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Abstract

We consider a branching Brownian motion evolving in Rd. We prove that the asymp-
totic behaviour of the maximal displacement is given by a first ballistic order, plus
a logarithmic correction that increases with the dimension d. The proof is based on
simple geometrical evidence. It leads to the interesting following side result: with
high probability, for any d ≥ 2, individuals on the frontier of the process are close
parents if and only if they are geographically close.
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1 Introduction

Let d ≥ 1. A d-dimensional branching Brownian motion (or d-dim. BBM for short)
is a particle process in which individuals displace according to independent Brownian
motions and reproduce at rate 1. It starts with a unique individual positioned at point
0 ∈ Rd at time 0. This individual displaces according to a d-dimensional Brownian
motion until time T , distributed as an exponential random variable independent of the
displacement. At time T , the individual dies giving birth to two children on its current
position. These two particles then start independent d-dimensional branching Brownian
motions.

For any t ≥ 0, we write Nt for the set of individuals alive at time t in the process. Let
u ∈ Nt and s ≤ t, we set Xs(u) the position at time s of the ancestor of u that was alive
at that time. The quantity of interest is Rt = maxu∈Nt ‖Xt(u)‖. Bramson [5] proved the
following asymptotic behaviour in dimension 1

Rt =
√

2t− 3
2
√
2

log t+OP(1), (1.1)

where OP(1) is a process (Yt, t ≥ 0) such that limK→+∞ supt≥0 P(|Yt| ≥ K) = 0. This
process has been intensively studied in dimension 1, partly because of its links with the
FKPP equation: ∂tu = 1

2∂
2
xu+ u(1− u). The function

u : (t, x) ∈ (0,+∞)×R 7−→ P

(
max
u∈Nt

Xt(u) ≥ x
)
,
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Maximal displacement of d-dimensional branching Brownian motion

is a travelling wave solution of the F-KPP equation.
Gärtner [6] studied a d-dimensional version of the F-KPP equation, solved by e.g.,

w : (t, x) ∈ (0,+∞)×Rd 7−→ P (∃u ∈ Nt : ‖Xt(u)− x‖ ≤ 1) .

It is proved that for large t, the function w(t, .) admits a sharp cutoff located close to
the ball of radius

√
2t − d+2

2
√
2

log t. Consequently the probability to find an individual

u ∈ Nt within distance 1 of a given point x is small if ‖x‖ �
√

2t − d+2
2
√
2

log t and large

if ‖x‖ �
√

2t − d+2
2
√
2

log t. Therefore if we replace every individual alive at time t by a
ball of radius 1 the radius ρt of the percolation cluster containing the origin should
verify ρt =

√
2t− d+2

2
√
2

log t+OP(1). Observe the logarithmic correction decreases as the
dimension increases.

However the projection of the d-dim. BBM on any given line is a 1-dim. BBM. By
(1.1), with high probability the maximal displacement in the process is larger than√

2t − 3
2
√
2

log t. Consequently, Rt has a different behaviour than ρt. In particular, we
prove in Theorem 1.1 below that while the first order does not depend on the dimension,
the logarithmic correction of Rt increases with d.

There have been few studies of quantities similar to Rt. In [10], the authors consider
a complex, thus 2-dimensional, branching Brownian motion, but considered the process
around its maximal value in 1 direction. Similarly, [4] also considered a model related to
the 2-dimensional branching Brownian motion, in which individuals diffuse as Brownian
motions in one direction, and move at piecewise ballistic speed in the orthogonal
direction. They described the extremal process, around the individual that travelled the
farthest in the diffusive direction.

The main result of this article extends Bramson’s result on the asymptotic behaviour
of the maximal displacement Rt to any dimension d ≥ 1.

Theorem 1.1. For any d ≥ 1, we have

Rt =
√

2t+ d−4
2
√
2

log t+OP(1).

Moreover there exists C > 0 such that for any t ≥ 1 and y ∈ [1, t1/2],

ye−
√
2y/C ≤ P

(
Rt ≥

√
2t+ d−4

2
√
2

log t+ y
)
≤ Cye−

√
2y. (1.2)

In the rest of this article, C stands for a generic positive constant, chosen large
enough, that may change from line to line. Moreover, we write x ∧ y for the minimum
between x and y and x+ as the maximum between x and 0.

Remark 1.2. Note that for any v ∈ Sd−1 (the d − 1-dimensional sphere), the process
((Xt(u).v, u ∈ Nt), t ≥ 0) is a 1-dim. BBM, thus maxu∈Nt Xt(u).v =

√
2t− 3

2
√
2

log t+OP(1)

by (1.1). We expect that for large times t, the convex hull of the set of occupied positions
at time t looks like a ball of radius

√
2t− 3

2
√
2

log t, with spikes of height d−1
2
√
2

log t, tossed
uniformly at random on the surface of the ball.

The asymptotic behaviour of Rt may be decomposed as follows:

Rt =
√

2t− 3
2
√
2

log t+ d−1
2
√
2

log t+OP(1).

The term − 3
2
√
2

log t comes from the branching structure of the process. It is linked to
the exponent of decay of the probability for a Brownian motion to make an excursion of
length t above 01. The term d−1

2
√
2

log t comes from the fact that the frontier of the d-dim.

BBM is the d − 1 dimensional sphere of radius O(t). There are O(t(d−1)/2) “distinct”

1This is underlined in [3] for the closely related model of the branching random walk.
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Maximal displacement of d-dimensional branching Brownian motion

directions that can be followed to reach the maximal displacement at time t., yielding a
term similar to the maximum of O(t(d−1)/2) independent exponential random variables
with parameter

√
2.

The rest of the paper is organised as follows. In Section 2, we introduce the celebrated
many-to-few lemma. We also recall some Brownian motion and geometric estimates, that
precise the rough picture presented in Remark 1.2. Section 3 is then devoted to the
proof of the upper bound of (1.2), that comes from a frontier argument; and Section 4 to
its lower bound, using second moment methods. We end Section 4 completing the proof
of Theorem 1.1.

2 Preliminary lemmas

2.1 The many-to-few lemmas

Let ((Xt(u), u ∈ Nt), t ≥ 0) be d-dim BBM. The many-to-one lemma links the mean of
an additive function of the branching Brownian motion with a Brownian motion estimate.
Its origins can be tracked back to the works of Peyrière [12] and Kahane and Peyrière
[9]. This lemma has been enhanced, through the so-called spinal decomposition and
stopping lines theory. However we only need in this article a simple version, corollary of
[7, Lemma 1].

Lemma 2.1 (Many-to-one lemma). For any t ≥ 0 and measurable positive function f , we
have

E

[∑
u∈Nt

f(Xs(u), s ≤ t)

]
= etE [f(Bs, s ≤ t)] ,

where B is a d-dimensional Brownian motion.

This lemma is used to bound the mean number of individuals belonging to certain
specific sets. To bound from below the probability for a set of individuals to be non-empty,
we compute some second moments. This result, sometimes called in the literature the
many-to-two lemma is also a consequence of [7, Lemma 1].

Lemma 2.2 (Many-to-two lemma). Let B and B′ be two independent d-dimensional
Brownian motions. For s ≥ 0 we set W (s) : t ∈ [0,+∞) 7→ Bt∧s + B′(t−s)+ , a Brownian
path identical to B until time s and with independent increments afterwards. For any
measurable positive functions f, g and t ≥ 0, we have

E

[(∑
u∈Nt

f(Xs(u), s ≤ t)

)(∑
u∈Nt

g(Xs(u), s ≤ t)

)]

= E

[∑
u∈Nt

f(Xs(u), s ≤ t)g(Xs(u), s ≤ t)

]
+

∫ t

0

e2t−sE
[
f(Bu, u ≤ t)g(W (s)

u , u ≤ t)
]
.

2.2 Ballot theorem for the Brownian motion

We recall in this section some well-known Brownian motion estimates. Let β be a
standard Brownian motion on R. The quantity It = infs≤t βs has the same law as −|βt|.
Consequently there exists C > 0 such that for any t ≥ 1 and y ≥ 1,

y ∧ t1/2

Ct1/2
≤ P(βs ≥ −y, s ≤ t) ≤

C(y ∧ t1/2)

t1/2
. (2.1)

We often call this equation the ballot theorem, for its similarities with the well-known
random walk estimate (see [1]).
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Using the Girsanov theorem, it is an easy exercise to prove that for any A ∈ R and
α < 1/2, there exists C > 0 such that for all t ≥ 1 and y ≥ 1,

y ∧ t1/2

Ct1/2
≤ P(βs ≥ −y +Asα, s ≤ t) ≤ C(y ∧ t1/2)

t1/2
. (2.2)

These estimates can be used to compute the probability for a Brownian motion to
make an excursion above a given curve. Dividing the Brownian path on [0, t] into three
pieces, the first and last pieces being Brownian motion that stay above a given path, the
middle part joining these two pieces, we obtain the following result2. For any A > 0 and
α < 1/2, there exists C > 0 such that for any t ≥ 1, for any function f satisfying

sup
s≤t

|f(s)|
sα

+
|f(t)− f(s)|

(t− s)α
< A, (2.3)

(which implies in particular f(0) = f(t) = 0) and for any y, z ≥ 1, we have

(y ∧ t1/2)(z ∧ t1/2)

Ct3/2
≤ P

(
βs ≥ −y + f(s), s ≤ t
βt + y − f(t) ∈ [z, z + 1]

)
≤ C(y ∧ t1/2)(z ∧ t1/2)

t3/2
. (2.4)

2.3 Geometry estimates

We conclude the section with an observation on the geometry of the sphere

Sd−1 =
{

(x1, . . . xd) ∈ Rd : ‖x‖ := x21 + . . .+ x2d = 1
}
.

Using the fact that this is a manifold of dimension d− 1, we are able to exhibit t(d−1)/2

“distinct” directions on the sphere of radius t.

Lemma 2.3. There exists C > 0 such that for any R > 1, there exists U(R) ⊂ Sd−1

verifying #U(R) ≤ CR(d−1)/2 and{
x ∈ Rd : ‖x‖ ≥ R

}
⊂

⋃
v∈U(R)

{
x ∈ Rd : x.v ≥ R− 1

}
. (2.5)

•

•

•

•

v

1

√
2R− 1

R

Figure 1: It takes R(d−1)/2 spherical caps of height 1 to cover a sphere of radius R.

Proof. Let R > 1 and x ∈ Rd such that ‖x‖ ≥ R. We set y = R x
‖x‖ its projection on the

sphere of radius R. We note that for any v ∈ Sd−1, if y.v ≥ R− 1 > 0 then x.v ≥ R− 1.
Therefore, it is enough to prove there exists U(R) such that{

x ∈ Rd : ‖x‖ = R
}
⊂

⋃
v∈U(R)

{
x ∈ Rd : ‖x‖ = R, x.v ≥ R− 1

}
. (2.6)

2For a similar computation for random walks, see e.g. [3, 11].
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Let v ∈ Sd−1 and x ∈ Rd, we have ‖x−Rv‖2 = ‖x‖2 − 2Rx.v +R2, thus{
x ∈ Rd : ‖x‖ = R, x.v ≥ R− 1

}
=
{
x ∈ Rd : ‖x‖ = R, ‖x−R.v‖ ≤

√
2R
}
.

By homothetic transformation of ratio R−1, a set U(R) satisfying (2.6) satisfies

Sd−1 =
⋃

v∈U(R)

{
u ∈ Sd−1 : ‖v − u‖ ≤

√
2/R

}
.

For any ε > 0 small enough, the sphere Sd−1 can be paved by O(ε1−d) balls of radius ε,
we write U(R) for the set of the center of such a tiling with balls of radius

√
2/R.

To explicitly construct a set U(R) solution of (2.5), one can take the union of the
image of R−1/2Zd by the stereographic projection of the northern and the southern
hemisphere of Sd−1, which is a Lipschitz bijective mapping.

3 The upper bound of Theorem 1.1

Let (Xt(u), u ∈ Nt)t≥0 be a d-dim. BBM. We obtain in this section an upper bound
for the tail of Rt = maxu∈Nt ‖Xt(u)‖. We prove that for any t ≥ 1 and y ≥ 1, with high
probability there exists no individual exiting at some time s ≤ t the ball of radius

f t,ys =
√

2s+ d−1
2
√
2

log(s+ y)− 3
2
√
2

log
t+ 1

t− s+ 1
+ y. (3.1)

We set f̃ t,ys = f t,ys −
√

2s. We observe that for any α < 1/2 there exists A > 0 such that
for any t ≥ 1, (f̃ t,ys − f̃

t,y
0 , s ≤ t) satisfies (2.3). We prove in this section:

Lemma 3.1. There exists C > 0 such that for any t ≥ 1 and y ∈ [1, t1/2],

P
[
∃u ∈ Nt,∃s ≤ t : ‖Xs(u)‖ ≥ f t,ys

]
≤ Cye−

√
2y.

Proof. Let t ≥ 1 and y ∈ [1, t1/2]. To simplify notation, we assume that t is an integer. For
any 0 ≤ k ≤ t− 1, we set

Z
(t)
k (y) =

∑
u∈Nk+1

1{∃s∈[k,k+1]:‖Xs(u)‖≥ft,ys }1{‖Xs(u)‖≤ft,ys ,s≤k}.

By the Markov inequality and the many-to-one lemma, we have

P
[
∃s ≤ t, u ∈ Nt : ‖Xs(u)‖ ≥ f t,y(s)

]
≤

t−1∑
k=0

E
(
Z

(t)
k (y)

)
≤

t−1∑
k=0

ek+1P
[
‖Bs‖ ≤ f t,ys , s ≤ k, ∃r ∈ [k, k + 1] : ‖Br‖ ≥ f t,yr

]
, (3.2)

where B is a d-dimensional Brownian motion.
As s 7→ f t,ys is increasing, applying the Markov property at time k we have

P
[
‖Bs‖ ≤ f t,ys , s ≤ k, ∃r ∈ [k, k + 1] : ‖Br‖ ≥ f t,yr

]
≤ E

(
φk

(
sup
s≤1
‖Bs‖

))
,

where φk : x ∈ [0,+∞) 7→ P
[
‖Bk‖ ≥ f t,yk − x− 1, ‖Bs‖ ≤ f t,ys , s ≤ k

]
. We now bound φk

from above using Lemma 2.3. There exists C > 0 such that for any k ≤ t and x ≥ 0, we
have

φk(x) ≤
∑

v∈U(ft,yk −x+1)

P
(
Bk.v ≥ f t,yk − x− 1, Bs.v ≤ f t,ys , s ≤ k

)
≤ C

(
1 + (f t,yk − x)+

)(d−1)/2
P
(
βk ≥ f t,yk − x− 1, βs ≤ f t,ys , s ≤ k

)
≤ C(1 + k + y)(d−1)/2P

(
βk ≥ f t,yk − x− 1, βs ≤ f t,ys , s ≤ k

)
,
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where β is a standard Brownian motion, that has the same law as B.v for any v ∈ Sd−1.
Using the Girsanov transform then (2.4), we have

P
(
βk ≥ f t,yk − x− 1, βs ≤ f t,ys , s ≤ k

)
= E

[
e−
√
2βk−k1{βk+

√
2k≥ft,yk −x−1,βs+

√
2s≤ft,ys ,s≤k}

]
≤ Ce−ke

√
2(x−f̃t,yk )P

(
βk ≥ f̃ t,yk − x− 1, βs ≤ f̃ t,ys , s ≤ k

)
≤ Ce−k (t+ 1)3/2e

√
2(x−y)

(k + y)(d−1)/2(t− k + 1)3/2
(1 + x)(y + log y)

(k + 1)3/2
.

We conclude that for any x ≥ 0 and k ≤ t,

φk(x) ≤ C(1 + x)ye−ke
√
2(x−y) (t+1)3/2

(k+1)3/2(t−k+1)3/2
.

As sups≤1 ‖Bs‖ has Gaussian concentration, (3.2) yields

P
[
∃s ≤ t, u ∈ Nt : ‖Xs(u)‖ ≥ f t,y(s)

]
≤ Cye−

√
2y

t−1∑
k=0

(t+1)3/2

(k+1)3/2(t−k+1)3/2
≤ Cye−

√
2y.

Remark 3.2. From proof of Lemma 3.1, observe the mean number of individuals hitting

the frontier f t,y between times k and t− k is bounded from above by Cye−
√

2y

k1/2
.

By Lemma 3.1, we bound from above the tail of the maximal displacement at time t.

Lemma 3.3. There exists C > 0 such that for any t ≥ 1 and y ∈ [1, t1/2],

P
(
Rt ≥

√
2t+ d−4

2
√
2

log t+ y
)
≤ Cye−

√
2y.

Proof. Let t ≥ 1 and y ∈ [1, t1/2]. By continuity of the paths of the individuals we have

P(Rt ≥ f t,yt ) ≤ P
(
∃u ∈ Nt : Xt(u) ≥ f t,yt

)
≤ P

(
∃u ∈ Nt,∃s ≤ t : Xs(u) ≥ f t,ys

)
,

consequently Lemma 3.1 yields P(Rt ≥ f t,yt ) ≤ Cye−
√
2y.

As f t,yt =
√

2t+ d−1
2
√
2

log(t+ y)− 3
2
√
2

log(t+ 1) + y, for any t ≥ 1 large enough, for any

y ∈ [10, t1/2], we have f t,y−5t ≤
√

2t+ d−4
2
√
2

log t+ y ≤ f t,y+5
t , concluding the proof.

4 A local lower bound on the maximal displacement

For any t ≥ 1, y ∈ [1, t1/2] and v ∈ Sd−1, we set

At,y =
{
u ∈ Nt : ∀s ≤ t, ‖Xs(u)‖ ≤ f t,ys

}
and At,yv =

{
u ∈ At,y : Xt(u).v ≥ f t,yt − 1

}
.

By Lemma 3.1, we have At,y = Nt with probability at least 1− Cye−y. Thus with high
probability, At,yv is the set of individuals that made a large displacement at time t in
direction v. To bound Rt from below, we bound the probability that At,yv is non-empty,
using the Cauchy-Scharz inequality. We start bounding the mean of #At,yv .

Lemma 4.1. There exists C > 0 such that for any t ≥ 1, y ∈ [1, t1/2] and v ∈ Sd−1,

ye−
√
2yt−(d−1)/2/C ≤ E

[
#At,yv

]
≤ Cye−

√
2yt−(d−1)/2.
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Proof. Let t ≥ 1, y ∈ [1, t1/2] and v ∈ Sd−1. The upper bound of E(#At,yv ) is a straightfor-
ward computation. Applying the many-to-one lemma, we have

E
[
#At,yv

]
= etP

[
Bt.v ≥ f t,yt − 1, ‖Bs‖ ≤ f t,ys , s ≤ t

]
≤ etP

[
βt ≥ f t,yt − 1, βs ≤ f t,ys , s ≤ t

]
,

where B is a d-dimensional Brownian motion, and β = B.v. By the Girsanov transform,

E
[
#At,yv

]
≤ E

[
e−
√
2βt1{βt≥f̃t,yt −1,βs≤f̃

t,y
s ,s≤t}

]
≤ Ce−

√
2yt(1−d)/2y,

using (2.4), which ends the proof of the upper bound.
Let B be a d-dimensional Brownian motion, we set β = B.v and B⊥ = B − βv. Note

that B⊥ is a d − 1-dimensional Brownian motion independent of β. Let α < 1/2, there
exists λ > 0 such that for any 1 ≤ s ≤ t and y ≥ 1,{

x ∈ Rd :
−1/2 ≤ x.v ≤ f t,ys − 1/2− (s ∧ (t− s))α
‖x− (x.v)v‖ ≤ 1/2 + λmin(sα+1/2, t1/2)

}
⊂
{
x ∈ Rd : ‖x‖ ≤ f t,ys

}
.

Therefore, using Lemma 2.1, we have

E
[
#At,yv

]
= etP

[
Bt.v ≥ f t,yt − 1, ‖Bs‖ ≤ f t,ys , s ≤ t

]
≥ etP

[
βt ≥ f t,yt − 1,−1 ≤ βs ≤ f t,ys − 1/2− (s ∧ (t− s))α, s ≤ t

]
×P

[∥∥B⊥s ∥∥ ≤ 1/2 + λmin
(
s1/2+α, t1/2

)
, s ≤ t

]
.

By standard Brownian estimates, we have

inf
t>0

P
[∥∥B⊥s ∥∥ ≤ 1 + λmin

(
s1/2+α, t1/2

)
, s ≤ t

]
> 0.

Moreover, using once again the Girsanov transform and (2.4), we have

etP
[
βt ≥ f t,yt − 1,−1 ≤ βs ≤ f t,ys − 1/2− (s ∧ (t− s))α, s ≤ t

]
≥ E

[
e−
√
2βt1{βt≥f̃t,yt −1,−1≤βs≤f̃

t,y
s −1/2−(s∧(t−s))α,s≤t}

]
≥ e−

√
2yt(1−d)/2y/C.

We conclude that E [#At,yv ] ≥ e−
√
2yt(1−d)/2y/C.

We now bound from above the second moment of #At,yv .

Lemma 4.2. There exists C > 0 such that for any t ≥ 1, y ∈ [1, t1/2] and v ∈ Sd−1,

E
[
(#At,yv )2

]
≤ Cye−

√
2yt−(d−1)/2.

Proof. To compute this second moment, we use Lemma 2.2. Let B and B′ be two
independent Brownian motions, and W s : r ∈ [0, t] 7→ Br∧s +B′(r−s)+ . We have

E
[(

#At,yv
)2] ≤ E

[
#At,yv

]
+

∫ t

0

e2t−sP

[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t
W s
t .v ≥ f

t,y
t − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t

]
ds. (4.1)

By Lemma 4.1, we have E [#At,yv ] ≤ Cye−
√
2yt−(d−1)/2.

Let 0 ≤ s ≤ t and β a standard Brownian motion. By the Markov property, we have

e2t−sP

[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t
W s
t .v ≥ f

t,y
t − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t

]
≤ e2t−sP

[
Bt.v ≥ f t,yt − 1, Br.v ≤ f t,yr , r ≤ t
W s
t .v ≥ f

t,y
t − 1,W s

r .v ≤ f t,yr , r ≤ t

]
≤ esE

[
φs(βs)

21{βr≤ft,yr ,r≤s}

]
,
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where φs : x ∈ R 7→ et−sP
[
βt−s ≥ f t,yt − 1, βr + x ≤ f t,ys+r, r ≤ t− s

]
. By the Girsanov

transform and (2.4) again, we have

φs(x) ≤ C(1 + (f t,ys − x)+)e
√
2(x−y−

√
2s)(t+ 1)−(d−4)/2(t− s)−3/2.

Consequently

e2t−sP

[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t
W s
t .v
′ ≥ f t,yt − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t

]
≤ Ce−2

√
2y

(t+1)d−4(t−s+1)3
esE

[
e2
√
2(βs−

√
2s)
(
1 +

(
f t,ys − βs

))2
1{βr≤ft,yr ,r≤s}

]
≤ Ce−2

√
2y

(t+1)d−4(t−s+1)3
E

[
e
√
2βs
(

1 +
(
f̃ t,ys − βs

))2
1{βr≤f̃t,yr ,r≤s}

]
,

using the Girsanov transform. By decomposition with respect to the value of βs we have

E

[
e
√
2βs
(

1 +
(
f̃ t,ys − βs

))2
1{βr≤f̃t,yr ,r≤s}

]
≤ C

+∞∑
k=0

e
√
2(f̃t,ys −k)(k + 1)2P

(
βs − f̃ t,ys ∈ [−k − 1,−k], βr ≤ f̃ t,yr , r ≤ s

)
≤ Cye

√
2y(s+ y + 1)(d−1)/2(t− s+ 1)3/2t−3/2(s+ 1)−3/2

+∞∑
k=0

(k + 1)3e−
√
2k.

We conclude that for any 0 ≤ s ≤ t,

e2t−sP

[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t
W s
t .v
′ ≥ f t,yt − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t

]
≤ Cye−

√
2y

(t+ 1)(d−1)/2
(s+ y + 1)(d−1)/2

(t+ 1)(d−1)/2
t3/2

(s+ 1)3/2(t− s+ 1)3/2
. (4.2)

Therefore, (4.1) yields E
[
(#At,yv )2

]
≤ Cye−

√
2yt−(d−1)/2.

Remark 4.3. By (4.2), a straightforward adaptation of Lemma 2.2, Lemma 2.3 and
Lemma 3.1, the following side result holds: as soon as d ≥ 2, for any 0 ≤ R ≤ t

P

[
∃u, u′ ∈ Nt :

‖Xt(u)‖ ≥ f t,0t , ‖Xt(u
′)‖ ≥ f t,0t , ‖Xt(u)−Xt(u

′)‖ ≤ t1/2
MRCA(u, u′) ≤ t−R

]
≤ C logR

R1/2
,

(4.3)
where MRCA(u, u′) is the time at which the most recent common ancestor of u and u′ was
alive. In other words, in a d-dim. BBM, two individuals on the frontier of the process that
are close to each other are close relatives. This result is well-known to fail in dimension
1, where individuals close to the edge of the process are either close relative, or their
lineage had split within time OP(1).

Using Lemmas 4.1 and 4.2 as well as the Cauchy-Schwarz inequality, for any t ≥ 1,
y ∈ [1, t1/2] and v ∈ Sd−1, we have

P
(
∃u ∈ Nt : V (u).v ≥

√
2t+ d−4

2
√
2 log t

+ y
)
≥ ye−

√
2yt−(d−1)/2/C. (4.4)

This is a lower bound of the probability there exists an individual making a large
displacement in direction v. To conclude the proof of the lower bound of Theorem 1.1,
we bound from above the correlation between the existence of individuals making large
displacements in two distinct directions v and v′ at the same time.
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Maximal displacement of d-dimensional branching Brownian motion

Lemma 4.4. There exists C > 0 such that for any t ≥ 1, y ∈ [1, t1/2] and v, v′ ∈ Sd−1 such
that ‖v − v′‖ ≥ Ct−1/2 and ‖v + v′‖ ≥ 3/2, setting θ = arccos(v.v′) we have

E
[
#At,yv #At,yv′

]
≤ Cye−

√
2y

(t+ 1)(d−1)/2

[
1

θd−2(t+ 1)(d−1)/2
+ e−θ

2t

]
.

Figure 2: Path of individuals reaching the frontier of the branching Brownian motion.

Proof. We choose C > 0 large enough such that for any t ≥ 1, y ∈ [1, t1/2] and v, v′ ∈ Sd−1

verifying ‖v − v′‖ > Ct−1/2, we have{
x ∈ Rd : ‖x‖ ≤ f t,yt , x.v ≥ f t,yt − 1, x.v′ ≥ f t,yt − 1

}
= ∅.

Thus we assume in the rest of the proof that At,yv ∩ A
t,y
v′ = ∅.

Let v 6= v′ ∈ Sd−1 be such that v.v′ ≥ 0 and ‖v − v′‖ > Ct−1/2. We set w = v+v′

‖v+v′‖ ,

w′ = v−v′
‖v−v′‖ and θ ∈ [0, π/4] such that v = w cos(θ)+w′ sin(θ). With the notation of Lemma

2.2, we have

E
[
#At,yv #At,yv′

]
≤
∫ t

0

e2t−sP

[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t
W s
t .v
′ ≥ f t,yt − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t

]
. (4.5)

Applying the Markov property at time s, we have

e2t−sP

[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t
W s
t .v
′ ≥ f t,yt − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t

]
≤ esE

[
φs,v(Bs)φs,v′(Bs)1{‖Br‖≤ft,yr ,r≤s}

]
,

where φs,v : x ∈ Rd 7→ et−sP
[
(Bt−s + x).v ≥ f t,yt − 1, ‖Br + x‖ ≤ f t,ys+r, r ≤ t− s

]
. For any

v ∈ Sd−1 and x ∈ Rd such that ‖x‖ ≤ f t,ys , setting β = B.v, we have

φs,v(x) ≤ et−sP
[
βt−s ≥ f t,yt − 1− x.v, βr ≤ f t,ys+r − x.v, r ≤ t− s

]
≤ E

[
e−
√
2βt−s1{βt−s≥f̃t,yt −1+

√
2s−x.v,βr≤f̃t,ys+r+

√
2s−x.v,r≤t−s}

]
≤ C

(t+ 1)(d−4)/2
e−
√
2ye
√
2(x.v−

√
2s) (f t,ys − x.v)+

(t− s+ 1)3/2
,

by the Girsanov transform and (2.4). Consequently, we have

e2t−sP
[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t,W s

t .v
′ ≥ f t,yt − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t
]

≤ C e−2
√

2y

td−4(t−s+1)3
esE

[
e
√
2(Bs.(v+v

′)−2
√
2s)(f t,ys −Bs.v)+(f t,ys −Bs.v′)+1{‖Br‖≤ft,yr ,r≤s}

]
.

We observe that for any x ∈ Rd

f t,ys −x.v = f t,ys −x.w cos(θ)−x.w′ sin(θ) = f t,ys (1−cos(θ))+cos(θ)(f t,ys −x.w)−x.w′ sin(θ).
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For any a, b ∈ R we have (a+ b)+(a− b)+ ≤ 2a2 (both when |b| < a and |b| ≥ a), thus(
f t,ys − x.v

)
+

(
f t,ys − x.v′

)
+
≤ 2

(
f t,ys (1− cos(θ)) + cos(θ)

(
f t,ys − x.w

))2
≤ 4

((
f t,ys (1− cos(θ))

)2
+ cos(θ)2

(
f t,ys − x.w

)2)
.

As θ ∈ [0, π/4], there exists C > 0 such that 1 − cos(θ) ≤ Cθ2. Therefore, we have

(f t,ys − x.v)+ (f t,ys − x.v′)+ ≤ C
(

(s+ y)2θ4 + (f t,ys − x.w)
2
)

, yielding

e2t−sP
[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t,W s

t .v
′ ≥ f t,yt − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t
]

≤ Ce−2
√
2yes

(t+ 1)d−4(t− s+ 1)3
E
[
e2
√
2(βs cos(θ)−

√
2s)
[
(s+ y)2θ4 + (f t,ys − βs)2

]
1{βr≤ft,yr ,r≤s}

]
.

We use once again the Girsanov transform, we have

esE
[
e2
√
2(βs cos(θ)−

√
2s)
[
(s+ y)2θ4 + (f t,ys − βs)2

]
1{βr≤ft,yr ,r≤s}

]
= e4s(cos(θ)−1)E

[
e
√
2(2 cos(θ)−1)βs

[
(s+ y)2θ4 + (f̃ t,ys − βs)2

]
1{βr≤f̃t,yr ,r≤s}

]
.

For any θ < π
4 , we have 2 cos(θ)− 1 > 0.4. Decomposing with respect to the value of βs,

E
[
e
√
2(2 cos(θ)−1)βs

[
(s+ y)2θ4 + (f t,ys − βs)2

]
1{βr≤ft,yr ,r≤s}

]
≤ Cy(s+ y)2θ4

(s+ 1)3/2
(s+ y)(d−1)/2(t− s+ 1)3/2

(t+ 1)3/2
e
√
2y+2

√
2(cos(θ)−1)y,

using (2.4). We conclude that for any s ≤ t,

e2t−sP
[
Bt.v ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , r ≤ t,W s

t .v
′ ≥ f t,yt − 1, ‖W s

r ‖ ≤ f t,yr , r ≤ t
]

≤ C ye−
√
2y

(t+ 1)(d−1)/2
(t+ 1)3/2

(s+ 1)3/2(t− s+ 1)3/2
θ4(s+ y)(d+3)/2

(t+ 1)(d−1)/2
e−1.1θ

2(s+y). (4.6)

Note that for any λ > 0,∫ t/2

0

(t+ 1)3/2

(s+ 1)3/2(t− s+ 1)3/2
(s+ y)(d+3)/2

(t+ 1)(d−1)/2
e−λ(s+y)ds

≤
∫ +∞
0

sd/2e−λsds

(t+ 1)(d−1)/2
≤ Γ(d/2 + 1)

λd/2+1(t+ 1)(d−1)/2
.

Moreover, for any s > t/2,

e2t−sP
[
Bt.v ≥ f t,yt − 1,W s

t .v
′ ≥ f t,yt − 1, ‖Br‖ ≤ f t,yr , ‖W s

r ‖ ≤ f t,yr , r ≤ t
]
≤ Ce−1.1θ

2t.

Therefore, (4.5) and (4.6) yield

E
[
#At,yv #At,yv′

]
≤ Cye−

√
2y

(t+ 1)(d−1)/2

[
1

θd−2(t+ 1)(d−1)/2
+ e−θ

2t

]
.

The proof of Lemma 4.4 hints that with high probability, two individuals u, u′ alive
at time t close to the frontier of the process such that ‖Xt(u)−Xt(u

′)‖ ≥ Ct1/2 verify
MRCA(u, u′) = oP(t). By Lemmas 4.1, 4.2 and 4.4, we bound from below P(Rt ≥ f t,yt ).
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Maximal displacement of d-dimensional branching Brownian motion

Lemma 4.5. For any ε > 0, there exists C > 0 such that for any t ≥ 1, v ∈ Sd−1 and
y ∈ [1, t1/2] we have

P
(
∃u ∈ Nt : ‖Xt(u)‖ ≥

√
2t+ d−4

2
√
2

log t+ y, Xt(u)
‖Xt(u)‖ .v > 1− ε

)
≥ ye−

√
2y/C.

Proof. Let v ∈ Sd−1, we set v2, . . . vd such that (v, v2, . . . vd) is an orthonormal basis of Rd.
Let ε > 0 and t ≥ 1, we set

Lt,ε =
{
w ∈ Sd−1 : w.v > 1− ε

2 ,
t1/2

C (w.vj) ∈ Z, j ∈ {2, . . . d}
}
,

where C is a constant that we choose large enough such that Lemma 4.4 holds. Note

there exists K > 0 such that t(d−1)/2

K ≤ #Lt,ε ≤ Kt(d−1)/2. We observe that for any t ≥ 1

large enough and y ∈ [1, t1/2], we have

P

(
∃u ∈ Nt : ‖Xt(u)‖ ≥ f t,yt − 1,

Xt(u)

‖Xt(u)‖
.v > 1− ε

)
≥ P

 ⋃
w∈Lt,ε

At,yw 6= ∅

 ,
and we bound this probability using the Cauchy-Scharz inequality. We have

P

 ⋃
w∈Lt,ε

At,yw 6= ∅

 ≥ P

 ∑
w∈Lt,ε

#At,yw ≥ 1

 ≥ E
[∑

w∈Lt,ε #At,yw
]2

E

[(∑
w∈Lt,ε #At,yw

)2] . (4.7)

By Lemma 4.1, we have E
[∑

w∈Lt,ε #At,yw
]
≥ #Lt,ε ye−

√
2y

Ct(d−1)/2 ≥ ye−
√

2y

C . Similarly,

using Lemma 4.2 we have E
[∑

w∈Lt,ε (#At,yw )
2
]
≤ Cye−

√
2y. As w.w′ ≥ Ct−1/2 for any

w 6= w′ ∈ Lt,ε, we apply Lemma 4.4 to compute

E

 ∑
w 6=w′∈Lt,ε

#At,yw #At,yw′


≤ Cye−

√
2y

t(d−1)/2

∑
w 6=w′∈Lt,ε

[
1

arccos(w.w′)d−2(t+ 1)(d−1)/2
+ e− arccos(w.w′)2t

]
. (4.8)

We observe there exists C > 0 such that
‖w−w′‖

C ≤ arccos(w.w′) ≤ C‖w − w′‖ for all

w,w′ ∈ Lε,t. Consequently, setting Zd−1t = Zd−1 ∩
[
−Ct1/2, Ct1/2

]d−1
, (4.8) becomes

E

 ∑
w 6=w′∈Lt,ε

#At,yw #At,yw′

 ≤ Cye−
√
2y

t(d−1)/2

∑
w 6=w′∈Lt,ε

(
1

‖w−w′‖d−2(t+1)(d−1)/2 + e−‖w−w
′‖2t
)

≤ Cye−
√
2y

∑
(k2,...,kd)∈Zd−1

t

(
t(d−2)/2

(
∑d
j=2 k

2
j)

(d−2)/2
(t+1)(d−1)/2

+ e−(
∑d
j=2 k

2
j)
)
,

where (k2, . . . kd) are integers such that (w − w′).vj = Ct−1/2kj . Note that∑
(k2,...kd)∈Z(d−1)

t

1(∑d
j=2 k

2
j

)(d−2)/2 ≤ Ct1/2 and
∑

(k2,...kd)∈Z(d−1)
t

e−(
∑d
j=2 k

2
j) ≤ C,

which yields E
[∑

w 6=w′∈Lt,ε #At,yw #At,yw′
]
≤ Cye−

√
2y. Thus by (4.7), we have

P

(
∃u ∈ Nt : ‖Xt(u)‖ ≥ f t,yt − 1,

Xt(u)

‖Xt(u)‖
.v > 1− ε

)
≥ ye−

√
2y

C
.
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Maximal displacement of d-dimensional branching Brownian motion

To conclude the proof, we observe that for any t ≥ 1 large enough and y ∈ [1, t1/2], we
have f t,y−5t ≤

√
2t+ d−4

2
√
2

log t+ y ≤ f t,y+5
t .

Proof of Theorem 1.1. We set rt =
√

2t+ d−4
2
√
2

log t. The upper bound of Theorem 1.1 is a

straightforward consequence of Lemma 3.3, as limy→+∞ supt≥0 P (Rt ≥ rt + y) = 0.
The lower bound is obtained using a standard cutting argument. We observe the

process (#Nt, t ≥ 0) is a standard Yule process. In particular, for any h > 0, #Nh is
a Geometric random variable with parameter e−h. By Lemma 3.3, we have P(Rh ≥√

2h + h1/2) ≤ Ch1/2e−
√
2h1/2

. Applying the Markov property at time h, on the event
Rh ≤

√
2h + h1/2, the probability that Rt+h ≤ rt − 2h is bounded from above by the

probability that none of the #Nh individuals alive at time h have a descendent that made
a displacement greater that rt. Thus

P(Rt+h ≤ rt − 2h) ≤ P(Rh ≥
√

2h+ h1/2) + e−h
+∞∑
j=0

(1− e−h)jP(Rt ≤ rt + 1)j

≤ Ch1/2e−
√
2h1/2

+
e−h

1− (1− e−h)P(Rt ≤ rt + 1)
.

By Lemma 4.5, supt≥0 P(Rt ≤ rt+1) < 1, yielding limh→+∞ supt≥0 P(Rt+h ≤ rt−2h) = 0,
which concludes the proof.
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