〈1, 0, 0〉) + x2f(〈0, 1, 0〉) + x3f(〈0, 0, 1〉) where f(〈1, 0, 0〉) = 〈

√
2, 0〉, f(〈0, 1, 0〉) = 〈0, 0〉

and f(0, 0, 1) =
√

2〈1/2,
√

3/2〉. The map maintains a distance
√

2 between the transformed
vertices.

We now comment on the plan of the paper. The proofs of Theorems 1.1 and 1.2, 1.3, 1.4,
and 1.5 (1) and (2) are in sections 2,3,4, 5, and 6 respectively. These sections do not depend
structurally on each other.

2 Proofs of Theorems 1.1 and 1.2

We first recall some results for nonhomogeneous Markov chains in the literature. For a stochastic
matrix P on Σ, define the “contraction coefficient”

c(P ) = max
x,y

1

2

∑

z

∣
∣
∣
∣
P (x, z) − P (y, z)

∣
∣
∣
∣

= 1 − min
x,y

∑

z

min

{

P (x, z), P (y, z)

}

(2.1)

The following is implied by Theorem 4.5.1 [27].

Proposition 2.1. Let Xn be a time-nonhomogeneous Markov chain on Σ connected by transition
matrices {Pn} with corresponding stationary distributions {νn}. Suppose, for some n0 ≥ 1, that

∞∏

n=k

c(Pn) = 0 for all k ≥ n0, and

∞∑

n=n0

‖νn − νn+1‖Var < ∞. (2.2)

Then, ν = limn→∞ νn exists, and, starting from any initial distribution π, we have for each
k ∈ Σ that

lim
n→∞

P (Xn = k) = ν(k).
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A version of the following is stated in Section 2 [7] as a consequence of results (1.2.22) and
Theorem 1.2.23 in [15].

Proposition 2.2. Given the setting of Proposition 2.1, suppose (2.2) is satisfied for some n0 ≥
1. Define cn = maxn0≤i≤n c(Pi) for n ≥ n0. Let also π be any initial distribution, and f be any
function f : Σ → R. Then, we have convergence, as n → ∞,

1

n

n∑

i=1

f(Xi) → Eν [f ]

in the following senses:

(i) In probability, when limn→∞ n(1 − cn) = ∞.

(ii) a.s. when
∑

n≥n0
2−n(1− c2n)−2 < ∞ (with convention the sum diverges if c2n = 1 for an

n ≥ n0).

Proof of Theorem 1.1. We first consider when ζ > 1. In this case there are only a finite number
of movements by Borel-Cantelli since

∑

n≥1 P
G,ζ
π (Xn 6= Xn+1) ≤ C

∑

n≥1 n−ζ < ∞. Hence there
is a time of last movement N < ∞ a.s. Then, limn→∞ Xn = XN a.s., and, for k ∈ Σ, the limit
distribution νG,π,ζ is defined and given by P

G,ζ
π (XN = k) = νG,π,ζ(k).

When 0 < ζ ≤ 1, as G ∈ G, by calculation with (2.1), c(PG,ζ
n ) = 1−CG/nζ , with respect to a

constant CG > 0, for all n ≥ n0(G, ζ) for an index n0(G, ζ) > n(G, ζ) large enough. Then, for
k ≥ n0(G, ζ),

∏

n≥k

(

1 − CG

nζ

)

= 0. (2.3)

Since for n ≥ n0(G, ζ), νt
GPG,ζ

n = νt
G(I − G/nζ) = νt

G, the last condition of Proposition 2.1 is
trivially satisfied, and hence the result follows.

Proof of Theorem 1.2. When ζ > 1, as mentioned in the proof of Theorem 1.1, there are only
a finite number of moves a.s., and so a.s. limn→∞ Zn =

∑m
k=1 1[XN=k]k concentrates on basis

vectors {k}. Hence, as defined in proof of Theorem 1.1, P
G,ζ
π (XN = k) = νG,π,ζ(k), and the

result follows.

When 0 < ζ < 1, we apply Proposition 2.2 and follow the method in [7]. First, recalling the

proof of Theorem 1.1, (2.2) holds, and cn = maxn0(G,ζ)≤i≤n c(PG,ζ
i ) = 1 − CG/nζ for a constant

CG > 0 and n ≥ n0(G, ζ). Then, n(1 − cn) = CGn1−ζ ↑ ∞ to give the probability convergence
in part (i). For a.s. convergence in part (ii) when 0 < ζ < 1/2, note

∑

n≥n0(G,ζ)

1

2n(1 − c2n)2
=

∑

n≥n0(G,ζ)

1

2n(CG/(2n)ζ)2
=

∑

n≥n0(G,ζ)

1

C2
G(21−2ζ)n

< ∞. �

3 Proof of Theorem 1.3.

In this section, as ζ = 1 is fixed, we suppress notational dependence on ζ. Also, as Zn takes
values on the compact set ∆m, the weak convergence in Theorem 1.3 follows by convergence of
the moments.

The next lemma establishes convergence of the first moments.
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Lemma 3.1. For G ∈ G, 1 ≤ k ≤ m, and initial distribution π,

lim
n→∞

E
G
π

(

Zk,n

)

= νG(k)

Proof. From Theorem 1.1, and Cesaro convergence,

lim
n

E
G
π

(

Zk,n

)

= lim
n

1

n

n∑

i=1

E
G
π

(

1k(Xi)

)

= lim
n

1

n

n∑

i=1

P
G
π (Xi = k) = νG(k). �

We now turn to the joint moment limits in several steps, and will assume in the following that
γ1, . . . , γm ≥ 0 with γ̄ ≥ 2. The first step is an “ordering of terms.”

Lemma 3.2. For G ∈ G, and initial distribution π, we have

lim
n→∞

∣
∣
∣
∣
E

G
π

(

Zγ1
1,n · · ·Zγm

m,n

)

−
∑

σ∈S(γ1,...,γm)

1

nγ̄

n−γ̄+1
∑

i1=1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

E
G
π

( γ̄
∏

l=1

1σl
(Xil)

)∣
∣
∣
∣

= 0.

Proof. By definition of S(γ1, . . . , γm),

E
G
π

(

Zγ1
1,n · · ·Zγm

m,n

)

=
1

γ̄!

1

nγ̄

∑

σ∈S(γ1,...,γm)
1≤i1,...,iγ̄≤n

E
G
π

(

1σ1(Xi1)1σ2(Xi2) · · · 1σγ̄ (Xiγ̄ )

)

.

Note now

∑

σ∈S(γ1,...,γm)
1≤i1,...,iγ̄≤n

1 = γ̄!nγ̄ , and
∑

σ∈S(γ1,...,γm)
1≤i1,...,iγ̄≤n, distinct

1 = γ̄!γ̄!

(
n

γ̄

)

.

Let K be those indices 〈i1, . . . , iγ̄〉, 1 ≤ i1, . . . , iγ̄ ≤ n which are not distinct, that is ij = ik for
some j 6= k. Then,

1

γ̄!

1

nγ̄

∣
∣
∣
∣

∑

σ∈S(γ1,...,γm)
1≤i1,...,iγ̄≤n

E
G
π

( γ̄
∏

l=1

1σl
(Xil)

)

−
∑

σ∈S(γ1,...,γm)
1≤i1,...,iγ̄≤n, distinct

E
G
π

( γ̄
∏

l=1

1σl
(Xil)

)∣
∣
∣
∣

=
1

γ̄!

1

nγ̄

∑

σ∈S(γ1,...,γm)
〈i1,...,iγ̄〉∈K

E
G
π

(

1σ1(Xi1) · · · 1σγ̄ (Xiγ̄ )

)

≤ 1

γ̄!

1

nγ̄

(

γ̄!nγ̄ − γ̄!γ̄!

(
n

γ̄

))

= o(1).

But,

∑

σ∈S(γ1,...,γm)
1≤i1,...,iγ̄≤n, distinct

E
G
π

( γ̄
∏

l=1

1σl
(Xil)

)

= γ̄!
∑

σ∈S(γ1,...,γm)
1≤i1<···<iγ̄≤n

E
G
π

( γ̄
∏

l=1

1σl
(Xil)

)

. �

The next lemma replaces the initial measure with νG. Let PG
i,j =

∏j
l=i P

G
l for 1 ≤ i ≤ j.
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Lemma 3.3. For G ∈ G and initial distribution π, we have

lim
n→∞

∣
∣
∣
∣

∑

σ∈S(γ1,...,γm)

1

nγ̄

n−γ̄+1
∑

i1=1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

E
G
π

( γ̄
∏

l=1

1σl
(Xil)

)

(3.1)

−
∑

σ∈S(γ1,...,γm)

νG(σ1)

nγ̄

n−γ̄+1
∑

i1=1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

γ̄−1
∏

l=1

PG
il+1,il+1

(σl, σl+1)

∣
∣
∣
∣

= 0.

Proof. As P
G
π (Xj = t|Xi = s) = PG

i+1,j(s, t) for 1 ≤ i < j and s, t ∈ Σ, we have

∑

σ∈S(γ1,...,γm)

1

nγ̄

n−γ̄+1
∑

i1=1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

E
G
π

( γ̄
∏

l=1

1σl
(Xil)

)

=
∑

σ∈S(γ1,...,γm)

1

nγ̄

n−γ̄+1
∑

i1=1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

P
G
π (Xi1 = σ1)

γ̄−1
∏

l=1

PG
il+1,il+1

(σl, σl+1)

which differs from the second expression in (3.1) by at most

∑

σ∈S(γ1,...,γm)

1

n

n−γ̄+1
∑

i1=1

∣
∣
∣
∣
P

G
π (Xi1 = σ1) − νG(σ1)

∣
∣
∣
∣
,

which vanishes by Theorem 1.1.

We now focus on a useful class of diagonalizable matrices

G
∗ =

{

G ∈ R
m × R

m : Re(λG
l ) < 1 for 1 ≤ l ≤ m, and G is diagonalizable

}

where {λG
l } are the eigenvalues of G. As Re(λG

l ) ≤ 0 for 1 ≤ l ≤ m when G ∈ G, certainly all
diagonalizable G ∈ G belong to G

∗. The relevance of this class, in the subsequent arguments, is
that for G ∈ G

∗ the resolvent (xI − G)−1 exists for x ≥ 1.

For G ∈ G
∗, let VG be the matrix of eigenvectors and DG be a diagonal matrix with correspond-

ing eigenvalue entries DG(i, i) = λG
i so that G = VGDGV −1

G . Define also for 1 ≤ s, t, k ≤ m,

g(k; s, t) = VG(s, k)V −1
G (k, t).

We also denote for a1, . . . , am ∈ C, the diagonal matrix Diag(a·) with ith diagonal entry ai for
1 ≤ i ≤ m. We also extend the definitions of PG

n and PG
i,j to G ∈ G

∗ with the same formulas.
In the following, we use the principal value of the complex logarithm, and the usual convention
ab+ic = e(b+ic) log(a) for a, b, c ∈ R with a > 0.

Lemma 3.4. For G ∈ G
∗, s, t ∈ Σ, and C ≤ i ≤ j where C = C(G) is a large enough constant,

PG
i,j(s, t) =

m∑

k=1

ν(k; i, j)g(k; s, t)

(
j

i − 1

)λG
k

;

moreover, ν(k; i, j) → 1 as i ↑ ∞ uniformly over k and j.
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Proof. Straightforwardly,

PG
i,j = VG

j
∏

k=i

(

I +
1

k
DG

)

V −1
G = VGDiag

( j
∏

k=i

(

1 +
λG
·

k

))

V −1
G .

To expand further, we note for z ∈ C such that |z − 1| < 1, we have

log(z) = (z − 1) + (z − 1)2
∞∑

n=0

(−1)n+1 1

n + 2
(z − 1)n.

and estimate

∣
∣
∣
∣

∞∑

n=0

(−1)n+1 1

n + 2
(z − 1)n

∣
∣
∣
∣
≤

∞∑

n=0

|z − 1|n =

(

1 − |z − 1|
)−1

.

Let now L be so large such that max1≤u≤m |λG
u |/L < 1/2. Then, for 1 ≤ s ≤ m and k ≥ L,

log

(

1 +
λG

s

k

)

=
λG

s

k
+

(
λG

s

k

)2

Cs,k

for some Cs,k ∈ C with |Cs,k| ≤ (1 − max1≤u≤m |λG
u |/L)−1 ≤ 2. Then, for i ≥ L,

j
∏

k=i

(

1 +
λG

s

k

)

= exp

( j
∑

k=i

log

(

1 +
λG

s

k

))

= exp

( j
∑

k=i

λG
s

k
+ c(s; i, j)

)

where c(s; i, j) =
∑j

k=i(λ
G
s /k)2Cs,k satisfies

|c(s; i, j)| ≤ 2 max
1≤u≤m

|λG
u |2

∞∑

k=i

1

k2
→ 0 uniformly over s and j as i ↑ ∞.

Let now

d(s; i, j) = λG
s

( j
∑

k=i

1

k
−

∫ j

i−1

dx

x

)

and note by the simple estimate

j
∑

k=i

1

k
<

∫ j

i−1

dx

x
<

j−1
∑

k=i−1

1

k

that

|d(s; i, j)| ≤ max
1≤u≤m

|λG
u |

(
1

j
+

1

i − 1

)

≤ max
1≤u≤m

|λG
u |

(
1

i
+

1

i − 1

)

→ 0

uniformly over j and s as i ↑ ∞. This allows us to write

j
∏

k=i

(

1 +
λG

s

k

)

= exp

(

c(s; i, j) + d(s; i, j)

)(
j

i − 1

)λG
s

.
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Defining ν(s; i, j) = exp(c(s; i, j) + d(s; i, j)) gives after multiplying out that

PG
i,j = VGDiag

(

ν(·; i, j)
(

j

i − 1

)λG
·
)

V −1
G

=

[
m∑

k=1

ν(k; i, j)g(k; s, t)

(
j

i − 1

)λG
k

]

s,t∈Σ

completing the proof.

The next lemma estimates a “boundary” contribution.

Lemma 3.5. For G ∈ G,

lim
ǫ↓0

lim
n↑∞

∑

σ∈S(γ1,...,γm)

νG(σ1)

nγ̄

⌊nǫ⌋
∑

i1=1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

γ̄−1
∏

l=1

PG
il+1,il+1

(σl, σl+1) = 0.

Proof. For any σ ∈ S(γ1, . . . , γm),

0 ≤ lim
ǫ

lim
n

1

nγ̄

⌊nǫ⌋
∑

i1=1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

γ̄−1
∏

l=1

PG
il+1,il+1

(σl, σl+1)

≤ lim
ǫ

lim
n

1

nγ̄
(nǫ)nγ̄−1 = 0. �

To continue, define for G ∈ G
∗ the function TG

x,y(s, t) : (0, 1]2 × Σ2 → C by

TG
x,y(s, t) =

m∑

k=1

g(k; s, t)

(
x

y

)−λG
k

.

Lemma 3.6. For G ∈ G
∗, σ ∈ S(γ1, . . . , γm), and ǫ > 0,

lim
n↑∞

1

nγ̄

n−γ̄+1
∑

i1=⌊nǫ⌋+1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

γ̄−1
∏

l=1

PG
il+1,il+1

(σl, σl+1)

=

∫

ǫ≤x1≤x2≤···≤xγ̄≤1

γ̄−1
∏

l=1

TG
xl,xl+1

(σl, σl+1) dx1dx2 · · · dxγ̄

Proof. From Lemma 3.4, as ν(s; i, j) → 1 as i ↑ ∞ uniformly over j and s, Tx,y(s, t) is bounded,
continuous on [ǫ, 1]2 for fixed s, t, and Riemann convergence, we have

lim
n

1

nγ̄

n−γ̄+1
∑

i1=⌊nǫ⌋+1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

γ̄−1
∏

l=1

PG
il+1,il+1

(σl, σl+1)

= lim
n

1

nγ̄

n−γ̄+1
∑

i1=⌊nǫ⌋+1

· · ·
n∑

iγ̄>iγ̄−1

γ̄−1
∏

l=1

m∑

k=1

ν(k; il + 1, il+1)g(k;σl, σl+1)

(
il/n

il+1/n

)−λG
k

=

∫

ǫ≤x1≤x2≤···≤xγ̄≤1

γ̄−1
∏

l=1

TG
xl,xl+1

(σl, σl+1)dx1dx2 · · · dxγ̄ . �
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Lemma 3.7. For G ∈ G
∗ and σ ∈ S(γ1, . . . , γm),

lim
ǫ↓0

∫

ǫ≤x1≤x2≤···≤xγ̄≤1

γ̄−1
∏

l=1

TG
xl,xl+1

(σl, σl+1) dx1dx2 · · · dxγ̄

=

∫ 1

0

∫ xγ̄

0
· · ·

∫ x2

0
TG

xγ̄−1,xγ̄
(σγ̄−1, σγ̄) · · · TG

x1,x2
(σ1, σ2)dx1dx2 · · · dxγ̄ .

Proof. Let

fǫ = 1{ǫ≤x1≤x2≤···≤xγ̄≤1}

γ̄−1
∏

l=1

TG
xl,xl+1

(σl, σl+1).

Then,

lim
ǫ

fǫ = 1{0<x1≤x2≤···≤xγ̄≤1}

γ̄−1
∏

l=1

TG
xl,xl+1

(σl, σl+1),

and fǫ is uniformly bounded over ǫ as

|fǫ| ≤ f̄ = 1{0<x1≤x2≤···≤xγ̄≤1}

γ̄−1
∏

l=1

m∑

k=1

|g(k;σl, σl+1)|
(

xl

xl+1

)−Re(λG
k

)

.

The right-hand bound is integrable: Indeed, by Tonelli’s Lemma and induction, we have

∫

f̄dx1 · · · dxγ̄ =

∫ 1

0

∫ xγ̄

0
· · ·

∫ x2

0

γ̄−1
∏

l=1

m∑

k=1

|g(k;σl, σl+1)|
(

xl

xl+1

)−Re(λG
k

)

dx1 · · · dxγ̄

=
1

γ̄

γ̄−1
∏

l=1

( m∑

k=1

|g(k;σl, σl+1)|
l − Re(λG

k )

)

.

Hence, the lemma follows by dominated convergence and Fubini’s Theorem.

Lemma 3.8. For G ∈ G
∗ and σ ∈ S(γ1, . . . , γm),

∫ 1

0

∫ xγ̄

0
· · ·

∫ x2

0

γ̄−1
∏

l=1

TG
xl,xl+1

(σl, σl+1)dx1 · · · dxγ̄ =
1

γ̄

γ̄−1
∏

l=1

(

lI − G

)−1

(σl, σl+1).

Proof. By induction, the integral equals

∫ 1

0

∫ xγ̄

0
· · ·

∫ x2

0
TG

xγ̄−1,xγ̄
(σγ̄−1, σγ̄) · · · TG

x1,x2
(σ1, σ2)dx1 · · · dxγ̄

=
1

γ̄

γ̄−1
∏

l=1

( m∑

k=1

g(k;σl, σl+1)

l − λG
k

)

.

However, for x ≥ 1, we have

(

xI − G

)−1

(s, t) = VG

(

xI − DG

)−1

V −1
G (s, t) =

m∑

k=1

g(k; s, t)

x − λG
k
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to finish the identification.

At this point, by straightforwardly combining the previous lemmas, we have proved Theorem
1.3 for G ∈ G diagonalizable. The method in extending to non-diagonalizable generators is
accomplished by approximating with suitable “lower” and “upper” diagonal matrices.

Lemma 3.9. For G ∈ G,

lim
n→∞

∑

σ∈S(γ1,...,γm)

νG(σ1)

nγ̄

n−γ̄+1
∑

i1=1

n−γ̄+2
∑

i2>i1

· · ·
n∑

iγ̄>iγ̄−1

γ̄−1
∏

l=1

PG
il+1,il+1

(σl, σl+1)

=
1

γ̄

∑

σ∈S(γ1,...,γm)

νG(σ1)

γ̄−1
∏

l=1

(

lI − G

)−1

(σl, σl+1). (3.2)

Proof. For an m × m matrix A, let G[A] = G + A. Let ‖ · ‖M be the matrix norm ‖A‖M =
max{|A(s, t)| : 1 ≤ s, t ≤ m}. Now, for small ǫ > 0, choose matrices A1 and A2 with non-
negative entries so that ‖A1‖M, ‖A2‖M < ǫ, I + G[−A1]/l, I + G[A2]/l have positive entries for
all l large enough, and G[−A1], G[A2] ∈ G

∗: This last condition can be met as (1) the spectrum
varies continuously with respect to the matrix norm ‖ · ‖M (cf. Appendix D [12]), and (2)
diagonalizable real matrices are dense (cf. Theorem 1 [11]).

Then, for s, t ∈ Σ, and l large enough, we have 0 < (I + G[−A1]/l)(s, t) ≤ (I + G/l)(s, t) ≤
(I + G[A2]/l)(s, t). Hence, for i ≤ j with i large enough,

P
G[−A1]
i,j (s, t) ≤ PG

i,j(s, t) ≤ P
G[A2]
i,j (s, t).

By Lemmas 3.5, 3.6, 3.7 and 3.8, the left-side of (3.2), that is in terms of liminf and limsup, is
bounded below and above by

∑

σ∈S(γ1,...,γm)

1

γ̄
νG(σ1)

γ̄−1
∏

l=1

(

lI − G[−A1]

)−1

(σl, σl+1),

and
∑

σ∈S(γ1,...,γm)

1

γ̄
νG(σ1)

γ̄−1
∏

l=1

(

lI − G[A2]

)−1

(σl, σl+1)

respectively. On the other hand, for σ ∈ S(γ1, . . . , γm), both

γ̄−1
∏

l=1

(
lI − G[−A1]

)−1
(σl, σl+1),

γ̄−1
∏

l=1

(
lI − G[A2]

)−1
(σl, σl+1) →

γ̄−1
∏

l=1

(
lI − G

)−1
(σl, σl+1)

as ǫ → 0, completing the proof.

4 Proof of Theorem 1.4

The proof follows by evaluating the moment expressions in Theorem 1.3 when G = Θ as those
corresponding to the Dirichlet distribution with parameters θ1, . . . , θm (1.1).
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Lemma 4.1. The stationary distribution νΘ is given by νΘ(l) = θl/θ̄ for l ∈ Σ.

Also, for 2 ≤ l ≤ γ̄, let Fl be the m × m matrix with entries

Fl(j, k) =

{
θk for k 6= j

θj + l − 1 for k = j.

Then,
(

lI − Θ

)−1

=
1

l(l + θ̄)
Fl+1.

Proof. The form of νΘ follows by inspection. For the second statement, write Fl+1 = lI + Θ̂
where the matrix Θ̂ has ith column equal to θi(1, . . . , 1)

t. Then, also Θ = Θ̂− θ̄I. As (1, . . . , 1)t

is an eigenvector of Θ with eigenvalue 0, we see (lI − Θ)(lI + Θ̂) = (l2 + lθ̄)I finishing the
proof.

The next statement is an immediate corollary of Theorem 1.3 and Lemma 4.1.

Lemma 4.2. The µΘ-moments satisfy EµΘ
[xi] = θi/θ̄ for 1 ≤ i ≤ m and, when γ̄ ≥ 2,

EµΘ

[ m∏

i=1

xγi

i

]

=
∑

σ∈S(γ1,...,γm)

νΘ(σ1)
1

γ̄

γ̄−1
∏

l=1

(

lI − Θ

)−1

(σl, σl+1)

=
∑

σ∈S(γ1,...,γm)

θσ1

∏γ̄
l=2 Fl(σl−1, σl)

γ̄!
∏γ̄−1

l=0 (θ̄ + l)
.

We now evaluate the last expression of Lemma 4.2 by first specifying of the value of σγ̄ . Recall,
by convention θl · · · (θl + γl − 1) = 1 when γl = 0 for 1 ≤ l ≤ m.

Lemma 4.3. For γ̄ ≥ 2 and 1 ≤ k ≤ m,

∑

σ∈S(γ1,...,γm)
σγ̄=k

θσ1

γ̄
∏

l=2

Fl(σl−1, σl) = γk(γ̄ − 1)!
m∏

l=1

θl · · · (θl + γl − 1). (4.1)

Proof. The proof will be by induction on γ̄.

Base Step: γ̄ = 2. If γk = 1 and γi = 1 for i 6= k, the left and right-sides of (4.1) both equal
θiF2(i, k) = θiθk. If γk = 2, then the left and right-sides of (4.1) equal 2θkF2(k, k) = 2θk(θk +1).

Induction Step. Without loss of generality and to ease notation, let k = 1. Then, by specifying
the next-to-last element σγ̄−1, and simple counting, we have

∑

σ∈S(γ1,...,γm)
σγ̄=1

θσ1

γ̄
∏

l=2

Fl(σl, σl−1) = γ1(θ1 + γ̄ − 1)
∑

σ∈S(γ1−1,...,γm)
σγ̄−1=1

θσ1

γ̄−1
∏

l=2

Fl(σl, σl−1)

+

m∑

j=2

γ1θ1

∑

σ∈S(γ1−1,...,γm)
σγ̄−1=j

θσ1

γ̄−1
∏

l=2

Fl(σl, σl−1).
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We now use induction to evaluate the right-side above as

θ1 · · · (θ1 + γ1 − 2)

m∏

i=2

θi · · · (θi + γi − 1)

×
{

γ1(θ1 + γ̄ − 1)(γ1 − 1)(γ̄ − 2)! +

m∑

j=2

γ1θ1γj(γ̄ − 2)!

}

= θ1 · · · (θ1 + γ1 − 2)
m∏

i=2

θi · · · (θi + γi − 1)

×
{

γ1(θ1 + γ̄ − 1)(γ1 − 1)(γ̄ − 2)! + γ1θ1(γ̄ − γ1)(γ̄ − 2)!

}

= θ1 · · · (θ1 + γ1 − 2)
m∏

i=2

θi · · · (θi + γi − 1)

×γ1(γ̄ − 2)!

{

(θ1 + γ1 − 1)(γ̄ − 1)

}

= γ1(γ̄ − 1)!

m∏

l=1

θl · · · (θl + γl − 1). �

By now adding over 1 ≤ k ≤ m in the previous lemma, we finish the proof of Theorem 1.4.

Lemma 4.4. When γ̄ ≥ 2,

∑

σ∈S(γ1,...,γm)

θσ1

∏γ̄
l=2 Fl(σl−1, σl)

γ̄!
∏γ̄−1

l=0 (θ̄ + l)
=

∏m
l=1 θl · · · (θl + γl − 1)

∏γ̄−1
l=0 (θ̄ + l)

.

Proof.

∑

σ∈S(γ1,...,γm)

θσ1

∏γ̄
l=2 Fl(σl−1, σl)

γ̄!
∏γ̄−1

l=0 (θ̄ + l)
=

m∑

k=1

∑

σ∈S(γ1,...,γm)
σγ̄=k

θσ1

∏γ̄
l=2 Fl(σl−1, σl)

γ̄!
∏γ̄−1

l=0 (θ̄ + l)

=

∑m
k=1 γk(γ̄ − 1)!

γ̄!

∏m
l=1 θl · · · (θl + γl − 1)

∏γ̄−1
l=0 (θ̄ + l)

=

∏m
l=1 θl · · · (θl + γl − 1)

∏γ̄−1
l=0 (θ̄ + l)

. �

5 Proof of Theorem 1.5 (1)

Let p = 〈p1, . . . , pm〉 ∈ Int∆m be a point in the simplex with pi > 0 for 1 ≤ i ≤ m. For ǫ > 0
small, let B(p, ǫ) ⊂ Int∆m be a ball with radius ǫ and center p. To prove Theorem 1.5 (1), it is
enough to show for all large n the lower bound

P
G
π

(

Zn ∈ B(p, ǫ)

)

> C(p, ǫ) > 0.
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To this end, let p̄0 = 0 and p̄i =
∑i

l=1 pl for 1 ≤ i ≤ m. Also, define, for 1 ≤ k ≤ l,
Xl

k = 〈Xk, . . . ,Xl〉. Then, there exist small δ, β > 0 such that

{
Zn ∈ B(p, ǫ)

}
(5.1)

⊃ ∪0≤k1,...,km≤⌊nβ⌋

{{

X
⌊np̄1⌋−k1

⌊nδ⌋ = ~1

}

∩
(

∩m
j=2

{

X
⌊np̄j⌋−k̄j

⌊np̄j−1⌋−k̄j−1+1
= ~j

})}

where k̄a =
∑a

l=1 kl, and ~i is a vector with all coordinates equal to i of the appropriate length.
The last event represents the process being in the fixed location j for times ⌊np̄j−1⌋ − k̄j−1 + 1
to ⌊np̄j⌋ − k̄j for 1 ≤ j ≤ m where we take 1 − k̄0 = ⌊nδ⌋.

Now, as G has strictly negative diagonal entries, C1 = maxs |G(s, s)| > 0, and so for all large
n,

P
G
π

(

X
⌊np̄i⌋−k̄i

⌊np̄i−1⌋−k̄i−1+1
=~i

∣
∣X⌊np̄i−1⌋−k̄i−1+1 = i

)

≥
n∏

j=⌊nδ⌋

1 − C1

j
≥ δC1

2
.

Also, as G has positive nondiagonal entries, C2 = mins G(s, s + 1) > 0. Then,

P
G
π

(

X⌊np̄i−1⌋−k̄i−1+1 = i
∣
∣X⌊np̄i−1⌋−k̄i−1

= i − 1

)

≥ C2

⌊np̄i−1⌋ − k̄i−i + 1
.

Hence, for all large n, as P
G
π (X⌊nδ⌋ = 1) ≥ νG(1)/2 (Theorem 1.1),

P
G
π

(

Zn ∈ B(p, ǫ)

)

≥
∑

0≤k1,...,km≤⌊nβ⌋

P
G
π

({

X
⌊np1⌋−k1

⌊nδ⌋ = ~1

}

∩
(

∩m
j=2

{

X
⌊np̄j⌋−k̄j

⌊np̄j−1⌋−k̄j−1+1
= ~j

}))

≥
[
δC1

2

]m ∑

0≤k1,...,km≤⌊nβ⌋

νG(1)

2

m∏

j=2

C2

⌊np̄j−1⌋ − k̄j−1 + 1

≥
[
δC1

2

]m ∑

0≤k1,...,km≤⌊nβ⌋

νG(1)

2

m∏

j=2

C2

⌊np̄j−1⌋ − kj−1 + 1

≥ νG(1)

4

[
C2δ

C1

2

]m m∏

j=2

log

( ⌊np̄j−1⌋
⌊np̄j−1⌋ − ⌊nβ⌋

)

≥ νG(1)

8

[
C2δ

C1

2

]m m∏

j=2

log

(
p̄j−1

p̄j−1 − β

)

. �

6 Proof of Theorem 1.5 (2)

The proof of Theorem 1.5 (2) follows from the next two propositions.

Proposition 6.1. For G ∈ G, the m vertices of ∆m, 1, . . . ,m, are not atoms.
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Proof. From Theorem 1.3, moments αl,k = EµG
[(xl)

k] satisfy αl,k+1 = (I −G/k)−1(l, l)αl,k for
1 ≤ l ≤ m and k ≥ 1. By the inverse adjoint formula, for large k,

(

I − G/k

)−1

(l, l) =
1 − 1

k (Tr(G) − G(l, l))

1 − Tr(G)/k
+ O(k−2) = 1 +

G(l, l)

k
+ O(k−2).

As G ∈ G, G(l, l) < 0. Hence, αl,k vanishes at polynomial rate αl,k ∼ kG(l,l). In particular, as
µG({l}) ≤ EµG

[(xl)
k] → 0 as k → ∞, the point l cannot be an atom of the limit distribution.

Fix for the remainder p ∈ ∆m \ {1, . . . ,m}, and define p̌ = min{pi : pi > 0, 1 ≤ i ≤ m} > 0.
Let also 0 < δ < p̌/2, and consider B(p, δ) = {x ∈ ∆m : |p − x| < δ}.

Proposition 6.2. For G ∈ G, there is a constant C = C(G,p,m) such that

µG

(

B(p, δ)

)

≤ C log

(
p̌ + 2δ

p̌ − δ

)

.

Before proving Proposition 6.2, we will need some notation and lemmas. We will say a“switch”
occurs at time 1 < k ≤ n in the sequence ωn = 〈ω1, . . . , ωn〉 ∈ Σn if ωk−1 6= ωk. For 0 ≤ j ≤ n−1,
let

T (j) =

{

ωn : ωn has exactly j switches

}

.

Note as p ∈ ∆m \ {1, . . . ,m} at least two coordinates of p are positive. Then, as δ < p̌/2, when
(1/n)

∑n
i=1〈11(ωi), . . . , 1m(ωi)〉 ∈ B(p, δ), at least one switch is in ωn.

For j ≥ 1 and a path in T (j), let α1, . . . , αj denote the j switch times in the sequence;
let also θ1, . . . , θj+1 be the j + 1 locations visited by the sequence. We now partition {ωn :
(1/n)

∑n
i=1〈11(ωi), . . . , 1m(ωi)〉 ∈ B(p, δ)} ∩ T (j) into non-empty sets Aj(U,V) where U =

〈U1, . . . , Uj−1〉 and V = 〈V1, . . . , Vj+1〉 denote possible switch times (up to the j − 1st switch
time) and visit locations respectively:

Aj(U,V) =

{

ωn : ωn ∈ T (j),
1

n

n∑

i=1

〈11(ωi), . . . , 1m(ωi)〉 ∈ B(p, δ),

αi = Ui, θk = Vk for 1 ≤ i ≤ j − 1, 1 ≤ k ≤ j + 1

}

.

In this decomposition, paths in Aj(U,V) are in 1 : 1 correspondence with jth switch times
αj–the only feature allowed to vary.

Now, for each set Aj(U,V), we define a path η(j,U,V) = 〈η1, . . . , ηn〉 where the last jth
switch is “removed,”

ηl =







V1 for 1 ≤ l < U1

Vk for Uk−1 ≤ l < Uk, 2 ≤ k ≤ j − 1
Vj for Uj−1 ≤ l ≤ n.

Note that the sequence η(j,U,V) belongs to T (j − 1), can be obtained no matter the location
Vj+1 (which could range on the m values in the state space), and is in 1 : 1 correspondence
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with pair 〈U1, . . . , Uj−1〉 and 〈V1, . . . , Vj〉. In particular, recalling Xn
1 = 〈X1, . . . ,Xn〉 denotes

the coordinate sequence up to time n, we have

∑

U,V

P
G
π

(

Xn
1 = η(j,U,V)

)

≤ m P
G
π

(

Xn
1 ∈ T (j − 1)

)

(6.1)

where the sum is over all U,V corresponding to the decomposition into sets Aj(U,V) of {ωn :
(1/n)

∑n
i=1〈11(ωi), . . . , 1m(ωi)〉 ∈ B(p, δ)} ∩ T (j).

The next lemma estimates the location of the last switch time αj , and the size of the set
Aj(U,V). The proof is deferred to the end.

Lemma 6.1. On Aj(U,V), we have ⌈n(p̌ − δ) + 1⌉ ≤ αj. Also, |Aj(U,V)| ≤ ⌊2nδ + 1⌋.

A consequence of these bounds on the position and cardinality of αj ’s associated to a fixed
set Aj(U,V), is that

′∑ 1

Uj
≤

⌈n(p̌+δ)+2⌉
∑

k=⌈n(p̌−δ)+1⌉

1

k
≤ log

(
p̌ + δ + 3/n

p̌ − δ

)

(6.2)

where
∑′ refers to adding over all last switch times Uj associated to paths in Aj(U,V).

Let now Ĝ = max{|G(i, j)| : 1 ≤ i, j ≤ m}.

Lemma 6.2. For ωn ∈ Aj(U,V) such that αj = Uj , and all large n, we have

P
G
π

(

Xn
1 = ωn

)

≤ Ĝ(p̌/2)−2Ĝ

Uj
P

G
π

(

Xn = η(j,U,V)

)

. (6.3)

Proof. The path η(j,U,V) differs from ωn only in that there is no switch at time Uj . Hence,

P
G
π

(
Xn = ωn

)

PG
π

(
Xn = η(j,U,V)

) =
G(Vj , Vj+1)

Uj(1 + G(Vj , Vj)/Uj)

n∏

l=Uj+1

(
1 + G(Vj+1, Vj+1)/l

1 + G(Vj , Vj)/l

)

.

Now bounding G(Vj , Vj+1) ≤ Ĝ, 1 + G(Vj+1, Vj+1)/l ≤ 1, 1 + G(Vj , Vj)/l ≥ 1− Ĝ/l, and noting
Uj ≥ n(p̌− δ) + 1 (by Lemma 6.1), − ln(1− x) ≤ 2x for x > 0 small, and δ < p̌/2, give for large
n,

G(Vj , Vj+1)

1 + G(Vj , Vj)/Uj

n∏

l=Uj+1

(
1 + G(Vj+1, Vj+1)/l

1 + G(Vj , Vj)/l

)

≤ Ĝ

(
n

n(p̌ − δ)

)2Ĝ

≤ Ĝ(p̌/2)−2Ĝ. �

Proof of Proposition 6.2. By decomposing over number of switches j and on the structure of
the paths with j switches, estimates (6.3), (6.2), comment (6.1), and

∑

j P
G
π

(
Xn ∈ T (j−1)

)
≤ 1,
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we have for all large n,

P
G
π

(

Zn ∈ B(p, δ)

)

=

n−1∑

j=1

P
G
π

(

Zn ∈ B(p, δ),Xn ∈ T (j)

)

=

n−1∑

j=1

∑

U,V

P
G
π

(

Aj(U,V)

)

≤
n−1∑

j=1

∑

U,V

′∑ C(G,p)

Uj
P

G
π

(

Xn = η(j,U,V)

)

≤ C(G,p) log

(
p̌ + 2δ

p̌ − δ

) n−1∑

j=1

∑

U,V

P
G
π

(

Xn = η(j,U,V)

)

≤ mC(G,p) log

(
p̌ + 2δ

p̌ − δ

) n−1∑

j=1

P
G
π

(

Xn ∈ T (j − 1)

)

≤ C(G,p,m) log

(
p̌ + 2δ

p̌ − δ

)

.

The proposition follows by taking limit on n, and weak convergence.

Proof of Lemma 6.1. For a path ωn ∈ Aj(U,V) and 1 ≤ k ≤ j + 1, let τk be the number
of visits to state Vk (some τk’s may be the same if Vk is repeated). For 1 ≤ i ≤ τk, let nk

i and
nk

i be the start and end of the ith visit to Vk. Certainly,
∑n

i=1 1Vk
(ωi) =

∑τk

i=1(n
k
i − nk

i + 1).
Moreover, as (1/n)

∑n
i=1〈11(ωi), . . . , 1m(ωi)〉 ∈ B(p, δ), we have |(1/n)

∑n
i=1 1Vk

(ωi)− pVk
| ≤ δ,

and so

n(pVk
− δ) ≤

τk∑

i=1

(
nk

i − nk
i + 1

)
≤ n(pVk

+ δ). (6.4)

Hence, as the disjoint sojourns {[nk
i , n

k
i ] : 1 ≤ i ≤ τk} occur between times 1 and nk

τk
, their total

sum length is less than nk
τk

, and we deduce n(pVk
− δ) ≤ nk

τk
.

Now, for p ∈ ∆m \ {1, . . . ,m}, at least one of the {pVi
: Vi 6= Vj+1, 1 ≤ i ≤ j} is positive:

Indeed, there are two coordinates of p, say ps and pt, which are positive. Say Vj+1 6= s; then,

as (1/n)
∑n

i=1 1s(ωi) = (1/n)
∑αj−1

i=1 1s(ωi), |(1/n)
∑αj−1

i=1 1s(ωi) − ps| ≤ δ, and ps − δ > 0, the
path must visit state s before time αj, e.g. Vi = s for some 1 ≤ i ≤ j.

Then, from the deduction just after (6.4), we have

n(p̌ − δ) ≤ n max
Vi 6=Vj+1
1≤i≤j

(pVi
− δ) ≤ max

Vi 6=Vj+1
1≤i≤j

ni
τi

≤ nj
τj

= αj − 1

giving the first statement.

For the second statement, note that −nj
τj +

∑τj−1
i=1 (nj

i − nj
i + 1) (with convention the sum

vanishes when τj = 1) is independent of paths in Aj(U,V) being some combination of {Ui : 1 ≤
i ≤ j − 1}. Hence, with k = j in (6.4), we observe αj = nj

τj + 1 takes on at most ⌊2nδ + 1⌋
distinct values. The result now follows as paths in Aj(U,V) are in 1 : 1 correspondence with
last switch times αj .
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[3] Arratia, R., Barbour, A. D., Tavaré, S. (2003) Logarithmic Combinatorial Structures: A
Probabilistic Approach EMS Monographs in Mathematics. European Mathematical Society
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basse température. (French) Stochastics Stochastics Rep. 63 65-137. MR1639780

[20] Del Moral, P., Miclo, L. (2006) Self-interacting Markov chains. Stoch. Anal. Appl. 24 615-
660. MR2220075

[21] Pemantle, R. (2007) A survey of random processes with reinforcement. Probability Surveys
4 1-79. MR2282181

[22] Pitman, J. (1996) Some developments of the Blackwell-MacQueen urn scheme. In Statistics,
Probability and Game Theory; Papers in honor of David Blackwell, Ed. T.S. Ferguson
et al. Institute of Mathematical Statistics Lecture Notes-Monograph Series 30 245-267.
MR1481784

[23] Pitman, J. (2006) Combinatorial stochastic processes. Lecture Notes in Mathematics, 1875

Springer-Verlag, Berlin. MR2245368

[24] Sethuraman, J. (1994) A constructive definition of Dirichlet priors. Statist. Sinica 4 639–650.
MR1309433

[25] Vervaat, W. (1972) Success Epochs in Bernoulli Trials. Math. Centre Tracts, Amsterdam
MR0328989

[26] Wen, Liu, Weiguo, Yang (1996) An extension of Shannon-McMillan theorem and some limit
properties for nonhomogeneous Markov chains. Stoch. Proc. Appl. 61 129-145. MR1378852

[27] Winkler, G. (2003) Image Analysis, Random Fields and Dynamic Monte Carlo Methods.

Second edition. Springer-Verlag, New York. MR1316400

683

http://www.ams.org/mathscinet-getitem?mr=1327733
http://www.ams.org/mathscinet-getitem?mr=1639780
http://www.ams.org/mathscinet-getitem?mr=2220075
http://www.ams.org/mathscinet-getitem?mr=2282181
http://www.ams.org/mathscinet-getitem?mr=1481784
http://www.ams.org/mathscinet-getitem?mr=2245368
http://www.ams.org/mathscinet-getitem?mr=1309433
http://www.ams.org/mathscinet-getitem?mr=0328989
http://www.ams.org/mathscinet-getitem?mr=1378852
http://www.ams.org/mathscinet-getitem?mr=1316400

