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1 Introduction

The paper studies spectral measures of random (symmetric) Jacobi matrices of the
form

Jα =

N (0, 1) χ̃2α

χ̃2α N (0, 1) χ̃2α

. . .
. . .

. . .

 , (α > 0),

where the diagonal is an i.i.d. (independent identically distributed) sequence of standard
Gaussian N (0, 1) random variables, the off diagonal is another i.i.d. sequence of χ̃2α-
distributed random variables. Here χ̃2α = χ2α/

√
2 with χ2α denoting the chi distribution

with 2α degrees of freedom. As explained later, Jα is regarded as the limit of Gaussian
beta ensembles (GβE for short) as the matrix size N tends to infinity and the parameter
β also varies with the constraint that Nβ = 2α.

Let us explain some of the terminology and introduce the main results of the paper. A
(semi-infinite) Jacobi matrix is a symmetric tridiagonal matrix of the form

J =

a1 b1
b1 a2 b2

. . .
. . .

. . .

 , where ai ∈ R, bi > 0.

For a Jacobi matrix J , there is a probability measure µ on R such that∫
R

xkdµ = 〈Jke1, e1〉 = Jk(1, 1), k = 0, 1, . . . ,
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The mean spectral measures of random Jacobi matrices

where e1 = (1, 0, . . . )T ∈ `2. Here 〈u, v〉 denotes the inner product of u and v in `2, while
〈µ, f〉 :=

∫
fdµ will be used to denote the integral of a function f with respect to a

measure µ. Then the measure µ is unique if and only if J , as a symmetric operator
defined on D0 = {x = (x1, x2, . . . .) : xk = 0 for k sufficiently large}, is essentially self-
adjoint, that is, J has a unique self-adjoint extension in `2. When the measure µ is unique,
it is called the spectral measure of J , or more precisely, the spectral measure of (J, e1).
It is known that the condition

∞∑
i=1

1

bi
=∞

implies the essential self-adjointness of J , [8, Corollary 3.8.9].
For the random Jacobi matrix Jα, the above condition holds almost surely because its

off diagonal elements are positive i.i.d. random variables. Thus its spectral measures µα
are uniquely determined by the following relations

〈µα, xk〉 = Jkα(1, 1), k = 0, 1, . . . .

The mean spectral measure µ̄α is defined to be a probability measure satisfying

〈µ̄α, f〉 = E[〈µα, f〉],

for all bounded continuous functions f on R. It then follows that

〈µ̄α, xk〉 = E[〈µα, xk〉], k = 0, 1, . . . ,

provided that the right hand side of the above equation is finite for all k.
The purpose of this paper is to identify the mean spectral measure µ̄α. Our main

results are as follows.

Theorem 1.1 (Main result).

(i) The mean spectral measure µ̄α coincides with the spectral measure of the non-
random Jacobi matrix Aα, where

Aα =

 0
√
α+ 1√

α+ 1 0
√
α+ 2

. . .
. . .

. . .

 .

(ii) The measure µ̄α has the following density function

µ̄α(y) =
e−y

2/2

√
2π

1

|f̂α(y)|2
,

where

f̂α(y) =

√
2

π

∫ ∞
0

fα(t)eiytdt, fα(t) = π

√
α

Γ(α)
tα−1

e−
t2

2

√
2π
.

Let us sketch out main ideas for the proof of the above theorem. To show the first
statement, the key idea is to regard the Jacobi matrix Jα as the limit of GβE as the matrix
size N tends to infinity with Nβ = 2α. More specifically, let TN (β) be a finite random
Jacobi matrix whose components are (up to the symmetry constraints) independent and
are distributed as

TN (β) =


N (0, 1) χ̃(N−1)β
χ̃(N−1)β N (0, 1) χ̃(N−2)β

. . .
. . .

. . .

χ̃β N (0, 1)

 .
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The mean spectral measures of random Jacobi matrices

Then it is well known in random matrix theory that the eigenvalues of TN (β) are dis-
tributed as GβE, namely,

(λ1, . . . , λN ) ∝
N∏
l=1

e−λ
2
l /2

∏
1≤j<k≤N

|λk − λj |β .

Moreover, by letting N → ∞ with β = 2α/N , the matrices TN (β) converge, in some
sense, to Jα. That crucial observation together with a result on moments of GβE ([4,
Theorem 2.8]) makes it possible to show that µ̄α coincides with the spectral measure of
Aα.

The next step is to establish the following self-convolutive recurrence for even
moments of µ̄α,

un(α) = (2n− 1)un−1(α) + α

n−1∑
i=0

ui(α)un−1−i(α),

where un(α) is the 2nth moment of µ̄α. Note that its odd moments are all vanishing
because the spectral measure of Aα is symmetric. Finally, the explicit formula for µ̄α is
derived by using the method in [6].

The paper is organized as follows. In the next section, we mention some known
results on GβE needed in this paper. In Section 3, we introduce the matrix model and
step by step, prove the main theorem.

2 A result on Gaussian β-ensembles

The Jacobi matrix model for GβE, a finite random Jacobi matrix, was discovered by
Dumitriu and Edelman [3]. First of all, let us mention some preliminary facts about
finite Jacobi matrices. Assume that J is a (symmetric) finite Jacobi matrix of order N
(with the requirement that the off diagonal elements are all positive). Then the matrix J
has exactly N distinct eigenvalues λ1, λ2, . . . , λN . Let v1, v2, . . . , vN be the corresponding
eigenvectors which are chosen to be an orthonormal basis in RN . Then the spectral
measure µ, which is well defined by 〈µ, xk〉 = Jk(1, 1), k = 0, 1, . . . , can be expressed as

µ =

N∑
j=1

q2j δλj , qj = |vj(1)|,

where δλ denotes the Dirac measure. It is known that a finite Jacobi matrix of order N
is one-to-one correspondence with a probability measure supported on N points, or a
set of Jacobi matrix parameters {ai}Ni=1, {bj}

N−1
j=1 is one-to-one correspondence with the

spectral data {λi}Ni=1, {qj}Nj=1.
The Jacobi matrix model for GβE is defined as follows. Let {ai}Ni=1 be an i.i.d. sequence

of standard GaussianN (0, 1) random variables and {bj}N−1j=1 be a sequence of independent
random variables having χ̃ distributions with parameters (N − 1)β, (N − 2)β, . . . , β,
respectively, which is independent of {ai}Ni=1. Here χ̃k, for k > 0, denotes the distribution
with the following probability density function

2

Γ(k/2)
uk−1e−u

2

, u > 0,

which is nothing but χk/
√

2, or the square root of the gamma distribution with parameter
(k/2, 1). We form a random Jacobi matrix TN (β) from {ai}Ni=1 and {bj}N−1j=1 as follows,

TN (β) =


N (0, 1) χ̃(N−1)β
χ̃(N−1)β N (0, 1) χ̃(N−2)β

. . .
. . .

. . .

χ̃β N (0, 1)

 .
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The mean spectral measures of random Jacobi matrices

Then the eigenvalues {λi}Ni=1 and the weights {qj}Nj=1 are independent, with the distribu-
tion of the former given by

(λ1, λ2, . . . , λN ) ∝
N∏
l=1

e−λ
2
l /2

∏
1≤j<k≤N

|λk − λj |β ,

and the distribution of the latter given by

(q1, q2, . . . , qN ) ∝ 1

qN

N∏
i=1

qβ−1i , (qi > 0,

N∑
i=1

q2i = 1).

It is also known that q = (q1, . . . , qN ) is distributed as a vector (χ̃β , . . . , χ̃β) with i.i.d. com-
ponents, normalized to unit length.

The trace of TN (β)n and TN (β)n(1, 1) can be expressed in term of the spectral data as

Tr(TN (β)n) =

N∑
j=1

λnj , TN (β)n(1, 1) =

N∑
j=1

q2jλ
n
j .

Consequently,

E[TN (β)n(1, 1)] = E[

N∑
j=1

q2jλ
n
j ] =

N∑
j=1

E[q2j ]E[λnj ] =
1

N

N∑
j=1

E[λnj ]

=
1

N
E[Tr(XN (β)n)].

In the rest of this section, for convenience, we use the parameter β̂ = β/2. Let
mp(N, β̂) = E[TN (2β̂)2p(1, 1)]. It is clear that mp(N, β̂) is a polynomial of degree p in N ,
and thus mp(N, β̂) is defined for all N ∈ R. Then a result for the trace of TN (β)n can be
rewritten for mp(N, β̂) as follows.

Theorem 2.1 (cf. [4, Theorem 2.8] and [9, Theorem 2]). It holds that

mp(N, β̂) = (−1)pβ̂pmp(−β̂N, β̂−1).

Observe that τ−pmp(N, τ) is the expectation of the 2pth moment of the spectral
measure of the following Jacobi matrix

1√
τ
TN (2τ) =

1√
τ


N (0, 1) χ̃(N−1)2τ
χ̃(N−1)2τ N (0, 1) χ̃(N−2)2τ

. . .
. . .

. . .

χ̃2τ N (0, 1)

 .

As τ →∞, it holds that

N (0, 1)√
τ
→ 0,

χ̃k2τ√
τ

=

(
Γ(kτ, 1)

τ

)1/2

→
√
k (in Lq for any q ≥ 1).

The convergences also hold almost surely. Therefore as τ →∞,

1√
τ
TN (2τ)→


0

√
N − 1√

N − 1 0
√
N − 2

. . .
. . .

. . .

1 0

 =: HN .
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The mean spectral measures of random Jacobi matrices

Here the convergence of matrices means the convergence (in Lq) of their elements. Let
hp(N) = H2p

N (1, 1) for N > p. Then hp(N) is a polynomial of degree p in N so that hp(N)

is defined for all N ∈ R. The above convergence of matrices implies that for fixed p and
fixed N ,

hp(N) = lim
τ→∞

τ−pmp(N, τ). (2.1)

Let

Aα =

 0
√
α+ 1√

α+ 1 0
√
α+ 2

. . .
. . .

. . .

 ,

and let up(α) = A2p
α (1, 1). Then up(α) is also a polynomial of degree p in α. In addition, it

is easy to see that
up(α) = (−1)php(−α). (2.2)

As a direct consequence of Theorem 2.1 and relations (2.1) and (2.2), we get the following
result.

Proposition 2.2. As N →∞ with β̂ = β̂(N) = α/N ,

mp(N, β̂)→ up(α) = A2p
α (1, 1).

3 Random Jacobi matrices related to Gaussian β ensembles

3.1 A matrix model and proof of Theorem 1.1(i)

Recall that the random Jacobi matrix Jα,

Jα =

N (0, 1) χ̃2α

χ̃2α N (0, 1) χ̃2α

. . .
. . .

. . .

 ,

consists of two i.i.d. sequence of random variables, one for the diagonal and the other for
the off diagonal. Thus the spectral measure µα of Jα exists and is unique almost surely
because

∞∑
j=1

1

bj
=∞(almost surely).

Here {bj} denotes the off diagonal elements.
The mean spectral measure µ̄α is defined to be a probability measure satisfying

〈µ̄α, f〉 = E[〈µα, f〉],

for all bounded continuous functions f onR. Then Theorem 1.1(i) states that the measure
µ̄α coincides with the spectral measure of (Aα, e1).

Proof of Theorem 1.1(i). Note that the spectral measure of Aα, a probability measure µ
satisfying

〈µ, xk〉 = Akα(1, 1), k = 0, 1, . . . ,

is unique because
∞∑
j=1

1√
α+ j

=∞.

Also, it is clear that
〈µ̄α, xk〉 = E[〈µα, xk〉], k = 0, 1, . . . ,
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The mean spectral measures of random Jacobi matrices

because E[〈µα, |x|k〉] <∞ for all k = 0, 1, . . . . Therefore, our task is now to show that for
all k = 0, 1, . . . ,

〈µ̄α, xk〉 = Akα(1, 1). (3.1)

We consider the case of even k first. For any fixed j, all moments of the χ̃(N−j)2β̂

distribution converge to those of the χ̃2α distribution as N →∞ with β̂ = α/N . Thus for
fixed p, as N →∞ with β̂ = α/N ,

mp(N, β̂) = E[TN (2β̂)2p(1, 1)]→ E[J2p
α (1, 1)] = E[〈µα, x2p〉].

Consequently, for even k, namely, k = 2p,

〈µ̄α, xk〉 = Akα(1, 1),

by taking into account Proposition 2.2.
For odd k, both sides of the equation (3.1) are zeros. Indeed, Akα(1, 1) = 0 when k is

odd because the diagonal of Aα is zero. Also all odd moments of µ̄α are vanishing,

〈µ̄α, x2p+1〉 = E[〈µα, x2p+1〉] = 0,

because the expectation of odd moments of any diagonal element of Jα are zero. The
proof is completed.

3.2 Moments of the spectral measure of Aα

Recall that
un(α) = A2n

α (1, 1), n = 0, 1, . . . .

Proposition 3.1.

(i) un(α) is a polynomial of degree n in α and satisfies the following relations{
un(α) = (α+ 1)

∑n−1
i=0 ui(α+ 1)un−1−i(α), n ≥ 1,

u0(α) = 1.
(3.2)

(ii) {un(α)}∞n=0 also satisfies the following relations{
un(α) = (2n− 1)un−1(α) + α

∑n−1
i=0 ui(α)un−1−i(α), n ≥ 1,

u0(α) = 1.
(3.3)

Remark 3.2. The sequences {un(α)}n≥0, for α = 1 and α = 2, are the sequences
A000698 and A167872 in the On-line Encyclopedia of Integer Sequences [7], respectively.
Relations (3.2) and (3.3) as well as many interesting properties for those sequences can
be found in the above reference. In the proof below, we give another explanation of
un(α) as the total sum of weighted Dyck paths of length 2n.

Proof. In this proof, for convenience, let the index of the matrix Aα start from 0. Since
the diagonal of Aα is zero, it follows that

A2n
α (0, 0) =

∑
{i0,i1,...,i2n}∈D2n

2n−1∏
j=0

Aα(ij , ij+1),

where D2n denotes the set of indices {i0, i1, . . . , i2n} satisfying that

i0 = 0, i2n = 0, ij ≥ 0,

|ij+1 − ij | = 1, j = 0, 1, . . . , 2n− 1.

ECP 20 (2015), paper 68.
Page 6/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4252
http://ecp.ejpecp.org/


The mean spectral measures of random Jacobi matrices

Each element in D2n corresponds to a path of length 2n consisting of rise steps or rises
and fall steps or falls which starts at (0, 0) and ends at (2n, 0), and stays above the x-axis,
called a Dyck path. We also use D2n to denote the set of all Dyck paths of length 2n.

A Dyck path p is assigned a weight w(p) as follows. We assign a weight (α + k + 1)

for each rise step from level k to k + 1, and the weight w(p) is the product of all those
weights. Then

un(α) = A2n
α (0, 0) =

∑
p∈D2n

w(p).

α+1

α+2

α+3

α+4

2 4 6 8 10 12 14

1

2

3

4

Figure 1: A Dyck path p with weight w(p) = (α+ 1)2(α+ 2)3(α+ 3)(α+ 4).

Let D∗2n be the set of all Dyck paths of length 2n which do not meet the x-axis except
the starting and the ending points. Let

vn(α) =
∑
p∈D∗

2n

w(p).

Since each Dyck path p = (i0, i1, . . . , i2n−1, i2n) ∈ D∗2n is one-to-one correspondence with
a Dyck path q = (i1 − 1, i2 − 1, . . . , i2n−1 − 1) of length 2(n− 1), it follows that

vn(α) = (α+ 1)un−1(α+ 1).

Moreover, let 2i be the first time that the Dyck path p meets the x-axis. Then either i = n

or the Dyck path p is the concatenation of a Dyck path in D∗2i, (1 ≤ i < n), and another
Dyck path of length 2(n− i). Thus,

un(α) = vn(α) +

n−1∑
i=1

vi(α)un−i(α)

= (α+ 1)un−1(α+ 1) +

n−1∑
i=1

(α+ 1)ui−1(α+ 1)un−i(α)

= (α+ 1)

n−1∑
i=0

ui(α+ 1)un−1−i(α).

The proof of (i) is complete. We will prove the second statement after the next lemma.

Lemma 3.3. Let α ≥ 0 be fixed. Let {an} be a sequence defined recursively by{
an = (2n− 1)an−1 + α

∑n−1
i=0 aian−1−i, n ≥ 1,

a0 = 1.
(3.4)

Let {bn} be a sequence defined by the following relations b0 = 1,

an = (α+ 1)

n−1∑
i=0

bian−1−i, n ≥ 1. (3.5)
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Then {bn} satisfies an analogous recursive relation as {an},{
bn = (2n− 1)bn−1 + (α+ 1)

∑n−1
i=0 bibn−1−i, n ≥ 1,

b0 = 1.
(3.6)

Proof. Consider the field of formal Laurent series over R, denoted by R((X)),

R((X)) =

{
f(X) =

∑
n∈Z

cnX
n : cn ∈ R, cn = 0 for n < n0

}
.

The addition is defined as usual and the multiplication is well defined as

f(X)g(X) =
∑
n∈Z

(∑
i∈Z

cidn−i

)
Xn,

for f(X) =
∑
cnX

n, g(X) =
∑
dnX

n ∈ R((X)). The quotient f(X)/g(X) is understood
as f(X)g(X)−1 for g(X) 6= 0. The formal derivative is also defined as

f ′(X) =
∑
n∈Z

cnnX
n−1 ∈ R((X)).

Now let

f(X) =

∞∑
n=0

anX
n, g(X) =

∞∑
n=0

bnX
n.

It is straightforward to show that the recursive relation (3.4) is equivalent to the following
equation

f(X)− 1 = 2X2f ′(X) +Xf(X) + αXf2(X).

In addition, the relation (3.5) leads to

g(X) =
f(X)− 1

(α+ 1)Xf(X)
.

Finally, we can easily check that g(X) satisfies

g(X)− 1 = 2X2g′(X) +Xg(X) + (α+ 1)Xg2(X),

which is equivalent to the recursive relation (3.6). The proof is complete.

Proof of Proposition 3.1(ii). When α = 0, it is well known that un(0) is the 2nth moment
of the standard Gaussian distribution, and is given by

un(0) = (2n− 1)!!.

Consequently, the conditions in Lemma 3.3 are satisfied for an = un(0), bn = un(1) and
α = 0. It follows that the recursive relation (3.3) then holds for α = 1. Continue this way,
it follows that the recursive relation (3.3) holds for any α ∈ N. We conclude that it holds
for all α because of the fact that {un(α)} is a polynomial of degree n in α. The proof is
complete.
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3.3 Explicit formula for the spectral measure of Aα, proof of Theorem 1.1(ii)

In this section, by using the method of Martin and Kearney [6], we derive the explicit
formula for the mean spectral measure µ̄α from the relation (3.3),{

un(α) = (2n− 1)un−1(α) + α
∑n−1
i=0 ui(α)un−1−i(α), n ≥ 1,

u0(α) = 1.

Recall that un(α) = 〈µ̄α, x2n〉 and µ̄α is a symmetric probability measure.
Let us extract here the main result of [6]. The problem is to find a function ν for

which ∫ ∞
0

xn−1ν(x)dx = un, n = 1, 2, . . . ,

where the sequence {un} is given by a general self-convolutive recurrence{
un = (α1n+ α2)un−1 + α3

∑n−1
i=1 uiun−i, n ≥ 2,

u1 = 1,
(3.7)

α1, α2 and α3 being constants. Then the solution is given by (Eq. (13)–Eq. (16) in [6]),

ν(x) =
k(kx)−be−kx

Γ(a+ 1)Γ(a− b+ 1)

1

UR(kx)2 + UI(kx)2
,

where,

UR(x) = e−x
(

Γ(1− b)
Γ(a− b+ 1)

1F1(b− a; b;x)

− (cosπb)
Γ(b− 1)

Γ(a)
x1−b1F1(1− a; 2− b;x)

)
,

UI(x) = (sinπb)e−x
Γ(b− 1)

Γ(a)
x1−b1F1(1− a; 2− b;x),

and k = 1/α1, a = α3/α1, b = −1 − α2/α1, provided α1 6= 0. Here 1F1(a; b; z) is the
Kummer function.

The sequence {un(α)}n≥0 is a particular case of the self-convolutive recurrence (3.7)
with parameters α1 = 2, α2 = −3 and α3 = α. Note that our sequence {un(α)} starts
from n = 0, and thus α2 = −3. By direct calculation, we get k = 1/2, a = α/2, and b = 1/2.
Therefore, the function να(x) for which un(α) =

∫∞
0
xndνα(x)dx, n = 0, 1, . . . , is given by

να(x) =
1√

2Γ(α2 + 1)Γ(α2 + 1
2 )

1√
x
e−

x
2

1

UR(x/2)2 + UI(x/2)2
, x > 0,

where

UR(x) = e−x
Γ( 1

2 )

Γ(α2 + 1
2 )

1F1(
1

2
− α

2
;

1

2
;x), (3.8)

UI(x) = e−x
Γ(− 1

2 )

Γ(α2 )
x1/21F1(1− α

2
;

3

2
;x). (3.9)

It is clear that να(x) > 0 for any x > 0. Now it is easy to check that the function µ̄α(y)

defined by
µ̄α(y) = |y|να(y2), y ∈ R,

satisfies the following relations∫
R

y2n+1µ̄α(y)dy = 0,

∫
R

y2nµ̄α(y)dy = un(α), n = 0, 1, . . . ,
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In other words, µ̄α(y) is the density of the mean spectral measure µ̄α with respect to the
Lebesgue measure.

We are now in a position to simplify the explicit formula of µ̄α. Let

VR(y) =

(
Γ(α2 + 1)Γ(α2 + 1

2 )

Γ( 1
2 )

)1/2

UR(y2/2),

= 2−
α
2 Γ(α+ 1)

1
2

Γ( 1
2 )

Γ(α2 + 1
2 )
e−

y2

2 1F1(
1

2
− α

2
;

1

2
;
y2

2
),

VI(y) = −
(

Γ(α2 + 1)Γ(α2 + 1
2 )

Γ( 1
2 )

)1/2

UI(y
2/2)

= −2−
α
2−

1
2 Γ(α+ 1)

1
2

Γ(− 1
2 )

Γ(α2 )
ye−

y2

2 1F1(1− α

2
;

3

2
;
y2

2
).

Here, in the above expressions, we have used the following relation for the gamma
function

Γ(α2 + 1
2 )Γ(α2 + 1)

Γ( 1
2 )

= 2−αΓ(α+ 1). (3.10)

Then µ̄α(y) can be written as

µ̄α(y) =
e−

y2

2

√
2π

1

VR(y)2 + VI(y)2
.

Next, we will show that VR(y) and VI(y) are the Fourier cosine transform and Fourier
sine transform of

fα(t) = π

√
α

Γ(α)
tα−1

e−
t2

2

√
2π
,

respectively. Let us now give definitions of Fourier transforms. The Fourier transform of
a function f : R→ C is defined to be

F(f)(y) =
1√
2π

∫ ∞
−∞

f(t)eiytdt, (y ∈ R),

and the Fourier cosine transform, the Fourier sine transform are defined to be

Fc(f)(y) =

√
2

π

∫ ∞
0

f(t) cos(yt)dt, (y > 0),

Fs(f)(y) =

√
2

π

∫ ∞
0

f(t) sin(yt)dt, (y > 0),

respectively. Then those transforms are related as follows{
F(f)(y) = Fc(f)(y), (y ≥ 0), if f(t) is even,

F(f)(y) = iFs(f)(y), (y ≥ 0), if f(t) is odd.

For α > 0, we have (cf. Formula 3.952(8) in [5])

Fc(tα−1e−
t2

2 ) =
2
α
2−

1
2 Γ(α2 )
√
π

e−
y2

2 1F1(
1

2
− α

2
;

1

2
;
y2

2
).

Then by some simple calculations, we arrive at the following relation

VR(y) = Fc(fα(t))(y), y ≥ 0.
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Similarly,
VI(y) = Fs(fα(t))(y), y ≥ 0,

by using Formula 3.952(7) in [5],

Fs(tα−1e−
t2

2 ) =
2
α
2 Γ(α2 + 1

2 )
√
π

ye−
y2

2 1F1(1− α

2
;

3

2
;
y2

2
).

By definitions, VR(y) is an even function and VI(y) is an odd function. Thus the
following expression holds for all y ∈ R,

VR(y) + iVI(y) =

√
2

π

∫ ∞
0

fα(t)(cos(yt) + i sin(yt)dt

=

√
2

π

∫ ∞
0

fα(t)eiytdt =: f̂α(y).

Consequently,
VR(y)2 + VI(y)2 = |f̂α(y)|2,

which completes the proof of Theorem 1.1(ii).

Remark 3.4. The measure µ̄α was discussed as the probability measure of associated
Hermite polynomials [2]. It was also investigated in [1] in connection with Gaussian
beta ensembles by deriving a partial differential equation for its Stieljes transform.
The authors would like to thank Professor Fumihiko Nakano for letting us know these
references.

We plot the graph of the density µ̄α(y) for several values α as in the following figure
by using Mathematica. It follows from the Jacobi matrix form that the spectral measure
of 1√

α
Aα converges weakly to the semicircle law as α tends to infinity. Note that the

semicircle law, the probability measure supported on [−2, 2] with the density

1

2π

√
4− x2, (−2 ≤ x ≤ 2),

is the spectral measure of the following Jacobi matrix
0 1

1 0 1

1 0 1
. . .

. . .
. . .

 .

Remark 3.5. When α in a positive integer number, we can give even more explicit
expressions for VR(y) and VI(y).

(i) α = 2n, n ∈ N. In this case, fα(t) is an odd function. Therefore

VI(y) = Fs(fα(t)) = −iF(fα(t)).

Note that

F(e−
t2

2 ) = e−
y2

2 .

Therefore, for integer α ≥ 1,

F(tα−1e−
t2

2 ) = (i)α−1
dα−1

dyα−1
(e−

y2

2 ).
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Figure 2: The density µ̄α(y) for several values α.

Consequently,

VI(y) = −iαπ
√

α

Γ(α)

dα−1

dyα−1
(e−

y2

2 )
1√
2π

= −iαπ
√

α

Γ(α)
e
y2

2
dα−1

dyα−1
(e−

y2

2 )
e−

y2

2

√
2π

= −iαπ
√

α

Γ(α)
Heα−1

e−
y2

2

√
2π

.

Here Hem denotes probabilists’ Hermite polynomials.

(ii) α = 2n+ 1. This case is very similar. Since fα(t) is an even function, it follows that

VR(y) = Fc(fα(t))(y) = F(fα(t)) = iα−1π

√
α

Γ(α)
Heα−1

e−
y2

2

√
2π

.
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[8] Barry Simon, Szegő’s theorem and its descendants, M. B. Porter Lectures, Princeton University
Press, Princeton, NJ, 2011, Spectral theory for L2 perturbations of orthogonal polynomials.
MR-2743058

[9] N. S. Witte and P. J. Forrester, Moments of the Gaussian β ensembles and the large-N expansion
of the densities, J. Math. Phys. 55 (2014), no. 8, 083302, 34. MR-3390734

Acknowledgments. The authors would like to thank the referee(s) for valuable com-
ments.

ECP 20 (2015), paper 68.
Page 13/13

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2743058
http://www.ams.org/mathscinet-getitem?mr=3390734
http://dx.doi.org/10.1214/ECP.v20-4252
http://ecp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

	Introduction
	A result on Gaussian -ensembles
	Random Jacobi matrices related to Gaussian  ensembles
	A matrix model and proof of Theorem 1.1(i)
	Moments of the spectral measure of A
	Explicit formula for the spectral measure of A, proof of Theorem 1.1(ii)

	References

