
Elect. Comm. in Probab. 9 (2004), 26–35

ELECTRONIC

COMMUNICATIONS

in PROBABILITY

FINITE DIMENSIONAL DETERMINANTS AS CHAR-
ACTERISTIC FUNCTIONS OF QUADRATIC WIENER
FUNCTIONALS

KEISUKE HARA 1

Department of Mathematical Sciences, Ritsumeikan University,
1-1-1 Nojihigashi, Shiga, JAPAN 525-8577
email: kshara@se.ritsumei.ac.jp

Submitted 10 November 2003, accepted in final form 10 March 2004

AMS 2000 Subject classification: 60E10, 60H99, 60J65
Keywords: quadratic Wiener functional, entire function, generalized determinant

Abstract

We show a method and the structure to calculate the characteristic functions of quadratic
Wiener functionals by using the classical Weierstrass-Hadamard theory of entire functions.
We also examine the idea by an example for Gaussian processes with multiple Markovian
property.

1 Introduction

The aim of this article is to show a method and the structure of exact calculations for the
characteristic functions of quadratic Wiener functionals, that is, the oscillatory integral type
expectations with quadratic phase functions F [w] on the classical Wiener space (W,P ):

C(λ) = E[e
√
−1λF ] =

∫

W

exp
(√
−1λF [w]

)
P (dw). (1)

This problem has a long history since the fundamental works by P. Lévy, M. Kac, R. H. Cameron
and W. T. Martin. It was recently revisited by studies on the concrete examples in the context
of Malliavin calculus and its application to infinite dimensional stationary phase methods.
There is a correspondence between a quadratic Wiener functional and the symmetric Hilbert-
Schmidt operator on the Cameron-Martin subspaceH inW . Therefore the closed form of C(λ)
is computed by solving the associated eigenvalue problem for the operator and by calculating
the infinite dimensional determinant. However, both steps are often hard, though C(λ) is
written by finite dimensional determinants in many cases. For such recent examples with new
motivations, there is a series of works by N. Ikeda-S. Kusuoka-S. Manabe [4, 5, 6, 7], and also
H. Matsumoto-S. Taniguchi [9]. The finite dimensional property of the determinants is studied
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as an analogue of Van Vleck formula in [7] and its functional analytic aspect is studied in [5].
Applications to the other fields, for example, filtering, solitons, etc., are found in N. Ikeda and
the author [3], and also in Ikeda-Taniguchi [8].
In this article, we shall show a direct relation between these two infinite and finite determinants
and also examine a shortcut of the calculation by the relation with a new example. The idea
is twofold: the framework of boundary value problems of linear differential equations and
Weierstrass-Hadamard’s classical theory of entire complex functions.
The author should remark that S. Coleman [2] essentially used the relation to calculate the
fundamental solutions of Schrödinger equations in the context of quantum physics, and also
that similar observations are found in Ikeda-Kusuoka-Manabe [5] and T. Chan [1] for their
own special cases.

2 Framework and results

Let T > 0 be fixed and consider the classical n dimensional Wiener space (W,P ) = (WT , PT ),
that is, the pair consisting of the space W = WT of continuous functions w : [0, T ] → Rn

starting at the origin and the Wiener measure P = PT on W . Let H = HT be the Cameron-
Martin subspace in W . The each element h = T (h1, . . . , hn) ∈ H is absolutely continuous
and has the square integrable derivative ḣ = T (ḣ1, . . . , ḣn) (where the symbol TM means the
transpose of a matrix M). The inner product in H is given by

〈h1, h2〉H =

∫ T

0

n∑

j=1

ḣ1
j
(t) ḣ2

j
(t)dt, (h1, h2 ∈ H).

We consider a functional F : W → R that is quadratic in the following sense. We have the
Wiener-Itô decomposition of the square integrable functionals on (W,P ):

L2(W,P ) =
∞⊕

j=0

Cj ,

where Cj is the jth ordered chaos. A functional F is called quadratic if F belongs to C0⊕C1⊕C2.
In other words, it is an L2 functional F with ∇3F = 0 (∇ means Malliavin’s derivative).
However, we use the word ‘quadratic’ only for F ∈ C2 throughout this article because the
C0 ⊕ C1 part is easy to handle and out of our focus (cf. Matsumoto and Taniguchi [9]).
For each quadratic functional F ∈ C2, there exists a unique symmetric Hilbert-Schmidt oper-
ator B such that F [h] = 〈Bh, h〉H for h ∈ H. Let {µn}∞n=1 be the eigenvalues of B and σ(B)
the spectral radius of B. Then, as pointed out in Ikeda-Kusuoka-Manabe [4, 5], we have the
fundamental relation:

∫

W

exp(zF [w])P (dw) =
1√∏∞

j=1(1− 2zµn)e2zµn
(2)

for every z ∈ C such that 2|<z|σ(B) < 1.
Therefore, our problem is reduced to the eigenvalue problem of the symmetric Hilbert-Schmidt
operator B and the calculation of the following infinite product, called a generalized determi-
nant, or Carleman-Fredholm’s determinant:

D(z) := det2(I − 2zB) =

∞∏

j=1

(1− 2zµj)e
2zµj , (3)
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where I is the identity operator. Since the operator B is of Hilbert-Schmidt type, the infinite
product above converges absolutely and the complex function D(z) is analytic in |z| <∞. In
other words, D(z) is an entire function with the genus 1 in the sense of Weierstrass.
The eigenvalue problem has the general form with the corresponding symmetric integral kernel
F (t, s) = {F ij(t, s)}i,j=1,...,n as follows.

d

dt
(B[h])i(t) =

n∑

j=1

∫ T

0

F ij(t, s)ḣj(s)ds = µḣi(t), (i = 1, . . . , n) (4)

for µ ∈ C and h(t) = T (h1(t), . . . , hn(t)) ∈ H. We make the following assumption (A1).

(A1): the integral equation is rewritten in the following linear differential equa-
tion with the boundary condition:

Lḣ− νḣ = 0, (5)

b[ḣ] = 0, (6)

where ν = 1/µ, 0 = T (0, . . . , 0) is the origin of Rn, and L is the formal linear differential
operator:

L =

(
d

dt

)N

+

N∑

k=1

pk(t)

(
d

dt

)N−k

(7)

and b is the linear boundary operator:

(b[x])j =
N∑

k=1

qjk

(
d

dt

)k−1
x (0) +

N∑

k=1

rjk

(
d

dt

)k−1
x (T ), (j = 1, . . . , N). (8)

Here p1, . . . , pn are continuous (N ×N)-matrix valued functions on [0, T ]. {qjk} and {rjk} are
some constant (N ×N)-matrices.
In other words, we assume the kernel F (t, s) is the Green function of the differential equation
above. By the symmetry of our original problem (4), our differential equation (5) with (6)
is self adjoint. So the operator L and its Lagrange’s adjoint L∗ for 〈 , 〉H coincide and the
dimension N is even. Therefore the eigenvalues are real, not zero, and have their independent
eigenfunctions. We remark that another equivalent expression is the variational problem,
which is closely related to an analogue of Van Vleck formula (cf. Ikeda-Manabe [7]).
By the general theory of ordinary differential equations, we can choose a system of general
solutions {φk(t; ν)}Nk=1 of the above equation (5) such that they are analytic as complex func-
tions of ν. (However, they are not necessarily entire.) Then the general solution of (5) has the
following form:

ϕ(t; ν) = c1φ1(t; ν) + · · ·+ cNφN (t; ν)

with constants c1, . . . , cN . Because it satisfies the boundary condition (6), we have the following
equation:

(b[ϕ])j =

N∑

k=1

qjk

(
d

dt

)k−1
ϕ(0; ν) +

N∑

k=1

rjk

(
d

dt

)k−1
ϕ(T ; ν) = 0, (j = 1, . . . , N).

We consider the above equation as a linear equation for the variables cj :

(b[ϕ])j =
N∑

i=1

(b[φi])jci = 0, j = 1, . . . , N. (9)



Finite dimensional determinants as characteristic functions of quadratic Wiener functionals 29

If a nontrivial solution (c1, . . . , cN ) exists, all (N×N)-minors of (nN×N)-matrix of the above
linear equation (9) vanish. Therefore, setting

d(ν) :=
∑′ (

det((b̃[ϕ]))1≤i,j≤N

)2
,

we have

d(ν) = 0,

where the symbol
∑′

means the sum for all (N ×N)-minors det b̃ and that it is multiplied by
the power of ν such that d(0) 6= 0. (See N. Ikeda-K. Hara [3] for the Grassmannian structure
related to the minors above). Therefore the eigenvalues of our original problem (4) correspond
to the zeros of d(ν). We claim that this d(ν) and our target D(z) is the same one as a complex
function with some correction terms under some assumptions. So we need not to calculate the
eigenvalues and their infinite product. The key to prove the claim is Weierstrass-Hadamard’s
theory of entire functions.
Recall that the entire function D(z) has the zeros at z = 1/(2µn) (n = 1, 2, . . .). On the other
hand, d(2z) has the same zeros at z = 1/(2µn) (n = 1, 2, . . .) with the same multiplicities.
Therefore, if we can modify these two functions into entire ones with the same zeros and
the same asymptotic behaviour, we can conclude that the two modified functions coincide by
Weierstrass-Hadamard’s theory. Now we need the assumption (A2) below for the modification.
The point is the existence of a suitable uniformizing parameter of d(z).
We suppose that

(A2): there is a polynomial q(z) of z ∈ C such that φi(q(z)) is entire, and

sup
|z|≤r

|φi(q(z))| ≤ exp(r1+ε) (10)

for every ε > 0, i = 1, . . . , N , and large enough r > 0.

This assumption is trivially satisfied if the coefficients pj(t) (j = 1, . . . , N) are constant scalar
matrices, because we can simply choose the characteristic polynomial of the differential equa-
tion Lφ = 0 as q(z).

Now we can state the main theorem under our assumptions.

Theorem 2.1 Under the assumptions (A1) and (A2), we have

D(q(z)) = eq̃(z) d(q(2z)),

where q̃(z) is a polynomial whose degree is less than or equal to the degree of q(z).
Furthermore, if the operator B is nuclear, we have

q̃(z) = αz + β + γq(z), (α, β, γ ∈ C).

Proof. By the assumption (A2), we have the estimate:

sup
|z|=r

|d(q(z))| ≤ exp(r1+ε),
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for every ε > 0 and a large enough r. Therefore the order of d(q(z)) is 1 in the sense of
Hadamard, and so the genus is 1 at most. Recall that d(2z) has the zeros at (1/(2µn))

∞
n=1.

Then, d(q(2z)) has the zeros:

zm ∈ Z := {z : q(z) = 1/2µn, n = 1, 2, . . .},m = 1, 2, . . . .

Therefore, eq(z)d(2q(z)) has the same zeros and the order is equal to the degree of q(z), say
deg q. On the other hand, D(q(z)) is an entire function with the same zeros and also its order
is the same deg q, because we have a simple estimate:

sup
|z|=r

|D(q(z))| ≤ exp(q(r)1+ε).

Thus both entire functions have the same Weierstrass’s canonical form as follows and the
infinite product absolutely converges:

eg(z)
∏

zm∈Z

(
1− z

zm

)
exp

{
z

zn
+ . . .+

1

deg q

(
z

zn

)deg q}
,

where g(z) is a polynomial such that deg g ≤ deg q. Since the only difference is the term eg(z),
we have

D(q(z)) = eq̃(z)d(q(2z)),

where q̃ is a polynomial such that deg q̃ ≤ deg q.
Furthermore, if the operator B is nuclear, we can explicitly calculate as follows.

d(q(2z)) = eaz+b
∏

n

∏

q(zm)=1/(2µn)

(
1− z

zm

)
ez/zm

= eaz+b
∏

n

(1− 2µnq(z))e
z
∑

q(zm)=1/(2µn)
1/zm

= eaz+b
∏

n

(1− 2µnq(z))e
2a1µnz

= eaz+b
∏

n

(1− 2µnq(z))e
2µnq(z)e−2µn{q(z)−a1z},

where a1 is the coefficient of the term z of the polynomial q(z). Therefore there are constants
α, β, and γ such that

D(q(z)) = eαz+β+γq(z)d(q(2z)).

q.e.d.

Remark 1. Since the both sides of the equation in the theorem are entire and the infinite
products absolutely converge, we can differentiate them to determine the polynomial.

Remark 2.

Since d(z) is a function of the minors, it is expressed by Plücker’s coordinates. Then, it lies
in a Grassmannian and it is naturally related to the theory of solitons. See Ikeda-Hara [3],
also refer to Ikeda-Taniguchi [8] for another approach by Ricatti’s equations and Girsanov’s
formula.
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On the other hand, d(z) is also expressed by the boundary data of the differential equation,
which has an equivalent variational problem. See Ikeda-Manabe [7] for another aspect as an
analogue of Van Vleck formula.

Remark 3.

We can trace the same line in the conditioned cases by using projection to a subspace H0 in
Cameron-Martin space H. In fact, we know the following formula for such cases including the
pinned processes version:

∫

W

ezF [w]δ0(〈η, w〉)P (dw) =

(
1

2π

)m/2
1√

D∗(z) detV
,

where δ0 is the pullback of the Dirac delta function at the origin, η = (η1, . . . , ηm) is a base of
H0, D

∗ is the Carleman-Fredholm determinant modified by the projection, and a correction
term detV is a finite dimensional determinant that we can calculate by η. For the precise
information about the formula above, see Ikeda-Kusuoka-Manabe [5].

3 Examples — Gaussian processes with multiple Marko-

vian property

First we examine our framework by familiar examples before our main topic in this section.
Consider the squared norm of the one dimensional Wiener process w(t) starting at the origin:

F [w] =

∫ 1

0

|w(t)|2dt.

The corresponding differential equation is the following.

ϕ′′ +
1

µ
ϕ = 0, ϕ(0) = ϕ′(1) = 0.

The general solution of the equation is expressed by

ϕ(t) = c1e
i
√
νt + c2e

−i
√
νt, (ν = 1/µ).

Then the boundary conditions are equivalent to

(
1 1

ei
√
ν −e−i

√
ν

)(
c1
c2

)
= 0.

The determinant of the matrix of the left hand side is zero, and it is nothing but the quantity
that we need. Setting

d(ν) = 1 · e−i
√
ν − (−1) · ei

√
ν = 2 cos

√
ν

and q(z) = z2, all assumptions are satisfied and we have the known result:

E[eiλF [w]] = 1/
√
eq̃ d(2iλ) = 1/

√
cos
√
2iλ, λ ∈ R.
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Another interesting example is Lévy area for the two dimensional Wiener processes (w1, w2)
starting at the origin:

S[w] =

∫ 1

0

w1dw2 − w2dw1.

The eigenvalue problem is well-known as follows:

(
ϕ′1
ϕ′2

)
+

1

µ

(
ϕ2 − ϕ2(1)/2
−ϕ1 + ϕ1(1)/2

)
= 0,

(
ϕ1(0)
ϕ2(0)

)
= 0,

We can trace the computation above to get the determinant associated with the boundary
conditions.

d(ν) = (eiν + e−iν)2 = 4 cos2 ν, (ν = 1/µ).

Note that this is already an entire function (so, we choose q(z) = z simply) . Applying our
theorem, we recover the familiar result:

E[eiλS[w]] = 1/ coshλ, λ ∈ R.

Now we apply our framework to a new example. This is also a generalization of the first case
above.
Again, let w(t) be the one dimensional Wiener process starting at the origin. Let us consider
the Gaussian processes XN (t) defined by

X0(t) = w(t), XN (t) =

∫ t

0

XN−1(s)ds, (N = 1, 2, . . .).

N. Ikeda, S. Kusuoka, and S. Manabe [4] gave Lévy area formula for the two dimensional
version of the processes XN (t).
We will calculate the characteristic function

C(z) = E
[
ezFN (w)

]
,

where FN (w) is the following quadratic functional:

FN (w) = (−1)N
∫ 1

0

|XN (t, w)|2dt.

The corresponding eigenvalue problem is

∫ 1

0

M(t, s)φ(t)dt = µφ(s)

with

M(t, s) =
1

(N !)2

∫ min(t,s)

0

(t− u)N (s− u)Ndu.

The kernel M(t, s) is symmetric and the integral operator is Hilbert-Schmidt type. The equiv-
alent differential equation is

φ(2N+2)(t) = νφ(t) (ν = 1/µ),



Finite dimensional determinants as characteristic functions of quadratic Wiener functionals 33

with the boundary conditions:

φ(0) = 0, φ(n)(0) = 0 (n = 1, 2, . . . , N),

φ(n)(1) = 0 (n = N + 1, N + 2, . . . , 2N + 1).

The solution to the equation above can be expressed by a linear combination of bases as
follows:

φ(t) =

2N+1∑

k=0

cke
ξkt,

where ξk is

ξk = ωkν
1/(2N+2), ωk = exp

(
2πk

2N + 2
i

)
, k = 0, 1, . . . , 2N + 1,

and λ1/(2N+2) is chosen in a suitable branch. Then we can express the boundary conditions
by the linear equation as follows:




1 1 . . . 1
ξ0 ξ1 . . . ξ2N+1
...

...
...

ξN0 ξN1 . . . ξN2N+1
ξN+10 eξ0 ξN+11 eξ1 . . . ξN+12N+1e

ξ2N+1

...
...

...

ξ2N+10 eξ0 ξ2N+11 eξ1 . . . ξ2N+12N+1e
ξ2N+1







c0
c1
...

cN−1
cN
...

c2N+1




= 0.

The eigenvalues are {νj} that give the non-trivial solutions of the equation above, that is,
the zeros of the determinant of the matrix above. Then, setting q(z) = z2N+2, we have
q(ν1/(2N+2)) = ν and the equivalent equation as follows:

d(ν) = det Ξ(q(ν)) = det




1 1 . . . 1
ω0 ω1 . . . ω2N+1
...

...
...

ωN
0 ωN

1 . . . ωN
2N+1

ωN+1
0 eνω0 ωN+1

1 eνω1 . . . ωN+1
2N+1e

νω2N+1

...
...

...

ω2N+10 eνω0 ω2N+11 eνω1 . . . ω2N+12N+1e
νω2N+1




= 0.

We can express d(z) explicitly as follows.

Lemma 3.1 Let the index set I = {0, 1, . . . , 2N + 1} be partitioned into two sets Γ and Γc

such that Γ ∪ Γc = I and ]Γ = ]Γc = N + 1. Let |Γ| be the signature of the permutation such
that maps

(γ0, γ1, . . . , γN , γN+1, . . . , γ2N+1) to (0, 1, . . . , 2N, 2N + 1)

where γj ∈ Γ for 0 ≤ j ≤ N and γj ∈ Γc for N + 1 ≤ j ≤ 2N + 1. Then,

d(z) =
∑

Γ

{
(−1)|Γ| exp

(
z
∑

k∈Γ
ωk

)
∏

l∈Γ
ωN+1
l Π(Γ)Π(Γc)

}
,
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where
Π(Γ) =

∏

j,k∈Γ,k>j

(ωk − ωj),

and the first summation runs over all choices Γ.
In the special case,

d(0) =
∏

0≤j<k≤2N+2
(ωk − ωj).

Proof. By the definition of the determinant, we can express d(z) in the following linear
combination:

d(z) = det Ξ(z) =
∑

Γ

AΓ exp

(
z
∑

k∈Γ
ωk

)
.

We can reduce the constant AΓ to the product of two Vandermond’s type determinants by the
suitable permutation of the columns. The special case d(0) is just a Vandermond’s determinant.
q.e.d.

By the lemma above, we can check our assumptions on the asymptotics on d(z). Then we
have the formula for the Carleman-Fredholm determinant D(z) of C(z) in this case.

Corollary 3.1

D(z2N+2) = eG(z)d((2z)2N+2),

where G(z) is a polynomial whose degree is 2N + 2 at most.

We can calculate the explicit form of the polynomial G(z) =
∑2N+2

k=0 akz
k by the special values

of D(z), d(z) and their derivatives. In fact, the constant term a0 is

a0 = − log
∏

1≤j<k≤2N+2
(ωk − ωj),

because D(0) = ead(0). By Leibnitz’s rule, we have also

a1 = a2 = · · · = a2N+1 = 0

and
a2N+2 = N !(D′(0)− d′(0)/d(0)).
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