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Abstract

Let {BH
t , t ∈ [0, T ]} be a fractional Brownian motion with Hurst parameter H > 1

2 . We
prove the existence of a weak solution for a stochastic differential equation of the form Xt =
x+BH

t +
∫ t
0
(b1(s,Xs) + b2(s,Xs)) ds, where b1(s, x) is a Hölder continuous function of order

strictly larger than 1− 1
2H in x and than H− 1

2 in time and b2 is a real bounded nondecreasing
and left (or right) continuous function.

1 Introduction

Let BH = {BH
t , t ∈ [0, T ]} be a fractional Brownian motion with Hurst parameter H ∈ (0, 1).

That is, BH is a centered Gaussian process with covariance

RH(t, s) = E(BH
t B

H
s ) =

1

2

{
|t|
2H

+ |s|
2H
− |t− s|

2H
}
.

If H = 1
2 the process BH is a standard Brownian motion. Consider the following stochastic

differential equation

Xt = x+BH
t +

∫ t

0

(b1(s,Xs) + b2(s,Xs)) ds, (1.1)

where b1 , b2 : [0, T ]×R −→ R are Borel functions. The purpose of this paper is to prove, by
approximation arguments, the existence of a weak solution to this equation if H > 1

2 , under
the following weak regularity assumptions on the coefficients:
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(H1) b1 is Hölder continuous of order 1 > α > 1− 1
2H in x and of order γ > H − 1

2 in time:

|b1(t, x)− b1(s, y)| ≤ C (|x− y|α + |t− s|γ) . (1.2)

(H2) sup
s∈[0,T ]

sup
x∈R

| b2(s, x) |≤M <∞.

(H3) ∀s ∈ [0, T ] , b2(s, .) is a nondecreasing and left (or right) continuous function.

The same approximation arguments can be used to consider the case where b2 satisfies the
following assumptions:

(H′2) sup
s∈[0,T ]

sup
x∈R

| b2(s, x) |≤M(1 + |x|)

(H′3) for all s ∈ [0, T ] , b2(s, .) is a nonincreasing and continuous function

If b2 ≡ 0 and H = 1
2 (the process BH is a standard Brownian motion), the existence of a

strong solution is well-known by the results of Zvonkin [18], Veretennikov [16] and Bahlali
[2]. See also the work by Nakao [11] and its generalization by Ouknine [14]. In the case of
Equation (1.1) driven by the fractional Brownian motion with b2 ≡ 0, the weak existence and
uniqueness are established in [13] using a suitable version of Girsanov theorem; the existence
of a strong solution could be deduced from an extension of Yamada-Watanabe’s theorem or
by a direct arguments.
In the general case H > 1/2, to establish existence and uniqueness result, a Hölder type space-
time condition is imposed on the drift. Recently, Mishura and Nualart [9] gave an existence
and uniqueness result for one discontinuous function namely the sgn function. Their approach

relies on the Novikov criterion and it is valid for 1+
√
5

4 > H > 1/2.
Our aim is to establish existence and uniqueness result for general monotone function including
sgn function and H > 1/2.
The paper is organized as follows. In Section 2 we give some preliminaries on fractional calculus
and fractional Brownian motion. In Section 3 we formulate a Girsanov theorem and show the
existence of a weak solution to Equation (1.1). As a consequence we deduce the uniqueness in
law and the pathwise uniqueness. Finally Section 4 discusses the existence of a strong solution.

2 Preliminaries

2.1 Fractional calculus

An exhaustive survey on classical fractional calculus can be found in [15]. We recall some basic
definitions and results.
For f ∈ L1 ([a, b]) and α > 0 the left fractional Riemann-Liouville integral of f of order α on
(a, b) is given at almost all x by

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy,

where Γ denotes the Euler function.
This integral extends the usual n-order iterated integrals of f for α = n ∈ N. We have the
first composition formula
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Iαa+(I
β
a+f) = Iα+βa+ f.

The fractional derivative can be introduced as inverse operation. We assume 0 < α < 1 and
p > 1. We denote by Iαa+(Lp) the image of Lp([a, b]) by the operator Iαa+ . If f ∈ Iαa+(Lp),
the function φ such that f = Iαa+φ is unique in Lp and it agrees with the left-sided Riemann-
Liouville derivative of f of order α defined by

Dα
a+f(x) =

1

Γ(1− α)

d

dx

∫ x

a

f(y)

(x− y)α
dy.

The derivative of f has the following Weil representation:

Dα
a+f(x) =

1

Γ(1− α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
1(a,b)(x), (2.1)

where the convergence of the integrals at the singularity x = y holds in Lp-sense.

When αp > 1 any function in Iαa+(Lp) is
(
α− 1

p

)
- Hölder continuous. On the other hand,

any Hölder continuous function of order β > α has fractional derivative of order α. That is,
Cβ([a, b]) ⊂ Iαa+(Lp) for all p > 1.
Recall that by construction for f ∈ Iαa+(Lp),

Iαa+(Dα
a+f) = f

and for general f ∈ L1([a, b]) we have

Dα
a+(Iαa+f) = f.

If f ∈ Iα+βa+ (L1), α ≥ 0, β ≥ 0, α+ β ≤ 1 we have the second composition formula

Dα
a+(D

β
a+f) = Dα+β

a+ f.

2.2 Fractional Brownian motion

Let BH = {BH
t , t ∈ [0, T ]} be a fractional Brownian motion with Hurst parameter 0 < H < 1

defined on the probability space (Ω,F, P ). For each t ∈ [0, T ] we denote by F
BH

t the σ-field
generated by the random variables BH

s , s ∈ [0, t] and the sets of probability zero.
We denote by E the set of step functions on [0, T ]. Let H be the Hilbert space defined as the
closure of E with respect to the scalar product

〈
1[0,t],1[0,s]

〉
H

= RH(t, s).

The mapping 1[0,t] −→ BH
t can be extended to an isometry between H and the Gaussian

space H1(B
H) associated with BH . We will denote this isometry by ϕ −→ BH(ϕ).

The covariance kernel RH(t, s) can be written as

RH(t, s) =

∫ t∧s

0

KH(t, r)KH(s, r)dr,

where KH is a square integrable kernel given by (see [3]):

KH(t, s) = Γ(H +
1

2
)−1(t− s)H−

1
2F (H −

1

2
,
1

2
−H,H +

1

2
, 1−

t

s
),
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F (a, b, c, z) being the Gauss hypergeometric function. Consider the linear operator K∗
H from

E to L2([0, T ]) defined by

(K∗Hϕ)(s) = KH(T, s)ϕ(s) +

∫ T

s

(ϕ(r)− ϕ(s))
∂KH

∂r
(r, s)dr.

For any pair of step functions ϕ and ψ in E we have (see [1])

〈K∗Hϕ,K
∗
Hψ〉L2([0,T ]) = 〈ϕ,ψ〉H .

As a consequence, the operator K∗H provides an isometry between the Hilbert spaces H and
L2([0, T ]). Hence, the process W = {Wt, t ∈ [0, T ]} defined by

Wt = BH((K∗H)
−1

(1[0,t])) (2.2)

is a Wiener process, and the process BH has an integral representation of the form

BH
t =

∫ t

0

KH(t, s)dWs, (2.3)

because
(
K∗H1[0,t]

)
(s) = KH(t, s)1[0,t](s).

On the other hand, the operator KH on L2([0, T ]) associated with the kernel KH is an isomor-

phism from L2([0, T ]) onto I
H+1/2
0+ (L2([0, T ])) and it can be expressed in terms of fractional

integrals as follows (see [3]):

(KHh)(s) = I2H0+ s
1
2
−HI

1
2
−H

0+ sH−
1
2h, if H ≤ 1/2, (2.4)

(KHh)(s) = I10+s
H− 1

2 I
H− 1

2

0+ s
1
2
−Hh, if H ≥ 1/2, (2.5)

where h ∈ L2([0, T ]).
We will make use of the following definition of Ft-fractional Brownian motion.

2.1 Definition. Let {Ft, t ∈ [0, T ]} be a right-continuous increasing family of σ-fields on
(Ω,F, P ) such that F0 contains the sets of probability zero. A fractional Brownian motion
BH = {BH

t , t ∈ [0, T ]} is called an Ft-fractional Brownian motion if the process W defined in
(2.2) is an Ft-Wiener process.

3 Existence of strong solution for SDE with monotone

drift.

In this section we are interested by the special case b1 ≡ 0. We will prove by approximation
arguments that there is a strong solution of equation (1.1). We will discuss two cases:
1) b2(s, .) satisfies (H2) and (H3).
2) b2(s, .) satisfies (H

′
2) and (H′3).

1– The first case:

To treat the first situation, let us suppose that b2(s, .) is nondecreasing and left continuous
function. We will use the following approximation lemma:
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3.1 Lemma. Let b : [0, T ]×R → R, a bounded measurable function such that for any s ∈ [0, T ],
b(s, .) is a nondecreasing and left continuous function. Then there exists a family of measurable
functions

{bn (s, x) ; n ≥ 1, s ∈ [0, T ] , x ∈ R}

such that




• For any sequencexn increasing tox ∈ R , we have

lim
n→∞

bn (s, xn) = b (s, x) , ds a.e.

• x 7→ bn (s, x) is nondecreasing, for all n ≥ 1, s ∈ [0, T ]

• n 7→ bn (s, x) is nondecreasing, for all x ∈ R, s ∈ [0, T ]

• |bn (s, x)− bn (s, y)| ≤ 2nM |x− y| for all n ≥ 1, s ∈ [0, T ]

• sup
n≥1

sup
s∈[0,T ]

sup
x∈R

|bn (s, x)| ≤M.

Proof. First assume that b(s, .) is left continuous and let us choose for any n ≥ 1

bn(s, x) = n

∫ x

x− 1
n

b(s, y) dy .

Since b(s, .) is nondecreasing then bn(s, .) is also a nondecreasing function for any fixed n ≥ 1.
Let x, y ∈ R, we clearly have for any n ≥ 1,

| bn(s, x)− bn(s, y) |≤ 2nM | x− y | . (3.1)

Obviously, we get that bn is uniformly bounded by the constant M . Let n < m, s ∈ [0, T ] and
x ∈ R, we have

bm(s, x)− bn(s, x) = (m− n)

∫ x

x− 1
m

b(s, y) dy − n

∫ x− 1
m

x− 1
n

b(s, y) dy

≥ (m− n)

∫ x

x− 1
m

b(s, y) dy −
m− n

m
b(s, x−

1

m
) ,

= (m− n)

∫ x

x− 1
m

(
b(s, y)− b(s, x−

1

m
)

)
dy ≥ 0 .

Now let x0 ∈ R and take an increasing sequence of real numbers xn converging to x0. We
want to show that for any s ∈ [0, T ], lim

n→∞
bn(s, xn) = b(s, x0). It is enough to prove that

there exists a subsequence bϕ(n)(s, xϕ(n)) which converges to b(s, x0). To do this, remark first
that since b(s, .) is left continuous we have lim

n→∞
bn(s, x0) = b(s, x0). Now let us consider any

strictly increasing sequence x′n converging to x0 such that x0 − x
′
n = o( 1n ). We clearly get by

(3.1)
∀s ∈ [0, T ] , lim

n→∞
bn(s, x

′
n) = b(s, x0) . (3.2)

We may choose a sequence ϕ(n) ≥ n such that x′n ≤ xϕ(n). Since (bn(s, x))n≥1 is increasing
and for any fixed n ≥ 1 the function bn(s, .) is nondecreasing, we have

bn(s, x
′
n) ≤ bϕ(n)(s, xϕ(n)) ≤ b(s, xϕ(n)) . (3.3)
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We deduce by (3.2) and the left continuity of b(s, .),

lim
n→∞

bϕ(n)(s, xϕ(n)) = b(s, x0) .

Which ends the proof.

Let (BH)t≥1 be a fractional Brownian motion with Hurst parameter H ∈ ( 12 , 1). We consider
the following SDE

Xt = x+BH
t +

∫ t

0

b2(s,Xs) ds , 0 ≤ t ≤ T . (3.4)

3.2 Theorem. Suppose that b2 satisfies the assumptions (H2) and (H3). Then there exists a
strong solution to the equation (3.4).

Proof. Assume that b2 : [0, T ] × R −→ R is a measurable and bounded function which is
nondecreasing and left continuous with respect to the space variable x. For n ≥ 1, let bn be
as in lemma 3.1 and consider the following SDE

Xn
t = x+BH

t +

∫ t

0

bn(s,X
n
s ) ds , 0 ≤ t ≤ T . (3.5)

By standard Picard’s iteration argument, one may show that for any n ≥ 1, the equation (3.5)
has a strong solution which we denote by Xn.
Let n > m, we denote by ∆t = Xn

t −X
m
t . Using the monotony argument on bn, we have

∆t ≥

∫ t

0

bm(s,Xn
s )− bm(s,Xm

s ) ds ,

≥

∫ t

0

(bm(s,Xn
s )− bm(s,Xm

s )) I{∆s≤0} ds ,

≥ 2mM

∫ t

0

∆s I{∆s≤0} ds ≥ −2mM

∫ t

0

∆−s ds .

(3.6)

We then get

∆−t ≤ 2mM

∫ t

0

∆−s ds . (3.7)

By Gronwall’s lemma, we have for almost all w and for any t ∈ [0, T ], the sequence (Xn
t (w))

is a nondecreasing function of n which is bounded since bn is. Therefore it has a limit when
n→∞ and we set

lim
n→∞

Xn
t (ω) = Xt(ω) ,

which entails in particular that X is F
BH

t − adapted. Applying the convergence result in
Lemma 3.1 and the boundedness of bn we get by Lebesgue’s dominated convergence theorem,

Xt = x+BH
t +

∫ t

0

b2(s,Xs) ds .
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3.1 Remark. To show that Equation (3.4) has a weak solution, a continuity condition is imposed
on the drift in [13]. Here, the function b2 may have a countable set of discontinuity points.
The solution constructed in Theorem 3.2 is the minimal one.

3.2 Remark. Let b2 : [0, T ] × R −→ R be a bounded measurable function, which is nonde-
creasing and right continuous. In this case we consider a decreasing sequence of Lipschitz
continuous functions which approximate the drift. One may take

bn(s, x) = n

∫ x+ 1
n

x

b2(s, y) dy .

For any fixed (s, x) ∈ [0, T ]×R, the sequence (bn(s, x))n≥1 is nonincreasing and for any fixed
n ≥ 1 and s ∈ [0, T ] the function bn(s, .) is nondecreasing. The same arguments as in Lemma
3.1 can be used to prove that for any sequence (xn)n≥1 decreasing to x, we have

lim
n→∞

bn(s, xn) = b2(s, x) .

This allows us to construct the maximal solution to the equation (3.4).

2– The second case:

In this case we use the following lemma:

3.3 Lemma. Let b(., .) : [0, T ]×R −→ R be a continuous function with linear growth, that is
there exists a constant M < ∞ such that ∀(s, x) ∈ [0, T ] × R, | b(s, x) |≤ M (1+ | x |). Then
the sequence of functions

bn(s, x) = sup
y∈Q

(b(s, y) − n |x− y|) ,

is well defined for n ≥M and it satisfies





• For any sequencexn converging tox ∈ R , we have

lim
n→∞

bn (s, xn) = b (s, x) ,

• n 7→ bn (s, x) is nonincreasing, for all x ∈ R, s ∈ [0, T ]

• |bn (s, x)− bn (s, y)| ≤ n |x− y| for all n ≥M, s ∈ [0, T ] , x, y ∈ R

• |bn (s, x)| ≤M(1+ | x |) , for all (s, x) ∈ [0, T ]× R , n ≥M .

For the proof of this lemma we refer for example to [8].

3.4 Theorem. Assume that b2 satisfies conditions H2
′ and H3

′. Then there exists a unique
strong solution to the equation (3.4).

Proof. For any n ≥ 1, let bn be as in Lemma 3.3. Since bn is Lipschitz and linear growth, the
result in [13] assures the existence of a strong solution Xn to the equation

Xn
t = x+BH

t +

∫ t

0

bn(s,X
n
s ) ds .

Since (bn)n≥1 is nonincreasing, comparison theorem entails that (Xn)n≥1 is a.s nonincreasing.
By the linear growth condition on bn and Gronwall’s lemma we may deduce that Xn converges
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a.s to X, which is clearly a strong solution to the SDE (3.4). Moreover, if X1 and X2 are two
solutions of (3.4), using the fact that b2(s, .) is nonincreasing, we get by applying Tanaka’s
formula to the continuous semi-martingale X1 −X2,

(X1
t −X

2
t )
+ =

∫ t

0

sign(X1
s −X

2
s )
(
b2(s,X

1
s )− b2(s,X

2
s )
)
ds ≤ 0 .

Then we have the pathwise uniqueness of the solution.

4 Existence of a weak solution

4.1 Girsanov transform

As in the previous section, let BH be a fractional Brownian motion with Hurst parameter

0 < H < 1 and denote by
{
F
BH

t , t ∈ [0, T ]
}

its natural filtration.

Given an adapted process with integrable trajectories u = {ut, t ∈ [0, T ]} and consider the
transformation

B̃H
t = BH

t +

∫ t

0

usds. (4.1)

We can write

B̃H
t = BH

t +

∫ t

0

usds =

∫ t

0

KH(t, s)dWs +

∫ t

0

usds

=

∫ t

0

KH(t, s)dW̃s,

where

W̃t =Wt +

∫ t

0

(
K−1H

(∫ ·

0

usds

)
(r)

)
dr. (4.2)

Notice that K−1H

(∫ ·
0
usds

)
belongs a.s to L2([0, T ]) if and only if

∫ ·
0
usds ∈ I

H+1/2
0+ (L2([0, T ])).

As a consequence we deduce the following version of the Girsanov theorem for the fractional
Brownian motion, which has been obtained in [3, Theorem 4.9]:

4.1 Theorem. Consider the shifted process (4.1) defined by a process u = {ut, t ∈ [0, T ]} with
integrable trajectories. Assume that:

i)
∫ ·
0
usds ∈ I

H+1/2
0+ (L2([0, T ])), almost surely.

ii) E(ξT ) = 1, where

ξT = exp

(
−

∫ T

0

(
K−1H

∫ ·

0

usds

)
(s)dWs −

1

2

∫ T

0

(
K−1H

∫ ·

0

usds

)2
(s)ds

)
.

Then the shifted process B̃H is an F
BH

t - fractional Brownian motion with Hurst parameter H

under the new probability P̃ defined by dP̃
dP = ξT .
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Proof. By the standard Girsanov theorem applied to the adapted and square integrable pro-

cess K−1H

(∫ ·
0
usds

)
we obtain that the process W̃ defined in (4.2) is an F

BH

t - Brownian motion

under the probability P̃ . Hence, the result follows.

From (2.5) the inverse operator K−1H is given by

K−1H h = sH−
1
2D

H− 1
2

0+ s
1
2
−Hh′, if H > 1/2 (4.3)

for all h ∈ I
H+ 1

2

0+ (L2([0, T ])). Then if H > 1
2 we need u ∈ I

H−1/2
0+ (L2([0, T ])), and a sufficient

condition for i) is the fact that the trajectories of u are Hölder continuous of order H − 1
2 + ε

for some ε > 0.

4.2 Existence of a weak solution

Consider the stochastic differential equation:

Xt = x+BH
t +

∫ t

0

(b1(s,Xs) + b2(s,Xs)) ds, 0 ≤ t ≤ T, (4.4)

where b1 and b2 are Borel functions on [0, T ]× R satisfying the conditions H1 for b1 and H2

and H3 (resp. H′2 and H′3) for b2. By a weak solution to equation (4.4) we mean a couple of
adapted continuous processes

(
BH , X

)
on a filtered probability space (Ω,F, P, {Ft, t ∈ [0, T ]}),

such that:

i) BH is an Ft -fractional Brownian motion in the sense of Definition 2.1.

ii) X and BH satisfy (4.4).

4.2 Theorem. Suppose that b1 and b2 are Borel functions on [0, T ]×R satisfying the conditions
H1 for b1, H2 and H3 (resp. H2

′ and H3
′) for b2. Then Equation (4.4) has a weak solution.

Proof. Let X2 be the strong solution of (3.4) and set B̃H
t = BH

t −
∫ t
0
b1(s,X

2
s )ds.We claim that

the process us = −b1(s,X
2
s ) satisfies conditions i) and ii) of Theorem 4.1. If this claim is true,

under the probability measure P̃ , B̃H is an F
BH

t -fractional Brownian motion, and
(
B̃H , X2

)

is a weak solution of (4.4) on the filtered probability space
(
Ω,F, P̃ ,

{
F
BH

t , t ∈ [0, T ]
})

.

Set

vs = −K
−1
H

(∫ ·

0

b1(r,X
2
r )dr

)
(s).

We will show that the process v satisfies conditions i) and ii) of Theorem 4.1. Along the proof
cH will denote a generic constant depending only on H. Let H > 1

2 , by (4.3), the process v is
clearly adapted and we have

vs = −sH−
1
2D

H− 1
2

0+ s
1
2
−Hb1(s,X

2
s )

:= −cH (α(s) + β(s)) ,
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where

α(s) = b1(s,X
2
s )s

1
2
−H

+(H −
1

2
)sH−

1
2 b1(s,X

2
s )

∫ s

0

s
1
2
−H − r

1
2
−H

(s− r)
1
2
+H

dr

+(H −
1

2
)sH−

1
2

∫ s

0

b1(s,X
2
s )− b1(r,X

2
s )

(s− r)
1
2
+H

r
1
2
−Hdr.

and

β(s) = (H −
1

2
)sH−

1
2

∫ s

0

b1(r,X
2
s )− b1(r,X

2
r )

(s− r)
1
2
+H

r
1
2
−Hdr.

Using the estimate ∣∣b1(s,X2
s )
∣∣ ≤ |b(0, x)|+ C

(
|s|γ +

∣∣X2
s

∣∣α
)

and the equality ∫ s

0

r
1
2
−H − s

1
2
−H

(s− r)
1
2
+H

dr = cHs
1−2H ,

we obtain

|α(s)| ≤ cH

(
s

1
2
−H

[
|b1(0, x)|+ C

(
|s|γ +

∣∣X2
s

∣∣α
)]

+ Csγ+
1
2
−H
)

≤ cHs
1
2
−H

(
C
∥∥X2

∥∥α
∞ + Csγ + |b1(0, x)|

)
.

As consequence, taking into account that α < 1, we have for any λ > 1

E

(
exp

(
λ

∫ T

0

α(s)2ds

))
<∞. (4.5)

In order to estimate the term β(s), we apply the Hölder continuity condition (1.2) and we get

|β(s)| ≤ cHs
H− 1

2

∫ s

0

(∣∣X2
s −X

2
r

∣∣α

(s− r)H+
1
2

+
|r − s|

γ

(s− r)
1
2
+H

)
r

1
2
−Hdr

≤ cH sH−
1
2

∫ s

0

(∣∣BH
s −B

H
r

∣∣α

(s− r)H+
1
2

+ (s− r)
α−H− 1

2 +
|r − s|

γ

(s− r)
1
2
+H

)
r

1
2
−Hdr

≤ cHs
1
2
−H+α(H−ε)Gα,

where we have fixed ε < H − 1
α (H − 1

2 ) and we denote

G = sup
0≤s<r≤1

∣∣BH
s −B

H
r

∣∣
|s− r|

H−ε .

By Fernique’s Theorem, taking into account that α < 1, for any λ > 1 we have

E

(
exp

(
λ

∫ T

0

β(s)2ds

))
<∞,

and we deduce condition ii) of Theorem 4.1 by means of Novikov criterion.
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4.3 Uniqueness in law and pathwise uniqueness

In this subsection we will prove uniqueness in law of weak solution under the condition H1 for
b1, H2

′ and H3
′ for b2. The main result is

4.3 Theorem. Suppose that b1 and b2 are Borel functions on [0, T ] × R. satisfying the con-
ditions H1 for b1, H2

′ and H3
′ for b2. Then we have the uniqueness in distribution for the

solution of Equation (4.4).

Proof. It is clear that X2 is pathwise unique, hence the uniqueness in law holds when b1 ≡ 0.
Let

(
X,BH

)
be a solution of the stochastic differential equation (4.4) defined in the filtered

probability space (Ω,F, P, {Ft, t ∈ [0, T ]}). Define

us =

(
K−1H

∫ ·

0

b1(r,Xr))dr

)
(s).

Let P̃ defined by

dP̃

dP
= exp

(
−

∫ T

0

usdWs −
1

2

∫ T

0

u2sds

)
. (4.6)

We claim that the process us satisfies conditions i) and ii) of Theorem 4.1. In fact, us is an
adapted process and taking into account that Xt has the same regularity properties as the

fBm we deduce that
∫ T
0
u2sds <∞ almost surely. Finally, we can apply again Novikov theorem

in order to show that E
(
dP̃
dP

)
= 1, because by Gronwall’s lemma

‖X‖∞ ≤
(
|x|+

∥∥BH
∥∥
∞ + C1T

)
eC2T ,

and

|Xt −Xs| ≤ |B
H
t −B

H
s |+ C3|t− s|(1 + ‖X‖∞)

for some constants Ci, i = 1, 2, 3.

By the classical Girsanov theorem the process

W̃t =Wt +

∫ t

0

urdr

is an Ft-Brownian motion under the probability P̃ . In terms of the process W̃t we can write

Xt = x+

∫ t

0

KH(t, s) dW̃s +

∫ t

0

b2(s,Xs) ds ,

Set

B̃H
s =

∫ t

0

KH(t, s)dW̃s .

Then X satisfies the following SDE,

Xt = x+ B̃H
t +

∫ t

0

b2(s,Xs)ds
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As a consequence, the processes X and X2 have the same distribution under the probability
P . In fact, if Ψ is a bounded measurable functional on C([0, T ]), we have

EP (Ψ(X)) =

∫

Ω

Ψ(ξ)
dP

dP̃
(ξ)dP̃

= EP̃

(
Ψ(X) exp

(∫ T

0

(
K−1H

∫ ·

0

b1(r,Xr)dr

)
(s)dWs

+
1

2

∫ T

0

(
K−1H

∫ ·

0

b1(r,Xr)dr

)2
(s)ds

))

= EP̃

(
Ψ(X)

(
exp

∫ T

0

(
K−1H

∫ ·

0

b1(r,Xr)dr

)
(s)dW̃s

−
1

2

∫ T

0

(
K−1H

∫ ·

0

b1(r,Xr)dr

)2
(s)ds

))

= EP

(
Ψ(X2)

(
exp

∫ T

0

(
K−1H

∫ ·

0

b1(r,X
2
r )dr

)
(s)dWs

))

−
1

2

∫ T

0

(
K−1H

∫ ·

0

b1(r,X
2
r )dr

)2
(s)ds

))

= EP (Ψ(X2)).

In conclusion we have proved the uniqueness in law, which is equivalent to pathwise uniqueness
(see [13] Theorem 5)

4.1 Remark. In the caseH < 1/2, a deep study is made between stochastic differential equation
with continuous coefficient and unit drift and anticipating ones (cf [4]).

Acknowledgement The work was partially carried out during a stay of Youssef Ouknine at
the IPRA (PAU, France) (Institut pluridisciplinaire de recherches appliquées). He would like
to thank the IPRA for hospitality and support.

References
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