Electron. Commun. Probab. 20 (2015), no. 70, 1-5. DOI: 10.1214/ECP.v20-4034 ISSN: 1083-589X

ELECTRONIC **COMMUNICATIONS** in **PROBABILITY**

A Gaussian martingale which is the sum of two independent Gaussian non-semimartingales*

Marc Yor[†]

Abstract

In this paper two examples of two independent centered Gaussian processes are given such that at least one of them is not a semimartingale but their sum is a martingale.

Keywords: Martingales; semimartingales; Gaussian processes; Brownian bridges. AMS MSC 2010: 60G15; 60G44.

Submitted to ECP on December 31, 2014, final version accepted on September 28, 2015.

1 Certain mixed Fractional Brownian motions are semimartingales

In his thesis, P. Cheridito [1, 2] obtained the following remarkable result: if $(B_t, t \ge 0)$ and $(B_t^{(H)},t\geq 0)$ denote two independent Gaussian processes, the first one being a Brownian motion, and the second one a fractional Brownian motion with Hurst parameter $H \in [3/4, 1]$, i.e.,

$$E\left[B_{t}^{(H)}\right] = 0 \text{ and } E\left[(B_{t}^{(H)} - B_{s}^{(H)})^{2}\right] = |t - s|^{2H}, s, t \ge 0,$$

then, for every $\alpha \in \mathbb{R}$, the sum:

$$\Sigma_t^{(H)} = B_t + \alpha B_t^{(H)}, \ t \ge 0,$$

is a semimartingale with respect to its own natural filtration. Notice that, for H = 1, one has: $B_t^{(1)} = t\xi$, where ξ is a standard Gaussian variable, and consequently, $(\sum_{t}^{(1)}, t \ge 0)$ is a semimartingale in the filtration $\mathcal{B}_{t}^{(\xi)} := \sigma\{B_{s}, s \le t; \xi\}$, made right continuous, hence, a fortiori, with respect to its own filtration. However, for $H \in [3/4, 1[, (B_t^{(H)}, t \ge 0)]$ has zero quadratic variation, but infinite variation on any time interval, hence it is not a semimartingale with respect to its own filtration, which makes Cheridito's result remarkable.

Note: Throughout the rest of this paper, when we say that a process $(\Pi_t, t > 0)$ is a semimartingale with no further qualification, we mean: semimartingale with respect to its own filtration made right continuous and \mathbb{P} -complete.

^{*}Handwritten by Marc Yor in 2001. Typed and lightly edited by Patrick Cheridito in 2014.

[†]Université Paris VI, France.

2 Some related questions

In the light of Cheridito's result, one may ask the following question:

(*) to give a "simpler" example of a pair of independent centered Gaussian processes, $(X_t, t \ge 0)$ and $(Y_t, t \ge 0)$, one of which at least is not a semimartingale, but such that the sum is a semimartingale.

In Section 3, we shall give an example where $(X_t, t \ge 0)$ is constructed from a Brownian bridge, and is not a semimartingale whereas $(Y_t, t \ge 0)$ has bounded variation. In Section 4, pushing the construction of Section 3 one step further, we shall give another example of (*), where neither (X_t) nor (Y_t) is a semimartingale. For the moment, we simply note that, in order to obtain some positive answer to (*), at least one of the Gaussian processes (X_t) or (Y_t) must have some non-zero quadratic variation, i.e., $\sum_{\tau_n} (\Delta X_{t_i})^2$ does not converge to 0, where $\tau_n = \{0 = t_0 < t_1 < \cdots < t_{p_n} = 1\}$, $\Delta X_{t_i} = X_{t_i} - X_{t_{i-1}}$, and $\sup_{\tau_n} (t_i - t_{i-1}) \stackrel{(n \to \infty)}{\longrightarrow} 0$. This assertion follows from the

Lemma 2.1.

(i) Assume that X and Y are two independent centered Gaussian processes, and τ is a subdivision of [0, 1]. Then

$$\begin{aligned} \max \left(E\left[\sum_{\tau} |\Delta X_{t_i}|\right]; E\left[\sum_{\tau} |\Delta Y_{t_i}|\right] \right) \\ \leq E\left[\sum_{\tau} |\Delta (X+Y)_{t_i}|\right] \leq E\left[\sum_{\tau} |\Delta X_{t_i}| + \sum_{\tau} |\Delta Y_{t_i}|\right]. \end{aligned}$$

(ii) If both, X and Y, have zero quadratic variation and at least one of them has infinite variation on a set of positive probability, then X + Y also enjoys these two properties.

Proof. (i) Only the LHS inequality needs to be proven; but this follows from

$$E\left[|\Delta (X+Y)_{t_i}|\right] = \sqrt{\frac{2}{\pi}} \, \|\Delta X_{t_i} + \Delta Y_{t_i}\|_2 \ge \sqrt{\frac{2}{\pi}} \, \|\Delta X_{t_i}\|_2 = E\left[|\Delta X_{t_i}|\right].$$

(ii) It is clear that X + Y has zero quadratic variation. On the other hand, it follows from (i) and our hypothesis in (ii) that

$$E\left[\int_0^1 |d(X_s + Y_s)|\right] = \infty.$$

Now it follows from Fernique's integrability result for the norms of Gaussian vectors that $\int_0^1 |d(X_s + Y_s)|$ cannot be finite a.s.

3 Brownian bridges and a first solution to (*)

Let u > 0, and denote by $(\eta_u(t), t \le u)$ a Brownian bridge of length u, i.e., $(B_t, t \le u)$ conditioned to be equal to 0 at time u. Recall that it can be realized as $\eta_u(t) = B_t - \frac{t}{u}B_u$, η_u is independent of B_u , and its canonical decomposition is

$$\eta_u(t) = \beta_t - \int_0^t ds \frac{\eta_u(s)}{u-s}, \quad t \le u,$$
(3.1)

where $(\beta_t, t \leq u)$ is a Brownian motion in the filtration $(\mathcal{P}_t^{(u)}, t \leq u)$ of η_u . Furthermore, there is the following

ECP 20 (2015), paper 70.

Proposition 3.1. Let $f \in L^2([0, u])$. Then

(i) The process

$$\int_0^t f(s)d\eta_u(s) = \int_0^t f(s)d\beta_s - \int_0^t ds f(s)\frac{\eta_u(s)}{u-s}$$

is well defined for any $t \leq u$ with

$$\int_0^u f(s) d\eta_u(s) = (L^2 ext{ and a.s.}) \lim_{t \uparrow u} \int_0^t f(s) d\eta_u(s).$$

(ii) $\left(\int_0^t f(s)d\eta_u(s), t \le u\right)$ is a semimartingale with respect to $(\mathcal{P}_t^{(u)}, t \le u)$ if and only if

$$\int_0^u ds \, |f(s)| \, \frac{1}{\sqrt{u-s}} < \infty.$$

Proof. (i) The L^2 and a.s. convergence results are easily obtained from the representations of η_u as $\eta_u(t) = B_t - \frac{t}{u}B_u$.

(ii) The semimartingale property of $(\int_0^t f(s) d\eta_u(s), t \leq u)$ is clearly equivalent to

$$\int_0^u ds \, |f(s)| \, \frac{|\eta_u(s)|}{u-s} < \infty$$

The arguments developed in the proof of Theorem 3 in Jeulin and Yor [3] show that this is equivalent to

$$\int_0^u ds \, |f(s)| \, \frac{1}{\sqrt{u-s}} < \infty.$$

In order to give explicit examples for (*) in the sequel of this paper, let us point out that for $u \in [0, 1]$ and $\alpha \in [1/2, 1]$, the function

$$\psi(s) = \frac{1}{\sqrt{u-s}} |\log(u-s)|^{-\alpha} \mathbb{1}_{(u/2 < s < u)}$$

satisfies

$$\int_0^u ds \psi^2(s) < \infty \quad \text{but} \quad \int_0^u ds \psi(s) \frac{1}{\sqrt{u-s}} = \infty.$$

To obtain a solution to (*), we decompose a Brownian motion $(B_t, t \leq u)$ as

$$B_t = \eta_u(t) + \frac{t}{u}B_u, \quad t \le u,$$

and we consider $f_* \in L^2([0,u])$ such that

$$\int_0^u ds |f_*(s)| \frac{1}{\sqrt{u-s}} = \infty \quad \text{and} \quad f_*(s) \neq 0 \text{ for every } s.$$

Then, taking

$$X_t = \int_0^t f_*(s) d\eta_u(s)$$
 and $Y_t = \frac{B_u}{u} \int_0^t f_*(s) ds$,

we obtain a solution to (*) since X and Y are independent and $X_t + Y_t = \int_0^t f_*(s) dB_s$ is a martingale.

ECP 20 (2015), paper 70.

ecp.ejpecp.org

4 A "full" solution to (*)

Let $u \in [0,1[$. We shall use the same idea as in Section 3, but twice instead of once, by decomposing first $(B_t, t \leq u)$ into $\eta_u(t) + \frac{t}{u}B_u$, and then

$$(\hat{B}_t \equiv B_{t+u} - B_u, t \le 1 - u)$$
 into $\hat{\eta}_{1-u}(t) + \frac{t}{1-u}\hat{B}_{1-u}.$ (4.1)

Next, for $f \in L^2([0,1])$, we write

$$\int_{0}^{t} f(s)dB_{s} = \int_{0}^{t} f(s)1_{(s \le u)}dB_{s} + 1_{(u < t)} \int_{u}^{t} f(s)dB_{s}$$

=
$$\int_{0}^{t} f(s)1_{(s \le u)}d\eta_{u}(s) + \frac{B_{u}}{u} \int_{0}^{t} f(s)1_{(s \le u)}ds$$

+
$$1_{(u < t)} \int_{u}^{t} f(s)d\hat{\eta}_{1-u}(s-u) + 1_{(u < t)} \frac{B_{1} - B_{u}}{1-u} \int_{u}^{t} f(s)ds.$$

We then choose $f_* \in L^2([0,1])$ such that

$$\int_{0}^{u} |f_{*}(s)| \frac{ds}{\sqrt{u-s}} = \infty, \quad \int_{u}^{1} |f_{*}(s)| \frac{ds}{\sqrt{1-s}} = \infty \quad \text{and} \quad f_{*}(s) \neq 0 \text{ for all } s < 1.$$

Then

$$X_t = \int_0^t f_*(s) \mathbf{1}_{(s \le u)} d\eta_u(s) + \mathbf{1}_{(u < t)} \frac{B_1 - B_u}{1 - u} \int_u^t f_*(s) ds$$

and

$$Y_t = \mathbf{1}_{\{u < t\}} \int_u^t f_*(s) d\hat{\eta}_{1-u}(s-u) + \frac{B_u}{u} \int_0^t f_*(s) \mathbf{1}_{\{s \le u\}} ds$$

are two independent Gaussian processes such that $X_t + Y_t = \int_0^t f_*(s) dB_s$ is a martingale. Using the semimartingale characterization in part (ii) of Proposition 3.1, it is easily shown that neither X nor Y is a semimartingale. However, we give a few details:

Concerning (X_t) , we see that $X_t = \tilde{X}_t$ for $t \leq u$, where $\tilde{X}_t = \int_0^t f_*(s) \mathbb{1}_{(s \leq u)} d\eta_u(s)$. Hence the non-semimartingale property of X follows from that of \tilde{X} as discussed in Section 3.

Concerning (Y_t) , we have

$$Y_u = \frac{B_u}{u} \int_0^u f_*(s) ds \text{ and } Y_t - Y_u = \int_u^t f_*(s) d\hat{\eta}_{1-u}(s-u), \quad t \in [u,1].$$

Now Y, being a Gaussian process, could only be a semimartingale if it were a quasimartingale; see, e.g., Stricker [4]. If

$$\mathcal{Y}_{u+t} = \sigma\{B_u, \, \hat{\eta}_{1-u}(s), \, s \le t\}$$

and $(\hat{\mathcal{P}}_t^{1-u})$ is the filtration of $\hat{\eta}_{1-u}$, it follows from the independence of B_u and $\hat{\eta}_{1-u}$ that for s < t:

$$E[Y_{u+t} - Y_{u+s} \mid \mathcal{Y}_{u+s}] = E[Y_{u+t} - Y_{u+s} \mid \hat{\mathcal{P}}_s^{1-u}].$$

From Section 3 we know that $(Y_t - Y_u)$ is not a $\hat{\mathcal{P}}^{1-u}$ -semimartingale. So it is not a $\hat{\mathcal{P}}^{1-u}$ -quasimartingale. It follows that (Y_t) is not a \mathcal{Y} -quasimartingale and therefore, also not a \mathcal{Y} -semimartingale.

ECP 20 (2015), paper 70.

ecp.ejpecp.org

References

- [1] Cheriditio P. (2001). Regularizing Fractional Brownian Motion with a view Towards Stock Price Modelling. PhD Thesis. ETH Zürich.
- [2] Cheridito P. (2001). Mixed fractional Brownian motion. Bernoulli 7(6), 913-934. MR-1873835
- [3] Jeulin, T. and Yor, M. (1979). Inégalité de Hardy, semimartingales, et faux-amix. Séminaire de probabilités de Strasbourg 13, Lect. Notes in Math. 721, 332–359. MR-0544805
- [4] Stricker C. (1984). Quelques remarques sur les semimartingales Gaussiennes et le problème de l'innovation. *Lecture Notes in Control and Information Sciences* 61, 260–276. MR-0874835

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS¹)
- Non profit, sponsored by IMS 2 , BS 3 , PKP 4
- Purely electronic and secure (LOCKSS⁵)

Help keep the journal free and vigorous

- Donate to the IMS open access fund⁶ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

¹OJS: Open Journal Systems http://pkp.sfu.ca/ojs/

 $^{^2\}mathrm{IMS:}$ Institute of Mathematical Statistics <code>http://www.imstat.org/</code>

³BS: Bernoulli Society http://www.bernoulli-society.org/

⁴PK: Public Knowledge Project http://pkp.sfu.ca/

⁵LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

⁶IMS Open Access Fund: http://www.imstat.org/publications/open.htm