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Abstract

In a recent paper, Shah and Zaman proposed the rumor center as an effective rumor
source estimator for rumor spreading on random graphs. They proved for a very
general random tree model that the detection probability remains positive as the
number of nodes to which the rumor has spread tends to infinity. Moreover, they
derived explicit asymptotic formulas for the detection probability of random d-regular
trees and random geometric trees. In this paper, we derive asymptotic formulas for
the detection probability of grown simple families of random increasing trees. These
families of random trees contain important random tree models as special cases, e.g.,
binary search trees, recursive trees and plane-oriented recursive trees. Our results
show that the detection probability varies from 0 to 1 across these families. Moreover,
a brief discussion of the rumor center for unordered trees is given as well.
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1 Introduction and Results

Rumor spreading on random trees has a long history in the biology, computer science
and probability literature and has been investigated from many different angles. In a
recent paper, Shah and Zaman [10, 11] added a new angle by putting forth the rumor
source detection problem which asks for the correct identification of the rumor source
when only information about the underlying model and the infected nodes is known. In
[10, 11], this problem was discussed for random d-regular trees and random geometric
trees. Then, in [12], the authors generalized their approach to obtain results for very
general families of random trees. Their studies, even though all of them very recent,
have attracted a lot of attention and have led to many follow-up works (e.g., according
to a google scholar search from August 14, 2014, the number of citations of the paper
[11] had already reached 80).

From now on, we assume that some random tree model is fixed. After some time has
elapsed, the rumor has spread to n nodes which form a tree Γ. The main idea in [10, 11]
was to assign a score to the nodes of Γ. The so-called rumor center is then the node
which receives the highest score (where ties are either ignored or broken uniformly at
random). In [10, 11], the authors showed that the rumor source estimator obtained in
this way is the maximum likelihood (ML) estimator if the underlying random tree model
are random d-regular trees. However, for most other random tree models, the rumor
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Rumor source detection on random increasing trees

source estimator is not the ML estimator. Nevertheless, it was shown in [12] that for
very general families of random trees, the rumor source estimator is still effective in the
sense that the detection probability tends to a positive value as the number of infected
nodes n tend to infinity.

Precise asymptotic values for detection probabilities have so far only been found
in the special cases of d-regular trees and geometric trees. It is the purpose of this
work to derive detection probabilities for other classes of random trees, namely, all
subclasses of simple families of random increasing trees whose random model arises
from a (natural) tree evolution process. These subclasses will contain d-regular trees
and, e.g., the following important random tree models:

• Recursive Trees: they have been proposed as a simple model for the spread of
epidemics (a situation very similar to rumor spreading); see Moon [8]. We will
show that they constitute the limiting case of d-regular trees as d tends to infinity.

• Plane-oriented Recursive Trees: they are one of the most simplest models for real
complex networks; see the important paper of Barabási and Albert [1].

We will give a precise mathematical definition of simple families of random increasing
trees below and describe some of their properties; for more information see Bergeron,
Flajolet, and Salvy [2].

We now provide some more details in order to be able to state our results. We fix
some notations. Recall that Γ denotes the tree of the nodes to which the rumor has
spread. We will denote by V (Γ) the nodes of Γ with |Γ| = #V (Γ) and by E(Γ) the edges
of Γ. If v ∈ V (Γ), Γv will denote Γ rooted at v with an (arbitrary) embedding in the plane,
where we will draw Γ in such a way that v is at the top (and the subtrees are below). If
u ∈ V (Γ), then Γvu will denote the subtree at the fringe of Γv rooted at u.

Rumor Center. In this paragraph, we will recall the definition of the rumor center
from [10, 11]. For v ∈ V (Γ), we define a score as follows

R(v,Γ) = n!
∏

u∈V (Γ)

1

|Γvu|
.

This is the so-called shape functional; see for instance Fill [4]. In order to explain its
meaning, we need to recall some further notation from graph theory. We call a rooted
tree ordered if it comes with a fixed embedding into the plane (where in this paper, we
always draw the root at the top); otherwise, the tree is called unordered. Moreover, a
rooted increasing tree of n nodes is a tree whose nodes are labeled with labels from the
set {1, . . . , n} in such a way that every sequence of labels from to the root to a leaf forms
an increasing sequence. Now, we can explain the meaning of the shape functional: it
gives the number of rooted ordered increasing trees which are isomorphic to Γv.

We next recall the definition of rumor center from [10, 11].

Definition 1.1. Let Γ be a tree. A node v ∈ V (Γ) which maximizes R(v,Γ) is called a
rumor center of Γ.

Thus, a rumor center v of Γ is a node such that the number of rooted ordered
increasing trees which are isomorphic to Γv is maximal. Every such increasing tree
corresponds to a spreading order in which the rumor has spread from the source v.
Consequently, if all spreading orders are equally likely (as is the case, e.g., for d-regular
trees; see [10, 11] and below), then the rumor center is the most likely rumor source or
in other words the rumor center is the ML estimator for the rumor source.

It was shown in [10, 11] that the rumor center has a surprisingly easy characterization.
We will give two versions of this characterization. For the first, we need the following
definition.
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Definition 1.2. Let Γ be a tree. A node v ∈ V (Γ) is called a local rumor center if
R(v,Γ) ≥ R(u,Γ) for all u ∈ V (Γ) with {u, v} ∈ E(Γ).

Then, Shah and Zaman proved the following result in [10, 11].

Theorem 1.3 (Shah and Zaman; 2010 - Version 1). Let Γ be a tree. Then, every local
rumor center is a rumor center.

The second version of Sha and Zaman’s result (which is in fact only a more precise
version of the first one) characterizes a rumor center by graph-theoretical properties.

Theorem 1.4 (Shah and Zaman; 2010 - Version 2). Let Γ be a tree with n nodes. Then,
v ∈ V (Γ) is a rumor center of Γ if and only if |Γvu| ≤ n/2 for all u ∈ V (Γ) with {u, v} ∈ E(Γ).
Moreover, if all inequalities are strict there is only one rumor center; otherwise, there
are exactly two adjacent rumor centers.

The rumor source estimator is now defined as follows: if there is only one rumor
center, then we choose this node; if there are two, we either ignore them or choose one
of them uniformly at random.

The appropriateness of the rumor source estimator as defined above depends on the
random model. In the definitions above, we considered ordered trees. This, however,
might not be always appropriate, for instance if the underlying tree model has not a
fixed but dynamic structure (e.g., if a node can spread the rumor to an arbitrary large
number of neighbors; see the definition of recursive trees below). Then, considering
unordered trees might be advantageous. For such trees, the above definition of R(v,Γ)

has to be suitable modified. Unfortunately, the resulting characterization of nodes v
which maximize the score becomes messier; see Section 5 of this paper for details.

(Grown) Simple Families of Increasing Trees. In this paragraph, we are going to
explain the random tree models which will be used in this paper. First, consider the set
of all rooted ordered increasing trees. A simple family of increasing trees consists of this
set together with a sequence of weights (φi)i≥0 with φ0 > 0 and φi > 0 for some i ≥ 2.
For every tree T , we define its weight as

w(T ) =
∏

v∈V (t)

φd(v),

where d(v) is the out-degree of v (= the number of edges of v which point away from the
root). Moreover, set

τn :=
∑

V (T )=n

w(T ).

Then, a probability space on trees of size n is defined as follows: a tree T of size n has
probability w(T )/τn. The resulting family of random trees is called a simple family of
random increasing trees.

We give some prominent examples.

• d-ary trees: φi =
(
d
i

)
, 0 ≤ i ≤ d and φi = 0 for all i > d (here, d ∈ {2, 3, . . .}).

• Recursive trees: φi = 1/i! for all i ≥ 0.

• Generalized plane-oriented recursive trees: φi =
(
r+i−2
i

)
for all i ≥ 0 (here, r > 1 is

a real number).

These three families contain, e.g., random binary trees (d-ary trees with d = 2) which
are equivalent to random binary search trees from computer science and plane-oriented
recursive trees (PORTs for short; these are generalized PORTs with r = 2); see the
introduction and [2] for more explanation concerning the relevance of these two random
tree models.

ECP 20 (2015), paper 2.
Page 3/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3743
http://ecp.ejpecp.org/


Rumor source detection on random increasing trees

The above three families of random increasing trees are very special; see Panholzer
and Prodinger [9]. More precisely, it was shown in [9] that out of all families of random
increasing trees they are the only ones for which the random model alternatively can
also be obtained from a (natural) tree evolution process. Consequently, they have
been nicknamed grown simple families of random increasing trees; see, e.g., Kuba and
Panholzer [6].

We briefly describe the tree evolution process for the above three families.

• d-ary trees: the first node is the root and d empty leaves are attached; for the
second node, one leaf is chosen uniformly at random and the node together with d
empty leaves is placed there; for the third node, again one of the leafs is chosen
uniformly at random, etc.

• Recursive trees: assume that a tree with n− 1 nodes was already constructed; for
the next node, choose one of the nodes uniformly at random and add the next node
as child. (Note that the tree here is unordered.)

• Generalized plane-oriented recursive trees: again assume that a tree with n − 1

nodes was already constructed; for the next node, choose an existing node v with
probability proportional to d(v) + r − 1 (d(v) is the out-degree of v) and add the
next node as child. (The tree is again unordered; however, for r = 2, this random
model is equivalent to the uniform model on rooted ordered increasing trees.)

From these descriptions, it is obvious that the random model of d-ary trees is the
uniform model on rooted ordered increasing d-ary trees and the random model for PORTs
(generalized PORTs with r = 2) is the uniform model on rooted ordered increasing trees
(as already mentioned above). Moreover, the random model for recursive trees is the
uniform model on rooted unordered increasing trees. Thus, the rumor source estimator
described in the previous paragraph is a ML estimator only for the former two families
of random increasing trees but not for the latter (and also not for generalized PORTS
with r 6= 2).

For later purpose, we need some more properties of the above three families of
random increasing trees. Therefore, set

φ(z) =
∑
i≥0

φiz
i, τ(z) =

∑
n≥1

τn
zn

n!
.

Then, it is straightforward to show that

τ ′(z) = φ(τ(z)).

Solving this differential equation for the above families gives the following:

• d-ary trees: τ(z) = −1 + (1− (d− 1)z)−1/(d−1).

• Recursive trees: τ(z) = log(1/(1− z)).
• Generalized plane-oriented recursive trees: τ(z) = 1− (1− rz)1/r.

From this τn is easy to derive by standard Taylor series expansion.

Results. In this paragraph, we explain our results. Consider a random increasing tree
with n nodes (as random model, we choose one of the three random models from the
previous paragraph). We denote by Cn the probability that the node obtained from the
rumor source estimator is indeed the rumor source, where we use here the strategy
that ties are ignored (since ties anyway occur only with asymptotic probability zero;
see below). Then, we have the following result for grown simple families of random
increasing trees.

ECP 20 (2015), paper 2.
Page 4/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3743
http://ecp.ejpecp.org/


Rumor source detection on random increasing trees

Theorem 1.5. (a) (d-ary Trees) We have,

lim
n→∞

P (Cn) = kd-ary = 1− d+ d2−1/(d−1)

with kd-ary increasing in d and

lim
d→∞

kd-ary = 1− ln 2.

Thus, for d ≥ 3,

0.12132 · · · = 3

2

√
2− 2 ≤ kd-ary < 1− ln 2.

(b) (Recursive Trees) We have, limn→∞ P (Cn) = 1− ln 2.

(c) (Generalized PORTs) We have,

lim
n→∞

P (Cn) = kr = r − (r − 1)21/r

with kr decreasing in r and

lim
r→1

kr = 1 and lim
r→∞

kr = 1− ln 2.

Thus, for r > 1,
1− ln 2 < kr < 1.

Remark 1.6. Due to part (b), recursive trees can be seen as the limiting case of d-ary
trees as d tends to infinity. Moreover, note that the detection probability increases from
0 (for d-ary trees with d = 2) all the way to 1 as one goes from d-ary trees to recursive
trees to generalized PORTs.

Part (a) of Theorem 1.5 will follow from a result on a more general family of random
trees: the subtree of the root has d1 subtrees and all other subtrees have d2 subtrees
(subtrees are possibly empty). The random model of this family of trees is as follows:
the first node is the root and d1 empty leafs are attached; for the next node, one leaf is
chosen uniformly at random and the next node together with d2 empty leafs is placed
there; for the third node, again one leaf is chosen uniformly at random, etc. Such random
tree models where the root is treated different have appeared before in literature; see
for instance [7].

For this more general random tree model, we have the following result.

Theorem 1.7. We have,

lim
n→∞

P (Cn) = 1− d1 + d1I1/2

(
1

d2 − 1
,
d1 − 1

d2 − 1

)
,

where Ix(a, b) is the regularized incomplete beta function.

Note that for d1 = d2 = d, we obtain the above result for d-ary trees. Moreover, this
result also contains one of the main results from [11], namely, d1 = d and d2 = d − 1

which are d-regular trees.

Theorem 1.8 (d-regular Trees; see also [12]). For d-regular trees, we have

lim
n→∞

P (Cn) = kd-reg = 1− d

2
+

dΓ( d
d−2 )

2
d

d−2 Γ(d−1
d−2 )2

.

Remark 1.9. As observed in [12], Stirling’s formula implies that

lim
n→∞

kd-reg = 1− ln 2.

Hence, recursive trees are also the limiting case of d-regular trees as d tends to infinity
(this is of course not surprising).
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We conclude the introduction with a brief sketch of the paper. In the next section,
we prove Theorem 1.7. In contrast to [12] this will be done by using tools from Analytic
Combinatorics (in [12] the authors used Pólya urn models and tools from the theory of
stochastic processes). As a consequence, we will obtain part (a) of Theorem 1.5 and
Theorem 1.8. In Section 3, we will prove part (b) of Theorem 1.5. In Section 4, we will
prove part (c) of Theorem 1.7. Finally, in Section 5, we will give a brief discussion of the
rumor center for rooted unordered trees.

2 Generalized d-ary Trees

In this section, we will prove Theorem 1.7.
We start by fixing some notation. First, recall the definition of the trees from Theorem

1.7 (see the paragraph preceding the theorem). The number of these trees with n nodes
will be denoted by τ̃n. Moreover, we will denote by τn the number of d2-ary trees with n
nodes. Then, observe that

τ̃n =
∑

j1+···+jd1=n−1

(
n− 1

j1, . . . , jd1

)
τj1 · · · τjd1 ,

where j1, . . . , jd1 ≥ 0 are the sizes of the d1 subtrees of the root and τ0 := 1. Consequently,

τ̃ ′(z) = (1 + τ(z))d1 , (2.1)

where τ(z) is as in the introduction and

τ̃(z) =
∑
n≥1

τ̃n
zn

n!
.

Recall that

τ(z) = −1 + (1− (d2 − 1)z)−1/(d2−1). (2.2)

Now, we turn to the probability of Cn. By Theorem 1.4, we have

P (Cn) = 1− d1P (size of leftist subtree ≥ n/2). (2.3)

Denote by I the size of the leftist subtree. Then,

P (I = j) =
1

τ̃n

∑
j+j2+···+jd1=n−1

(
n− 1

j, j2, . . . , jd1

)
τjτj2 · · · τjd1

=
(n− 1)!τj
j!τ̃n

∑
j2+···+jd1=n−1−j

τj2
j2!
· · ·

τjd1
jd1 !

=
(n− 1)!τj
j!τ̃n

[zn−1−j ](1 + τ(z))d1−1

=
(n− 1)!τj
j!τ̃n

[zn−1−j ](1− (d2 − 1)z)−
d1−1
d2−1

=
(n− 1)!τj
j!τ̃n

(d2 − 1)n−1−j [zn−1−j ](1− z)−
d1−1
d2−1 . (2.4)

In the sequel, we need the following standard lemma from analytic combinatorics.

Theorem 2.1 (Theorem VI.1 in [5]). For α ∈ C \Z≤0 set

f(z) := (1− z)−α.
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Then, as n→∞,

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

∞∑
k=1

ek(α)

nk

)
,

where ek(α) is a polynomial of degree 2k.

Applying this result to (2.2) gives

τn = n![zn]τ(z) ∼ n!(d2 − 1)n
n

1
d2−1−1

Γ( 1
d2−1 )

.

Similarly, applying the result to (2.1) yields

τ̃n = (n− 1)![zn−1]τ̃ ′(z) ∼ (n− 1)!(d2 − 1)n−1n
d1

d2−1−1

Γ( d1
d2−1 )

.

By (2.3), we need to compute ∑
n/2≤j≤n−1

P (I = j),

where P (I = j) is given by (2.4). To accomplish this task, we again use Theorem 1 and
the expansions for τn and τ̃n from above. This gives

∑
n/2≤j≤n−1

P (I = j) ∼ (n− 1)!

τ̃n

∑
n/2≤j≤n−1

τj
j!

(d2 − 1)n−1−j (n− 1− j)
d1−1
d2−1−1

Γ(d1−1
d2−1 )

∼
Γ( d1

d2−1 )

Γ( 1
d2−1 )Γ(d1−1

d2−1 )
· 1

n
d1

d2−1−1

∑
n/2≤j≤n−1

j
1

d2−1−1(n− 1− j)
d1−1
d2−1−1

∼
Γ( d1

d2−1 )

Γ( 1
d2−1 )Γ(d1−1

d2−1 )
· 1

n

∑
n/2≤j≤n−1

(
j

n

) 1
d2−1−1(

n− 1− j
n

) d1−1
d2−1−1

∼
Γ( d1

d2−1 )

Γ( 1
d2−1 )Γ(d1−1

d2−1 )

∫ 1

1/2

x
1

d2−1−1(1− x)
d1−1
d2−1−1dx. (2.5)

Observe that∫ 1

1/2

x
1

d2−1−1(1− x)
d1−1
d2−1−1dx =

Γ( 1
d2−1 )Γ(d1−1

d2−1 )

Γ(d1−1
d2−1 )

−B
(

1/2;
1

d2 − 1
,
d1 − 1

d2 − 1

)
,

where B(x; a, b) denotes the incomplete beta function. Plugging this into (2.5) and (2.5)
in turn into (2.3) yields Theorem 1.7.

Proof of Theorem 1.5, part (a). Setting d1 = d2 = d and evaluating the expression
obtained in Theorem 1.7 yields the claimed result for kd-ary. Moreover, the claims
concerning monotonicity and limit behavior of kd-ary follow by simple calculus.

Next, we consider the case of d-regular trees, where we set d1 = d and d2 = d − 1.
We need the following lemma.

Lemma 2.2. For α > 0,∫ 1

1/2

xα−1(1− x)αdx =
1

2

(
B(α, α+ 1)− 1

α22α

)
,

where B(a, b) denotes the beta function.
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Proof. First, observe that

B(α, α+ 1) =

∫ 1

0

xα−1(1− x)αdx =

∫ 1/2

0

xα−1(1− x)αdx+

∫ 1

1/2

xα−1(1− x)αdx.

Now, call the first and second integral on the right hand side L and R, respectively. By
integration by parts and substitution, we have

L =
1

α
xα(1− x)α

∣∣∣1/2
0

+R.

Thus,

R =
1

2

(
B(α, α+ 1)− 1

α22α

)
which is the claimed result.

This lemma can be used to evaluate the integral in (2.5). Plugging the result then in
turn into (2.3) yields Theorem 1.8.

3 Recursive Trees

We consider now recursive trees and will prove part (b) of Theorem 1.5. Recall that

τ(z) = ln

(
1

1− z

)
and thus τn = (n− 1)!. Similar to d-ary trees, we have that

P (Cn) = 1− P (one subtree of the root has size ≥ n/2).

In order to find the latter probability observe that at most one subtree of the root has size
at least n/2. Consequently, since recursive trees are unordered trees, we can arrange
the subtrees such that this subtree is the leftist one. Then,

P (one subtree of the root has size = j)

=
1

τn

∑
`≥1

1

(`− 1)!

∑
j+j2+...j`=n−1

(
n− 1

j, j2, . . . , j`

)
τjτj2 . . . τj`

=
(n− 1)!τj
j!τn

[zn−1−j ]
∑
`≥1

τ(z)`−1

(`− 1)!

=
(n− 1)!τj
j!τn

[zn−1−j ]
1

1− z
=

1

j
,

where j ≥ n/2. Plugging this into the expression above gives

P (Cn) = 1−
∑

n/2≤j≤n−1

1

j
= 1−Hn−1 +Hdn/2e−1,

where Hn denotes the n-th harmonic number. We summarize this in a result.

Theorem 3.1 (Recursive Trees). We have, P (Cn) = 1−Hn−1 +Hdn/2e−1.

From this part (b) of Theorem 1.5 follows from standard expansions for harmonic
numbers.
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4 Generalized Plane-oriented Recursive Trees

Finally, we consider generalized plane-oriented recursive trees and prove part (c) of
Theorem 1.8. Recall that

τ(z) = 1− (1− rz)1/r. (4.1)

Then, as in the last section

P (Cn) = 1− P (one subtree of the root has size ≥ n/2).

Since now the subtrees are ordered, we obtain

P (one subtree of the root has size = j) (4.2)

=
1

τn

∑
`≥1

`φ`
∑

j+j2+...j`=n−1

(
n− 1

j, j2, . . . , j`

)
τjτj2 . . . τj`

=
(n− 1)!τj
j!τn

[zn−1−j ]
∑
`≥1

`φ`τ(z)`−1

=
(n− 1)!τj
j!τn

(r − 1)[zn−1−j ](1− τ(z))−r

=
(n− 1)!τj
j!τn

rn−1−j(r − 1), (4.3)

where j ≥ n/2.
We now turn to asymptotic expansions. First, applying Theorem 2.1 to (4.1) gives

τn ∼ −n!rn
n−1/r−1

Γ(−1/r)
.

Plugging this into (4.3) yields

P (one subtree of the root has size ≥ n/2) ∼ r − 1

r
· 1

n

∑
n/2≤j≤n−1

(
j

n

)−1/r−1

∼ r − 1

r

∫ 1

1/2

x−1/r−1dx

= (r − 1)(21/r − 1).

This proves the claimed limit result. The claimed properties of monotonicity and limit
behavior of kr follow by simple calculus.

Remark 4.1. Alternatively to the above asymptotic derivation, one can also derive an
exact expression (similar as in the last section). To give more details, note that from
(4.1), one obtains that

τn = n!(−1)n+1rn
(

1/r

n

)
.

Consequently, from (4.3),

P (one subtree of the root has size ≥ n/2) =
r − 1

r
· (−1)n

n
(

1/r
n

) ∑
n/2≤j≤n−1

(−1)j
(

1/r

j

)
Note that ∑

n/2≤j≤n−1

(−1)j
(

1/r

j

)
= nr(−1)n+1

(
1/r

n

)
+ dn/2er(−1)dn/2e

(
1/r

dn/2e

)
.

Plugging this into the above formula gives the following result.
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Theorem 4.2 (Generalized PORTs). We have,

P (Cn) = r − (r − 1)(−1)n+dn/2e
dn/2e

(
1/r
dn/2e

)
n
(

1/r
n

) .

5 Rumor Center for Unordered Trees

In this final section, we will discuss the rumor center in unordered trees. We will
use the same notation as in Section 1. Moreover, recall that R(v,Γ) gives the number of
rooted ordered increasing trees which are isomorphic to Γv.

If trees are now considered to be unordered instead of ordered, R(v,Γ) has to be
replaced by the shape functional for unordered trees, i.e., by the number of rooted
unordered increasing trees which are isomorphic to Γv. This shape functional has been
introduced and studied by Feng and Mahmoud in [3]. Following this paper, for v ∈ V (Γ),
we define now the score by

S(v,Γ) = (n− 1)!
∏

u∈V (Γ)

w(Γvu)

|Γvu|
,

where

w(Γvu) =

r∏
i=1

1

mi!

with (m1, . . . ,mr) the multiplicities of the subtrees of u in Γvu.
With a slight abuse of notation, we give the following definition.

Definition 5.1. Let Γ be a tree. A node v ∈ V (Γ) is called a local rumor center if
S(v,Γ) ≥ S(u,Γ) for all u ∈ V (Γ) with {u, v} ∈ E(Γ).

Then, as for ordered trees, we have the following theorem.

Theorem 5.2. Let Γ be a tree. Then, every local rumor center is a rumor center.

Proof. Denote by v the local rumor center and consider Γv. Let u ∈ V (Γ) with {u, v} ∈
E(Γ) be fixed. In the sequel, we will use the following notation: by mv

u we denote the
multiplicity of Γvu amongst the subtrees of v in Γv.

First consider
S(v,Γ)

S(u,Γ)
=
mu
v |Γuv |

mv
u|Γvu|

=
mu
v (n− |Γvu|)
mv
u|Γvu|

,

where we used the (trivial) fact that |Γuv |+ |Γvu| = n. Since, due to the assumptions, the
above ratio must be at least one, we have

|Γvu| ≤
mu
vn

mu
v +mv

u

. (5.1)

We will fix now an ũ ∈ V (Γ) with ũ 6= v and {ũ, u} ∈ E(Γ); see the tree on the left in
Figure 1.

Observe that
S(v,Γ)

S(ũ,Γ)
=
S(v,Γ)

S(u,Γ)
· S(u,Γ)

S(ũ,Γ)
≥ mũ

u(n− |Γuũ|)
mu
ũ|Γuũ|

(5.2)

and we have to show that this is at least one. For this, we will consider two cases.
In the first case, we will assume that |Γvu| ≤ n/2. Then, |Γuv | ≥ n/2 and hence mu

v = 1.
Similarly, |Γũu| ≥ n/2 and mũ

u = 1. Moreover, we have

mu
ũ|Γuũ| ≤ |Γvu| ≤ n/2.
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v

u

ũ . . .

u

v
ũ

. . .

Figure 1: The two trees from the proof of Theorem 5.2

This implies that |Γuũ| ≤ n/(2mu
ũ) which in turn implies that |Γuũ| ≤ n/(1 +mu

ũ). Thus, (5.2)
is indeed at least one and hence S(v,Γ) ≥ S(ũ,Γ).

It should be clear that the above argument can be repeated. Consequently, if we
choose a path from v via ũ to a leaf, then the S-value of the nodes is non-increasing as
required.

Next, we consider the second case, where we assume that |Γvu| > n/2. Consider the
tree on the right in Figure 1 which is just the left one rooted at u (i.e., Γu). Due to (5.1),
we have that

|Γuv | ≥
n

mu
v +mv

u

. (5.3)

If Γuũ is isomorphic to Γuv , then the S-value of ũ and v are the same and nothing has to be
proved. So, assume that Γuũ is not isomorphic to Γuv . Then, a simple counting argument
shows that

mu
ũ|Γuũ|+mu

v |Γuv | ≤ n.

Using (5.3), we obtain

|Γuũ| ≤
n

mu
ũ(mu

v +mv
u)
≤ n

1 +mu
ũ

.

This in particular implies that |Γuũ| ≤ n/2 and hence mũ
u = 1. Consequently, (5.2) is

again shown to be at least one. Finally, similar to the first case, this argument can be
iterated such that again the S-value of nodes along paths from v to a leaf (via ũ) are
non-increasing. This concludes the proof.

Remark 5.3. From the proof, we find the following sufficient and necessary condition for
v ∈ V (Γ) to be a rumor center (compare with Theorem 1.4 from the introduction).

Theorem 5.4. Let Γ be a tree with n nodes. Then, v ∈ V (Γ) is a rumor center of Γ if and
only if the following holds for all u ∈ V (Γ) with {u, v} ∈ E(Γ):

|Γvu| ≤
mu
vn

mu
v +mv

u

.

Remark 5.5. In contrast to the ordered case, here Γ can have more than two rumor
centers; also, rumor centers are not necessary adjacent; see Figure 2 for examples.

Remark 5.6. As mentioned in Section 1, the random model of recursive trees is the
uniform model on rooted unordered increasing trees. Thus, the rumor center defined in
this section is the ML estimator for the rumor source. It would be interesting to compute
the detection probability for this estimator (which will be at least 1− ln 2 as follows from
Theorem 1.5). However, the more complicated characterization of the rumor center from
Remark 5.3 makes this a seemingly complicated task.
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v1 v2

Figure 2: Every node of the tree on the left is a rumor center; the nodes v1 and v2 of the
tree on the right are (non-adjacent) rumor centers.
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