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Abstract

Consider an infinite random matrix H = (hij)0<i,j picked from the Gaussian Unitary Ensem-
ble (GUE). Denote its main minors by Hi = (hrs)1≤r,s≤i and let the j:th largest eigenvalue
of Hi be µi

j . We show that the configuration of all these eigenvalues (i, µi
j) form a determi-

nantal point process on N × R.
Furthermore we show that this process can be obtained as the scaling limit in random tilings
of the Aztec diamond close to the boundary. We also discuss the corresponding limit for
random lozenge tilings of a hexagon.
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1 Introduction

The distribution of eigenvalues induced by some measure on matrices has been the study of
random matrix theory for decades. These distributions have been found to be universal in the
sense that they turn up in various unrelated problems, some of which do not contain a matrix
in any obvious way, or contain a matrix that does not look like a random matrix. In this
article, we propose to study the eigenvalues of the minors of a random matrix, and argue that
this distribution also is universal in some sense by showing that it is the scaling limit of three
apparently unrelated discrete models.

The largest eigenvalues of minors of GUE-matrices have been studied in (Bar01), connecting
these to a certain queueing model. It is a special case of the very general class of models analysed
in (Joh03). The large N limit of this model will yield the distribution of all the eigenvalues of
a GUE-matrix and its minors.

This process will turn out also to be the scaling limit of a point process related to random tilings
of the Aztec diamond, studied in (Joh05a) and of a process related to random lozenge-tilings of
a hexagon, studied in (Joh05b).

1.1 Eigenvalues of the GUE

Consider the following point process on Λ = N × R. There is a point at (n, µ) iff the n:th main
minor of H, i.e. Hn, has an eigenvalue µ. We will call this process the GUE minor process. A
central result in this article is that this process is a determinantal point process with a certain
kernel KGUE.

For details of what it means for a point process to be determinantal, see section 2. An explicit
expression for this kernel is given in the next definition.

Definition 1.2. The GUE minor kernel is

KGUE(r, ξ; s, η) = −φ(r, ξ; s, η) +

−1
∑

j=−∞

√

(s + j)!

(r + j)!
hr+j(ξ)hs+j(η)e

−(ξ2+η2)/2,

where φ(r, ξ; s, η) = 0 when r ≤ s and

φ(r, ξ; s, η) =
(ξ − η)r−s−1

√
2r−s

(r − s− 1)!
e

1

2
(η2−ξ2)H(ξ − η)

for r > s.

Here, hk(x) = 2−k/2(k!)−1/2π−1/4Hk(x) are the Hermite polynomials normalised so that
∫

hi(x)hj(x)e
−x2

dx = δij ,

hk ≡ 0 when k < 0 and H is the Heaviside function defined by

H(t) =

{

1 for t ≥ 0

0 for t < 0.
(1.1)

Theorem 1.3. The GUE minor process is determinantal with kernel KGUE.

This will be proved in section 3.
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1.4 Aztec Diamond

The Aztec diamond of size N is the largest region of the plane that is the union of squares with
corners in lattice points and is contained in the region |x| + |y| ≤ N + 1, see figure 1.

It can be covered with 2 × 1 dominoes in 2N(N+1)/2 ways, (EKLP92a; EKLP92b). Probability
distributions on the set of all these possible tilings have been studied in several references, for
example (Joh05a; Pro03). Typical samples are characterized by having so called frozen regions
in the north, south, east and west, regions where the tiles are layed out like brickwork. In the
middle there is a disordered region, the so called tempered region. It is for example known that
for large N , the shape of the tempered region tends to a circle, see (JPS98) for precise statement.

The key to analyzing this model is to colour all squares black or white in a checkerboard fashion.
Let us chose colour white for the left square on the top row. A horizontal tile is of type N, or
north, whenever its left square is white. All other horizontal tiles are of type S, or south.
Likewise, a vertical domino is of type W, or west, precisely if its top square is white. Other
vertical dominoes are of type E.

In figure 1, tiles of type N and E have been shaded. Notice that along the line i = 1, there is
precisely one white tile, and its position is a stochastic variable that we denote x1

1. Along the line
i = 2 there are precisely two white tiles, at positions x2

1 and x2
2 respectively, etc. In general, let xi

k

denote the j-coordinate of the k:th white tile along line i. These white points can be considered
a particle configuration, and this particle configuration uniquely determines the tiling. It is
shown in (Joh05a) that this process is a determinantal point process on N2 = {1, 2, . . . ,N}2,
and the kernel is computed.

We show that this particle process, properly rescaled, converges weakly to the distribution for
eigenvalues of GUE described above. More precisely we have the following theorem that will be
proved in section 4.

Theorem 1.5. Let µi
j be the eigenvalues of a GUE matrix and its minors. For each N , let {xi

j}
be the position of the particles, as defined above, in a random tiling of the Aztec Diamond of size
N . Then for each continuous function of compact support φ : N × R → R, with 0 ≤ φ ≤ 1,

E





∏

i,j

(1 − φ(i, µi
j))



 = lim
N→∞

E





∏

i,j

(1 − φ(i,
xi

j −N/2
√

N/2
))



 .

1.6 Rhombus Tilings

Consider an (a, b, c)-hexagon, i.e. a hexagon with side lengths a, b, c, a, b, c. It can be covered
by rhombus-shaped tiles with angles π/3 and 2π/3 and side length 1, so called lozenges. The
number of possible such tilings is

a
∏

i=1

b
∏

j=1

c
∏

k=1

i+ j + k − 1

i+ j + k − 2
.

This formula was proved by Percy MacMahon (1854-1928), see (Sta99, page 401) for historical
remarks.
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Figure 1: An Aztec Diamond of size 20 with N and E type dominoes shaded.
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Figure 2: Lozenge tiling of a hexagon.

Thus, we can chose a tiling randomly, each possible tiling assigned equal probability. A typical
such tiling is shown in figure 2. Just like in the case of the Aztec diamond, there are frozen
regions in the corners of the shape and a disordered region in the middle. It has been shown,
that when a = b = c = N → ∞, this so called tempered region, tends to a circle, see (CLP98)
for precise statement and other similar results.

Equivalently, consider a simple, symmetric, random walks, started at positions (0, 2j), 1 ≤ j ≤ a.
At each step in discrete time, each walker moves up or down, with equal probability. They are
conditioned never to intersect and to end at positions (c + b, c − b + 2j). Figure 3, the red
lines illustrate such a family of walkers, and shows the correspondence between this process and
tilings of the hexagon. These red dots in the figure define a point process. (Joh05b) shows that
uniform measure on tilings of the hexagon (or equivalently, uniform measure on the possible
configurations of simple, symmetric, random walks) induces a measure on this point process
that is determinantal, and computes the kernel.

We will show, in theorem 5.4, that the complement of this process, the blue dots in the figure,
is also a determinantal process and compute its kernel.

Let us introduce some notation. Observe that along the line t = 1, there is exactly one blue
dot. Let its position be x1

1. Along line t = 2 there are two blue dots, at positions x2
1 and

x2
2 respectively, and so on. All these xi

j are stochastic variables, and they are of course not
independent of each other.

We expect that the scaling limit of the process {xi
j}i,j , as the size of the hexagon tends to infinity,

is the GUE minor process with kernel KGUE. More precisely, let µi
j be the eigenvalues of a GUE

matrix and its minors. Then for each continuous function of compact support φ : N × R → R,
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Figure 3: Tiled hexagon with sides a = 8, b = 5 and c = 10. The so called horizontal rhombuses
are marked with a blue dot.

1347



0 ≤ φ ≤ 1,

E





∏

i,j

(1 − φ(i, µi
j))



 = lim
N→∞

E





∏

i,j

(1 − φ(i,
xi

j −N/2
√

N/2
))



 . (1.2)

We will outline a proof of this result by going to the limit in the formula for the correlation
kernel, which involves the Hahn polynomials. A complete proof requires some further estimates
of these polynomials.

The GUE minor process has also been obtained as a limit at “turning points” in a 3D partition
model by Okounkov and Reshetikhin (OR06). We expect that the GUE minor process should
be the universal limit in random tilings where the disordered region touches the boundary.

Acknowledgement: We thank A. Okounkov for helpful comments and for sending the
preprint (OR06).

2 Determinantal point processes

Let Λ be a complete separable metric space with some reference measure λ. For example R

with Lebesgue measure or N with counting measure. Let M(Λ) be the space of integer-valued
and locally finite measures on Λ. A point process x is a probability measure on M(Λ). For
example, let x be a point process. A realisation x(ω) is an element of M(Λ). It will assign
positive measure to certain points, {xi(ω)}1≤i≤N(ω), sometimes called particles, or just points in
the process. In the processes that we will study the number of particles in a compact set will
have a uniform upper bound.

Many point processes can be specified by giving their correlation functions, ρn : Λn → R,
n = 1, . . . ,∞. We will not go into the precise definition of these or when a process is uniquely
determined by its correlation functions. For that we refer to any or all of the following references:
(DVJ88, Ch. 9.1, A2.1), (Joh05c; Sos00).

Suffice it to say that correlation functions have the following useful property. For any bounded
measurable function φ with bounded support B, satisfying

∞
∑

n=1

||φ||n∞
n!

∫

Bn

ρn(x1, . . . , xn) dnx <∞ (2.1)

the following holds:

E[
∏

i

(1 + φ(xi(ω)))] =

∞
∑

n=1

1

n!

∫

Λn

φ(x1) · · · φ(xn)ρn(x1, . . . , xn) dnλ. (2.2)

Correlation functions are thus useful in computing various expectations. For example, if A is
some set and χA is the characteristic function of that set, then 1 − E[

∏

(1 − χA(xi))] is the
probability of at least one particle in the set A. If the correlation functions of a process exist
and are known, this probability can then readily be computed with the above formula.

We will study point processes of a certain type, namely those whose correlation functions exist
and are of the form

ρn(x1, . . . , xn) = det[K(xi; xj)]1≤i,j≤n,
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i.e. the n:th correlation function is given as a n×n determinant where K : Λ2 → R is some, not
necessarily smooth, measurable function. Such a process is called a determinantal point process
and the function K is called the kernel of the point process.

Let x1, x2, . . . , xN ,. . . be a sequence of point processes on Λ. Say that xN assigns positive
measure to the points {xN

i (ω)}1≤i≤NN (ω). Then we say that this sequence of point processes

converges weakly to a point process x, written xN → x, N → ∞, if for any continuous function
φ of compact support, 0 ≤ φ ≤ 1,

lim
N→∞

E





NN (ω)
∏

i=1

(1 − φ(xN
i (ω)))



 = E





N(ω)
∏

i=1

(1 − φ(xi(ω)))



 . (2.3)

The next proposition gives sufficient conditions for weak convergence of a sequence of determi-
nantal processes in terms of the kernels.

Proposition 2.1. Let x1, x2, . . . , xN ,. . . be a sequence of determinantal point processes, and
let xN have correlation kernel KN satisfying

1. KN → K, N → ∞ pointwise, for some function K,

2. the KN are uniformly bounded on compact sets in Λ2 and

3. For C compact, there exists some number n = n(C) such that det[KN (xi, xj)]1≤i,j≤m = 0
if m ≥ n.

Then there exists some determinantal point process x with correlation functions K such that
xN → x weakly.

Proof. We start by showing that there exists such a determinantal point process x. In (Sos00),
the following necessary and sufficient conditions for the existence of a random point process with
given correlation functions is given.

1. Symmetry.
ρk(xσ(1), . . . , xσ(k)) = ρk(x1, . . . , xk)

2. Positivity. For any finite set of measurable bounded functions φk : Λk → R, k = 0, . . . ,M ,
with compact support, such that

φ0 +

M
∑

k=1

∑

i1 6=···6=ik

φ(xi1 , . . . , xik) ≥ 0 (2.4)

for all (x1, . . . , xM ) ∈ IM it holds that

φ0 +
N
∑

k=1

∫

Ik

φk(x1, . . . , xk)ρk(x1, . . . , xk) dx1 . . . dxn ≥ 0. (2.5)
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The first condition is satisfied for all correlation functions coming from determinantal kernels
because permuting the rows and the columns of a matrix with the same permutation leaves the
determinant unchanged. For the positivity condition consider the kernels KN . They are kernels
of determinantal processes so

φ0 +
M
∑

k=1

∫

Ik

φk(x1, . . . , xk) det[KN (xi, xj)]1≤i,j≤k dx1 . . . dxn ≥ 0. (2.6)

As N → ∞, this converges to the same expression with K instead of KN by Lebesgue’s bounded
convergence theorem with assumption (2). Positivity of this expression for all N then implies
positivity of the limit.

So now we know that x exists. We need to show that xN → x Take some test function φ : Λ → R

with bounded support B. For this function we check the condition in (2.1). The assumption
(3) in this theorem implies that the sum is a finite one. Also, ||φ||∞ ≤ 1. Assumption (2) is
that the functions KN are uniformly bounded, so in particular they are bounded on B2, so ρk

is bounded on Bk. The integral of a bounded function over a bounded set is finite, so this is the
finite sum of finite real numbers, which is finite.

Therefore, for each N , by (2.2),

lim
N→∞

E

[

∏

i

(1 − φ(xN
i (ω)))

]

= lim
N→∞

∞
∑

n=1

(−1)n

n!

∫

Λn

n
∏

i=1

φ(xi) det[KN (xi, xj)]1≤i,j≤n d
nλ(x).

(2.7)

Condition (3) guarantees that the sum is finite. Lebesgue’s bounded convergence theorem applies
because the support of φ is compact and the correlation functions are bounded on compact sets.
Thus the limit exists and is

=

∞
∑

n=1

(−1)n

n!

∫

Λn

n
∏

i=1

φ(xi) det[K(xi, xj)]1≤i,j≤n d
nλ(x) (2.8)

= E

[

∏

i

(1 − φ(xi(ω)))

]

. (2.9)

This implies that indeed xN → x, weakly, as N → ∞.

3 The GUE Minor Kernel

3.1 Performance Table

Consider the following model. Let {w(i, j)}(i,j)∈Z2
+
, be independent geometric random variables

with parameter q2. I.e. there is one i.i.d. variable sitting at each integer lattice point in the first
quadrant of the plane. Let

G(M,N) = max
π

∑

(i,j)∈π

w(i, j) (3.1)
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where the maximum is over all up/right paths from (1, 1) to (M,N). The array [G(M,N)]M,N∈N

is called the performance table.

Each such up/right path must pass through precisely one of (M − 1,N) and (M,N − 1), so it
is true that G(M,N) = max(G(M − 1,N), G(M,N − 1)) + w(M,N).

It is known from (Bar01), that (G(N, 1), G(N, 2), . . . , G(N,M)) for fixed M , properly rescaled,
jointly tends to the distribution of (µ1

1, µ
2
1, . . . , µ

M
1 ) as N → ∞ in the sense of weak convergence

of probability measures. We will show that it is possible to define stochastic variables in terms
of the values w that jointly converge weakly to the distribution of all the eigenvalues µi

j of
GUE-matrices.

3.2 Notation

We will use the following notation from (Bar01).

1. WM,N is set of M ×N integer matrices.

2. WM,N,k is set of M ×N integer matrices whose entries sum up to k.

3. VM = R
M(M−1)/2 where the components of each element x are indexed in the following

way.

x =

x1
1
...

. . .

xM−1
1 . . . xM−1

M−1

xM
1 . . . xM−1

M xM
M

4. CGC ⊂ VM is the subset such that xi
j−1 ≥ xi−1

j−1 ≥ xi
j .

5. CGC,N are the integer points of CGC.

6. Let p : CGC → R
M be the projection that picks out the last row of the triangular array,

i.e. p(x) = (xM
1 , . . . , x

M
M ). Likewise, let q : CGC,N → N

M , the projection that picks out
the last row of an integer triangular array.

3.3 RSK

Recall that a partition λ of k is a vector of integers (λ1, λ2, . . . ), where λ1 ≥ λ2 ≥ . . . such that
∑

i λi = k. It follows that only finitely many of the λi:s are non-zero.

A partition can be represented by a Young diagram, drawn as a configuration of boxes aligned in
rows. The i:th row of boxes is λi boxes long. A semi-standard Young tableau (SSYT) is a filling
of the boxes of a Young diagram with natural numbers, increasing from left to right in rows and
strictly increasing from the top down in columns. The Robinsson-Schensted-Knuth algorithm
(RSK algorithm) is an algorithm that bijectively maps WM,N to pairs of semi-standard Young
tableau. For details of this algorithm, see for example (Sag01; Sta99).
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Fix a matrix w ∈WM,N . This matrix is mapped by RSK to a pair of SSYT, (P (w), Q(w)). The
P tableau will contain elements of M := {1, 2, . . . ,M} only. Construct a triangular array

x =

x1
1
...

. . .

xM−1
1 . . . xM−1

M−1

xM
1 . . . xM−1

M xM
M

where xi
j is the coordinate of the rightmost box filled with a number at most i in the j-th row

of the P (w)-tableau. This is a map from WM,N to CGC,N.

3.4 A Measure on Semistandard Young Tableau

Consider the following probability measure on WM,N . The elements in the matrix are i.i.d. geo-
metric random variables with parameter q2. Recall that a variable X is geometrically distributed
with parameter q2, written X ∈ Ge(q2) if P [X = k] = (1 − q2)(q2)k, k ≥ 0. The square here
will save a lot of root signs later. Such a stochastic variable has expectation a = q2/(1− q2) and
variance b = q2/(1 − q2)2.

Applying the RSK algorithm to this array induces a measure on SSYT:s, and by the corre-
spondence above, a measure on CGC,N. Call this measure πRSK

q2,M,N . The following is shown in
(Joh00).

Proposition 3.5. Let WM,N contain i.i.d. Ge(q2) random variables in each position. The
probability that the RSK correspondence, when applied to this matrix, will yield Young diagrams
of shape λ = (λ1, . . . , λM ) is

ρRSK
q2,M,N :=

(1 − q2)MN

M !

M−1
∏

j=0

1

j!(N −M + j)!
×

×
∏

1≤i<j≤M

(λi − λj + j − i)2
M
∏

i=1

(λi + 1)!

(λi +M − i)!
q2k, (3.2)

where k = |λ| =
∑

i λi.

In other words, the measure πRSK
q2,M,M , integrating out all variables not on the last row, is ρRSK

q2,M,N .

This, together with the following result characterizes the measure πRSK
q2,M,M completely.

3.6 Uniform lift

Proposition 3.2 in (Bar01) states that the probability measure πRSK
q2,M,N , conditioned on the last

row of the triangular array being λ, is uniform on the cone q−1(λ) := {x ∈ CGC,N : q(x) = λ}.
In formulas, this can be formulated as follows.

Proposition 3.7. For any bounded continuous function φ : M × Z → R of compact support,

EπRSK

q2,M,N
[
∏

i,j

(1 + φ(i, xi
j))] =

∑

λ





1

L(λ)

∑

x∈q−1(λ)

∏

i,j

(1 + φ(i, xi
j))



 ρRSK
q2,M,N(λ).
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where L(λ) is the number of integer points in q−1(λ).

The number of such integer points is given by

L(λ) =
∏

i<j

λi − λj + j − i

j − i
.

3.8 GUE Eigenvalue measure

It is well know, see for example (Meh91), that the probability measure on the eigenvalues induced
by GUE measure on M ×M hermitian matrices is

ρGUE
M (λ1, . . . , λM ) =

1

ZM

∏

1≤i<j≤M

(λi − λj)
2
∏

1≤i≤M

exp(−λ2
i )

for some constant ZM that we need not be concerned with here.

3.9 Uniform lift of GUE measure

(Bar01) shows a result for eigenvalues of minors of GUE matrices that is similar to the above
result for partitions. He shows that given the eigenvalues of the whole matrix λ = (λ1 >
· · · > λM ), the triangular array of eigenvalues of all the minors are uniformly distributed in
p−1(λ) := {x ∈ CGC : p(x) = λ}. Again we can write this more formally.

Proposition 3.10. For any bounded continuous function φ : M × R → R of compact support,
the measure πGUE

M satisfies

E[
∏

i,j

(1 + φ(i, µi
j))] =

∫

λ





1

Vol(λ)

∫

p−1(λ)

∏

i,j

(1 + φ(i, µi
j))



 ρGUE
M (λ) dMλ.

where Vol(λ) is the volume of the cone p−1(λ).

This volume is given by

Vol(λ) =
∏

i<j

λi − λj

j − i
.

This situation is then very similar to the measure πRSK
q2,M,N above, in the sense that, conditioned

the last row, the rest of the variables is uniformly distributed in a certain cone.

3.11 Scaling limit

We are now in a position to see the connection between the measures πRSK
q2,M,N and πGUE

M .

Proposition 3.12. Let a := E[w(1, 1)] = q2/(1−q2) and b := Var[w(1, 1)] = q2/(1−q2)2. Then
for any bounded continuous function of compact support φ,

EπGUE
M

[
∏

i,j

(1 + φ(i, µi
j))] = lim

N→∞
EπRSK

q2,M,N
[
∏

i,j

(1 + φ(i,
xi

j − aN
√
bN

))].
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Proof. Plug in the expression for the right hand side in proposition 3.7 and for the left hand
side in proposition 3.10. Stirling’s formula and the convergence of a Riemann sum to an integral
proves the theorem.

3.13 Polynuclear growth

The measure πRSK
q2,N,M is a version of the Schur process and is a determinantal process on M×N,

by (OR03). We will use the following result from (Joh03).

Proposition 3.14. The process {xi
j} with the measure described in 3.4 is determinantal with

kernel

KPNG
q2,N,M(r, x, s, y) =

1

(2πi)2

∫

dz

z

∫

dw

w

z

z − w

wy+N

zx+N

(1 − qw)s

(1 − qz)r
(z − q)N−M

(w − q)N−M
. (3.3)

For r ≤ s, the paths of integration for z and w are anticlockwise along circles centred at zero
with radii such that q < |w| < |z| < 1/q. For the case r > s, integrate instead along circles such
that q < |z| < |w| < 1/q.

This follows immediately from proposition 3.12 and theorem 3.14 in (Joh03).

Having now introduced the PNG-kernel, we can state the following scaling limit result.

Lemma 3.15. Let a = q2/(1− q2) and b = q2/(1− q2)2 as above. The following claims are true
for M fixed.

1. For r, s ≤M ,

g(r, ξ,N)

g(s, η,N)

√
2bNKPNG

N,M (r, ⌊aN + ξ
√

2bN⌋; s, ⌊aN + η
√

2bN⌋) −→ KGUE(r, ξ; s, η)

uniformly on compact sets as N → ∞ for a certain function g 6= 0.

2. The expression

g(r, ξ,N)

g(s, η,N)

√
2bNKPNG

N,M (r, ⌊aN + ξ
√

2bN⌋; s, ⌊aN + η
√

2bN⌋)

is bounded uniformly for 1 ≤ r, s ≤M and ξ, η in a compact set.

The proof, given in section 6, is an asymptotic analysis of the integral in (3.3). Now everything
is set up so we can prove the main result of this section.

Proof of theorem 1.3. According to proposition 3.12,

EπGUE
M

[
∏

(1 + φ(i, µi
j))] = lim

N→∞
EπRSK

q2,M,N
[
∏

i,j

(1 + φ(i,
xi

j − aN
√
bN

))]. (3.4)

The point processes on the right hand side of this last expression are determinantal. Their
kernels can be written

KN (r, ξ, s, η) :=
g(r, ξ,N)

g(s, η,N)

√
2bNKPNG

N,M (r, aN + ξ
√

2bN ; s, aN + η
√

2bN ).
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for some function g that cancels out in all determinants, and therfore does not affect the corre-
lation functions. By lemma 3.15, these KN satisfy all the assumptions of proposition 2.1. Thus,
the point processes that these define converge weakly to a point process with kernel KGUE. This
implies that the measure on the left hand side of equation (3.4), i.e. πGUE

M is determinantal with
kernel KGUE. The observation that M was arbitrary completes the proof.

4 Aztec Diamond

The point-process connected to the tilings of this shape, described in the introduction was
thoroughly analyzed in (Joh05a). The following result is shown.

Proposition 4.1. The process {xi
j} described in section 1.4 is determinantal on Λ = N × N,

with kernel KA
N given by

KA
N (2r, x, 2s, y) =

1

(2πi)2

∫

dz

z

∫

dw

w

wy(1 − w)s(1 + 1/w)N−s

zx(1 − z)r(1 + 1/z)N−r

z

z − w
(4.1)

and reference measure µ which is counting measure on N. The paths of integration are as follows:
For r ≤ s, integrate w along a contour enclosing its pole at −1 anticlockwise, and z along a
contour enclosing w and the pole at 0 but not the pole at 1 anticlockwise. For r > s, switch the
contours of z and w.

Based on this integral formula we can prove the following scaling limit analogous to that in
lemma 3.15.

Lemma 4.2. The following claims hold.

(1)

g(r, ξ,N)

g(s, η,N)

√

N/2KA
N (2r, ⌊N/2 + ξ

√

N/2⌋; 2s, ⌊N/2 + η
√

N/2⌋) −→ KGUE(r, ξ; s, η)

uniformly on compact sets as N → ∞ for an appropriate function g 6= 0.

(2) The expression

g(r, ξ,N)

g(s, η,N)

√

N/2KA
N (2r, ⌊N/2 + ξ

√

N/2⌋; 2s, ⌊N/2 + η
√

N/2⌋)

is uniformly bounded with respect to N for (r, ξ, s, η) contained in any compact set in
N × R × N × R.

The proof is based on a saddle point analysis that is presented it section 6. We can now set
about proving the main result of this section.

Proof of theorem 1.5. By proposition 4.1, the xi
j form a determinantal process with kernel KA

N .

The rescaled process (xi
j −N/2)/

√

N/2 has kernel

KN (r, ξ; s, η) :=
g(r, ξ,N)

g(s, η,N)

√

N/2KA
N (2r,N/2 + ξ

√

N/2; 2s,N/2 + η
√

N/2). (4.2)

By lemma 4.2, the kernels KN satisfy all the assumptions of proposition 2.1. So they converge
to the process with kernel KGUE.
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5 The Hexagon

Consider an (a,b,c)-hexagon, such as the one in figure 3. First we need some coordinate system
to describe the position of the dots. Say that the a simple, symmetric, random walks start at
t = 0 and y = 0, 2, . . . , 2a − 2. In each unit of time, they move one unit up or down, and are
conditioned to end up at y = c− b, c− b+ 2, . . . , c− b+ 2a− 2 at time t = b+ c and never to
intersect. One realisation of this process is the red dots in figure 3. At time t, the only possible
y-coordinates for the red dots are {αt + 2k}0≤k≤γt , where

γt =











t+ a− 1 0 ≤ t ≤ b

b+ a− 1 b ≤ t ≤ c

a+ b+ c− t− 1 c ≤ t ≤ b+ c,

αt =

{

−t 0 ≤ t ≤ b

t− 2b b ≤ t ≤ b+ c.

Let Λa,b,c = {(t, αt + 2k) : 0 ≤ t ≤ b+ c, 0 ≤ k ≤ γt} be the set of all the dots, red and blue.

5.1 A determinantal kernel for the hexagon tiling process

We now need to define the normalised associated Hahn polynomials, q̃
(α,β)
n,N (x). These orthogonal

polynomials satisfy
N
∑

x=0

q̃
(α,β)
n,N (x)q̃

(α,β)
m,N (x)w̃

(α,β)
N (x) = δn,m, (5.1)

where the weight function is

w̃
(α,β)
N (x) =

1

x!(x+ α)!(N + β − x)!(N − x)!
.

They can be computed as

q̃
(α,β)
n,N (x) =

(−N − β)n(−N)n

d̃
(α,β)
n,N n!

3F2(
−n,n−2N−α−β−1,−x

−N−β,−N ; 1),

where
(

d̃
(α,β)
n,N

)2
=

(α+ β +N − 1 − n)N+1

(α+ β + 2N + 1 − 2n)n!(β +N − n)!(α+N − n)!(N − n)!
.

For convenience, let ar = |c− r| and br = |b− r|. (Joh05b) shows the following.

Proposition 5.2. The red dots form a determinantal point process on the space Λa,b,c with
kernel

K̃L
a,b,c(r, αr + 2x; s, αs + 2y) = −φr,s(αr + 2x, αs + 2y)

+
a−1
∑

n=0

√

(a+ s− 1 − n)!(a+ b+ c− r − 1 − n)!

(a+ s− 1 − n)!(a+ b+ c− s− 1 − n)!
q̃br,ar
n,γr

(x)q̃bs,as
n,γs

(y)ωr(x)ω̃s(y),

where φr,s(x, y) = 0 if r ≥ s and

φr,s(x, y) =

(

s− r
y−x+s−r

2

)
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otherwise. Furthermore,

ωr(x) =











((br + x)!(γr + ar − x)!)−1 0 ≤ r ≤ b

(x!(γr + ar − x)!)−1 b ≤ r ≤ c

(x!(γr − x)!)−1 c ≤ r ≤ b+ c

and

ω̃s(y) =











(y!(γs − y)!)−1 0 ≤ r ≤ b

((bs + y)!(γs − y)!)−1 b ≤ r ≤ c

((br + y)!(γr + ar − y)!)−1 c ≤ r ≤ b+ c.

It follows that the blue dots also form a determinantal point process. To compute its kernel we
need the following lemma.

Lemma 5.3.
(

s− r
s−r+2y+αs−2x−αr

2

)

=

∞
∑

n=0

√

(a+ s− 1 − n)!(a+ b+ c− r − 1 − n)!

(a+ r − 1 − n)!(a+ b+ c− s− 1 − n)!
q̃(br ,ar)
n,γr

(x)q̃(bs,as)
n,γs

(y)ωr(x)ω̃s(y)

when s ≥ r.

Proof. This proof uses the results obtained in the proof of 5.2 in (Joh05b, equation 3.25). Define
convolution product as follows. For f, g : Z

2 → Z, define (f ∗ g) : Z
2 → Z by

(f ∗ g)(x, y) :=
∑

z∈Z

f(x, z)g(z, y).

Let φ(x, y) := δx,y+1 + δx,y−1. Also let

φ∗0(x, y) := δx,y

φ∗1(x, y) := φ(x, y)

φ∗n(x, y) := (φ∗(n−1) ∗ φ)(x, y).

Set

cj,k :=
1

(a− k)(j − k)!(a− 1 − j)!

fn,k :=

(

n

k

)

(n− 2a− b− c+ 1)k
(−a− b+ 1)k(−a)k

and finally let

ψ(n, z) :=

n
∑

m=0

fn,m

a−1
∑

j=m

cj,mφ(2j, z)

φ0,1(n, y) := ψ(n, y)

φ0,r(n, y) := ψ ∗ φ∗(r−1)(n, y).
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The dual orthogonality relation to (5.1) is precisely

γr
∑

n=0

q̃(br ,ar)
n,γr

(x)q̃(br ,ar)
n,γr

(y)ωr(x)ω̃r(y) = δx,y. (5.2)

By equation (3.25), (3.30) and (3.32) of the above mentioned paper,

φ0,r(n, αr + 2z) = A(a, b, c, r, n)q̃(br ,ar)
n,γr

(z)ω̃r(z),

where

A(a, b, c, r, n) :=
(a+ 1)r−1d̃

(br ,ar)
n,γr n!

(−a− c+ 1)n(−a− b− c+ r + 1)n
.

Inserting this into the orthogonality relation in (5.2) gives

γr
∑

n=0

q̃(br ,ar)
n,γr

(x)
ωr(x)

A(a, b, c, r, n)
φ0,r(n, αr + 2z) = δx,y.

Convolving both sides of the above relation with φ∗(s−r) gives

γr
∑

n=0

q̃(br ,ar)
n,γr

(x)
ωr(x)

A(a, b, c, r, n)

∑

z∈Z

φ0,r(n, αr + 2z)φ∗(s−r)(αr + 2z, αs + 2y)

= φ∗(s−r)(αr + 2x, αs + 2y),

which, when the left hand side is simplified, gives

γr
∑

n=0

q̃(br ,ar)
n,γr

(x)
ωr(x)

A(a, b, c, r, n)
φ0,s(n, αr + 2y) = φ∗(s−r)(αr + 2x, αs + 2y).

Invoking equation (5.1) again to simplify the left hand side and explicitly calculating the right
hand side gives

γr
∑

n=0

A(a, b, c, s, n)

A(a, b, c, r, n)
q̃(br ,ar)
n,γr

(x)q̃(bs,as)
n,γs

(y)ωr(x)ω̃s(y) =

(

s− r
s−r+2y+αs−2x−αr

2

)

.

It is easy to check that

A(a, b, c, s, n)

A(a, b, c, r, n)
=

√

(a+ s− 1 − n)!(a+ b+ c− r − 1 − n)!

(a+ r − 1 − n)!(a+ b+ c− s− 1 − n)!
,

which proves the lemma.

We now need to introduce the normalized Hahn polynomials q
(α,β)
n,N (x). These satisfy

N
∑

x=0

q
(α,β)
n,N (x)q

(α,β)
m,N (x)w

(α,β)
N (x) = δm,n, (5.3)

where

w
(α,β)
N (t) =

(N + α− t)!(β + t)!

t!(N − t)!
. (5.4)
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Theorem 5.4. The blue dots form a determinantal point process on the space Λa,b,c with kernel

KL
a,b,c(r, x; s, y) =

−1
∑

n=−∞

√

(s+ n)!(b+ c− r + n)!

(r + n)!(b+ c− s+ n)!
q
(br ,ar)
r+n,γr

(x)q
(bs ,as)
s+n,γs

(y)

√

w
(br ,ar)
γr (x)w

(bs ,as)
γs (y),

when s ≥ r, and

KL
a,b,c(r, x; s, y) =

−
a−1
∑

n=0

√

(s+ n)!(b+ c− r + n)!

(r + n)!(b+ c− s+ n)!
q
(br ,ar)
r+n,γr

(x)q
(bs,as)
s+n,γs

(y)

√

w
(br ,ar)
γr (x)w

(bs ,as)
γs (y)

otherwise.

Proof. It is well known that the complement of a determinantal point processes on a finite set
with kernel K is also determinantal with kernel K̃ = I −K, i.e. K̃(x, y) = δx,y −K(x, y).

Applying this result to our problem, we want to consider δx,yδr,s − K̃L
a,b,c(r, x; s, y). We now

separate two cases. When s ≥ r see that

K(r, x; s, y) =

(

s− r

y − x+ s−r+αs−αr
2

)

−

a−1
∑

n=0

√

(a+ s− 1 − n)!(a+ b+ c− r − 1 − n)!

(a+ r − 1 − n)!(a+ b+ c− s− 1 − n)!
q̃(br ,ar)
n,γr

(x)q̃(bs,as)
n,γs

(y)ωr(x)ω̃s(y)

is a candidate for the kernel for the blue particles. By lemma 5.3 this simplifies to

K(r, x; s, y) =

∞
∑

n=a

√

(a+ s− 1 − n)!(a+ b+ c− r − 1 − n)!

(a+ r − 1 − n)!(a+ b+ c− s− 1 − n)!
q̃(br ,ar)
n,γr

(x)q̃(bs ,as)
n,γs

(y)ωr(x)ω̃s(y).

For s < r we just get

K(r, x; s, y) = −
a−1
∑

n=0

√

(a+ s− 1 − n)!(a+ b+ c− r − 1 − n)!

(a+ r − 1 − n)!(a+ b+ c− s− 1 − n)!
q̃(br ,ar)
n,γr

(x)q̃(bs ,as)
n,γs

(y)ωr(x)ω̃s(y).

We now exploit a useful duality result from (Bor02). It states that

q
(α,β)
n,N (x)

√

w
(α,β)
N (x) = (−1)xq̃

(α,β)
N−n,N(x)

√

w̃
(α,β)
N (x).

Insert this into the formulas above and define the new kernel

KL
a,b,c(r, x; s, y) := (−1)y−x

√

ωs(y)ωr(x)−1ω̃r(x)ω̃s(y)−1K(r, x; s, y).
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This kernel gives the same correlation functions as K, since the extra factors cancel out in the
determinants. The new kernel can be written as

KL
a,b,c(r, x; s, y) =

∞
∑

n=a

√

(a+ s− 1 − n)!(a+ b+ c− r − 1 − n)!

(a+ r − 1 − n)!(a+ b+ c− s− 1 − n)!
q
(br ,ar)
γr−n,γr

(x)q
(bs ,as)
γs−n,γs

(y)

√

w
(br ,ar)
γr (x)w

(bs ,as)
γs (y),

when s ≥ r, and

KL
a,b,c(r, x; s, y) =

−
a−1
∑

n=0

√

(a+ s− 1 − n)!(a+ b+ c− r − 1 − n)!

(a+ r − 1 − n)!(a+ b+ c− s− 1 − n)!
q
(br ,ar)
γr−n,γr

(x)q
(bs,as)
γs−n,γs

(y)

√

w
(br ,ar)
γr (x)w

(bs ,as)
γs (y)

otherwise.

The change of variables j := a−1−n puts these expressions on a simpler form, thereby proving
the theorem.

5.5 Asymptotics

Let 0 < p < 1 be some real number. Let α = γpN , β = γ(1 − p)N , x̃ = ⌊pN +
√

2p(1 − p)N(1 + γ−1)x⌋. Then

4
√

2p(1 − p)N(1 + γ−1)

√

w
(α,β)
n,N (x̃)q

(α,β)
n,N (x̃) −→ (−1)n

√

e−x2hn(x) (5.5)

uniformly on compact sets in x as N → ∞. For completeness we give the proof of this result in
the appendix.

We would like to apply this with p = 1
2 and γ = 2 to our kernel KL and letting a = b = c→ ∞,

i.e. we would like to take the limit

K(r, ξ; s, η) =

lim
N=a=b=c→∞

(−3N)r−s
√

3N/4KL
a,b,c(r, ⌊N/2 + ξ

√

3N/4⌋; s, ⌊N/2 + η
√

3N/4⌋).

The factor (−3N)r−s cancels out in all determinants and is thus of no import. For s ≥ r we get

K(r, ξ; s, η) =
−1
∑

j=−∞

√

(s+ j)!

(r + j)!
hr+j(ξ)hs+j(η)e

−(ξ2+η2)/2 (5.6)

and formally, if we ignore the fact that this turns into an infinite sum, for s < r we get

K(r, ξ; s, η) = −
∞
∑

j=0

√

(s + j)!

(r + j)!
hr+j(ξ)hs+j(η)e

−(ξ2+η2)/2. (5.7)

This expression can be simplified with the following lemma
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Lemma 5.6. Let H be the Heaviside function defined by equation (1.1) above. Then,

(x− y)k−1H(x− y) =
(k − 1)!√

2k

∞
∑

n=−∞

√

n!

(n+ k)!
hn(y)hn+k(x)e

−y2

. (5.8)

pointwise for x 6= y.

The proof is given in section 6.

In view of this result, the infinite series in 5.7 converges and the kernel K is exactly the GUE
minor kernel KGUE. The interpretation of this is the following. The distribution of the blue
particles, properly rescaled, tends weakly to the distribution of the eigenvalues of GUE minors
as the size of the diamond tends to infinity, equation (1.2). The only thing needed to make this
a theorem is appropriate estimates of the Hahn polynomials to control the convergence to the
infinite sum.

6 Proof of lemmas

Proof of lemma 5.6. As the Hermite polynomials are orthogonal, there is an expansion of the
function in the left hand side of (5.8) of the form

(x− y)k−1H(x− y) =

∞
∑

n=−∞
cn(y)Hn(x), (6.1)

where Hn is the n:th Hermite polynomial, as defined in for example (KS98), and where the
coefficients are given by

cn(y) =
1

2nn!
√
π

∫ ∞

−∞
(x− y)k−1H(x− y)Hn(x)e−x2

dx. (6.2)

It is known that e−x2

Hn(x) = − d
dx(e−x2

Hn−1(x)). Integration by parts and limiting the inte-
gration interval according to the Heaviside function gives

∫ ∞

y
(x− y)k−1Hn(x)dx =

∫ ∞

y
(k − 1)(x− y)k−2Hn−1(x)dx

Repeating this process k − 1 times gives

cn(y) =
(k − 1)!e−y2

Hn−k(y)

2nn!
√
π

.

Hence,

(x− y)k−1H(x− y) =
∞
∑

n=−∞

(k − 1)!

2nn!
√
π
Hn−k(y)Hn(x)e−y2

=
(k − 1)!√

2k

∞
∑

n=−∞

√

n!

(n+ k)!
hn(y)hn+k(x)e−y2

.

(6.3)
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Proof of lemma 3.15. Assume first that r ≤ s. By proposition 3.14 we have to consider the
integral

1

(2πi)2

∫

γr2

dz

∫

γr1

dw

w

1

z − w
eNf(z)−Nf(w)w

η
√

2bN

zη
√

2bN

(1 − qw)2

(1 − qz)r
(w − q)M

(z − q)M
,

where γr is a circle around the origin with radius r oriented anticlockwise, q < r1 < r2 < 1/q,
and

f(z) = log(z − q) − (1 − q2)−1 log z. (6.4)

(Here we have ignored the difference between aN + ξ
√

2bN and its integer part.) Note that
f ′(z) = 0 gives z = 1/q. This leads us to choose

r1 =
1

q
− 2

a
√

N/2
,

and to deform γr2
to a circle Γ oriented clockwise around 1/q with radius 1/a

√

N/2. The specific
choice of radii are convenient for the computations below. Choose

g(r, ξ,N) = 2−r/2e−ξ2/2q−ξ
√

2bN

(

q

a
√

N/2

)r

.

Then,

g(r, ξ,N)

g(s, η,N)

√
2bNKPNG

N,M (r, ⌊aN + ξ
√

2bN⌋; s, ⌊aN + η
√

2bN⌋)

=
√

2s−reη
2−ξ2

q(η−ξ)
√

2bN

(

q

a
√

N/2

)r−s √
2bN

(2πi)2

×
∫

Γ
dz

∫

γr1

dw

w

1

z − w
eNf(z)−Nf(w)w

η
√

2bN

zη
√

2bN

(1 − qw)2

(1 − qz)r
(w − q)M

(z − q)M
. (6.5)

Parameterize γr1
by w(t) = r1e

itEn , −π/EN ≤ t ≤ π/EN , EN = q/a
√

N/2. We have

Re(f(w(0)) − f(w(t))) = ln

∣

∣

∣

∣

w(0) − q

w(t) − q

∣

∣

∣

∣

= −1

2
ln

(

1 +
2r1q(1 − cosEN t)

(r1 − q)2

)

≤ −1

2
ln
(

1 + q2(1 − cosEN t)
)

,

for N large enough. Since cos x ≤ 1 + x2/8 when |x| ≤ π, the last expression is

≤ −1

2
ln
(

1 + q2E2
N t

2/8)
)

≤ −Ct2/N

for |t| ≤ π/EN , where C > 0 is a constant depending only on q. Hence,

ReN(f(w(0)) − f(w(t))) ≤ −Ct2 (6.6)
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for |t| ≤ π/En with C > 0.

In the right hand side of (6.5) we make the change of variables

z = z(u) = 1/q − u/a
√

N/2 (6.7)

with u on the unit circle oriented anticlockwise. We obtain the integral

√

2s−reη2−ξ2 2iq
√
b

(2πi)2a

∫

γ1

du

∫ π/EN

−π/EN

dt
1

a
√

N/2(z(u) − w(t))
eN(f(z(u))−f(w(t)))

× (qw(t))η
√

2bN

(qz(u))ξ
√

2bN

(

q

a
√

N/2

)r−s
(1 − qw(t))s

(1 − qz(u))r
(w(t) − q)M

(z(u) − q)M
. (6.8)

Note that q
√
b/a = 1. Also,

f(1/q + h) = f(1/q) − a2h2/2 +O(h3) (6.9)

for |h| small. Hence, for N sufficiently large,

N(f(z(u)) − f(w(0))) = −u2 + 4 + hN (u)/
√
N, (6.10)

where hN (u) is bounded for |u| = 1. We have

(qw(t))η
√

2bN

(qz(t))ξ
√

2bN
=

(

1 − 2q

a
√

N/2

)η
√

2bN

e2iηt



1 − qu

a
√

a
√

N/2





−ξ
√

2bN

. (6.11)

By the inequality (1 + x/n)n ≤ ex for x > −n, n ≥ 1, the right hand side in (6.10) has a bound
independent of N . We also have

a
√

N/2|z(u) − w(t)| ≥ 1 (6.12)

for u ∈ γ1, |t| ≤ π/EN , and

∣

∣

∣

∣

∣

(

q

a
√

N/2

)

(1 − qw(t))s

(1 − qz(t))r
(w(t) − q)M

(z(u) − q)M

∣

∣

∣

∣

∣

≤ CN s/2 (6.13)

for u ∈ γ1, |t| ≤ π/EN , by (6.7) and the definition of w(t).

It follows from (6.6), (6.10), (6.11), (6.12) and (6.13) that the part of the integral in (6.8) where
the t-integration is restricted to N1/3 ≤ |t| ≤ π/EN can be bounded by

CN s/2

∫

|t|≥N1/3

e−Ct2 dt,

which goes to 0 as N → ∞. When |t| ≤ N1/3 we have

∣

∣

∣

∣

∣

a
√

N/2

q
(1 − qw(t)) − (2 − it)

∣

∣

∣

∣

∣

≤ C

N1/6
. (6.14)
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Hence, for |t| ≤ N1/3 we have the bound

∣

∣

∣

∣

∣

(

1

a
√

N/2

)r−s
(1 − qw(t))s

(1 − qz(u))r
(w(t) − q)M

(z(u) − q)M

∣

∣

∣

∣

∣

≤ C, (6.15)

and we see that the part of the integral in (6.8) where |t| ≤ N1/3 has a uniform bound for ξ, η
in a compact set. This proves claim (2) in lemma 3.15 for r ≤ s.

It also follows from (6.6), (6.7), (6.9), (6.10), (6.11), (6.14), (6.15) and the dominated conver-
gence theorem that the integral in (6.8) converges to

√
2s−reη2−ξ2

2π2i

∫

γ1

du

∫

R

dt
1

2 − it− u
e2ξu−u2

e(2−it)2−2η(u−it) (2 − it)s

ur
. (6.16)

Now let v = 2 − it. Then we should integrate v along the line Re v = 2 from minus to plus
infinity. We obtain the integral

√
2s−reη

2−ξ2

2(πi)2

∫

du
e2ξu−u2

ur

∫

dt
vs

v − u
ev

2−2ηv.

Expand (v − u)−1 as a geometric series. This turns the expression into
√

2s−reη
2−ξ2

2(πi)2

∞
∑

k=0

∫

du
e2ξu−u2

ur−k

∫

dv vs−k−1ev
2−2ηv

and we recognize the classical integral representations of the Hermite polynomials. The expres-
sion now becomes

∞
∑

k=0

√

(s − k − 1)!

(r − k − 1)!
hr−k−1(ξ)hs−k−1(η)

√

e−ξ2−η2
,

which proves claim (1) in the lemma in the case r ≤ s.

We now turn our attention to the case r > s. Deforming the w-contour through the z-contour
in (3.3), we get the same integral as above save for a residue that we pick up at z = w. This is

1

2π

∫ π

−π
ei(y−x)θ 1

(1 − qeiθ)r−s
dθ. (6.17)

We see that the argument above goes through for the remaining integral also when r > s. Using
the well known formula

1

(1 − x)n
=

∞
∑

k=0

(

n+ k − 1

k

)

xk

the integral in (6.17) becomes

1

2π

∞
∑

k=0

(

r − s+ k − 1

k

)

qk

∫ π

−π
ei(y−x+k)θ dθ.

It is readily solved as
{

(r−s+x−y−1
x−y

)

qx−y if y ≤ x

0 if y > x.
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With our rescaling, x = aN + ξ
√

2bN and y = aN +η
√

2bN and the factors g(r, ξ,N)/g(s, η,N)
we see that the integral in (6.17), this is

√

2s−reη2−ξ2q(η−ξ)
√

2bN (
q

a
√

N/2
)r−s

√
2bN

Γ(r − s+ (ξ − η)
√

2bN )

Γ((ξ − η)
√

2bN )(r − s− 1)!
q(ξ−η)

√
2bNH(ξ − η)

(6.18)
where H is the Heaviside function. As N → ∞ we get the limit

√

eη2−ξ22r−s
(ξ − η)r−s−1

(r − s− 1)!
H(ξ − η), (6.19)

at least for ξ 6= η. The case ξ = η is a set of measure zero and is not important. Together with
the result for the double integral this completes the proof of claim (1). It remains to show the
estimate in claim (2) in this case. But this is easy. The expression in (6.18) is the exact solution
of integral (6.17), and since this is bounded in N for ξ, η in a compact set, claim (2) follows.

Proof of lemma 4.2. Assume first that r ≤ s. By proposition 4.1 we have to consider the integral

√

N/2

(2πi)2

∫

γr2

dz

∫

γr1

dw

w

1

z − w
eN(f(z)−f(w))w

s+
√

N/2η

zr+
√

N/2ξ

(1 − w)s

(1 − z)r
(1 + z)r

(1 + w)s
,

where γr is a circle around −1 with radius r oriented anticlockwise, 1 < r1 < r2 < 2 and

f(z) =
1

2
ln z − ln(1 + z).

(Here we have ignored the difference between N/2 + ξ
√

N/2 and its integer part.) In the proof
of lemma 3.15 we could chose the contours of integration as circles centred at the origin. This
cannot be done here.

Note that f ′(z) = 0 gives z = 1. This leads us to choose

r1 = 2 − 2
√

N/8

and to deform γr2
to a circle Γ oriented clockwise around 1 with radius 1/

√

N/8. The specific
choice of radii are convenient for the computations below. Choose

g(r, ξ,N) =
√

N−re−ξ2 .

Then,

g(r, ξ,N)

g(s, η,N)

√

N/2KA(r, ⌊N/2 + ξ
√

N/2⌋; s, ⌊N/2 + η
√

N/2⌋)

=
√

N s−reη2−ξ2

√

N/2

(2πi)2

∫

Γ
dz

∫

γr1

dw

w

1

z − w
eN(f(z)−f(w))w

s+η
√

N/2

zr+ξ
√

N/2

(1 − w)s

(1 − z)r
(1 + z)r

(1 + w)s
. (6.20)

Parameterize γr1
by

w(t) = −1 + r1e
itEN , (6.21)
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for −π/EN ≤ t ≤ π/EN , EN = 1/
√

N/2. We have

Re(f(w(0)) − f(w(t))) =
1

2
ln

∣

∣

∣

∣

w(0)

w(t)

∣

∣

∣

∣

= −1

4
ln

(

1 +
2r1(1 − cosEN t)

(r1 − 1)2

)

≤ −1

4
ln

(

1 +
1

2
(1 − cosEN t)

)

for large enough N . Again cos x ≤ 1 − x2/8 when |x| ≤ π, the last expression is

≤ −1

4
ln
(

1 + E2
N t

2/16
)

≤ −Ct2/N

for |t| ≤ π/EN , where C > 0 is an absolute constant. Hence,

Re(f(w(0)) − f(w(t))) ≤ −Ct2/N (6.22)

for |t| ≤ π/EN , with C > 0.

In the right hand side of (6.20) we make the change of variables

z = z(u) = 1 − u/
√

N/8 (6.23)

with u on the unit circle oriented anticlockwise, denoted γ. We obtain the integral

√

N s−reη2−ξ2 iEN

2π2

∫

γ
du

∫ π/EN

−π/EN

dt
1

z(u) − w(t)
eN(f(z(u))−f(w(t)))

× (w(t))s−1+η
√

N/2

(z(u))r+ξ
√

N/2

(1 − w(t))s

(1 − z(u))r
(1 + z(u))r

(1 + w(t))s−1
. (6.24)

Note that
f(1 + h) = f(1) − h2/8 +O(h3) (6.25)

for small |h|. Hence, for N sufficiently large

N(f(z(u)) − f(w(0))) = −u2 + 4 + hN (u)/
√
N, (6.26)

where hN (u) is bounded for |u| = 1. We have

∣

∣

∣

∣

∣

(w(t))s−1+η
√

N/2

(z(u))r+ξ
√

N/2

∣

∣

∣

∣

∣

≤ 3s−1+η
√

N/2

(

1 − u
√

N/8

)−r−ξ
√

N/2

≤ C3s+η
√

N/2 (6.27)

for some constant C > 0 depending on r. We also have
√

N/8|z(u) − w(t)| ≥ 1 (6.28)

for u ∈ γ and |t| ≤ π/EN , and
∣

∣

∣

∣

√
N s−r

(1 − w(t))s

(1 − z(u))r
(1 + z(u))r

(1 + w(t))s−1

∣

∣

∣

∣

≤ CN s/2 (6.29)

1366



for u ∈ γ, |t| ≤ π/EN , by (6.23) and (6.21).

It follows from (6.22), (6.26), (6.27), (6.28) and (6.29) that the part of the integral (6.24) where
the t-integration is restricted to N1/3 ≤ |t| ≤ π/EN can be bounded by

CN s/23s+η
√

N/2

∫

|t|≥N1/3

e−Ct2 dt,

which tends to 0 as N → ∞. When |t| ≤ N1/3 and u ∈ γ, we have
∣

∣

∣

∣

∣

(w(t))s−1+η
√

N/2

(z(u))r+ξ
√

N/2

∣

∣

∣

∣

∣

≤ C (6.30)

and
∣

∣

∣

∣

√
N s−r

(1 − w(t))s

(1 − z(u))r
(1 + z(u))r

(1 + w(t))s−1

∣

∣

∣

∣

≤ C, (6.31)

where C depends on s, r and η but is independent of N .

Hence, we see that the part of the integral in (6.24) where |t| ≤ N1/3 has a uniform bound for
ξ and η in a compact set. This proves claim (2) for r ≤ s.

It also follows from (6.22), (6.23), (6.25), (6.26), (6.28), (6.29), (6.30), (6.31) and the dominated
convergence theorem that the integral in (6.24) converges to

√

2s−reη2−ξ2 i

2π2

∫

γ
du

∫

R

dt
1

(2 − it) − u
e(2−it)2−2(2−it)ηe−u2+2uξ (2 − it)s

ur
,

which is exactly the integral in (6.16). This proves claim (1) in the lemma in the case r ≤ s.

For r > s we can deform the contours one through the other to get the same integral as we
solved above. On the way we pick up the residue of a pole at z = w. It is

1

2πi

∫

γ

dw

w
w−(r−s)−(x−y)

(

1 + w

1 − w

)r−s

, (6.32)

where x = ⌊N/2 + ξ
√

N/2⌋ and y = ⌊N/2 + η
√

N/2⌋. The argument above goes through for
the remaining integral also when r > s. We see that if η > ξ, then x − y → −∞ and this last
integral is zero. For simplicity, let k = r − s and β = (x− y)/

√

N/2. The coefficient in front of
wj in the expansion of [(1 + w)/(1 −w)]k is

1

2πi

∫

γ

dw

w
w−j

(

1 + w

1 − w

)k

=

k
∑

i=0

(

k

i

)(

j + i− 1

j

)

(−1)k−i2i.

One then sees that the i = k term dominates when N is large.
∣

∣

∣

∣

∣

k−1
∑

i=0

(

k

i

)(

j + i− 1

j

)

(−1)k−i2i

∣

∣

∣

∣

∣

≤ CNk−1. (6.33)

Keeping only the i = k term and plugging in our rescaling and the factors g(r, ξ,N)/g(s, η,N),
we see that the integral in (6.32) is

√

eη2−ξ2N s−r
√

N/2 2r−s

(

β
√

N/2 + 2(r − s) − 1

r − s− 1

)

H(ξ − η) (6.34)
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for ξ ≥ η. When ξ 6= η this tends to

√

eη2−ξ22r−s
(ξ − η)r−s−1

(r − s− 1)!
H(ξ − η)

as N → ∞ which together with the corresponding result for the double integral settles claim (1)
in the case r > s.

Claim (2) in this case follows from the corresponding result for the double integral,(6.33) and
the boundedness of the expression in (6.34).

A Asymptotics for Hahn polynomials

The Hahn polynomials, as they are defined in (KS98), satisfy

N
∑

x=0

(

α+ x

x

)(

β +N − x

N − x

)

Qm(x;α, β,N)Qn(x;α, β,N) = (d
(α,β)
n,N )2δnm

where

(d
(α,β)
n,N )2 =

(−1)n(n+ α+ β + 1)N+1(β + 1)nn!

(2n+ α+ β + 1)(α + 1)n(−N)nN !
.

The Hermite polynomials are defined as usual:

1√
π

∫

R

Hn(x)Hm(x) dx = 2nn!δnm. (A.1)

With this notation, the following well known limit theorem holds.

Theorem A.1. Let 0 < p < 1 and γ ≥ 0. Let x̃ = ⌊pN + x
√

2p(1 − p)N(1 + γ−1)⌋ and

fn,N = (−1)n

√

(

N

n

)

2nn!

(

p

1 − p

)n( γ

1 + γ

)n

En(x) = fn,NQn(x̃; γpN, γ(1 − p)N,N). (A.2)

Then
En(x) −Hn(x) = O(

√
N−1)

uniformly on compact sets.

Proof. The idea is induction on n. To start with, Q0(y, α, β,N) = 1 and we actually have
E0(x) = H0(x). For n = 1,

Q1(y, α, β,N) = 1 − 2 + α+ β

(α+ 1)N
x

so

E1(x) = −
√

2N

(

p

1 − p

)(

γ

1 + γ

)(

1 − 2 + γN

(γpN + 1)N

(

pN +
√

2p(1 − p)N(1 + γ−1)x
)

)

= · · · = H1(x) +O(
√
N−1).
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Now assume that the theorem is true for n and n− 1. We wish to show that it is true for n+ 1.

There are three term recursion formulas for both Hahn and Hermite polynomials. Let

An =
(n+ α+ β + 1)(n + α+ 1)(N − n)

(2n+ α+ β + 1)(2n + α+ β + 2)

Cn =
n(n+ α+ β +N + 1)(n + β)

(2n + α+ β)(2n + α+ β + 1)
.

Then

AnQn+1(x) = (An +Cn − x)Qn(x) −CnQn−1(x) (A.3)

Hn+1(x) = 2xHn(x) − 2nHn−1(x). (A.4)

Solving (A.2) for Qn and inserting into (A.3) gives after some simplification the following:

En+1(x) =
fn+1,N

fn,N

(

1 +
Cn

An
− x̃

An

)

En(x) − fn+1,N

fn−1,N

Cn

An
En−1(x). (A.5)

Observe that under our scaling,

An = pN +O(N−1)

Cn =
(1 + γ)n(1 − p)

γ
+O(N−1).

Inserting this into equation (A.5) and doing some manipulations gives

En+1(x) =
(

2x+O(N−1/2)
)

En(x) +
(

2n+O(N−1/2)
)

En−1(x),

which with our induction assumption is

= 2xHn(x) + 2nHn−1(x) +O(N−1/2)

= Hn+1(x) +O(N−1/2).

This completes the proof.

Applying Stirling’s approximation to dα,β
n,N , fn,N and the weight function w

(α,β)
N (x), it is easy to

show that

Corollary A.2. As before, x̃ = pN + x
√

2p(1 − p)N(1 + γ−1).

4
√

2p(1 − p)N(1 + γ−1)q
(α,β)
n,N (x̃)

√

wα,β
N (x̃) −→ (−1)nhn(x)e−x2/2 (A.6)

as N → ∞ if α/N → pγ and β/N → (1 − p)γ.
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