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Abstract

We show, by a simple counterexample, that the main result in a recent paper by H. Van Zanten [Electronic
Communications in Probability 7 (2002), 215-222] is false. We eventually point out the origin of the error.

Throughout the following we use concepts and notation from standard semimartingale theory. The
reader is referred e.g. to [3] for any unexplained notion. Every càdlàg stochastic process is defined on
a given probability space (Ω,F ,P), and it is interpreted as a random element with values in D ([0,∞)),
the Skorohod space of càdlàg functions on [0,∞). The symbol “⇒” indicates weak convergence (see [2]).
Given a filtration Ft and a real-valued càdlàg Ft-local martingale started from zero, sayM = {Mt : t ≥ 0},
we will denote by [M ] = {[M ]t : t ≥ 0} the optional quadratic variation of M . We recall that, when M is
continuous, [M ] = 〈M〉, where 〈M〉 is the conditional quadratic variation of M as defined in [3, Chapter
III]. Moreover, by the Dambis-Dubins-Schwarz (DDS) Theorem (see [4, Ch. V]), every continuous Ft-local
martingale M , such that M0 = 0 and 〈M〉∞ = limt→+∞ 〈M〉t = +∞ a.s.-P, can be represented as

Mt = W
(M)
〈M〉t

, t ≥ 0, (1)

where W
(M)
t is a standard Brownian motion with respect to the filtration

Gt = Fσ(t), t ≥ 0, where σ (t) = inf {s : 〈M〉s > t} .

According e.g. to [7], we say that a continuous Ft-martingale Mt, such that M0 = 0 and 〈M〉∞ = +∞,
is a (continuous) Ocone martingale if the Brownian motion W (M) appearing in its DDS representation
(1) is independent of 〈M〉.

The following statement, concerning rescaled càdlàg martingales, appears as Theorem 4.1 in [6].

Claim 1 Let M be a martingale with bounded jumps, and let an, bn be sequences of positive numbers
both increasing to infinity. For each n, define

Mn
t =

Mbnt√
an

. (2)

Then, the following statements hold
(i) If Mn ⇒ N in D ([0,∞)), then necessarily N is a continuous Ocone martingale.
(ii) Let N be a continuous Ocone martingale. Then, Mn ⇒ N in D ([0,∞)) if, and only if, [Mn]⇒ [N ]
in D ([0,∞)) .
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Both parts (i) and (ii) of Claim 1 are false, as shown by the following counterexample. Take a standard
Brownian motion started from zero W = {Wt : t ≥ 0}, and define

Mt = W 2
t − t

Mn
t =

1

n
Mnt =

(
n−

1

2 Wnt

)2

− t.

Then, M is a continuous square-integrable martingale that is not Ocone (since it is non-Gaussian and

pure, see [5, Proposition 2.5] and [7, p. 423]). Moreover, Mn
t = (an)

−1/2
Mbnt, for an = n2 and bn = n,

and Mn law
= M for each n, due to the scaling properties of Brownian motion. It follows that Mn ⇒ M ,

thus contradicting point (i) of Claim 1.

As for point (ii), consider the continuous Ocone martingale (see [7, p. 427])

Nt = 2

∫ t

0

WsdW̃s

where W̃ is a standard Brownian motion independent of W . It is evident that

[N ]t = 4

∫ t

0

W 2
s ds

[Mn]t =
4

n2

∫ nt

0

W 2
s ds = 4

∫ t

0

(
n−1/2Wnu

)2

du

and therefore that [Mn]
law
= [N ] for each n, although Mn converges weakly to the martingale M , which

is not Ocone. This contradicts point (ii) of Claim 1.

The error comes from a misuse of the Skorohod almost sure representation theorem (see e.g. [1, p. 281])
in [6, Section 4]. Starting from p. 219, line 10 of [6], the author considers a sequence

{(
W, τn

′

)
: n′ ≥ 1

}
,

where W is a standard Brownian motion and τn
′

is an appropriate time-change, such that

(
W, τn

′

)
⇒ (B, [N ]) ,

where B is a standard Brownian motion, and [N ] is a positive, continuous and increasing process. Then,
the Skorohod theorem allows one to conclude that, on an auxiliary space, there exist random elements(
W

n′

, τn
′

)
and

(
B, [N ]

)
such that

(
W, τn

′

)
law
=

(
W

n′

, τn
′

)
and (B, [N ])

law
=

(
B, [N ]

)
,

where the Brownian motion W
n′

depends (in general) on n′, and
(
W

n′

, τn
′

)
a.s.→ (B, [N ]). On the other

hand, the (fallacious) conclusion of Theorem 4.1 in [6] is obtained by supposing that, on the auxiliary

space, there exists a Brownian motion W such that W
n′

= W for each n′, which is clearly not the case,
due to the counterexamples constructed above.
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