
Electron. Commun. Probab. 20 (2015), no. 69, 1–8.
DOI: 10.1214/ECP.v20-3853
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Poisson allocations with bounded connected cells

Alexander E. Holroyd* James Martin†

Abstract

Given a homogenous Poisson point process in the plane, we prove that it is possible
to partition the plane into bounded connected cells of equal volume, in a translation-
invariant way, with each point of the process contained in exactly one cell. Moreover,
the diameter D of the cell containing the origin satisfies the essentially optimal tail
bound P(D > r) < c/r. We give two variants of the construction. The first has the
curious property that any two cells are at positive distance from each other. In the
second, any bounded region of the plane intersects only finitely many cells almost
surely.
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1 Introduction

Let Π be a simple point process on Rd. Its support is the random set of points
[Π] := {x ∈ Rd : Π({x}) = 1}. Let L denote Lebesgue measure or volume on Rd. An
allocation of Π (to R2) is a random measurable map Φ : Rd → Rd ∪ {∞} such that
almost surely Φ(x) ∈ [Π] for L-almost every x ∈ Rd, and Φ(x) = x for all x ∈ [Π]. For a
point x ∈ [Π], the set Φ−1(x) is called the cell of x. (The reason for allowing a null set to
be mapped to∞ is to avoid uninteresting complications concerning boundaries of cells.)
An allocation Φ is translation-invariant if for every y ∈ Rd, the map x 7→ Φ(x− y) + y

has the same law as Φ.
Of particular interest are translation-invariant fair allocations, in which all cells have

equal volume. Such allocations were introduced in [7] as a tool in the construction
of shift-couplings of Palm processes. Several specific choices of allocation have been
studied in depth [1, 2, 3, 4, 5, 8, 9, 10, 11, 12]. A particular focus is on bounding the
diameter of a typical cell, for allocations to a homogenous Poisson point process.

In the plane R2, it is natural to ask whether all cells of a fair allocation can be
connected sets. (This is clearly impossible in R, while in Rd for d ≥ 3 it is straightforward
to modify any allocation to make the cells connected). Krikun [10] constructed the first
translation-invariant fair allocation of a Poisson process to R2 with connected cells
(answering a question in [7]), but was unable to determine whether its cells are bounded.
Here we construct an allocation whose cells are both connected and bounded, answering
a question posed by Scott Sheffield and Yuval Peres (personal communications).
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Poisson allocations with bounded connected cells

Theorem 1. Let Π be a homogeneous Poisson point process of intensity 1 on R2. There
exists a translation-invariant allocation of Π in which almost surely each cell is a bounded,
connected set of area 1 that contains the allocated point. Moreover, the diameter D of
the cell containing the origin satisfies P(D > t) < c/t for some c and all t > 0, and in
addition we may choose either one of the following properties:

(a) any two cells are at non-zero distance from each other; or

(b) any bounded set in R2 intersects only finitely many cells.

It is easily seen that no allocation can satisfy both (a) and (b): (a) implies that the line
segment joining any two points of [Π] intersects infinitely many cells, in contradiction to
(b). In the above, the diameter of a set A ⊆ R2 is supx,y∈A ‖x− y‖, where ‖ · ‖ denotes
the Euclidean norm. The power −1 of t in the tail bound cannot be improved: any
translation-invariant fair allocation of a homogenous Poisson process satisfies ED =∞;
see [7].

The more general question of transports (or couplings) between measures is con-
sidered in [8, 9], and in particular the existence of optimal transports with respect to
a cost function is shown, provided the average transportation cost can be made finite.
In the case of point processes, such transports specialize to give allocations. With cost
proportional to Euclidean distance, the resulting cells are star-shaped with respect to
the associated point and therefore connected (see Corollary 5.11 of [8]). However, this
Euclidean cost is not finite in the case of the Poisson process in R2; again see [7].

In contrast with the allocations considered in [1, 3, 8, 9, 10], those that we provide
are not especially canonical. Rather, the point is that, armed with appropriate tools, it
is not difficult to construct allocations with a variety of desirable properties. The two
parts (a) and (b) will use similar constructions, with the first being slightly simpler. Our
allocations are not deterministic functions of the point process Π, but require additional
randomness. See e.g. [5] for more on this distinction (especially in the context of
matchings). It remains an open question to prove the existence of a translation-invariant
fair allocation with bounded connected cells in R2 that is a deterministic function of
the Poisson process. It is plausible this could be done by combining our methods with
deterministic hierarchical partitioning techniques as in e.g. [6, 13, 14].

2 Rational polyominos

We will construct the cells of the allocations iteratively. To do so, we want the
previously constructed cells to be well-behaved subsets of the plane, while still allowing
sufficient flexibility in the construction of new cells. The following definition strikes the
appropriate balance.

A rational polyomino is a union of finitely many closed rational rectangles of the
form

[a, b]× [c, d] ⊂ R2, a, b, c, d ∈ Q.

By taking the least common denominator, a rational polyomino can also be expressed as
a union of squares

1

m

⋃
z∈S

(
z + [0, 1]2

)
, (2.1)

for some positive integer m and some finite S ⊂ Z2. We write Ao for the topological
interior of a set A ⊆ R2, and A for the closure. We call a rational polyomino simple if its
interior and its complement are both connected, or equivalently if both the set S and its
complement Z2 \ S induce connected subgraphs of the nearest-neighbour lattice Z2 (the
graph in which vertices x, y ∈ Z2 are joined by an edge whenever ‖x− y‖1 = 1).
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Poisson allocations with bounded connected cells

The next lemma says that we can find a simple rational polyomino of any suitable
area that contains one given set but avoids others. See Figure 1 for an illustration.

Lemma 2. Let A be a simple rational polyomino, and let B and D1, . . . , Dr be pairwise
disjoint subsets of A◦, each of which is either a simple rational polyomino or a singleton.
Then, for any rational ρ with LB < ρ < L(A \

⋃
iDi), there exists a simple rational

polyomino C with LC = ρ and

B ⊂ C ⊂ A◦ \
⋃

iDi.

D1

B

D3

D2

A

Figure 1: An illustration of Lemma 2. On the left, a simple rational polyomino A,
containing in its interior simple rational polyominos B and D1, and singletons D2 and
D3. On the right, a simple rational polyomino C (shaded) within the interior of A that
contains B and avoids D1, D2, D3.

Proof. We first observe that any singletons among the given sets may be replaced with
simple rational polyominos. Let k be a positive integer, and, for each singleton set
Di = {xi}, let D′i be the union of all squares of the form k−1([0, 1]2 + z) for z ∈ Z2 that
contain the point xi (at most 4 of them). For non-singleton sets Dj let D′j = Dj . Similarly
define B′ in terms of B. For k sufficiently large, D′1, . . . , D

′
r and B′ are pairwise disjoint

subsets of A◦, and LB′ < ρ < L(A \
⋃

iD
′
i). Therefore, it suffices to prove the lemma in

the case when there are no singletons.
There exists an integer m such that each of the polyominos A, B, and D1, . . . , Dr can

be expressed as a union of squares of side 1/m as in (2.1). Thus, let K,L ⊂ Z2 be such
that

A \
⋃

iDi \B =
1

m

⋃
z∈K

(
z + [0, 1]2

)
; B =

1

m

⋃
z∈L

(
z + [0, 1]2

)
. (2.2)

Note that K and L are disjoint. Both L and its complement are connected (as subsets of
Z2), while K is connected but its complement need not be.

We now further subdivide the squares in (2.2). Given rational s, t ∈ (0, 1) and z ∈ Z2,
consider the rectangle of area st within z + [0, 1]2 given by

Qs,t
z := z +

[
1
2 −

s
2 ,

1
2 + s

2

]
×
[
1
2 −

t
2 ,

1
2 + t

2

]
.

Let w be an element of L that is adjacent in Z2 to some element of K. This is possible
because K∪L corresponds to A \

⋃
iDi and is therefore connected. Now take a spanning
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Poisson allocations with bounded connected cells

tree of the set K ∪{w} in Z2. Consider the set that comprises the rectangle Qs,t
u for each

u ∈ K, together with the rectangle that is the convex hull of Qs,t
u ∪Qs,t

v for each edge
(u, v) of the spanning tree. Take the union of this set with B, and call it Cs,t.

The set m−1Cs,t is a simple rational polyomino that contains B and is contained in
A◦ \

⋃
Di. To complete the proof, we will show that we can choose rational s, t ∈ (0, 1) so

that L(m−1Cs,t) = ρ, which is to say LCs,t = m2ρ.
Note that LCs,t can be expressed as the sum of the following terms: LB, plus st for

each element of K, plus s(1− t)/2 for each vertical edge of the tree that is incident to w,
and s(1− t) for each other vertical edge of the tree, plus similarly (1− s)t/2 or (1− s)t
for each horizontal edge. Therefore,

LCs,t = αst+ βs+ γt+ δ (2.3)

for some rational α, β, γ, δ that do not depend on s, t. Moreover, since the number of
edges of the tree equals the number of elements of K, and at least one edge is incident
to w, we have α, δ > 0 and β, γ ≥ 0.

The expression in (2.3) is continuous and increasing in both s and t on [0, 1]2, and
strictly increasing on (0, 1)2. As (s, t) → (0, 0) we have m−2LCs,t → LB < ρ, while
as (s, t) → (1, 1) we have m−2LCs,t → L(A \

⋃
Di) > ρ. Hence, writing s0 = sup{s :

m−2LCs,0 < ρ} and s1 = inf{s : m−2LCs,1 > ρ}, we have s1 < s0. Fix a rational
s ∈ (s1, s0); we have s ∈ (0, 1) and m−2LCs,0 < ρ < m−2LCs,1. Thus there exists t ∈ (0, 1)

with m−2LCs,t = ρ; by (2.3), this t must be rational.

3 Non-touching allocation

Proof of Theorem 1(a). We first construct an allocation that is invariant under all trans-
lations by elements of Z2 and whose cells have the claimed properties; we will obtain a
fully translation-invariant version by translating both the allocation and the point process
by a uniformly random element of [0, 1)2.

The cells of our allocation will be simple rational polyominos. We first define a
sequence of successively coarser partitions of R2 into squares in a Z2-invariant way.
(This construction is standard; see e.g. [5]). Let (αi)i=0,1,... be i.i.d. uniformly random
elements of the discrete cube {0, 1}2, independent of Π. Given the sequence (αi), define
a k-block for k ≥ 0 to be any set of the form [0, 2k)2 + z2k +

∑k−1
i=0 αi2

i, for z ∈ Z2. (So a
(k + 1)-block is the disjoint union of four k-blocks, and every k-block has area 4k.)

We now construct an allocation in a sequence of steps k = 1, 2, . . .. At step k we will
construct some cells, each of which will be confined within the interior of some k-block.
For step 1 we proceed as follows. For each 1-block R, let x1, x2, . . . , xs be the points of
[Π] ∩ R, enumerated lexicographically, say. If s ≥ 1, let C1 be a rational polyomino of
area 1 that satisfies x1 ∈ C1 ⊂ R◦ and that avoids the other points x2, . . . , xs; this exists
by Lemma 2, with A = R. Declare C1 be the cell allocated to the point x1. Now if s ≥ 2,
similarly find a rational polyomino C2 of area 1 in R that contains x2 and avoids C1 and
x3, . . . , xs, and allocate it to x2. Similarly if s ≥ 3, allocate to x3 a cell avoiding C1 ∪ C2

and x4, . . . , xs. In each case, this is possible by Lemma 2, because the total area required
for C1, C2, C3 is 3, which is strictly less than LR = 4.

For step k we proceed as follows. Let R be a k-block, and enumerate the unallocated
points of [Π] ∩R lexicographically. For each in turn, use Lemma 2 to choose a rational
polyomino of area 1 in R◦ that contains the point, and avoids all other points of [Π] ∩R
and all previously chosen cells that intersect R (all such cells are in fact subsets of R).
Continue until either we run out of unallocated points in R, or the total area of all the
cells in R reaches LR− 1. Do this for each k-block.

After all steps have been completed as above, define an allocation Ψ by setting
Ψ(y) = x if y is in the cell assigned to x ∈ [Π], and Ψ(y) = ∞ for all other y ∈ R2. It
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is clear that each cell of Ψ is either empty or a simple rational polyomino of area 1

that contains the corresponding point of Π. It is also clear that Ψ has the required Z2-
invariance property provided the cells are chosen according to fixed translation-invariant
rules; this is possible since all the steps in the proof of Lemma 2 can be carried out in a
translation-invariant way. Every cell is a closed set, and hence any two non-empty cells
are at positive distance from each other, since they do not intersect.

Now let U be a uniformly random element of the unit square [0, 1)2, independent
of (Π,Ψ), and define a translated allocation Ψ′ by Ψ(x) := U + Ψ(x − U). Then Ψ′ is
a fully translation-invariant allocation of the translated point process Π′ defined by
Π′(A) := Π(A+ U) (which is a Poisson process). It remains to show that every point of
the process is allocated a non-empty cell, and that almost every x ∈ R2 is allocated to
some cell, and that the claimed diameter bound holds.

Let D be the diameter of the cell of Ψ′ containing the origin 0, if it exists, and let
D =∞ if Ψ′(0) =∞. Then D has the same law as the diameter of the cell of Ψ containing
a uniformly random point U in [0, 1)2. Note that any cell that is constructed at step k or
earlier lies entirely within some k-block, and therefore has diameter at most 2k

√
2. By Z2-

invariance, the probability that U is allocated by step k equals the expected proportion of
the k-block containing [0, 1)2 that is allocated by step k. Since the positions of blocks are
independent of Π, this expected proportion remains the same if we condition the k-block
to have a specific position, say S := [0, 2k)2. The total area allocated within S by step
k is precisely min{Π(S), 4k − 1} (since new cells are added while there are unallocated
points until their total area is one less than the area 4k of S). Thus for all integers k ≥ 1,

P
(
D > 2k

√
2
)
≤ 1− 4−k Emin

{
Π(S), 4k − 1

}
≤ 4−k

(
1 + E

[
(4k −Π(S))+

])
Since Π(S) is Poisson distributed with mean 4k, we have E[(4k − Π(S))+] ≤ C

√
4k for

some C, and it follows that P(D > t) < c/t as claimed.
In particular the above implies that D <∞ almost surely, and so almost every x ∈ R2

is assigned to some cell by Ψ′. Since each cell has area 1, a standard mass-transport
argument (see e.g. [3, 5]) then implies that the process of those points of Π′ that are
allocated cells has intensity 1. Since Π′ has intensity 1, this shows that almost surely
every point of Π′ is allocated.

4 Locally finite allocation

Proof of Theorem 1(b). As at the beginning of the proof of part (a), we define a hierarchy
of k-blocks using an i.i.d. sequence (αi). As in the previous proof, it suffices to construct
an appropriate allocation that is invariant under Z2, and then apply a random translation.

For each block we define an inner block. Let (ηk)k≥1 be a strictly decreasing sequence
of rational numbers in ( 1

2 , 1) with ηk ↓ 1
2 as k →∞. If Bk is a k-block then Bk = (a, b) +

[0, 2k)2 for some point (a, b) ∈ Z2. Define its inner block Ik by Ik = (a, b) + [ηk, 2
k − ηk]2.

Thus Ik is a square of side 2k−2ηk with the same centre as Bk. Define alsoMk = Bk∩Ik+1,
where Ik+1 is the inner block of the (k + 1)-block containing Bk. Thus Mk is a square
of side 2k − ηk+1, which contains Ik in its interior (since the sequence ηk is strictly
decreasing).

As in the previous proof, we construct the allocation in a sequence of steps k = 1, 2, . . . .
At step k we add some cells to the allocation, with each such cell confined to the interior
of some k-block.

At step k we treat each k-block separately. Let Bk be a k-block. The following
statement plays the role of induction hypothesis: at the beginning of step k, the closure
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of the union of the previously allocated cells in Bk is a union of disjoint simple rational
polyominos contained in the interior of Ik. In particular, the complement with respect to
Ik of this set is connected.

The allocations during step k will be carried out in such a way that at the end of
step k, the following holds: the closure of the union of the allocated cells in Bk forms a
collection of disjoint simple rational polyominos contained in Mo

k . This property implies
the induction hypothesis for next level k + 1; for if Bk+1 is the (k + 1)-block containing
Bk, then its inner block Ik+1 is made up of the square Mk together with three other
analogous squares; the interiors of these squares are disjoint.

Now we explain how the allocation within Bk at step k is carried out. We say that the
box Bk is good if

LIk < Π(Ik) < LMk. (4.1)

We proceed in two different ways depending on whether or not Bk is good.

If Bk is not good, we allocate only within the inner box Ik. (By the induction hypothe-
sis, all previously allocated cells in Bk are in the interior of Ik). In this case we proceed
in the same fashion as we did in the construction of the non-touching allocation in part
(a). Using Lemma 2, we add new cells in the interior of Ik one by one, each one a simple
rational polyomino disjoint from previous cells. We continue until either the number of
cells is Π(Ik) or the remaining unallocated area inside Ik is at most 1.

If Bk is good, we start by finding a region lying between Ik and Mk which contains a
number of points of Π exactly equal to its area. Because (4.1) holds, this can be done
using Lemma 2, setting ρ = Π(Ik), B = Ik and A = Mk, and setting D1, . . . , Dr to be the
points of Π in Mk \ Ik (and r = 0). In this way we find a simple rational polyomino C with
Ik ⊂ C ⊂Mo

k and Π(C) = L(C).

Now we will divide up the set C to form the cells allocated to points of Π in C. Some
such allocations may already have been done. All the remaining ones except the last can
be done one by one, just as before, using Lemma 2. These new allocations are simple
random polyominos, disjoint from previous cells, containing precisely one point of Π and
contained in the interior of C; in particular the remainder of C stays connected. Finally,
when one point of Π remains in C, and hence when area 1 remains to be allocated, we
allocate the rest of C as the cell of the last point. The closure of this cell is a rational
polyomino, and is connected but not simple.

At the end of the procedure, as in part (a) define Φ by setting Φ(y) = x whenever y is
in the cell assigned to x ∈ [Π], and Φ(y) =∞ otherwise. Each such cell is either empty
or has area 1 and contains the corresponding point of Π. As before, by carrying out the
steps of Lemma 2 in a translation-invariant way, we can ensure that Φ has the required
Z2-invariance property.

If Bk is a good box, then the number of cells that intersect Ik is finite. Also, every
point in Ik is allocated to some cell. To show that every point in R2 is allocated to some
cell and that the allocation is locally finite as desired, it will be enough to show that with
probability 1, every point is in the interior of the inner box of some good box.

Let S be any 1× 1 square. The probability that S is contained in the interior of the
inner box of some k-block is (2k − 2ηk − 1)2/4k, which tends to 1 as k →∞. If this event
holds for some k, then in fact it holds for all k′ > k also (since the inner box of a k-block
lies within the inner box of the containing (k + 1)-block). Hence with probability 1, this
event holds for all large enough k, say k ≥ k0.

Now let Bk be the k-block containing S, with Ik and Mk defined as before. It will
be enough to show that with probability 1, Bk is good for infinitely many k. From
(2), P(Bk is good) = P(LIk < Π(Ik) < LMk). We have LIk = (2k − 2ηk)2, and LMk =
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(2k − ηk+1)2. Therefore, since ηk > ηk+1 >
1
2 ,

LMk − LIk = (2k+1 − 2ηk − ηk+1)(2ηk − ηk+1) > (2k+1 − 3ηk) 1
2

>
√
LIk.

Since Π(Ik) is Poisson(LIk) and LIk →∞, we obtain P(Bk is good) ≥ c for all large
enough k for some constant c (in fact, any c < P(0 < Z < 1) is enough, where Z is a
standard Gaussian).

If the events {Bk is good} were independent for different k, this would be enough;
however, we need to control the dependence. To do this, consider any sequence k1 <
k2 < . . . with the following properties:

(i) P
(

Π (Ikn
) > 1

2

√
LIkn+1

)
< 2−n;

(ii) P
(
LIkn+1

< Π
(
Ikn+1

\ Ikn

)
< LIkn+1

+ 1
2

√
LIkn+1

)
> c′

(where c′ is a constant independent of k).

By similar arguments to the above, this is easily shown to be possible by making kn grow
quickly enough. The events in (ii) are independent for different n, so by Borel-Cantelli,
with probability 1 infinitely many of them occur. The sum of the probabilites in (i) is
finite, so with probability 1 only finitely many of them occur. But for any given n, if the
event in (i) fails and the event in (ii) holds then Bkn+1

is good. So with probability 1,
there are infinitely many k for which Bk is good, as desired.

Finally, we turn to the diameter bound. At step k, the area allocated within a k-block
Bk is at least min (Π(Ik)− 1,LIk − 2). Arguing as for the non-touching allocation in part
(a), we obtain

P(D > 2k
√

2) ≤ 1− 4−kEmin (Π(Ik)− 1,LIk − 2) .

where D is the diameter of the cell containing the origin, in the allocation obtained by
translating Φ by a random element of [0, 1)2. As before, this is easily seen to be at most
C
√

4k for some C <∞, giving the desired bound on the tail of D.
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