The mean spectral measures of random Jacobi matrices related to Gaussian beta ensembles*

Trinh Khanh Duy ${ }^{\dagger} \quad$ Tomoyuki Shirai ${ }^{\dagger}$

Abstract

An explicit formula for the mean spectral measure of a random Jacobi matrix is derived. The matrix can be regarded as the limit of Gaussian beta ensemble ($\mathrm{G} \beta \mathrm{E}$) matrices as the matrix size N tends to infinity with the constraint that $N \beta$ is a constant.

Keywords: random Jacobi matrix ; Gaussian beta ensemble ; spectral measure ; self-convolutive recurrence.
AMS MSC 2010: Primary 47B80, Secondary 15A52; 44A60; 47B36.
Submitted to ECP on April 22, 2015, final version accepted on September 21, 2015.
Supersedes arXiv: 1504.06904v1.

1 Introduction

The paper studies spectral measures of random (symmetric) Jacobi matrices of the form

$$
J_{\alpha}=\left(\begin{array}{cccc}
\mathcal{N}(0,1) & \tilde{\chi}_{2 \alpha} & & \\
\tilde{\chi}_{2 \alpha} & \mathcal{N}(0,1) & \tilde{\chi}_{2 \alpha} & \\
& \ddots & \ddots & \ddots
\end{array}\right), \quad(\alpha>0)
$$

where the diagonal is an i.i.d. (independent identically distributed) sequence of standard Gaussian $\mathcal{N}(0,1)$ random variables, the off diagonal is another i.i.d. sequence of $\tilde{\chi}_{2 \alpha^{-}}$ distributed random variables. Here $\tilde{\chi}_{2 \alpha}=\chi_{2 \alpha} / \sqrt{2}$ with $\chi_{2 \alpha}$ denoting the chi distribution with 2α degrees of freedom. As explained later, J_{α} is regarded as the limit of Gaussian beta ensembles ($\mathrm{G} \beta \mathrm{E}$ for short) as the matrix size N tends to infinity and the parameter β also varies with the constraint that $N \beta=2 \alpha$.

Let us explain some of the terminology and introduce the main results of the paper. A (semi-infinite) Jacobi matrix is a symmetric tridiagonal matrix of the form

$$
J=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
b_{1} & a_{2} & b_{2} & \\
& \ddots & \ddots & \ddots
\end{array}\right), \text { where } a_{i} \in \mathbb{R}, b_{i}>0
$$

For a Jacobi matrix J, there is a probability measure μ on \mathbb{R} such that

$$
\int_{\mathbb{R}} x^{k} d \mu=\left\langle J^{k} e_{1}, e_{1}\right\rangle=J^{k}(1,1), \quad k=0,1, \ldots
$$

[^0]where $e_{1}=(1,0, \ldots)^{T} \in \ell^{2}$. Here $\langle u, v\rangle$ denotes the inner product of u and v in ℓ^{2}, while $\langle\mu, f\rangle:=\int f d \mu$ will be used to denote the integral of a function f with respect to a measure μ. Then the measure μ is unique if and only if J, as a symmetric operator defined on $D_{0}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{k}=0\right.$ for k sufficiently large $\}$, is essentially selfadjoint, that is, J has a unique self-adjoint extension in ℓ^{2}. When the measure μ is unique, it is called the spectral measure of J, or more precisely, the spectral measure of $\left(J, e_{1}\right)$. It is known that the condition
$$
\sum_{i=1}^{\infty} \frac{1}{b_{i}}=\infty
$$
implies the essential self-adjointness of J, [8, Corollary 3.8.9].
For the random Jacobi matrix J_{α}, the above condition holds almost surely because its off diagonal elements are positive i.i.d. random variables. Thus its spectral measures μ_{α} are uniquely determined by the following relations
$$
\left\langle\mu_{\alpha}, x^{k}\right\rangle=J_{\alpha}^{k}(1,1), \quad k=0,1, \ldots
$$

The mean spectral measure $\bar{\mu}_{\alpha}$ is defined to be a probability measure satisfying

$$
\left\langle\bar{\mu}_{\alpha}, f\right\rangle=\mathbb{E}\left[\left\langle\mu_{\alpha}, f\right\rangle\right],
$$

for all bounded continuous functions f on \mathbb{R}. It then follows that

$$
\left\langle\bar{\mu}_{\alpha}, x^{k}\right\rangle=\mathbb{E}\left[\left\langle\mu_{\alpha}, x^{k}\right\rangle\right], \quad k=0,1, \ldots
$$

provided that the right hand side of the above equation is finite for all k.
The purpose of this paper is to identify the mean spectral measure $\bar{\mu}_{\alpha}$. Our main results are as follows.

Theorem 1.1 (Main result).

(i) The mean spectral measure $\bar{\mu}_{\alpha}$ coincides with the spectral measure of the nonrandom Jacobi matrix A_{α}, where

$$
A_{\alpha}=\left(\begin{array}{cccc}
0 & \sqrt{\alpha+1} & & \\
\sqrt{\alpha+1} & 0 & \sqrt{\alpha+2} & \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

(ii) The measure $\bar{\mu}_{\alpha}$ has the following density function

$$
\bar{\mu}_{\alpha}(y)=\frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} \frac{1}{\left|\hat{f}_{\alpha}(y)\right|^{2}}
$$

where

$$
\hat{f}_{\alpha}(y)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f_{\alpha}(t) e^{i y t} d t, \quad f_{\alpha}(t)=\pi \sqrt{\frac{\alpha}{\Gamma(\alpha)}} t^{\alpha-1} \frac{e^{-\frac{t^{2}}{2}}}{\sqrt{2 \pi}}
$$

Let us sketch out main ideas for the proof of the above theorem. To show the first statement, the key idea is to regard the Jacobi matrix J_{α} as the limit of $\mathrm{G} \beta \mathrm{E}$ as the matrix size N tends to infinity with $N \beta=2 \alpha$. More specifically, let $T_{N}(\beta)$ be a finite random Jacobi matrix whose components are (up to the symmetry constraints) independent and are distributed as

$$
T_{N}(\beta)=\left(\begin{array}{cccc}
\mathcal{N}(0,1) & \tilde{\chi}_{(N-1) \beta} & & \\
\tilde{\chi}_{(N-1) \beta} & \mathcal{N}(0,1) & \tilde{\chi}_{(N-2) \beta} & \\
& \ddots & \ddots & \ddots \\
& & \tilde{\chi}_{\beta} & \mathcal{N}(0,1)
\end{array}\right)
$$

Then it is well known in random matrix theory that the eigenvalues of $T_{N}(\beta)$ are distributed as $\mathrm{G} \beta \mathrm{E}$, namely,

$$
\left(\lambda_{1}, \ldots, \lambda_{N}\right) \propto \prod_{l=1}^{N} e^{-\lambda_{l}^{2} / 2} \prod_{1 \leq j<k \leq N}\left|\lambda_{k}-\lambda_{j}\right|^{\beta}
$$

Moreover, by letting $N \rightarrow \infty$ with $\beta=2 \alpha / N$, the matrices $T_{N}(\beta)$ converge, in some sense, to J_{α}. That crucial observation together with a result on moments of G β E ([4, Theorem 2.8]) makes it possible to show that $\bar{\mu}_{\alpha}$ coincides with the spectral measure of A_{α}.

The next step is to establish the following self-convolutive recurrence for even moments of $\bar{\mu}_{\alpha}$,

$$
u_{n}(\alpha)=(2 n-1) u_{n-1}(\alpha)+\alpha \sum_{i=0}^{n-1} u_{i}(\alpha) u_{n-1-i}(\alpha)
$$

where $u_{n}(\alpha)$ is the $2 n$th moment of $\bar{\mu}_{\alpha}$. Note that its odd moments are all vanishing because the spectral measure of A_{α} is symmetric. Finally, the explicit formula for $\bar{\mu}_{\alpha}$ is derived by using the method in [6].

The paper is organized as follows. In the next section, we mention some known results on $\mathrm{G} \beta \mathrm{E}$ needed in this paper. In Section 3, we introduce the matrix model and step by step, prove the main theorem.

2 A result on Gaussian β-ensembles

The Jacobi matrix model for $\mathrm{G} \beta \mathrm{E}$, a finite random Jacobi matrix, was discovered by Dumitriu and Edelman [3]. First of all, let us mention some preliminary facts about finite Jacobi matrices. Assume that J is a (symmetric) finite Jacobi matrix of order N (with the requirement that the off diagonal elements are all positive). Then the matrix J has exactly N distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$. Let $v_{1}, v_{2}, \ldots, v_{N}$ be the corresponding eigenvectors which are chosen to be an orthonormal basis in \mathbb{R}^{N}. Then the spectral measure μ, which is well defined by $\left\langle\mu, x^{k}\right\rangle=J^{k}(1,1), k=0,1, \ldots$, can be expressed as

$$
\mu=\sum_{j=1}^{N} q_{j}^{2} \delta_{\lambda_{j}}, \quad q_{j}=\left|v_{j}(1)\right|
$$

where δ_{λ} denotes the Dirac measure. It is known that a finite Jacobi matrix of order N is one-to-one correspondence with a probability measure supported on N points, or a set of Jacobi matrix parameters $\left\{a_{i}\right\}_{i=1}^{N},\left\{b_{j}\right\}_{j=1}^{N-1}$ is one-to-one correspondence with the spectral data $\left\{\lambda_{i}\right\}_{i=1}^{N},\left\{q_{j}\right\}_{j=1}^{N}$.

The Jacobi matrix model for $\mathrm{G} \beta \mathrm{E}$ is defined as follows. Let $\left\{a_{i}\right\}_{i=1}^{N}$ be an i.i.d. sequence of standard Gaussian $\mathcal{N}(0,1)$ random variables and $\left\{b_{j}\right\}_{j=1}^{N-1}$ be a sequence of independent random variables having $\tilde{\chi}$ distributions with parameters $(N-1) \beta,(N-2) \beta, \ldots, \beta$, respectively, which is independent of $\left\{a_{i}\right\}_{i=1}^{N}$. Here $\tilde{\chi}_{k}$, for $k>0$, denotes the distribution with the following probability density function

$$
\frac{2}{\Gamma(k / 2)} u^{k-1} e^{-u^{2}}, u>0,
$$

which is nothing but $\chi_{k} / \sqrt{2}$, or the square root of the gamma distribution with parameter $(k / 2,1)$. We form a random Jacobi matrix $T_{N}(\beta)$ from $\left\{a_{i}\right\}_{i=1}^{N}$ and $\left\{b_{j}\right\}_{j=1}^{N-1}$ as follows,

$$
T_{N}(\beta)=\left(\begin{array}{cccc}
\mathcal{N}(0,1) & \tilde{\chi}_{(N-1) \beta} & & \\
\tilde{\chi}_{(N-1) \beta} & \mathcal{N}(0,1) & \tilde{\chi}_{(N-2) \beta} & \\
& \ddots & \ddots & \ddots \\
& & \tilde{\chi}_{\beta} & \mathcal{N}(0,1)
\end{array}\right)
$$

Then the eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{N}$ and the weights $\left\{q_{j}\right\}_{j=1}^{N}$ are independent, with the distribution of the former given by

$$
\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \propto \prod_{l=1}^{N} e^{-\lambda_{l}^{2} / 2} \prod_{1 \leq j<k \leq N}\left|\lambda_{k}-\lambda_{j}\right|^{\beta}
$$

and the distribution of the latter given by

$$
\left(q_{1}, q_{2}, \ldots, q_{N}\right) \propto \frac{1}{q_{N}} \prod_{i=1}^{N} q_{i}^{\beta-1}, \quad\left(q_{i}>0, \sum_{i=1}^{N} q_{i}^{2}=1\right)
$$

It is also known that $q=\left(q_{1}, \ldots, q_{N}\right)$ is distributed as a vector ($\left.\tilde{\chi}_{\beta}, \ldots, \tilde{\chi}_{\beta}\right)$ with i.i.d. components, normalized to unit length.

The trace of $T_{N}(\beta)^{n}$ and $T_{N}(\beta)^{n}(1,1)$ can be expressed in term of the spectral data as

$$
\operatorname{Tr}\left(T_{N}(\beta)^{n}\right)=\sum_{j=1}^{N} \lambda_{j}^{n}, \quad T_{N}(\beta)^{n}(1,1)=\sum_{j=1}^{N} q_{j}^{2} \lambda_{j}^{n} .
$$

Consequently,

$$
\begin{aligned}
\mathbb{E}\left[T_{N}(\beta)^{n}(1,1)\right] & =\mathbb{E}\left[\sum_{j=1}^{N} q_{j}^{2} \lambda_{j}^{n}\right]=\sum_{j=1}^{N} \mathbb{E}\left[q_{j}^{2}\right] \mathbb{E}\left[\lambda_{j}^{n}\right]=\frac{1}{N} \sum_{j=1}^{N} \mathbb{E}\left[\lambda_{j}^{n}\right] \\
& =\frac{1}{N} \mathbb{E}\left[\operatorname{Tr}\left(X_{N}(\beta)^{n}\right)\right] .
\end{aligned}
$$

In the rest of this section, for convenience, we use the parameter $\hat{\beta}=\beta / 2$. Let $m_{p}(N, \hat{\beta})=\mathbb{E}\left[T_{N}(2 \hat{\beta})^{2 p}(1,1)\right]$. It is clear that $m_{p}(N, \hat{\beta})$ is a polynomial of degree p in N, and thus $m_{p}(N, \hat{\beta})$ is defined for all $N \in \mathbb{R}$. Then a result for the trace of $T_{N}(\beta)^{n}$ can be rewritten for $m_{p}(N, \hat{\beta})$ as follows.
Theorem 2.1 (cf. [4, Theorem 2.8] and [9, Theorem 2]). It holds that

$$
m_{p}(N, \hat{\beta})=(-1)^{p} \hat{\beta}^{p} m_{p}\left(-\hat{\beta} N, \hat{\beta}^{-1}\right) .
$$

Observe that $\tau^{-p} m_{p}(N, \tau)$ is the expectation of the $2 p$ th moment of the spectral measure of the following Jacobi matrix

$$
\frac{1}{\sqrt{\tau}} T_{N}(2 \tau)=\frac{1}{\sqrt{\tau}}\left(\begin{array}{cccc}
\mathcal{N}(0,1) & \tilde{\chi}_{(N-1) 2 \tau} & & \\
\tilde{\chi}_{(N-1) 2 \tau} & \mathcal{N}(0,1) & \tilde{\chi}_{(N-2) 2 \tau} & \\
& \ddots & \ddots & \ddots \\
& & \tilde{\chi}_{2 \tau} & \mathcal{N}(0,1)
\end{array}\right)
$$

As $\tau \rightarrow \infty$, it holds that

$$
\frac{\mathcal{N}(0,1)}{\sqrt{\tau}} \rightarrow 0, \quad \frac{\tilde{\chi}_{k 2 \tau}}{\sqrt{\tau}}=\left(\frac{\Gamma(k \tau, 1)}{\tau}\right)^{1 / 2} \rightarrow \sqrt{k} \text { (in } L^{q} \text { for any } q \geq 1 \text {). }
$$

The convergences also hold almost surely. Therefore as $\tau \rightarrow \infty$,

$$
\frac{1}{\sqrt{\tau}} T_{N}(2 \tau) \rightarrow\left(\begin{array}{cccc}
0 & \sqrt{N-1} & & \\
\sqrt{N-1} & 0 & \sqrt{N-2} & \\
& \ddots & \ddots & \ddots \\
& & 1 & 0
\end{array}\right)=: H_{N}
$$

Here the convergence of matrices means the convergence (in L^{q}) of their elements. Let $h_{p}(N)=H_{N}^{2 p}(1,1)$ for $N>p$. Then $h_{p}(N)$ is a polynomial of degree p in N so that $h_{p}(N)$ is defined for all $N \in \mathbb{R}$. The above convergence of matrices implies that for fixed p and fixed N,

$$
\begin{equation*}
h_{p}(N)=\lim _{\tau \rightarrow \infty} \tau^{-p} m_{p}(N, \tau) \tag{2.1}
\end{equation*}
$$

Let

$$
A_{\alpha}=\left(\begin{array}{cccc}
0 & \sqrt{\alpha+1} & & \\
\sqrt{\alpha+1} & 0 & \sqrt{\alpha+2} & \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

and let $u_{p}(\alpha)=A_{\alpha}^{2 p}(1,1)$. Then $u_{p}(\alpha)$ is also a polynomial of degree p in α. In addition, it is easy to see that

$$
\begin{equation*}
u_{p}(\alpha)=(-1)^{p} h_{p}(-\alpha) \tag{2.2}
\end{equation*}
$$

As a direct consequence of Theorem 2.1 and relations (2.1) and (2.2), we get the following result.
Proposition 2.2. As $N \rightarrow \infty$ with $\hat{\beta}=\hat{\beta}(N)=\alpha / N$,

$$
m_{p}(N, \hat{\beta}) \rightarrow u_{p}(\alpha)=A_{\alpha}^{2 p}(1,1)
$$

3 Random Jacobi matrices related to Gaussian β ensembles

3.1 A matrix model and proof of Theorem 1.1(i)

Recall that the random Jacobi matrix J_{α},

$$
J_{\alpha}=\left(\begin{array}{cccc}
\mathcal{N}(0,1) & \tilde{\chi}_{2 \alpha} & & \\
\tilde{\chi}_{2 \alpha} & \mathcal{N}(0,1) & \tilde{\chi}_{2 \alpha} & \\
& \ddots & \ddots & \ddots
\end{array}\right)
$$

consists of two i.i.d. sequence of random variables, one for the diagonal and the other for the off diagonal. Thus the spectral measure μ_{α} of J_{α} exists and is unique almost surely because

$$
\sum_{j=1}^{\infty} \frac{1}{b_{j}}=\infty \text { (almost surely). }
$$

Here $\left\{b_{j}\right\}$ denotes the off diagonal elements.
The mean spectral measure $\bar{\mu}_{\alpha}$ is defined to be a probability measure satisfying

$$
\left\langle\bar{\mu}_{\alpha}, f\right\rangle=\mathbb{E}\left[\left\langle\mu_{\alpha}, f\right\rangle\right],
$$

for all bounded continuous functions f on \mathbb{R}. Then Theorem 1.1(i) states that the measure $\bar{\mu}_{\alpha}$ coincides with the spectral measure of $\left(A_{\alpha}, e_{1}\right)$.

Proof of Theorem 1.1(i). Note that the spectral measure of A_{α}, a probability measure μ satisfying

$$
\left\langle\mu, x^{k}\right\rangle=A_{\alpha}^{k}(1,1), \quad k=0,1, \ldots
$$

is unique because

$$
\sum_{j=1}^{\infty} \frac{1}{\sqrt{\alpha+j}}=\infty
$$

Also, it is clear that

$$
\left\langle\bar{\mu}_{\alpha}, x^{k}\right\rangle=\mathbb{E}\left[\left\langle\mu_{\alpha}, x^{k}\right\rangle\right], \quad k=0,1, \ldots
$$

because $\left.\mathbb{E}\left[\left.\left\langle\mu_{\alpha},\right| x\right|^{k}\right\rangle\right]<\infty$ for all $k=0,1, \ldots$ Therefore, our task is now to show that for all $k=0,1, \ldots$,

$$
\begin{equation*}
\left\langle\bar{\mu}_{\alpha}, x^{k}\right\rangle=A_{\alpha}^{k}(1,1) \tag{3.1}
\end{equation*}
$$

We consider the case of even k first. For any fixed j, all moments of the $\tilde{\chi}_{(N-j) 2 \hat{\beta}}$ distribution converge to those of the $\tilde{\chi}_{2 \alpha}$ distribution as $N \rightarrow \infty$ with $\hat{\beta}=\alpha / N$. Thus for fixed p, as $N \rightarrow \infty$ with $\hat{\beta}=\alpha / N$,

$$
m_{p}(N, \hat{\beta})=\mathbb{E}\left[T_{N}(2 \hat{\beta})^{2 p}(1,1)\right] \rightarrow \mathbb{E}\left[J_{\alpha}^{2 p}(1,1)\right]=\mathbb{E}\left[\left\langle\mu_{\alpha}, x^{2 p}\right\rangle\right]
$$

Consequently, for even k, namely, $k=2 p$,

$$
\left\langle\bar{\mu}_{\alpha}, x^{k}\right\rangle=A_{\alpha}^{k}(1,1)
$$

by taking into account Proposition 2.2.
For odd k, both sides of the equation (3.1) are zeros. Indeed, $A_{\alpha}^{k}(1,1)=0$ when k is odd because the diagonal of A_{α} is zero. Also all odd moments of $\bar{\mu}_{\alpha}$ are vanishing,

$$
\left\langle\bar{\mu}_{\alpha}, x^{2 p+1}\right\rangle=\mathbb{E}\left[\left\langle\mu_{\alpha}, x^{2 p+1}\right\rangle\right]=0
$$

because the expectation of odd moments of any diagonal element of J_{α} are zero. The proof is completed.

3.2 Moments of the spectral measure of A_{α}

Recall that

$$
u_{n}(\alpha)=A_{\alpha}^{2 n}(1,1), n=0,1, \ldots
$$

Proposition 3.1.
(i) $u_{n}(\alpha)$ is a polynomial of degree n in α and satisfies the following relations

$$
\left\{\begin{array}{l}
u_{n}(\alpha)=(\alpha+1) \sum_{i=0}^{n-1} u_{i}(\alpha+1) u_{n-1-i}(\alpha), \quad n \geq 1 \tag{3.2}\\
u_{0}(\alpha)=1
\end{array}\right.
$$

(ii) $\left\{u_{n}(\alpha)\right\}_{n=0}^{\infty}$ also satisfies the following relations

$$
\left\{\begin{array}{l}
u_{n}(\alpha)=(2 n-1) u_{n-1}(\alpha)+\alpha \sum_{i=0}^{n-1} u_{i}(\alpha) u_{n-1-i}(\alpha), \quad n \geq 1 \tag{3.3}\\
u_{0}(\alpha)=1
\end{array}\right.
$$

Remark 3.2. The sequences $\left\{u_{n}(\alpha)\right\}_{n \geq 0}$, for $\alpha=1$ and $\alpha=2$, are the sequences A000698 and A167872 in the On-line Encyclopedia of Integer Sequences [7], respectively. Relations (3.2) and (3.3) as well as many interesting properties for those sequences can be found in the above reference. In the proof below, we give another explanation of $u_{n}(\alpha)$ as the total sum of weighted Dyck paths of length $2 n$.

Proof. In this proof, for convenience, let the index of the matrix A_{α} start from 0 . Since the diagonal of A_{α} is zero, it follows that

$$
A_{\alpha}^{2 n}(0,0)=\sum_{\left\{i_{0}, i_{1}, \ldots, i_{2 n}\right\} \in \mathfrak{D}_{2 n}} \prod_{j=0}^{2 n-1} A_{\alpha}\left(i_{j}, i_{j+1}\right),
$$

where $\mathfrak{D}_{2 n}$ denotes the set of indices $\left\{i_{0}, i_{1}, \ldots, i_{2 n}\right\}$ satisfying that

$$
\begin{aligned}
& i_{0}=0, i_{2 n}=0, i_{j} \geq 0 \\
& \left|i_{j+1}-i_{j}\right|=1, j=0,1, \ldots, 2 n-1
\end{aligned}
$$

Each element in $\mathfrak{D}_{2 n}$ corresponds to a path of length $2 n$ consisting of rise steps or rises and fall steps or falls which starts at $(0,0)$ and ends at $(2 n, 0)$, and stays above the x-axis, called a Dyck path. We also use $\mathfrak{D}_{2 n}$ to denote the set of all Dyck paths of length $2 n$.

A Dyck path p is assigned a weight $w(p)$ as follows. We assign a weight $(\alpha+k+1)$ for each rise step from level k to $k+1$, and the weight $w(p)$ is the product of all those weights. Then

$$
u_{n}(\alpha)=A_{\alpha}^{2 n}(0,0)=\sum_{p \in \mathfrak{D}_{2 n}} w(p)
$$

Figure 1: A Dyck path p with weight $w(p)=(\alpha+1)^{2}(\alpha+2)^{3}(\alpha+3)(\alpha+4)$.
Let $\mathfrak{D}_{2 n}^{*}$ be the set of all Dyck paths of length $2 n$ which do not meet the x-axis except the starting and the ending points. Let

$$
v_{n}(\alpha)=\sum_{p \in \mathfrak{D}_{2 n}^{*}} w(p)
$$

Since each Dyck path $p=\left(i_{0}, i_{1}, \ldots, i_{2 n-1}, i_{2 n}\right) \in \mathfrak{D}_{2 n}^{*}$ is one-to-one correspondence with a Dyck path $q=\left(i_{1}-1, i_{2}-1, \ldots, i_{2 n-1}-1\right)$ of length $2(n-1)$, it follows that

$$
v_{n}(\alpha)=(\alpha+1) u_{n-1}(\alpha+1)
$$

Moreover, let $2 i$ be the first time that the Dyck path p meets the x-axis. Then either $i=n$ or the Dyck path p is the concatenation of a Dyck path in $\mathfrak{D}_{2 i}^{*},(1 \leq i<n)$, and another Dyck path of length $2(n-i)$. Thus,

$$
\begin{aligned}
u_{n}(\alpha) & =v_{n}(\alpha)+\sum_{i=1}^{n-1} v_{i}(\alpha) u_{n-i}(\alpha) \\
& =(\alpha+1) u_{n-1}(\alpha+1)+\sum_{i=1}^{n-1}(\alpha+1) u_{i-1}(\alpha+1) u_{n-i}(\alpha) \\
& =(\alpha+1) \sum_{i=0}^{n-1} u_{i}(\alpha+1) u_{n-1-i}(\alpha) .
\end{aligned}
$$

The proof of (i) is complete. We will prove the second statement after the next lemma.
Lemma 3.3. Let $\alpha \geq 0$ be fixed. Let $\left\{a_{n}\right\}$ be a sequence defined recursively by

$$
\left\{\begin{array}{l}
a_{n}=(2 n-1) a_{n-1}+\alpha \sum_{i=0}^{n-1} a_{i} a_{n-1-i}, \quad n \geq 1 \tag{3.4}\\
a_{0}=1
\end{array}\right.
$$

Let $\left\{b_{n}\right\}$ be a sequence defined by the following relations $b_{0}=1$,

$$
\begin{equation*}
a_{n}=(\alpha+1) \sum_{i=0}^{n-1} b_{i} a_{n-1-i}, \quad n \geq 1 \tag{3.5}
\end{equation*}
$$

Then $\left\{b_{n}\right\}$ satisfies an analogous recursive relation as $\left\{a_{n}\right\}$,

$$
\left\{\begin{array}{l}
b_{n}=(2 n-1) b_{n-1}+(\alpha+1) \sum_{i=0}^{n-1} b_{i} b_{n-1-i}, \quad n \geq 1 \tag{3.6}\\
b_{0}=1
\end{array}\right.
$$

Proof. Consider the field of formal Laurent series over \mathbb{R}, denoted by $\mathbb{R}((X))$,

$$
\mathbb{R}((X))=\left\{f(X)=\sum_{n \in \mathbb{Z}} c_{n} X^{n}: c_{n} \in \mathbb{R}, c_{n}=0 \text { for } n<n_{0}\right\}
$$

The addition is defined as usual and the multiplication is well defined as

$$
f(X) g(X)=\sum_{n \in \mathbb{Z}}\left(\sum_{i \in \mathbb{Z}} c_{i} d_{n-i}\right) X^{n}
$$

for $f(X)=\sum c_{n} X^{n}, g(X)=\sum d_{n} X^{n} \in \mathbb{R}((X))$. The quotient $f(X) / g(X)$ is understood as $f(X) g(X)^{-1}$ for $g(X) \neq 0$. The formal derivative is also defined as

$$
f^{\prime}(X)=\sum_{n \in \mathbb{Z}} c_{n} n X^{n-1} \in \mathbb{R}((X))
$$

Now let

$$
f(X)=\sum_{n=0}^{\infty} a_{n} X^{n}, \quad g(X)=\sum_{n=0}^{\infty} b_{n} X^{n}
$$

It is straightforward to show that the recursive relation (3.4) is equivalent to the following equation

$$
f(X)-1=2 X^{2} f^{\prime}(X)+X f(X)+\alpha X f^{2}(X)
$$

In addition, the relation (3.5) leads to

$$
g(X)=\frac{f(X)-1}{(\alpha+1) X f(X)}
$$

Finally, we can easily check that $g(X)$ satisfies

$$
g(X)-1=2 X^{2} g^{\prime}(X)+X g(X)+(\alpha+1) X g^{2}(X)
$$

which is equivalent to the recursive relation (3.6). The proof is complete.

Proof of Proposition 3.1(ii). When $\alpha=0$, it is well known that $u_{n}(0)$ is the $2 n$th moment of the standard Gaussian distribution, and is given by

$$
u_{n}(0)=(2 n-1)!!.
$$

Consequently, the conditions in Lemma 3.3 are satisfied for $a_{n}=u_{n}(0), b_{n}=u_{n}(1)$ and $\alpha=0$. It follows that the recursive relation (3.3) then holds for $\alpha=1$. Continue this way, it follows that the recursive relation (3.3) holds for any $\alpha \in \mathbb{N}$. We conclude that it holds for all α because of the fact that $\left\{u_{n}(\alpha)\right\}$ is a polynomial of degree n in α. The proof is complete.

3.3 Explicit formula for the spectral measure of A_{α}, proof of Theorem 1.1(ii)

In this section, by using the method of Martin and Kearney [6], we derive the explicit formula for the mean spectral measure $\bar{\mu}_{\alpha}$ from the relation (3.3),

$$
\left\{\begin{array}{l}
u_{n}(\alpha)=(2 n-1) u_{n-1}(\alpha)+\alpha \sum_{i=0}^{n-1} u_{i}(\alpha) u_{n-1-i}(\alpha), \quad n \geq 1 \\
u_{0}(\alpha)=1
\end{array}\right.
$$

Recall that $u_{n}(\alpha)=\left\langle\bar{\mu}_{\alpha}, x^{2 n}\right\rangle$ and $\bar{\mu}_{\alpha}$ is a symmetric probability measure.
Let us extract here the main result of [6]. The problem is to find a function ν for which

$$
\int_{0}^{\infty} x^{n-1} \nu(x) d x=u_{n}, \quad n=1,2, \ldots
$$

where the sequence $\left\{u_{n}\right\}$ is given by a general self-convolutive recurrence

$$
\left\{\begin{array}{l}
u_{n}=\left(\alpha_{1} n+\alpha_{2}\right) u_{n-1}+\alpha_{3} \sum_{i=1}^{n-1} u_{i} u_{n-i}, \quad n \geq 2 \tag{3.7}\\
u_{1}=1
\end{array}\right.
$$

α_{1}, α_{2} and α_{3} being constants. Then the solution is given by (Eq. (13)-Eq. (16) in [6]),

$$
\nu(x)=\frac{k(k x)^{-b} e^{-k x}}{\Gamma(a+1) \Gamma(a-b+1)} \frac{1}{U_{R}(k x)^{2}+U_{I}(k x)^{2}},
$$

where,

$$
\begin{aligned}
& U_{R}(x)=e^{-x}\left(\frac{\Gamma(1-b)}{\Gamma(a-b+1)}{ }_{1} F_{1}(b-a ; b ; x)\right. \\
& \left.-(\cos \pi b) \frac{\Gamma(b-1)}{\Gamma(a)} x^{1-b}{ }_{1} F_{1}(1-a ; 2-b ; x)\right), \\
& U_{I}(x)=(\sin \pi b) e^{-x} \frac{\Gamma(b-1)}{\Gamma(a)} x^{1-b}{ }_{1} F_{1}(1-a ; 2-b ; x),
\end{aligned}
$$

and $k=1 / \alpha_{1}, a=\alpha_{3} / \alpha_{1}, b=-1-\alpha_{2} / \alpha_{1}$, provided $\alpha_{1} \neq 0$. Here ${ }_{1} F_{1}(a ; b ; z)$ is the Kummer function.

The sequence $\left\{u_{n}(\alpha)\right\}_{n>0}$ is a particular case of the self-convolutive recurrence (3.7) with parameters $\alpha_{1}=2, \alpha_{2}=-3$ and $\alpha_{3}=\alpha$. Note that our sequence $\left\{u_{n}(\alpha)\right\}$ starts from $n=0$, and thus $\alpha_{2}=-3$. By direct calculation, we get $k=1 / 2, a=\alpha / 2$, and $b=1 / 2$. Therefore, the function $\nu_{\alpha}(x)$ for which $u_{n}(\alpha)=\int_{0}^{\infty} x^{n} d \nu_{\alpha}(x) d x, n=0,1, \ldots$, is given by

$$
\nu_{\alpha}(x)=\frac{1}{\sqrt{2} \Gamma\left(\frac{\alpha}{2}+1\right) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right)} \frac{1}{\sqrt{x}} e^{-\frac{x}{2}} \frac{1}{U_{R}(x / 2)^{2}+U_{I}(x / 2)^{2}}, \quad x>0,
$$

where

$$
\begin{align*}
U_{R}(x) & =e^{-x} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right)}{ }_{1} F_{1}\left(\frac{1}{2}-\frac{\alpha}{2} ; \frac{1}{2} ; x\right), \tag{3.8}\\
U_{I}(x) & =e^{-x} \frac{\Gamma\left(-\frac{1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)} x^{1 / 2}{ }_{1} F_{1}\left(1-\frac{\alpha}{2} ; \frac{3}{2} ; x\right) . \tag{3.9}
\end{align*}
$$

It is clear that $\nu_{\alpha}(x)>0$ for any $x>0$. Now it is easy to check that the function $\bar{\mu}_{\alpha}(y)$ defined by

$$
\bar{\mu}_{\alpha}(y)=|y| \nu_{\alpha}\left(y^{2}\right), \quad y \in \mathbb{R},
$$

satisfies the following relations

$$
\int_{\mathbb{R}} y^{2 n+1} \bar{\mu}_{\alpha}(y) d y=0, \quad \int_{\mathbb{R}} y^{2 n} \bar{\mu}_{\alpha}(y) d y=u_{n}(\alpha), \quad n=0,1, \ldots
$$

In other words, $\bar{\mu}_{\alpha}(y)$ is the density of the mean spectral measure $\bar{\mu}_{\alpha}$ with respect to the Lebesgue measure.

We are now in a position to simplify the explicit formula of $\bar{\mu}_{\alpha}$. Let

$$
\begin{aligned}
V_{R}(y) & =\left(\frac{\Gamma\left(\frac{\alpha}{2}+1\right) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}\right)^{1 / 2} U_{R}\left(y^{2} / 2\right), \\
& =2^{-\frac{\alpha}{2}} \Gamma(\alpha+1)^{\frac{1}{2}} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right)} e^{-\frac{y^{2}}{2}}{ }_{1} F_{1}\left(\frac{1}{2}-\frac{\alpha}{2} ; \frac{1}{2} ; \frac{y^{2}}{2}\right), \\
V_{I}(y) & =-\left(\frac{\Gamma\left(\frac{\alpha}{2}+1\right) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}\right)^{1 / 2} U_{I}\left(y^{2} / 2\right) \\
& =-2^{-\frac{\alpha}{2}-\frac{1}{2}} \Gamma(\alpha+1)^{\frac{1}{2}} \frac{\Gamma\left(-\frac{1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)} y e^{-\frac{y^{2}}{2}}{ }_{1} F_{1}\left(1-\frac{\alpha}{2} ; \frac{3}{2} ; \frac{y^{2}}{2}\right) .
\end{aligned}
$$

Here, in the above expressions, we have used the following relation for the gamma function

$$
\begin{equation*}
\frac{\Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right) \Gamma\left(\frac{\alpha}{2}+1\right)}{\Gamma\left(\frac{1}{2}\right)}=2^{-\alpha} \Gamma(\alpha+1) \tag{3.10}
\end{equation*}
$$

Then $\bar{\mu}_{\alpha}(y)$ can be written as

$$
\bar{\mu}_{\alpha}(y)=\frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}} \frac{1}{V_{R}(y)^{2}+V_{I}(y)^{2}} .
$$

Next, we will show that $V_{R}(y)$ and $V_{I}(y)$ are the Fourier cosine transform and Fourier sine transform of

$$
f_{\alpha}(t)=\pi \sqrt{\frac{\alpha}{\Gamma(\alpha)}} t^{\alpha-1} \frac{e^{-\frac{t^{2}}{2}}}{\sqrt{2 \pi}}
$$

respectively. Let us now give definitions of Fourier transforms. The Fourier transform of a function $f: \mathbb{R} \rightarrow \mathbb{C}$ is defined to be

$$
\mathcal{F}(f)(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i y t} d t, \quad(y \in \mathbb{R})
$$

and the Fourier cosine transform, the Fourier sine transform are defined to be

$$
\begin{aligned}
& \mathcal{F}_{c}(f)(y)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos (y t) d t, \quad(y>0) \\
& \mathcal{F}_{s}(f)(y)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin (y t) d t, \quad(y>0)
\end{aligned}
$$

respectively. Then those transforms are related as follows

For $\alpha>0$, we have (cf. Formula 3.952(8) in [5])

$$
\mathcal{F}_{c}\left(t^{\alpha-1} e^{-\frac{t^{2}}{2}}\right)=\frac{2^{\frac{\alpha}{2}-\frac{1}{2}} \Gamma\left(\frac{\alpha}{2}\right)}{\sqrt{\pi}} e^{-\frac{y^{2}}{2}}{ }_{1} F_{1}\left(\frac{1}{2}-\frac{\alpha}{2} ; \frac{1}{2} ; \frac{y^{2}}{2}\right) .
$$

Then by some simple calculations, we arrive at the following relation

$$
V_{R}(y)=\mathcal{F}_{c}\left(f_{\alpha}(t)\right)(y), \quad y \geq 0
$$

Similarly,

$$
V_{I}(y)=\mathcal{F}_{s}\left(f_{\alpha}(t)\right)(y), \quad y \geq 0
$$

by using Formula 3.952(7) in [5],

$$
\mathcal{F}_{s}\left(t^{\alpha-1} e^{-\frac{t^{2}}{2}}\right)=\frac{2^{\frac{\alpha}{2}} \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right)}{\sqrt{\pi}} y e^{-\frac{y^{2}}{2}}{ }_{1} F_{1}\left(1-\frac{\alpha}{2} ; \frac{3}{2} ; \frac{y^{2}}{2}\right) .
$$

By definitions, $V_{R}(y)$ is an even function and $V_{I}(y)$ is an odd function. Thus the following expression holds for all $y \in \mathbb{R}$,

$$
\begin{aligned}
V_{R}(y)+i V_{I}(y) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f_{\alpha}(t)(\cos (y t)+i \sin (y t) d t \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f_{\alpha}(t) e^{i y t} d t=: \hat{f}_{\alpha}(y)
\end{aligned}
$$

Consequently,

$$
V_{R}(y)^{2}+V_{I}(y)^{2}=\left|\hat{f}_{\alpha}(y)\right|^{2}
$$

which completes the proof of Theorem 1.1(ii).
Remark 3.4. The measure $\bar{\mu}_{\alpha}$ was discussed as the probability measure of associated Hermite polynomials [2]. It was also investigated in [1] in connection with Gaussian beta ensembles by deriving a partial differential equation for its Stieljes transform. The authors would like to thank Professor Fumihiko Nakano for letting us know these references.

We plot the graph of the density $\bar{\mu}_{\alpha}(y)$ for several values α as in the following figure by using Mathematica. It follows from the Jacobi matrix form that the spectral measure of $\frac{1}{\sqrt{\alpha}} A_{\alpha}$ converges weakly to the semicircle law as α tends to infinity. Note that the semicircle law, the probability measure supported on $[-2,2]$ with the density

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}},(-2 \leq x \leq 2)
$$

is the spectral measure of the following Jacobi matrix

$$
\left(\begin{array}{ccccc}
0 & 1 & & & \\
1 & 0 & 1 & & \\
& 1 & 0 & 1 & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

Remark 3.5. When α in a positive integer number, we can give even more explicit expressions for $V_{R}(y)$ and $V_{I}(y)$.
(i) $\alpha=2 n, n \in \mathbb{N}$. In this case, $f_{\alpha}(t)$ is an odd function. Therefore

$$
V_{I}(y)=\mathcal{F}_{s}\left(f_{\alpha}(t)\right)=-i \mathcal{F}\left(f_{\alpha}(t)\right) .
$$

Note that

$$
\mathcal{F}\left(e^{-\frac{t^{2}}{2}}\right)=e^{-\frac{y^{2}}{2}} .
$$

Therefore, for integer $\alpha \geq 1$,

$$
\mathcal{F}\left(t^{\alpha-1} e^{-\frac{t^{2}}{2}}\right)=(i)^{\alpha-1} \frac{d^{\alpha-1}}{d y^{\alpha-1}}\left(e^{-\frac{y^{2}}{2}}\right) .
$$

The mean spectral measures of random Jacobi matrices

Figure 2: The density $\bar{\mu}_{\alpha}(y)$ for several values α.

Consequently,

$$
\begin{aligned}
V_{I}(y) & =-i^{\alpha} \pi \sqrt{\frac{\alpha}{\Gamma(\alpha)}} \frac{d^{\alpha-1}}{d y^{\alpha-1}}\left(e^{-\frac{y^{2}}{2}}\right) \frac{1}{\sqrt{2 \pi}} \\
& =-i^{\alpha} \pi \sqrt{\frac{\alpha}{\Gamma(\alpha)}} e^{\frac{y^{2}}{2}} \frac{d^{\alpha-1}}{d y^{\alpha-1}}\left(e^{-\frac{y^{2}}{2}}\right) \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}} \\
& =-i^{\alpha} \pi \sqrt{\frac{\alpha}{\Gamma(\alpha)}} H e_{\alpha-1} \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}}
\end{aligned}
$$

Here $H e_{m}$ denotes probabilists' Hermite polynomials.
(ii) $\alpha=2 n+1$. This case is very similar. Since $f_{\alpha}(t)$ is an even function, it follows that

$$
V_{R}(y)=\mathcal{F}_{c}\left(f_{\alpha}(t)\right)(y)=\mathcal{F}\left(f_{\alpha}(t)\right)=i^{\alpha-1} \pi \sqrt{\frac{\alpha}{\Gamma(\alpha)}} H e_{\alpha-1} \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}}
$$

References

[1] Romain Allez, Jean-Philippe Bouchaud, and Alice Guionnet, Invariant beta ensembles and the gauss-wigner crossover, Physical review letters 109 (2012), no. 9, 094102.
[2] Richard Askey and Jet Wimp, Associated Laguerre and Hermite polynomials, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), no. 1-2, 15-37. MR-741641
[3] Ioana Dumitriu and Alan Edelman, Matrix models for beta ensembles, J. Math. Phys. 43 (2002), no. 11, 5830-5847. MR-1936554
[4] , Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models, J. Math. Phys. 47 (2006), no. 6, 063302, 36. MR-2239975
[5] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, seventh ed., Elsevier/Academic Press, Amsterdam, 2007, Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX). MR-2360010
[6] R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequationes Math. 80 (2010), no. 3, 291-318. MR-2739179
[7] OEIS, the on-line encyclopedia of integer sequences, https://oeis.org/.
[8] Barry Simon, Szegő's theorem and its descendants, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011, Spectral theory for L^{2} perturbations of orthogonal polynomials. MR-2743058
[9] N. S. Witte and P. J. Forrester, Moments of the Gaussian β ensembles and the large- N expansion of the densities, J. Math. Phys. 55 (2014), no. 8, 083302, 34. MR-3390734

Acknowledgments. The authors would like to thank the referee(s) for valuable comments.

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS ${ }^{1}$)
- Non profit, sponsored by $\mathrm{IMS}^{2}, \mathrm{BS}^{3}, \mathrm{PKP}^{4}$
- Purely electronic and secure (LOCKSS ${ }^{5}$)

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *This work is partially supported by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development(T.K.D.) and JSPS Grant-in-Aid for Scientific Research (B) 26287019(T.S.)
 ${ }^{\dagger}$ Institute of Mathematics for Industry, Kyushu University. E-mail: trinh, shirai@imi.kyushu-u.ac.jp

[^1]: ${ }^{1}$ OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
 ${ }^{2}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{3}$ BS: Bernoulli Society http://www.bernoulli-society.org/
 ${ }^{4}$ PK: Public Knowledge Project http://pkp.sfu.ca/
 ${ }^{5}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

