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Abstract

We prove that the Markov operator corresponding to the two-variable, non-reversible
Gibbs sampler has spectrum which is entirely real and non-negative, thus providing
a first step towards the spectral analysis of MCMC algorithms in the non-reversible
case. We also provide an extension to Metropolis-Hastings components, and connect
the spectrum of an algorithm to the spectrum of its marginal chain.
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1 Introduction

This paper is inspired by the earlier paper [23], which discusses the importance of
real, non-negative spectra for MCMC algorithms, and proves this property for several
different reversible cases. In this paper, we extend that result to some common non-
reversible MCMC algorithms, as we shall explain.

Markov chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler [9, 8]
and the Metropolis-Hastings algorithm [16, 10, 26], are an extremely active area of
modern research, with applications to numerous areas (see e.g. [3] and the references
therein). Much of the mathematical analysis of these algorithms centers around their
convergence rate; i.e., how long they need to be run before they produce accurate
samples from the designated target probability distribution (cf. [20]). Some of this
analysis uses probabilistic techniques such as coupling and minorisation conditions
(e.g. [21, 4]). However, much of the analysis involves considering the spectrum of the
associated Markov operator (see Section 2.2). In such cases, the Markov operator is
nearly always assumed to be self-adjoint, corresponding to the Markov chain being
reversible (see e.g. [13, 24, 6, 5, 12]). The paradigm used is then roughly as follows:

1. Since the Markov operator is self-adjoint, its spectrum must be real (not complex),
and can often be shown (or forced) to be non-negative, cf. [23].

2. The corresponding spectral gap can then be bounded away from zero using various
techniques (Cheeger’s inequality, quadratic forms, etc.).

3. These spectral gap bounds then imply bounds on the operator’s norm, which in turn
lead to bounds on the Markov chain’s convergence rate.
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Spectral bounds for MCMC

However, if the Markov chain is not reversible, then much of this paradigm breaks
down (though the spectral radius formula is still of some relevance to step 3 above; see
Section 2.2 below), and the analysis becomes much more difficult (see e.g. [17]). Some
authors have attempted to get around this difficulty by replacing the non-reversible
Markov chain by its “reversibilisation” [7], or by some other chain which provably has the
same convergence properties [19]. However, there has been very little success at directly
investigating the spectral properties of non-reversible Markov chains themselves, despite
the fact that many commonly used MCMC algorithms (such as the systematic-scan Gibbs
sampler) are not reversible and thus not amenable to the above paradigm.

In this paper, we make a small start in this direction. We consider one of the simplest
common classes of non-reversible MCMC algorithms; namely, those which are a product
of two factors each of which is a reversible Markov chain. In particular, we consider the
two-variable systematic-scan Gibbs sampler, and prove step 1 of the above paradigm;
i.e., that a Markov operator corresponding to such a sampler must have spectrum
which is real and non-negative (Theorem 3.1). This implies (Corollary 3.2) that the
corresponding auto-covariances are also non-negative. We also consider a combination
of a Metropolis-Hastings component and a Gibbs Sampler component, and prove that
the corresponding spectrum must still be real in that case (Theorem 3.3). Finally, we
consider the relationship between the spectra of certain (non-reversible) systematic
scan chains, and their corresponding (reversible) marginal chains (Theorem 5.1). We
hope that these results will lead to further efforts to extend the above spectral analysis
paradigm to non-reversible Markov chains.

2 Background

We begin with some background needed for our results.

2.1 Markov Chain

A (time-homogeneous) Markov chain on a measurable space (X ,F) has a Markov
kernel P : X × F → [0, 1], where P (x,A) represents the probability that, if the chain
begins in the state x ∈ X , it will then “move” to a state in A ∈ F on the next iteration.
Formally, for each fixed x ∈ X , the mapping A 7→ P (x,A) is a probability measure on
(X ,F), and for each fixed A ∈ F , the mapping x 7→ P (x,A) is a measurable function on X .
A sequence of X -valued random variables X0, X1, X2, . . . is a Markov chain following the
transitions P if for any n ≥ 0 and all A ∈ F , Prob[Xn+1 ∈ A |X0, X1, . . . , Xn] = P (Xn, A).

In the case of MCMC algorithms, there is always a fixed probability measure π on
(X ,F) which is stationary for P , meaning that (πP )(A) :=

∫
x∈X π(dx)P (x,A) = π(A)

for all A ∈ F . Under mild conditions, if the Markov chain is run repeatedly, then it will
converge in distribution to π. Indeed, this is the main motivation for MCMC algorithms,
and indeed the speed of this convergence is of great importance (see e.g. [20]).

One condition which guarantees that π is stationary for P is that the Markov chain is
reversible with respect to π; i.e., that π(dx)P (x, dy) = π(dy)P (y, dx) for all x, y ∈ X .

2.2 Markov Operator

Such a Markov kernel P can also be viewed as a linear operator (see e.g. [22] for
basic facts about operators), which acts on functions f : X → C by

(Pf)(x) :=

∫
y∈X

f(y)P (x, dy) ,

so that (Pf)(x) is the conditional expected value of f when the Markov chain takes one
step starting at x.
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Spectral bounds for MCMC

The stationary probability measure π gives rise to an inner product 〈f, g〉 =
∫
x∈X f(x) g(x)π(dx)

and norm ‖f‖ =
√
〈f, f〉 on the Hilbert space

L2(π) := {f : X → C;

∫
x∈X
|f(x)|2 π(dx) <∞} .

Then P acts on L2(π), and indeed it is easily seen (e.g. [2]) that we always have ‖Pf‖ ≤
‖f‖; i.e., ‖P‖ ≤ 1; i.e., P is a (weak) contraction on L2(π). Similar comments also apply
to P acting on the subspace

L2
0(π) := {f : X → C; f ∈ L2(π),

∫
x∈X

f(x)π(dx) = 0} ,

which is more directly related to MCMC convergence (since it avoids the specific
eigenvalue 1 for constant functions, corresponding to the fact that πP = π since π is
a stationary distribution). The operator P is also related to the auto-covariance of the
chain, which is important in understanding the accuracy of MCMC samplers (see e.g.
[15]). Indeed, for f : X → R,

〈P kf, f〉 =

∫
x∈X

P kf(x) f(x)π(dx) =

∫
x∈X

∫
y∈X

f(y)P k(x, dy) f(x)π(dx)

= E[f(Xk) f(X0)] = Cov[f(Xk), f(X0)] ,

where the expected value E is taken with respect to a Markov chain {Xn} started in
stationary and following the transitions P .

It is easily seen that P is reversible if and only if the operator P is self-adjoint; i.e.,
〈Pf, g〉 = 〈f, Pg〉 for all f, g ∈ L2(π). An operator P is positive if it is self-adjoint and also
〈Pf, f〉 ≥ 0 for all f ∈ L2(π). Any positive operator has a unique positive square-root;
i.e., a positive operator S := P 1/2 with S2 = P .

The spectrum of the operator P is defined, as usual, by

σ(P ) := {λ ∈ C; (λI − P ) is not invertible} .

(Here I is the identity operator on L2(π), and “invertible” means having an inverse within
the class of all bounded (i.e., continuous) linear operators on L2(π).) The corresponding
spectral radius is r(P ) = sup{|z|; z ∈ σ(P )}. Since ‖P‖ ≤ 1, it follows that r(P ) ≤ 1.
In general, σ(P ) consists of complex numbers. However, for self-adjoint operators
(corresponding to reversible Markov chains), the spectrum is well-known to contain
only real numbers. And, for positive operators, the spectrum is also non-negative; i.e.,
contained in [0,∞).

It turns out (see e.g. [18]) that in the MCMC context, the spectral radius r(P ) for the
operator P on L2

0(π) is of great importance to convergence rates. In the reversible case,
this is because r(P )n then equals the operator norm ‖Pn‖, and hence provides direct
bounds on ‖Pnf‖ for f ∈ L2

0(π). For example, if f(x) = 1A(x) − π(A), then f ∈ L2
0(π),

and ‖f‖ ≤ 1, and (Pnf)(x) = Pn(x,A)−π(A), so
∫
x∈X |P

n(x,A)−π(A)|2 π(dx) ≤ ‖Pn‖ ≤
r(P )n. In the non-reversible case, that bound does not hold; however by the spectral
radius formula (e.g. [22], Theorem 10.13) we still have r(P ) = limn→∞ ‖Pn‖1/n, so the
bound still holds asymptotically in this sense.

2.3 Gibbs Sampler

Suppose now that (X ,F) = (X1,F1) × (X2,F2) × . . . × (Xd,Fd) is a d-fold product
measurable space, and that λi is some σ-finite reference measure on (Xi,Fi) for each i.
(The most common case is where each λi equals Lebesgue measure on Xi = R.) Suppose
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further that the stationary probability distribution π has a density φ with respect to λ;
i.e., π � λ with dπ

dλ = φ. Then the ith component Gibbs sampler is the Markov kernel Gi
which leaves all coordinates besides i unchanged, and replaces the ith coordinate by a
draw from the full conditional distribution of π conditional on all the other components.
That is, for x ∈ X and Ai ∈ Fi, if

Sx,i,Ai := {y ∈ X ; yj = xj for j 6= i, and yi ∈ Ai} ,

then

Gi(x, Sx,i,Ai
) =

∫
t∈Ai

φ(x1, . . . , xi−1, t, xi+1, . . . , xn)λi(dt)∫
t∈Xi

φ(x1, . . . , xi−1, t, xi+1, . . . , xn)λi(dt)
.

These single-component Gibbs samplers Gi are easily seen to be reversible Markov
chains corresponding to self-adjoint operators. In fact, they are projection operators, i.e.
(Gi)

2 = Gi, so their spectra consist entirely of the values 0 and 1, and in particular their
spectra are real and non-negative.

The single-component Gibbs samplers Gi are then combined together to form a
complete MCMC algorithm P . There are two main ways of doing this. The first is the
systematic-scan Gibbs sampler, defined by P = G1G2 . . . Gd, corresponding to cycling
through all of the different coordinates in order. The second is the random-scan Gibbs
sampler, defined by 1

d (G1 + G2 + . . . + Gd), corresponding to choosing a coordinate
uniformly at random and updating that coordinate only. Now, it is easily seen that the
random-scan Gibbs sampler is reversible, so that its spectrum can be analysed in various
ways (see e.g. [23]). However, the systematic-scan Gibbs sampler is more commonly
used in applications, and it is definitely not reversible. (For example, if d = 2 and the
support of π is an “L” shape, then with G1G2 it is possible to move from the lower-right
corner to the upper-left corner, but not to move the other way.)

In this paper, we focus on the two-variable systematic-scan Gibbs sampler; i.e.,
the case where d = 2 and P = G1G2 (equivalent to the data augmentation algorithm
introduced in [25]), which is arguably the simplest common non-reversible MCMC
algorithm.

2.4 Metropolis-Hastings Algorithm

Let d,Xi,Fi, λi, φ be as above. When some of the Gibbs sampler kernels Gi cannot
be feasibly implemented, practitioners sometimes instead use Metropolis-Hastings
components, defined as follows. Let Qi be an arbitrary Markov kernel on X which leaves
all coordinates besides the ith one unchanged; i.e., such that in the above notation
Qi(Sx,i,Xi

) = 1. Assume that Qi(x, ·) has a density qi,x(t) with respect to λi, in the sense
that

Qi(x, Sx,i,Ai
) =

∫
t∈Ai

qi,x(t)λi(dt) .

Then the ith component Metropolis-Hastings algorithm is the Markov kernel Mi corre-
sponding to “proposing” a new state y ∈ X according to Qi, and then accepting this
new state with probability αi(x; y) := min(1,

φ(y) qi,y(xi)
φ(x) qi,x(yi)

), otherwise with probability

1−αi(x, y) the new state is rejected so the Markov chain remains at the state x. In terms
of Markov operators, writing x[i, t] := (x1, . . . , xi−1, t, xi+1, . . . , xd), this corresponds to
setting

(Mif)(x) = r(x) f(x) +

∫
t∈Xi

qi,x(t)αi(x, x[i, t]) f(x[i, t])λi(dt) ,

where r(x) = 1−
∫
t∈Xi

qi,x(t)αi(x, x[i, t])λi(dt) is the overall probability of rejecting the
proposal.
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Now, the acceptance probabilities αi(x, y) have been chosen precisely (see e.g. [26,
20]) to ensure that each kernel Mi is reversible with respect to π, so π is stationary for
Mi. Hence, the operator Mi is self-adjoint, though it might not be a positive operator.

Remark. It is also possible to define a full-dimensional Metropolis-Hastings algorithm,
which acts on all components simultaneously. In the above notation, that corresponds
to the case d = 1; i.e., to letting X1 be the entire state space and setting P =M1. This
approach is quite common, though we do not pursue it here.

3 Main Results

In terms of the above background, our first main result is as follows.

Theorem 3.1. Consider a two-variable systematic-scan Gibbs sampler P = G1G2 as
above (or any other product P = G1G2 for any positive Markov operators G1 and G2).
Then the spectrum of P is real and non-negative, with σ(P ) ⊆ [0, 1].

As discussed in the Introduction, this theorem extends step 1 of the reversible Markov
chain paradigm to a non-reversible case.

Then, since 〈P kf, f〉 = Cov[f(Xk), f(X0)] for real-valued f as noted above, it follows
immediately that:

Corollary 3.2. Let {Xn} be a random sequence started in stationary and following the
transitions P = G1G2 of a two-variable systematic-scan Gibbs sampler as above. Then
for any real-valued f ∈ L2(π) and k ∈ N, Cov[f(Xk), f(X0)] ≥ 0.

We also consider the case of a combination of a Gibbs sampler component and a
Metropolis-Hastings component, as follows.

Theorem 3.3. Consider a two-variable systematic-scan combination of a Metropolis-
Hastings component and a Gibbs sampler component, of the form P = M1G2 or P =

G1M2, with Gi andMi as above (or any other positive Markov operator Gi and any other
reversible Markov operatorMi). Then the spectrum of P is real, with σ(P ) ⊆ [−1, 1].

4 Proofs of Main Results

Our proofs rely on the following known operator theory facts, following [11].

Proposition 4.1. (i) Let A and B be two self-adjoint operators on a Hilbert space H,
with B positive. Then the spectra of the product operators AB and BA are equal and
real; i.e., σ(AB) = σ(BA) ⊆ R.
(ii) If, in addition to the above, A is also positive, then the spectra of the product
operators are non-negative; i.e., σ(AB) = σ(BA) ⊆ [0,∞).

Proof. By Proposition 1 of [11], σ(AB) = σ(BA) = σ(SAS), where S = B1/2 is the
(unique) positive square root of the operator B (see Appendix for a discussion of the proof
from [11]). But SAS is self-adjoint by inspection. Hence, σ(AB) = σ(BA) = σ(SAS) ⊆ R,
proving (i). Furthermore, if A is also positive, then 〈SASf, f〉 = 〈ASf, Sf〉 ≥ 0 by the
positivity of A, so that σ(AB) = σ(SAS) ⊆ [0,∞), proving (ii). �

Proof of Theorem 3.1. Applying Proposition 4.1(ii) with A = G1 and B = G2 shows that
σ(P ) = σ(G1G2) ⊆ [0,∞). But we know that r(P ) ≤ 1, whence σ(P ) ⊆ [0, 1], as claimed.
�

Remark. Theorem 3.1 does not extend directly to Gibbs samplers with d > 2 coordinates.
Indeed, we have checked numerically that if X = {1, 2}3, with π(i, j, k) ∝ i+j+k, then the
corresponding three-variable systematic-scan Gibbs sampler has non-real eigenvalues
0.0002515 ± 0.0014018 i, among others. Indeed, it is well-known (see [1]) that even
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Proposition 4.1 does not extend to three operators. Daniel Rosenthal has pointed out a
simple example: if

A =

(
1 0

0 2

)
, B =

(
1 1

1 2

)
, and C =

(
2 i

−i 2

)
,

then A and B and C are each positive matrices, but the product ABC has complex
eigenvalues 1

2

(
10 + i±

√
75 + 20i

)
.

Proof of Theorem 3.3. Applying Proposition 4.1(i) with A =M1 and B = G2 shows that
σ(M1G2) ⊆ R, or with A =M2 and B = G1 shows that σ(G1M2) ⊆ R, so either way we
have σ(P ) ⊆ R. But we know that r(P ) ≤ 1, whence σ(P ) ⊆ [−1, 1], as claimed. �

5 The Marginal Chain

We now consider the connection between the spectrum of P , and the spectrum of the
marginal chain P̃ , defined as follows.

For the two-variable systematic-scan Gibbs sampler P = G1G2, the Markov chain
proceeds by first (via G1) “replacing” the first coordinate by a fresh value depending
only on the second coordinate. This means that P (x,A) does not depend on the first
coordinate of x; i.e., P ((y, x2), A) = P ((z, x2), A) for all y, z ∈ X1. Hence, also the function
Pf depends only on x2. That in turn implies the existence of a “marginal” Markov
chain which only keeps track of the second coordinate; i.e., which has state space
(X2,F2), and transition kernel P̃ defined by P̃ (x2, A2) = P (x, {(y1, y2) ∈ X ; y2 ∈ A2})
for x2 ∈ X2 and A2 ∈ F2. (Usually, a function of a Markov chain will not itself be a
Markov chain, but rather a hidden Markov model.) In this case, it turns out [15, 18, 12]
that P̃ is reversible with respect to the marginal distribution of π on X2, defined by
π̃(A2) = π{(x1, x2) ∈ X ;x2 ∈ A2}, and furthermore the convergence rate of P̃ to π̃

is identical to the convergence rate of P to π. So, that provides a different avenue
to studying convergence of two-variable Gibbs samplers, using the methodology of
reversible chains.

The above facts for the two-variable Gibbs sampler also extend ([14], Section 2.4)
to the case P = G1M2 of a combination of a Gibbs sampler component followed by a
Metropolis-Hastings component; i.e., it also has a marginal chain P̃ which is reversible
with respect to π̃ with the same convergence rate.

The identical convergence rates of the full and the marginal chain in these cases
suggest that there might be a connection between their spectra. Indeed, we have the
following.

Theorem 5.1. Let P = G1G2 or P = G1M2 as above, and let P̃ be the corresponding
(reversible) marginal chain as above. Then σ(P ) = σ(P̃ )∪{0}; i.e., P and P̃ have identical
(real) spectra except perhaps for λ = 0.

To prove Theorem 5.1, we require another operator theory result.

Proposition 5.2. Let A be an operator on a Hilbert space H. SupposeM is a proper
closed linear subspace of H which contains the range of A; i.e., such that Af ∈ M
whenever f ∈ H. Let B be the restriction of A to M; i.e., B = A

∣∣
M. Then σ(A) =

σ(B) ∪ {0}.

Proof. LetM⊥ = {f ∈ H; 〈f, g〉 = 0 ∀g ∈M} be the subspace of functions “perpendicular”
toM. Then the entire space H can be written as the direct sumM⊕M⊥. Hence any
operator D can be decomposed in block-matrix form as

D =

(
D11 D12

D21 D22

)
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meaning that D(f1 ⊕ f2) = (D11f1 + D12f2) ⊕ (D21f1 + D22f2). With respect to this
decomposition, we must have (sinceM contains the range of A) that

A =

(
B C

0 0

)
for some operator C :M⊥ →M. Then

λI −A =

(
λIM −B −C

0 λIM⊥

)
where IM and IM⊥ are the identity operators onM andM⊥ respectively.

Now, if λ 6= 0 and λ 6∈ σ(B), then it can be checked directly that

(λI −A)−1 =

(
(λIM −B)−1 X

0 λ−1IM⊥

)
,

where X = (λIM −B)−1C(λ−1IM⊥). So, λI −A is invertible, and hence λ 6∈ σ(A). This
shows that σ(A) ⊆ σ(B) ∪ {0}.

Also, since range(A) ⊆M, A is not surjective, and therefore 0 ∈ σ(A).
Finally, suppose λ 6∈ σ(A). Then (λI −A) has an inverse, of the form

(λI −A)−1 =

(
W X

Y Z

)
.

Then

I = (λI −A)(λI −A)−1 =

(
(λIM −B)W − CY (λIM −B)X − CZ

λY λZ

)
.

It follows that λY = 0, so Y = 0 (since λ 6∈ σ(A) so λ 6= 0). It then follows that
(λIM −B)W − CY = IM; i.e., that (λIM −B)W = IM. Also,

I = (λI −A)−1(λI −A) =

(
W (λIM −B) WC − λX
λY − Y B Y C − Z

)
,

from which it follows that W (λIM−B) = IM. Combining these two facts, (λIM−B)W =

W (λIM −B) = IM, so (λIM −B) is invertible (with inverse W ). Hence, λ 6∈ σ(B). This
shows that σ(B) ⊆ σ(A). The result follows. �

Proof of Theorem 5.1. Let J be the set of all functions which depend only on the second
coordinate; i.e., J = {f ∈ L2(π); f(x1, x2) = g(x2) ∀x1 ∈ X1 and x2 ∈ X2, for some g :

X2 → C}. Then as discussed above, due to the nature of P we must have Pf ∈ J for all
f ∈ L2(π). Hence, we can apply Proposition 5.2 with A = P andM = J , to obtain that
σ(P ) = σ(P

∣∣
J ) ∪ {0}.

But P
∣∣
J is essentially the same as P̃ : if f ∈ J , with f(x1, x2) = g(x2) for all x1

and x2, then (P̃ g)(x2) = (Pf)(x1, x2). More formally, let J̃ = L2(π̃) be the collection
of square-integrable functions on X2, and x∗ be any fixed element of X1, and define
S : J̃ → J by (Sf)(x2) = f(x∗, x2), with inverse S−1 : J → J̃ by (S−1g)(x1, x2) = g(x2).
Then P̃ = S−1P

∣∣
JS, so P̃ is similar to P

∣∣
J . In particular, σ(P̃ ) = σ(P

∣∣
J ). The result

follows. �

Remark. It is known that for the two-variable systematic-scan Gibbs sampler P = G1G2,
the marginal chain is positive and thus has positive spectrum [15]; and for the combined
chain P = G1M2, the marginal chain is reversible and thus has real spectrum [14]. Using
this, Theorem 5.1 in turn provides an alternative proof of Theorems 3.1 and 3.3 – though
it also strengthens them by providing a specific description (of sorts) of the spectra σ(P )
in those two cases.
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6 A Self-Contained Operator Theory Proof

Our Proposition 4.1 above, which is essential to the proofs of Theorems 3.1 and 3.3,
makes heavy use of Proposition 1 of [11]. The corresponding proof presented in [11] is
brief, but it relies on several other operator theory concepts and theorems, and hence is
not easily accessible to non-experts. For completeness, we provide here a self-contained
proof, following [11].

Proposition 6.1. ([11]) Let A and B be two self-adjoint operators on a Hilbert space
H, with B positive. Let S := B1/2 be the (unique) positive square root of B. Then
σ(AB) = σ(BA) = σ(SAS).

We prove this Proposition using a few simple lemmas. The first was proved by Nathan
Jacobson years ago; James Fulford has pointed out that there is a nice discussion of this
topic at [27].

Lemma 6.2. For any operators C and D on a Hilbert space H, the spectra σ(CD) and
σ(DC) differ by at most {0}; i.e., if λ ∈ C and λ 6= 0, then λ ∈ σ(CD) if and only if
λ ∈ σ(DC).

Proof. By replacing C by C/λ, it suffices to assume that λ = 1. Thus, it suffices to prove
that I −DC is invertible if and only if I − CD is invertible. But this follows from the
identity

(I −DC)−1 = I +D(I − CD)−1C ,

which can be verified by multiplying I +D(I − CD)−1C by I −DC (on either the left or
the right side) and getting the result I. �

Remark. The displayed identity in the proof of Lemma 6.2 is suggested intuitively (see
e.g. [27]) by substituting in the (unjustified) expansions

(I − CD)−1 =
1

1− CD
= 1 + CD + (CD)2 + (CD)3 + . . .

and

(I −DC)−1 =
1

1−DC
= 1 +DC + (DC)2 + (DC)3 + . . . .

Lemma 6.3. For any operators C and D on a Hilbert space H, if D is self-adjoint, and
CD is invertible, then C and D and DC are each invertible.

Proof. Since CD is invertible, it must be injective; i.e., if f 6= 0 then (CD)f 6= 0. Hence
also Df 6= 0. So, D is also injective.

Then, since CD is invertible, so is its adjoint (CD)∗. In particular, its adjoint must
be surjective; i.e., for each g ∈ H there is f ∈ H with (CD)∗f = g. But (CD)∗ = D∗C∗ =

DC∗ since D is self-adjoint. So, D(C∗f) = g. Hence, D is also surjective.
Thus, D is both injective and surjective, and hence invertible as a linear mapping

H → H. It then follows from the Open Mapping Theorem (see e.g. Corollary 2.12(b) on
page 49 of [22]) that its inverse is a continuous (i.e., bounded) linear operator; i.e., D is
invertible as a bounded linear operator on H. The remaining claims then follow from the
fact that the product of invertible operators is invertible. �

Corollary 6.4. ([11]) For any operators C andD on a Hilbert spaceH, ifD is self-adjoint,
then σ(CD) = σ(DC).

Proof. Lemma 6.2 above shows that σ(CD) and σ(DC) agree except possibly for the
value 0, and Lemma 6.3 shows that 0 ∈ σ(CD) if and only if 0 ∈ σ(DC). �
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Proof of Proposition 6.1. The first equality follows directly from Corollary 6.4. The
second equality also follows from Corollary 6.4, by noting that σ(AB) = σ(AS2) =

σ((AS)S) = σ(S(AS)) since S is also self-adjoint. �
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