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Abstract.
We present a stochastic process with sawtooth paths whose distribution is given by a simple rule
and whose stationary distribution is Gaussian. The process arose in a natural way in research
on interaction of an inert particle with a Brownian particle.

The purpose of this short note is to present a very simple sawtooth-like process whose stationary
distribution is Gaussian. The process arose in a natural way in the doctoral research [W] of the
second author, devoted to the study of interaction between an inert particle with a Brownian
particle. A model of such interaction was originally proposed by Knight [K].
We believe that the “Gaussian oscillator” is a sufficiently interesting abstract object on its
own but we also believe that it points to the possibility of an alternative explanation for the
occurrence of normal distributions in some real life data. The standard explanation for normally
distributed data is that they are due to the Central Limit Theorem, acting in an explicit or
implicit way. There is no CLT effect hidden in models discussed in this paper.
We have a whole family of sawtooth processes with Gaussian stationary distributions. First, we
will present a particularly simple process in this family, and then we will describe the remaining
ones. The informal presentation of the processes will be followed by a formal proof that the
stationary distribution is normal.
The sawtooth processes we mentioned are not Markov but we can make them Markov by en-
larging the state space as follows. Let Kt be a process with sawtooth paths (see Fig. 1) and
following properties. The time derivative Vt = (∂/∂t)Kt of Kt exists everywhere, except for a
finite number of points on every finite interval, and takes values β > 0 and −β < 0. The process
(Kt, Vt) is Markov. The process Vt switches its value from β to −β on the interval ∆t with
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probability 2Kt∆t if Kt > 0 (it cannot jump from β to −β when Kt < 0). Similarly, Vt jumps
from −β to β on the interval ∆t with probability 2|Kt|∆t if Kt < 0, and it does not jump from
−β to β when Kt > 0.

t

Kt

Figure 1. Sawtooth process Kt.

It is rather easy to see that Kt is not a Gaussian process, even in the stationary regime. For
example, its two-dimensional distributions are not multidimensional normal. If Kt = 0 for some
t then for small ∆t, the distribution of Kt+∆t is bimodal, and hence not normal, under the
stationary distribution.

The process Kt described above is just one example from a larger family of processes. Suppose
that we have non-negative continuous functions d(k) and b(k) such that d(k)− b(k) = 2k. The
following definition of (Kt, Vt) contains the one given above as a special case. Recall that Kt

is assumed to have sawtooth paths, the time derivative Vt of Kt exists everywhere, except for
a finite number of points on every finite interval, Vt takes values β > 0 and −β < 0, and the
process (Kt, Vt) is Markov. The process Vt switches its value from β to −β on the interval ∆t
with probability d(Kt)∆t; Vt jumps from −β to β on the interval ∆t with probability b(Kt)∆t.
Note that the assumption that the process Kt cannot change the direction when Kt and Vt have
the opposite signs has been dropped.
The special case of (Kt, Vt) with d(k) = keak/ sinh(ak) and b(k) = ke−ak/ sinh(ak) arose in [W].
As usual, sinh(x) = (ex − e−x)/2. Note that as a→∞, one obtains the first example described
in this paper.
We omit the formal construction of (Kt, Vt) as it presents no technical problems.

Theorem. For any non-negative continuous d(k) and b(k) satisfying d(k) − b(k) = 2k, the

process (Kt, Vt) has a stationary distribution and Kt is normal under this distribution, with

mean zero and variance β/2.

Note that the stationary distribution does not depend on d(k) and b(k).

Proof. Our argument will be based on the analysis of the generator (see [EK]). It is clear from
the informal description of the process that the generator A of (Kt, Vt) is given by

Af(k, β) = β
∂

∂k
f(k, β) + d(k)[f(k,−β)− f(k, β)],

Af(k,−β) = −β ∂

∂k
f(k,−β) + b(k)[f(k, β)− f(k,−β)].

We omit the domain of integration from the integrals. The variable k, representing Kt, always
ranges from −∞ to ∞, and dv is a measure representing Vt, giving weights 1 to β and −β.
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The adjoint A∗ of A is the operator satisfying, for all suitable f, g,

∫

(Af)g dk dv =

∫

f(A∗g) dk dv.

Applying this to our particular A,

∫

(Af)g dk dv =

∫

β
( ∂

∂k
f(k, β)

)

g(k, β)dk +

∫

d(k)[f(k,−β)g(k, β)− f(k, β)g(k, β)]dk

+

∫

(−β)
( ∂

∂k
f(k,−β)

)

g(k,−β)dk +
∫

b(k)[f(k, β)g(k,−β)− f(k,−β)g(k,−β)]dk.

Integrating by parts gives

∫

(Af)g dk dv =

∫

{−βf(k, β) ∂
∂k

g(k, β) + f(k, β)[b(k)g(k,−β)− d(k)g(k, β)]}dk

+

∫

{βf(k,−β) ∂
∂k

g(k,−β) + f(k,−β)[−b(k)g(k,−β) + d(k)g(k, β)]}dk.

From this we see that

A∗g(k, β) = −β ∂

∂k
g(k, β) + b(k)g(k,−β)− d(k)g(k, β), (1)

A∗g(k,−β) = β
∂

∂k
g(k,−β)− b(k)g(k,−β) + d(k)g(k, β).

The stationary distribution µ of a process is characterized by

∫

Af dµ = 0.

When dµ is of the form g(k, v)dk dv, this is equivalent to

∫

(Af)g dk dv =

∫

f(A∗g) dk dv = 0,

so that it is sufficient to find g(k, v) satisfying A∗g(k, v) ≡ 0. By (1), we are looking for g(k, v)
such that

0 = A∗g(k, β) +A∗g(k,−β) = −β
( ∂

∂k
g(k, β)− ∂

∂k
g(k,−β)

)

,

so that g(k,−β) = g(k, β) + c. Since we have to have

1 =

∫

(g(k, β) + g(k,−β))dk =
∫

(g(k, β) + g(k, β))dk +

∫

c dk, (2)

the constant c must vanish so g(k, β) = g(k,−β). Using this fact and (1), we get

A∗g(k, β) = −β ∂

∂k
g(k, β) + (b(k)− d(k))g(k, β)

= −β ∂

∂k
g(k, β)− 2kg(k, β).
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Setting this equal to zero and solving for g(k, β) gives g(k, β) = c1 exp(−k2/β). The normaliza-
tion (2) yields

g(k, β) = g(k,−β) = 1

2
√
πβ
exp(−k2/β).

Now we can trace back our steps to see that the last formula represents the stationary distribu-
tion.
Q.E.D.
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