A Gaussian martingale which is the sum of two independent Gaussian non-semimartingales*

Marc Yor ${ }^{\dagger}$

Abstract

In this paper two examples of two independent centered Gaussian processes are given such that at least one of them is not a semimartingale but their sum is a martingale.

Keywords: Martingales; semimartingales; Gaussian processes; Brownian bridges.
AMS MSC 2010: 60G15; 60G44.
Submitted to ECP on December 31, 2014, final version accepted on September 28, 2015.

1 Certain mixed Fractional Brownian motions are semimartingales

In his thesis, P . Cheridito $[1,2]$ obtained the following remarkable result: if $\left(B_{t}, t \geq 0\right)$ and $\left(B_{t}^{(H)}, t \geq 0\right)$ denote two independent Gaussian processes, the first one being a Brownian motion, and the second one a fractional Brownian motion with Hurst parameter $H \in] 3 / 4,1]$, i.e.,

$$
E\left[B_{t}^{(H)}\right]=0 \quad \text { and } \quad E\left[\left(B_{t}^{(H)}-B_{s}^{(H)}\right)^{2}\right]=|t-s|^{2 H}, s, t \geq 0
$$

then, for every $\alpha \in \mathbb{R}$, the sum:

$$
\Sigma_{t}^{(H)}=B_{t}+\alpha B_{t}^{(H)}, \quad t \geq 0
$$

is a semimartingale with respect to its own natural filtration.
Notice that, for $H=1$, one has: $B_{t}^{(1)}=t \xi$, where ξ is a standard Gaussian variable, and consequently, $\left(\sum_{t}^{(1)}, t \geq 0\right)$ is a semimartingale in the filtration $\mathcal{B}_{t}^{(\xi)}:=\sigma\left\{B_{s}, s \leq\right.$ $t ; \xi\}$, made right continuous, hence, a fortiori, with respect to its own filtration. However, for $H \in] 3 / 4,1\left[,\left(B_{t}^{(H)}, t \geq 0\right)\right.$ has zero quadratic variation, but infinite variation on any time interval, hence it is not a semimartingale with respect to its own filtration, which makes Cheridito's result remarkable.

Note: Throughout the rest of this paper, when we say that a process $\left(\Pi_{t}, t \geq 0\right)$ is a semimartingale with no further qualification, we mean: semimartingale with respect to its own filtration made right continuous and \mathbb{P}-complete.

[^0]A Gaussian martingale which is the sum of two Gaussian non-semimartingales

2 Some related questions

In the light of Cheridito's result, one may ask the following question:
$(*)$ to give a "simpler" example of a pair of independent centered Gaussian processes, $\left(X_{t}, t \geq 0\right)$ and $\left(Y_{t}, t \geq 0\right)$, one of which at least is not a semimartingale, but such that the sum is a semimartingale.
In Section 3, we shall give an example where $\left(X_{t}, t \geq 0\right)$ is constructed from a Brownian bridge, and is not a semimartingale whereas $\left(Y_{t}, t \geq 0\right)$ has bounded variation. In Section 4, pushing the construction of Section 3 one step further, we shall give another example of $(*)$, where neither $\left(X_{t}\right)$ nor $\left(Y_{t}\right)$ is a semimartingale. For the moment, we simply note that, in order to obtain some positive answer to $(*)$, at least one of the Gaussian processes $\left(X_{t}\right)$ or $\left(Y_{t}\right)$ must have some non-zero quadratic variation, i.e., $\sum_{\tau_{n}}\left(\Delta X_{t_{i}}\right)^{2}$ does not converge to 0 , where $\tau_{n}=\left\{0=t_{0}<t_{1}<\cdots<t_{p_{n}}=1\right\}$, $\Delta X_{t_{i}}=X_{t_{i}}-X_{t_{i-1}}$, and $\sup _{\tau_{n}}\left(t_{i}-t_{i-1}\right) \xrightarrow{(n \rightarrow \infty)} 0$. This assertion follows from the

Lemma 2.1.

(i) Assume that X and Y are two independent centered Gaussian processes, and τ is a subdivision of $[0,1]$. Then

$$
\begin{aligned}
& \max \left(E\left[\sum_{\tau}\left|\Delta X_{t_{i}}\right|\right] ; E\left[\sum_{\tau}\left|\Delta Y_{t_{i}}\right|\right]\right) \\
\leq & E\left[\sum_{\tau}\left|\Delta(X+Y)_{t_{i}}\right|\right] \leq E\left[\sum_{\tau}\left|\Delta X_{t_{i}}\right|+\sum_{\tau}\left|\Delta Y_{t_{i}}\right|\right] .
\end{aligned}
$$

(ii) If both, X and Y, have zero quadratic variation and at least one of them has infinite variation on a set of positive probability, then $X+Y$ also enjoys these two properties.

Proof. (i) Only the LHS inequality needs to be proven; but this follows from

$$
E\left[\left|\Delta(X+Y)_{t_{i}}\right|\right]=\sqrt{\frac{2}{\pi}}\left\|\Delta X_{t_{i}}+\Delta Y_{t_{i}}\right\|_{2} \geq \sqrt{\frac{2}{\pi}}\left\|\Delta X_{t_{i}}\right\|_{2}=E\left[\left|\Delta X_{t_{i}}\right|\right]
$$

(ii) It is clear that $X+Y$ has zero quadratic variation. On the other hand, it follows from
(i) and our hypothesis in (ii) that

$$
E\left[\int_{0}^{1}\left|d\left(X_{s}+Y_{s}\right)\right|\right]=\infty
$$

Now it follows from Fernique's integrability result for the norms of Gaussian vectors that $\int_{0}^{1}\left|d\left(X_{s}+Y_{s}\right)\right|$ cannot be finite a.s.

3 Brownian bridges and a first solution to (*)

Let $u>0$, and denote by $\left(\eta_{u}(t), t \leq u\right)$ a Brownian bridge of length u, i.e., $\left(B_{t}, t \leq u\right)$ conditioned to be equal to 0 at time u. Recall that it can be realized as $\eta_{u}(t)=B_{t}-\frac{t}{u} B_{u}$, η_{u} is independent of B_{u}, and its canonical decomposition is

$$
\begin{equation*}
\eta_{u}(t)=\beta_{t}-\int_{0}^{t} d s \frac{\eta_{u}(s)}{u-s}, \quad t \leq u \tag{3.1}
\end{equation*}
$$

where $\left(\beta_{t}, t \leq u\right)$ is a Brownian motion in the filtration $\left(\mathcal{P}_{t}^{(u)}, t \leq u\right)$ of η_{u}. Furthermore, there is the following

A Gaussian martingale which is the sum of two Gaussian non-semimartingales

Proposition 3.1. Let $f \in L^{2}([0, u])$. Then
(i) The process

$$
\int_{0}^{t} f(s) d \eta_{u}(s)=\int_{0}^{t} f(s) d \beta_{s}-\int_{0}^{t} d s f(s) \frac{\eta_{u}(s)}{u-s}
$$

is well defined for any $t \leq u$ with

$$
\int_{0}^{u} f(s) d \eta_{u}(s)=\left(L^{2} \text { and a.s. }\right) \lim _{t \uparrow u} \int_{0}^{t} f(s) d \eta_{u}(s) .
$$

(ii) $\left(\int_{0}^{t} f(s) d \eta_{u}(s), t \leq u\right)$ is a semimartingale with respect to $\left(\mathcal{P}_{t}^{(u)}, t \leq u\right)$ if and only
if

$$
\int_{0}^{u} d s|f(s)| \frac{1}{\sqrt{u-s}}<\infty
$$

Proof. (i) The L^{2} and a.s. convergence results are easily obtained from the representations of η_{u} as $\eta_{u}(t)=B_{t}-\frac{t}{u} B_{u}$.
(ii) The semimartingale property of $\left(\int_{0}^{t} f(s) d \eta_{u}(s), t \leq u\right)$ is clearly equivalent to

$$
\int_{0}^{u} d s|f(s)| \frac{\left|\eta_{u}(s)\right|}{u-s}<\infty
$$

The arguments developed in the proof of Theorem 3 in Jeulin and Yor [3] show that this is equivalent to

$$
\int_{0}^{u} d s|f(s)| \frac{1}{\sqrt{u-s}}<\infty
$$

In order to give explicit examples for $(*)$ in the sequel of this paper, let us point out that for $u \in] 0,1]$ and $\alpha \in] 1 / 2,1]$, the function

$$
\psi(s)=\frac{1}{\sqrt{u-s}}|\log (u-s)|^{-\alpha} 1_{(u / 2<s<u)}
$$

satisfies

$$
\int_{0}^{u} d s \psi^{2}(s)<\infty \quad \text { but } \quad \int_{0}^{u} d s \psi(s) \frac{1}{\sqrt{u-s}}=\infty
$$

To obtain a solution to $(*)$, we decompose a Brownian motion $\left(B_{t}, t \leq u\right)$ as

$$
B_{t}=\eta_{u}(t)+\frac{t}{u} B_{u}, \quad t \leq u
$$

and we consider $f_{*} \in L^{2}([0, u])$ such that

$$
\int_{0}^{u} d s\left|f_{*}(s)\right| \frac{1}{\sqrt{u-s}}=\infty \quad \text { and } \quad f_{*}(s) \neq 0 \text { for every } s
$$

Then, taking

$$
X_{t}=\int_{0}^{t} f_{*}(s) d \eta_{u}(s) \quad \text { and } \quad Y_{t}=\frac{B_{u}}{u} \int_{0}^{t} f_{*}(s) d s
$$

we obtain a solution to $(*)$ since X and Y are independent and $X_{t}+Y_{t}=\int_{0}^{t} f_{*}(s) d B_{s}$ is a martingale.

A Gaussian martingale which is the sum of two Gaussian non-semimartingales

4 A "full" solution to (*)

Let $u \in] 0,1[$. We shall use the same idea as in Section 3, but twice instead of once, by decomposing first $\left(B_{t}, t \leq u\right)$ into $\eta_{u}(t)+\frac{t}{u} B_{u}$, and then

$$
\begin{equation*}
\left(\hat{B}_{t} \equiv B_{t+u}-B_{u}, t \leq 1-u\right) \quad \text { into } \quad \hat{\eta}_{1-u}(t)+\frac{t}{1-u} \hat{B}_{1-u} \tag{4.1}
\end{equation*}
$$

Next, for $f \in L^{2}([0,1])$, we write

$$
\begin{aligned}
& \int_{0}^{t} f(s) d B_{s}=\int_{0}^{t} f(s) 1_{(s \leq u)} d B_{s}+1_{(u<t)} \int_{u}^{t} f(s) d B_{s} \\
= & \int_{0}^{t} f(s) 1_{(s \leq u)} d \eta_{u}(s)+\frac{B_{u}}{u} \int_{0}^{t} f(s) 1_{(s \leq u)} d s \\
& +1_{(u<t)} \int_{u}^{t} f(s) d \hat{\eta}_{1-u}(s-u)+1_{(u<t)} \frac{B_{1}-B_{u}}{1-u} \int_{u}^{t} f(s) d s .
\end{aligned}
$$

We then choose $f_{*} \in L^{2}([0,1])$ such that

$$
\int_{0}^{u}\left|f_{*}(s)\right| \frac{d s}{\sqrt{u-s}}=\infty, \quad \int_{u}^{1}\left|f_{*}(s)\right| \frac{d s}{\sqrt{1-s}}=\infty \quad \text { and } \quad f_{*}(s) \neq 0 \text { for all } s<1
$$

Then

$$
X_{t}=\int_{0}^{t} f_{*}(s) 1_{(s \leq u)} d \eta_{u}(s)+1_{(u<t)} \frac{B_{1}-B_{u}}{1-u} \int_{u}^{t} f_{*}(s) d s
$$

and

$$
Y_{t}=1_{(u<t)} \int_{u}^{t} f_{*}(s) d \hat{\eta}_{1-u}(s-u)+\frac{B_{u}}{u} \int_{0}^{t} f_{*}(s) 1_{(s \leq u)} d s
$$

are two independent Gaussian processes such that $X_{t}+Y_{t}=\int_{0}^{t} f_{*}(s) d B_{s}$ is a martingale. Using the semimartingale characterization in part (ii) of Proposition 3.1, it is easily shown that neither X nor Y is a semimartingale. However, we give a few details:

Concerning $\left(X_{t}\right)$, we see that $X_{t}=\tilde{X}_{t}$ for $t \leq u$, where $\tilde{X}_{t}=\int_{0}^{t} f_{*}(s) 1_{(s \leq u)} d \eta_{u}(s)$. Hence the non-semimartingale property of X follows from that of \tilde{X} as discussed in Section 3.

Concerning $\left(Y_{t}\right)$, we have

$$
Y_{u}=\frac{B_{u}}{u} \int_{0}^{u} f_{*}(s) d s \quad \text { and } \quad Y_{t}-Y_{u}=\int_{u}^{t} f_{*}(s) d \hat{\eta}_{1-u}(s-u), \quad t \in[u, 1] .
$$

Now Y, being a Gaussian process, could only be a semimartingale if it were a quasimartingale; see, e.g., Stricker [4]. If

$$
\mathcal{Y}_{u+t}=\sigma\left\{B_{u}, \hat{\eta}_{1-u}(s), s \leq t\right\}
$$

and $\left(\hat{\mathcal{P}}_{t}^{1-u}\right)$ is the filtration of $\hat{\eta}_{1-u}$, it follows from the independence of B_{u} and $\hat{\eta}_{1-u}$ that for $s<t$:

$$
E\left[Y_{u+t}-Y_{u+s} \mid \mathcal{Y}_{u+s}\right]=E\left[Y_{u+t}-Y_{u+s} \mid \hat{\mathcal{P}}_{s}^{1-u}\right]
$$

From Section 3 we know that $\left(Y_{t}-Y_{u}\right)$ is not a $\hat{\mathcal{P}}^{1-u}$-semimartingale. So it is not a $\hat{\mathcal{P}}^{1-u}$-quasimartingale. It follows that $\left(Y_{t}\right)$ is not a \mathcal{Y}-quasimartingale and therefore, also not a \mathcal{Y}-semimartingale.

A Gaussian martingale which is the sum of two Gaussian non-semimartingales

References

[1] Cheriditio P. (2001). Regularizing Fractional Brownian Motion with a view Towards Stock Price Modelling. PhD Thesis. ETH Zürich.
[2] Cheridito P. (2001). Mixed fractional Brownian motion. Bernoulli 7(6), 913-934. MR-1873835
[3] Jeulin, T. and Yor, M. (1979). Inégalité de Hardy, semimartingales, et faux-amix. Séminaire de probabilités de Strasbourg 13, Lect. Notes in Math. 721, 332-359. MR-0544805
[4] Stricker C. (1984). Quelques remarques sur les semimartingales Gaussiennes et le problème de l'innovation. Lecture Notes in Control and Information Sciences 61, 260-276. MR-0874835

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS ${ }^{1}$)
- Non profit, sponsored by $\mathrm{IMS}^{2}, \mathrm{BS}^{3}, \mathrm{PKP}^{4}$
- Purely electronic and secure (LOCKSS ${ }^{5}$)

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Handwritten by Marc Yor in 2001. Typed and lightly edited by Patrick Cheridito in 2014.
 ${ }^{\dagger}$ Université Paris VI, France.

[^1]: ${ }^{1}$ OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
 ${ }^{2}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{3}$ BS: Bernoulli Society http://www.bernoulli-society.org/
 ${ }^{4}$ PK: Public Knowledge Project http://pkp.sfu.ca/
 ${ }^{5}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

