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Abstract

We construct a finitely generated group G without the Liouville property such that the

return probability of a random walk satisfies p2n(e, e) & e−n1/2+o(1)

. This shows that
the constant 1/2 in a recent theorem by Saloff-Coste and Zheng, saying that return
probability exponent less than 1/2 implies the Liouville property, cannot be improved.
Our construction is based on permutational wreath products over tree-like Schreier
graphs and the analysis of large deviations of inverted orbits on such graphs.
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1 Introduction

One of the basic topics of study in probability and group theory is the behavior of
random walks on Cayley graphs of finitely generated groups. Among the interesting
parameters of a random walk is the return probability p2n(e, e). There are examples
for which it decays polynomially in n (like Zd or, more generally, groups of polynomial
volume growth) or exponentially (which is the case exactly for nonamenable groups).
Other, intermediate types of behavior are also possible, which motivates the study of
possible exponents γ for which p2n(e, e) ≈ e−nγ . For example, every group of exponential
growth must have γ ≥ 1/3 (see [16]).

Another important parameter is the speed (or drift) of the random walk. The average
distance Ed(X0, Xn) of the random walk from the origin after n steps may grow linearly
with n, in which case we say that the random walk has positive speed, or slower, in
which case we say that the random walk has zero speed. It is thus interesting to ask
what exponents β < 1 such that Ed(X0, Xn) ≈ nβ are possible. For example, it is known
that for every finitely generated group we have β ≥ 1/2 [10], but generally computing
speed seems more difficult than computing return probabilities. Note that the exponents
γ and β as above need not exist (the return probability and average distance from the
origin can oscillate at different scales, see [8]), so in general one should speak about
lim inf and lim sup exponents.

Speed of the random walk is closely related to the properties of harmonic functions on
groups. Recall that a group has the Liouville property (with respect to some generating
set) if every bounded harmonic function on its Cayley graph is constant. A classical
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Non-Liouville groups with return probability exponent at most 1/2

result (see for example discussion in [12, Chapter 9]) says that for groups (though not for
general transitive graphs) having positive speed is equivalent to non-Liouville property.
Note, however, that it is not known if this property is independent of the generating set
(or, more generally, the step distribution of the random walk), which is in contrast to
return probabilities, whose decay rate is stable under quasi-isometries ([14]).

The motivation for this paper is the following remarkable theorem (which is a corollary
of a more general result from [15]): if the return probability satisfies p2n(e, e) ≥ Ke−cnγ

for γ < 1/2 (and some constants K, c > 0), then the group has the Liouville property 1.
In particular, it has zero speed for every generating set (since, as mentioned above, the
property γ < 1/2 is invariant under quasi-isometries). This is the first known general
result connecting return probabilities with speed and showing quasi-isometry invariance
of the Liouville property for a broad class of groups. For more discussion of possible
relationships between these exponents (and also other quantities like entropy or volume
growth) and numerous examples, see ([9, Section 4]).

This result does not characterize the Liouville property, since there exist groups with
γ arbitrarily close to 1 which are still Liouville [7]. In the other direction, it is natural
to ask whether the value 1/2 in the theorem cited above can be improved, i.e. whether
there exist groups with γ arbitrarily close to 1/2 from above (or even equal to 1/2) which
are non-Liouville. Several examples of groups with γ = 1/2 are known ([13]), but they
all have the Liouville property.

The main result of our paper is the construction of a finitely generated group which
has γ ≤ 1/2, but at the same time is non-Liouville. More precisely, consider the upper
return probability exponent:

γ = lim sup
n→∞

log | log p2n(e, e)|
log n

We will prove the following theorem:

Theorem 1.1. There exists a finitely generated group G and a symmetric finitely sup-
ported random walk µ on G such that G is non-Liouville with respect to µ and the upper
return probability exponent satisfies γ ≤ 1/2.

In other words, the return probability for this random walk satisfies the lower bound
p2n(e, e) ≥ Ke−n1/2+o(1)

for some constant K > 0 and the random walk has positive speed.
Previously the smallest known return probability exponent for a non-Liouville group was
3/5 for the lamplighter group Z2 o Z3 ([13]). Determining a good upper bound for the
return probability on G seems to be an interesting problem in its own right.

Idea of the construction

We now sketch the idea of our construction. Among the groups for which one can
provide precise asymptotics for the return probabilities are the lamplighter groups
Z2 oZd. It is known [13, Theorem 3.5] that in this case we have γ = d

d+2 - in particular,
for d = 2 we obtain a group with γ = 1/2. The group Z2 oZ2 is Liouville, but only barely
so, as its speed satisfies Ed(X0, Xn) ≈ n

logn . Thus the idea is that if one could in some
sense do the lamplighter construction for d ≈ 2 + ε for some small ε, or even d ≈ 2 + o(1)

(which would correspond to putting the lamps on a graph with volume growth slightly
faster than quadratic), one would get a group with γ close to 1/2 and, if the graph grows
quickly enough, positive speed.

The problem is of course that there are no “2 + ε”-dimensional Cayley graphs. Never-
theless, one can carry out the lamplighter construction over an almost two dimensional

1This theorem was first announced in [9], but the proof there relies on an assumption about off-diagonal
heat kernel bounds which has not been proved to hold except for groups of polynomial growth.
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Non-Liouville groups with return probability exponent at most 1/2

graph (this time only a Schreier graph, not a Cayley graph) if we move from ordinary
wreath products to permutational wreath products. They are a generalization of wreath
products to the setting where a finitely generated group acts on a Schreier graph (the
usual wreath product would correspond to the group acting on itself). They share
some similarities with the ordinary lamplighter groups, but there are also important
differences (see Section 2 for more discussion).

For the construction of the group G we define a tree-like Schreier graph S which
grows sufficiently quickly so that the simple random walk on it is transient. The graph
naturally defines a group Γ which we call the bubble group. The group G is then defined
as the permutational wreath product Z2 oS Γ, which corresponds to putting Z2-valued
lamps on S, with Γ acting on lamp configurations. One can show that this product is
non-Liouville as soon as S is transient.

In the case of the usual lamplighter group Z2 o Zd, providing a lower bound on the
return probability requires understanding the range of the simple random walk on the
underlying base graph Zd (roughly speaking, the dominant contribution to returning
to identity in the wreath product comes from switching off all the lamps visited, and
the number of visited lamps is governed by the range of the underlying random walk).
To obtain a sharp bound we need to know certain large deviation estimates for the
range, not only its average size. For permutational wreath products the situation is more
complicated, as the size of the lamp configuration on S is governed not by the range
of the simple random walk on S, but by the inverted orbit process. This is a different
random process which is generally not as well understood. In our case the graph S has
large parts which locally look like Z, so one can still analyze the inverted orbits using
large deviation estimates for Z.

As a closing remark we mention that the idea of using “bubble graphs” comes from
looking at orbital Schreier graphs of certain groups of bounded activity acting on trees
(used in [3] to provide examples of groups with speed exponents between 3/4 and 1),
which have somewhat similar branching structure. In particular, Gady Kozma (personal
communication, see also [2]) proposed looking at similar groups permuting vertices of
slowly growing trees as examples in group theory. In general it would be desirable to
obtain a better understanding of inverted orbits and probabilistic parameters (return
probabilities, speed, entropy) on related groups of this type. Some results along these
lines can be found for example in [8], where entropy and return probability exponents
on groups of directed automorphisms of bounded degree trees are analyzed.

Structure of the paper and notation

The paper is structured as follows. In Section 2 we provide the background on
permutational wreath products, inverted orbits and switch-walk-switch random walks
used for the wreath products. In Section 3 we define the family of Schreier graphs and
bubble groups used in the main construction. In Section 4 we provide estimates on the
size of inverted orbits for random walks on the graph. In Section 5 we state the theorem
used to deduce the non-Liouville property from transience and provide a criterion for
checking that the graph defined in the previous section is transient. In Section 6 we fix
the Schreier graph and the bubble group, prove the graph’s transience and provide lower
bounds on return probabilities (using results from Section 3), thus proving Theorem 1.1.

Throughout the paper by c we will denote a positive constant (independent of pa-
rameters like m or n) whose exact value is not important and may change from line to
line. We will also use the notation f(n) . g(n) meaning f(n) ≤ Cg(n) for some constant
C > 0.
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2 Preliminaries

Let us recall the notion of a permutational wreath product. Suppose we have a finitely
generated group Γ acting on a set S and a finitely generated group Λ (in our case this
group will be finite). For x ∈ S we will denote the action of g ∈ Γ on x by x.g. The graph
will usually have a distinguished vertex o called the root.

The permutational wreath product Λ oS Γ is the semidirect product
⊕

S Λ o Γ, where
Γ acts on the direct sum by permuting the coordinates according to the group action.
Elements of the permutational wreath product can be written as pairs (f, g), where g ∈ Γ

and f : S → Λ is a function with only finitely many non-identity values. For two such
pairs (f, g), (f ′, g′) the multiplication rule is given by:

(f, g)(f ′, g′) = (ff
′g−1

, gg′)

where fg
−1

is defined as fg
−1

(x) = f(x.g). If Γ and Λ are finitely generated, then Λ oS Γ

is also finitely generated.
By suppf we will denote the set of vertices of S at which f(s) is not identity.
The usual wreath products (with S = Γ) are often called lamplighter groups - we think

of f as being a configuration of lamps on S and g being the position of a lamplighter. A
random walk on the lamplighter group corresponds to the lamplighter doing a random
walk on Γ and changing values of the lamps along his trajectory.

By analogy with the usual wreath product we will call Γ the base group and Λ the lamp
group. There are however important differences in how random walks on permutational
wreath products behave. To see this, consider a symmetric probability distribution µ on
Γ and a switch-walk-switch random walk X̃n on Λ oS Γ:

X̃n =

n∏
i=1

(li, idΓ)(idΛ, gi)(l
′
i, idΓ)

Here gi are elements of Γ chosen independently according to µ and li, l′i are independent
random switches of the form:

li(x) =

{
idΛ if x 6= o

L if x = o

where L is chosen randomly from a fixed symmetric probability distribution on Λ. We
can write X̃n = (Xn, Zn), where Zn = g1 . . . gn is the random walk on Γ corresponding
to µ and Xn is a random configuration of lamps on S. We will always assume that the
probability distribution on Λ is nontrivial.

Now observe that if we interpret this walk as a lamplighter walking on Γ and switching
lamps on S, the switches happen at locations o, o.g−1

1 , o.g−1
2 g−1

1 , . . ., o.g−1
n . . . g−1

2 g−1
1 . For

ordinary wreath products, with o being the identity of the base group, this is the same
as the orbit of the left Cayley graph, o, g−1

1 .o, g−1
2 g−1

1 .o, . . ., g−1
n . . . g−1

2 g−1
1 .o. However, in

general the set of locations at which switches happen behaves differently from the usual
orbit - for example, it does not even have to be connected.

This phenomenon motivates the definition of the inverted orbit. Suppose that, as
above, we have a group Γ, acting from the right on a set S, and a word w = g1 . . . gn,
where gi are generators of Γ. Given o ∈ S, its inverted orbit under the word w is the set
O(w) = {o, o.g−1

1 , o.g−1
2 g−1

1 , . . . , o.g−1
n g−1

n−1 . . . g
−1
1 }.

Likewise, suppose we have a symmetric probability distribution µ on Γ and the
corresponding random walk Zn = g1g2 . . . gn, where each gi ∈ Γ is chosen independently
according to µ. Given o ∈ S, its inverted orbit under the random walk Zn is the (random)
set O(Zn) = {o, o.g−1

1 , o.g−1
2 g−1

1 , . . . , o.g−1
n g−1

n−1 . . . g
−1
1 }. We call the set-valued process
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O(Zn) the inverted orbit process on S. Abusing the notation slightly we will denote by
Zn both the trajectory of the random walk up to time n and the corresponding group
element.

As noted above, this is not the same as the ordinary orbit, which would correspond to
the set {o, o.g1, o.g1g2, . . . , o.g1g2 . . . gn}. In particular, the inverted orbit process is not a
reversible Markov process.

There are many examples in which permutational wreath products behave differently
from the usual wreath products. For instance, while usual wreath products always
have exponential growth if the base group is infinite and the lamp group is nontrivial,
permutational wreath products can have intermediate growth. This is directly related to
the difference between the behavior of inverted orbits and ordinary orbits (see [6] and
other work by Bartholdi and Erschler).

3 The bubble group

We start by defining the Schreier graph and the group acting on it. Fix a scaling
sequence 1 ≤ α1 ≤ α2 ≤ .... The corresponding graph S(α) is constructed as follows.
The edges of the graph are labelled by two generators a, b and their inverses. The graph
is constructed recursively - the first level consists of the root o, followed by a cycle of
length 2α1. The n-th level is defined in the following way - place a cycle of length 3

(called a branching cycle), labelled cyclically by b, in the middle of each cycle from the
previous level so that each cycle is split into two paths. Then each of the remaining
two vertices on the branching cycle is followed by a cycle of length 2αn (see the picture
below). For a given cycle from the n-th level we will denote its starting point by bn (with
b1 = o). We will think of the graph as extending to the right, so the particles most distant
from the root are the rightmost ones.

The edges of every path are labelled by a and a−1 and every vertex, apart from the
vertices on the branching cycles, is mapped by b and b−1 to itself.

Figure 1: First three levels of the Schreier graph S(α) for α1 = 2, α2 = 3, α3 = 4.

From this graph we obtain a group in natural way. Each of the generators a, b and
their inverses defines a permutation of the vertices of S(α) and we define the bubble
group Γ(α) as the group generated by a and b. Γ(α) acts on S(α) from the right and by
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x.g we will denote the action of g ∈ Γ(α) on a vertex x ∈ S(α). By d(x, y) we will denote
the distance of x and y in S.

4 Bounds on the inverted orbits

In what follows we denote S(α) and Γ(α) by S and Γ for simplicity.
Consider the simple random walk Zn on Γ (each of the generators a, b, a−1, b−1 is

chosen with equal probability) and the corresponding inverted orbit process O(Zn) on
S. Our goal is to prove that, for a suitably chosen scaling sequence, the inverted orbit
process on the Schreier graph S satisfies the same bound on the range as the simple
random walk on Z.

Let sk = α1 + . . . + αk + k be the total distance from o to the branching point bk+1,
with s0 = 0.

Assumption 4.1. From now on we will assume that the scaling sequence satisfies:

dsk−1 ≤ αk

for all k ≥ 2 and some constant d > 0.

In other words, we require each level to be of length comparable to the sum of all
previous levels, so that the graph S is like a tree with branches of length growing at
least exponentially.

We want to reduce bounding the inverted orbit of Zn to analyzing a one-dimensional
random walk. To any given word w in a, b, a−1, b−1 we can naturally associate a path
on Z - a corresponds to moving right, a−1 corresponds to moving left and b, b−1 both
correspond to staying put. As a, b, a−1, b−1 appear with equal probability as steps of Zn,
we get that the random walk Zn = g1 . . . gn projects to a lazy random walk Ẑn = ĝ1 . . . ĝn
on Z (started at the origin), which moves right with probability 1/4, moves left with
probability 1/4 and stays put with probability 1/2.

Let Rn denote the range of Ẑn, i.e. the set of all vertices visited by Ẑn up to
time n. Let An,m denote the event that the range of Ẑn is contained in a small ball,
An,m = {Rn ⊆ [−m,m]}. We have the following lemma on large deviations of a lazy
random walk:

Lemma 4.2. For every n, m ≥ 1 we have:

P (An,m) = P (Rn ⊆ [−m,m]) & e−c
n
m2

Proof. See [1, Lemma 1.2] (or [13, Theorem 3.12] for a more general case).

The following simple observation will be useful: if the trajectory ĝ1 . . . ĝn has its
range bounded between −m and m, then for any subword w = gkgk+1 . . . gl the trajectory
ĝkĝk+1 . . . ĝl (started at the origin) has its range bounded between −2m and 2m. Further-
more w has range bounded between −2m and 2m if and only if w−1 = g−1

l . . . g−1
k+1g

−1
k

satisfies the same bound.
Now consider a particle moving on the graph according to the action of a word w or

its inverse, starting at some vertex x. For two vertices y, z we will say that y is to the
right (resp. to the left) of z if d(o, z) < d(o, y) (resp. d(o, z) > d(o, y)).

We will repeatedly use the following lemma (which is a direct consequence of the
observation above and the assumption An,m):

Lemma 4.3. Suppose that An,m holds for a word w. Let v be a vertex visited by the
particle at some sequence of times and consider any subword w′ of w corresponding to
the minimal part of the trajectory between two subsequent visits to v (or after the last
visit, if v is not visited after certain time). Whenever the particle visits v, if there is no
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branching cycle within distance 2m to the right (resp. to the left) of v, then w′ will move
the particle no further away than 2m to the right (resp. to the left) from v.

Theorem 4.4. Suppose that the scaling sequence satisfies Assumption 4.1. If An,m holds
for the trajectory Zn = g1 . . . gn, then for each x ∈ S and every subword w = gkgk+1 . . . gl
or its inverse we have d(x, x.w) ≤ Km (for some K ≥ 1).

Proof. The idea of the proof is that due to the assumption on exponential-like growth,
the largest level contained in Bm(x) is roughly of the same size as the whole ball, so
we can bound the particle’s position by looking only at its behavior at the last level (or
levels of comparable size), where it behaves like a walk on Z.

We consider three types of vertices: such that B2m(x) intersects only one level, inter-
sects two levels or intersects at least three levels.

(1) In the first case there is no branching cycle within distance 2m from x, so the
ball B2m(x) is isomorphic to a ball in Z and we can directly use the assumption An,m to
conclude that the particle stays within distance at most 2m from x.

(2) In the second case, assume that x belongs to the k-th level and the ball intersects
also the k + 1-st level (the case when the ball intersects the k − 1-st level is analogous).
To the left the ball doesn’t intersect any branching cycle, so we can again directly use
the property An,m. To the right, either the particle doesn’t hit any bk+1, in which case it
is within distance 2m to the right of x, or it hits bk+1 (for one of the two cycles from the
k+1-st level) - then we can apply Lemma 4.3 with v = bk+1 to conclude that it never goes
further than 2m to the right of bk+1. This implies that we always stay within distance at
most 4m from x.

(3) In the third case x must be close to the origin. Namely, if x belongs to the k-th
level, then at least one of αk−1, αk, αk+1 is smaller than 4m (since B2m(x) intersects at
least three levels). Since αk−1 ≤ αk ≤ αk+1, we have αk−1 < 4m. As αk−1 ≥ dsk−2 by
Assumption 4.1, we have (1 + d)αk−1 ≥ d(sk−1 − 1). Now B2m(x) intersects the k − 1-st
level (otherwise we would have 2m ≤ αk ≤ αk+1 and the ball would intersect only two
levels), so d(o, x) ≤ sk−1 + 2m. This gives us:

d(o, x) ≤ 1 + d

d
αk−1 + 1 + 2m ≤

(
2 +

4(1 + d)

d

)
m+ 1 ≤

(
3 +

4(1 + d)

d

)
m

Thus x belongs to a ball Bc1m(o), where c1 is the constant on the right hand side of the
inequality above.

Now take the first level l which has αl ≥ 4m. Then bl is to the right of x and αl−1 < 4m.
We have d(o, bl) = sl−1 and dsl−2 ≤ αl−1, so d(sl−1 − 1) ≤ (1 + d)αl−1 < (1 + d)4m. Thus:

d(o, bl) <
4(1 + d)

d
m+ 1 ≤

(
4(1 + d)

d
+ 1

)
m

Let c2 be the constant multiplying m in the inequality above. If the particle stays to the
left of bl, it is within distance at most c2m from the origin and thus within distance at
most (c1 + c2)m from x. If it hits bl at some point, then, as αl ≥ 4m, for each visit we
can apply Lemma 4.3 with v = bl to conclude that the particle stays within distance 4m

to the right from bl, so it is within distance (4 + c2)m from the origin and thus within
distance (4 + c1 + c2)m from x.

Thus the theorem holds with K = 4 + c1 + c2.
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Corollary 4.5. Under the assumption of the previous theorem, ifAn,m holds, the inverted
orbit process O(Zn) on S satisfies O(Zn) ⊆ BKm(o), where BKm(o) denotes the ball of
radius Km and center o in S (with K as in the previous theorem).

Proof. Recall that O(Zn) = {o, o.g−1
1 , o.g−1

2 g−1
1 , . . . , o.g−1

n g−1
n−1 . . . g

−1
1 }. We can apply the

previous theorem to words of the form g−1
k . . . g−1

2 g−1
1 for k = 1, . . . , n. We get that

d(o, o.g−1
k . . . g−1

2 g−1
1 ) ≤ Km, which proves O(Zn) ⊆ BKm(o).

Thus with probability at least a constant times e−c
n
m2 no vertex is moved by Zn further

than Km from itself and the inverted orbit of o is small (contained in a ball of radius Km
around o).

5 Liouville property and transience

We briefly recall the notions related to the Liouville property and harmonic functions.
Given a measure µ on a group G, a function f : G → R is said to be harmonic (with
respect to µ) if we have f(g) =

∑
h∈G f(gh)µ(h). G is said to have the Liouville property

if every bounded harmonic function on G is constant. As mentioned in the introduction,
this is equivalent to the random walk associated to µ having zero asymptotic speed. This
property a priori depends on the choice of µ (in the case when µ is a simple random walk
- on the choice of the generating set of G).

We want to construct a group which is non-Liouville, i.e. supports nonconstant
bounded harmonic functions. For permutational wreath products one can ensure this by
requiring that the Schreier graph used in the wreath product is transient:

Theorem 5.1. Let Γ and F be nontrivial finitely generated groups and let µ be a finitely
supported symmetric measure on Γ whose support generates the whole group. Let µ̃ be
the measure associated to the corresponding switch-walk-switch random walk on the
permutational wreath product F oS Γ. If the induced random walk on S is transient, then
the group F oS Γ has nontrivial Poisson boundary, i.e. supports nonconstant bounded
harmonic functions (with respect to µ̃).

Related results appear in several places [4]. The formulation we use here comes from
[5, Proposition 3.5]. We briefly sketch the idea of the construction here.

To construct a nonconstant harmonic function on the group, consider the state of the
lamp at o. Since the walk on S is transient, with probability 1 this vertex will be visited
only finitely many times, so after a certain point the value of the lamp will not change
anymore and thus the eventual state L of this lamp is well-defined as n → ∞. Now
one can show that for any vertex x the mapping x 7→ Px(L = e) (where Px denotes the
probability with respect to a random walk started at x) defines a nonconstant bounded
harmonic function on the group.

A useful criterion for establishing transience is based on electrical flows (we formulate
it for simple random walks). Given a graph S, a flow I from a vertex o is a nonnegative
real function on the set of directed edges of S which satisfies Kirchhoff’s law: for each
vertex except o the sum of incoming values of I is equal to the sum of outgoing values. A
unit flow is a flow for which the outgoing values from o sum up to 1. The energy of the
flow is given by E(I) = 1

2

∑
e
I(e)2, where the sum is over the set of all directed edges.

Proposition 5.2 ([11, Theorem 2.11]). If a graph S admits a unit flow with finite energy,
then S is transient.
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6 Lower bound on return probability

Consider the Schreier graph S(α) and the bubble group Γ(α), depending on a scaling
sequence α = (α1, α2, . . .), as described in Section 3. As mentioned in the introduction,
we would like the graph S(α) to be transient and have “2 + o(1)”-dimensional volume
growth, and also satisfy the Assumption 4.1 on exponential-like growth.

To analyze volume growth, consider n such that sk−1 ≤ n < sk (following the notation
of Section 4). Because of the branching structure of S(α), the size of the ball Bn(o) of
radius n around o satisfies:

|Bn(o)| ≤ 2
(
α1 + 1 + 2(α2 + 1) + . . .+ 2k−1(αk + 1)

)
For a scaling sequence satisfying αk = αk+o(k), with α > 1, it is easy to see that the
volume of the ball will satisfy:

|Bn(o)| ≤ n1+ log 2
logα+o(1)

as n → ∞. In particular if we take αk = 2k

f(k) for some positive and sufficiently slowly

increasing function f(k), then:

|Bn(o)| ≤ n2+ε(n) (6.1)

for some nonnegative function ε(n)→ 0 as n→∞. How slowly f(k) should grow will be
determined by the transience requirement.

Consider the graph S(α) and the group Γ(α) defined by taking a scaling sequence αk
satisfying:

∞∑
k=1

αk
2k

<∞

Proposition 6.1. For αk as above the graph S(α) is transient.

Proof. We use the flow criterion from Proposition 5.2. Consider any cycle on the k-th
level of the graph. If the edge e is on the upper half of the cycle and is labelled by a, or
is on the lower half of the cycle and is labelled by a−1, we take the value of I(e) to be
1/2k. The two edges labelled by b and b−1 adjacent to the rightmost point of the cycle
also get the value 1/2k and all other edges have values 0. One readily checks that this
function satisfies Kirchoff’s law and its energy is given by:

E(I) =
1

2

∑
e

I(e)2 =

∞∑
k=1

2k−1α1

(
1

2k

)2

=
1

2

∞∑
k=1

αk
2k

which is finite by the assumption on the scaling sequence.

An example of a scaling sequence satisfying this assumption is αk = d 2k

k2 e and from
now on we denote by S and Γ the graph and the group corresponding to this choice of α.
One can easily check (by induction) that this scaling sequence satisfies Assumption 4.1
on exponential-like growth.

The graph S satisfies the volume growth condition |Bn(o)| ≤ n2+ε(n) described above
for ε(n) . log logn

logn (so that |Bn(o)| ≈ n2 logδ n for some δ > 0). We will use the graph S

and the group Γ to construct a group with the desired behavior of return probabilities.

Consider the permutational wreath product G = Z2 oS Γ. Let Zn be the simple random
walk on Γ and denote by X̃n = (Xn, Zn) the associated switch-walk-switch random walk
on G (with the uniform distribution on the lamp group Z2).
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Denote by pn(g, h) the probability that X̃n = h given X̃0 = g, where g, h ∈ G. To
bound the return probability p2n(e, e), for any finite set A ⊆ G we can write, using the
symmetry of the random walk and Cauchy-Schwarz inequality:

p2n(e, e) =
∑
g∈G

pn(e, g)pn(g, e) =
∑
g∈G

pn(e, g)2 ≥
∑
g∈A

pn(e, g)2 ≥ pn(A)2

|A|

where pn(A) =
∑
g∈A

pn(e, g) is the probability that X̃n is in the set A after n steps.

For the usual lamplighter Z2 oZd we would take A to be the set of all elements with
lamp configurations contained in a ball of radius nα (with α to be optimized later) and
lower bound pn(A) by the probability of the simple random walk on Zd to be actually
confined to a ball of radius nα. Since the base group has polynomial growth, the main
contribution to |A| comes from the number of lamp configurations, which is of the order

of en
dα

(as balls in Zd have volume growth ≈ nd). The probability that the range of a
simple random walk on Zd is contained in a ball of radius nα can be shown to be of
the order of e−n

1−2α

. We want these two terms to be of the same order - optimizing for
α gives that one should consider balls of radius n

1
d+2 , which gives the correct return

probability exponent of d
d+2 .

We use the same approach for the permutational wreath product Z2oSΓ, the difference
being that we are dealing with inverted orbits instead of ordinary random walks and we
have to be more careful with estimating the possible positions of the random walker on
the base group.

Let BKm(o) be a ball of radius Km around o in S (with K as in Theorem 4.4 and m to
be optimized later). We will say that a word w has small inverted orbits if O(w) ⊆ BKm(o).
Consider the set C of group elements with the following property: each element of C
can be represented by a word w of length n such that w has small inverted orbits and
d(x, x.w) ≤ Km for every x ∈ S.

Following the same approach as for the ordinary lamplighter group, in the bound
above we take A = {(f, γ) ∈ G | suppf ⊆ BKm(o), γ ∈ C}.

We have to provide a lower bound on pn(A) and an upper bound on the size of A.

Theorem 6.2. pn(A) & e−c
n
m2 for all n ≥ 1.

Proof. We have pn(A) = P
(
X̃n ∈ A

)
= P (O(Zn) ⊆ BKm(o), Zn ∈ C). By Lemma 4.2,

Theorem 4.4 and Corollary 4.5 with probability at least e−c
n
m2 (up to a multiplicative

constant) the random element Zn simultaneously has small inverted orbits, so O(Zn) ⊆
BKm(o), and does not move any vertex further than Km from itself, which implies that
Zn ∈ C.

Theorem 6.3. |A| . ecm
2+η(m)

for some sequence η(m)→ 0 as m→∞.

Proof. The size of A is at most the number of all lamp configurations with support in
BKm(o) times the size of C. The number of configurations can be bounded above by

2|BKm|, which by the growth condition (6.1) is at most ecm
2+ε(m)

.
To bound the size of C, we use the property that words with small inverted orbits

admit a concise description. Every element γ ∈ Γ can be described by specifying for
each vertex its image under the action of γ. Now suppose γ can be represented by a
word w with the property that d(x, x.w) ≤ Km for every vertex x. Since every vertex
x ∈ S is mapped under the action of w into some other vertex from the ball BKm(x), for
a fixed vertex x we have at most |BKm(x)| possible choices.

Now, for a fixed m we have only finitely many types of vertices for which we have
to specify their images in order to describe γ (since the image of a vertex x under w
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depends only on the isomorphism type of the ball of radius at most Km around x). We
distinguish three types of vertices: 1) vertices such that BKm(x) intersects only one level
in S, 2) BKm(x) intersects two levels in S, 3) BKm(x) intersects at least three levels in
S.

For vertices of the first kind, the ball BKm(x) does not intersect any branching cycle,
which means that it looks like a ball in Z and all vertices of this kind are mapped by γ in
the same way. Thus we have at most 2Km choices for vertices of this kind.

For vertices of the second kind, each of them must be in a ball of radius Km around
a branching point which does not intersect any other branching cycle. Such a ball can
have at most 6Km vertices and each of them is mapped into a ball of radius at most
2Km around a branching point, which can have at most cm vertices (for some c). This
give us at most (cm)6Km possibilities.

For vertices of the third kind, we observe that if BKm(x) intersects at least three
levels and x belongs to the k-th level, then at least one of αk−1, αk, αk+1 is smaller than
2Km. From this and Assumption 4.1 it follows that d(o, x) ≤ cm for some c > 0 (like in
the proof of Theorem 4.4). Thus we have at most |Bcm(o)| vertices of this kind. Since
BKm(x) ⊆ B(c+K)m(o), we have at most |B(c+K)m(o)| choices for each vertex. As ε(m)→,

this gives us at most |B(c+K)m(o)||Bcm(o)| ≤ ecm2+o(1) logm choices for vertices of this kind.

Thus there at most a constant times 2m · (8m)cm · ecm2+o(1) logm possible choices
determining an element γ which can be represented by a word which has small inverted
orbits. This gives us |C| ≤ ecm

2+o(1) logm and |A| ≤ ecm
2+o(1) · |C| ≤ ecm

2+o(1) logm, so the
theorem holds with η(m) . log logm

logm .

Corollary 6.4. The return probability for the random walk X̃n on G = Z2 oS Γ satisfies
for all n ≥ 1:

p2n(e, e) & e−cn
1/2+o(1)

Proof. By combining Theorem 6.2 and Theorem 6.3 we obtain the bound:

p2n(e, e) & e−cm
2+η(m)

e−c
n
m2

To make this bound optimal we want both terms on the right hand side to be of the
same order, which corresponds to taking m such that n

m2 = m2+η(m). This means that

m = n1/4−ε′(n) for some ε′(n) ≥ 0, ε′(n) → 0. Inserting this back into the lower bound
gives us:

p2n(e, e) & e−cn
1/2+f(n)

with f(n) . log logn
logn = o(1) as n→∞.

Remark 6.5. One can do a similar calculation for a more general scaling sequence
satisfying αn = αn+o(n), with α > 1, which then gives:

|A| . ecm
d+o(1)

and

p2n(e, e) & e−cn
d
d+2

with d = 1 + log 2
logα + o(1) as m→∞.

We can now prove the main theorem:

Proof of Theorem 1.1. Take G = Z2 oS Γ for S and Γ as above. By Corollary 6.4 the return
probability for the switch-walk-switch random walk µ on G, induced from the simple
random walk on Γ and a uniform distribution on Z2, satisfies:

p2n(e, e) & e−cn
1/2+o(1)
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which gives the return probability exponent γ ≤ 1/2. The induced random walk on S is
the simple random walk, which by Proposition 6.1 is transient, so by Theorem 5.1 the
group G supports nonconstant bounded harmonic functions. Thus G has both γ ≤ 1/2

and the non-Liouville property.
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