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Abstract

A famous result of Bayer and Diaconis [2] is that the Gilbert-Shannon-Reeds (GSR)
model for the riffle shuffle of n cards mixes in 3

2
log2 n steps and that for 52 cards

about 7 shuffles suffices to mix the deck. In this paper, we study variants of the GSR
shuffle that have been proposed to model more realistically how people actually shuffle
a deck of cards. The clumpy riffle shuffle and dealer riffle shuffle differ from the GSR
model in that when a card is dropped from one hand, the conditional probability that
the next card is dropped from the same hand is higher/lower than for the GSR model.
Until now, no nontrivial rigorous results have been known for the clumpy shuffle or
dealer shuffle. In this paper we show that the mixing time is O(log4 n).

Keywords: riffle shuffle; entropy technique; collisions.
AMS MSC 2010: 60J10.
Submitted to ECP on July 19, 2014, final version accepted on November 27, 2014.

1 Introduction

Mixing times for Markov chains is a subject of great importance, both from a theoret-
ical point of view and because of its applicability, and has attracted much attention over
the last decades. A very prominent subclass of mixing time problems is card shuffling,
that is, Markov chains on the symmetric group Sn of permutations of n items that one
can think of as the cards of a deck. Perhaps the most famous of card shuffles is the
Gilbert-Shannon-Reeds (GSR) model for the riffle shuffle for which Bayer and Diaconis
[2] proved a remarkably exact result; there is a sharp cutoff at 3

2 log2 n shuffles after
which the deck is well mixed and for a standard deck of 52 cards, about 7 shuffles
suffices for mixing. Prior to that, Aldous and Diaconis [1] had proved, via a striking
strong uniform time argument, that 2 log2 n shuffles is an upper bound on the mixing
time.

The riffle shuffle is, together with the inefficient overhand shuffle which mixes in
order n2 log n steps (see [7] and [4]), the most common way in which people actually
shuffle a deck of cards. The model for one step of the GSR shuffle is the following. First
the deck is cut into two packets of which one goes into your right hand and the other
into your left hand. The number of cards that go into your right (or left if you like) hand
is a binomial random variable with parameters n and 1/2. Then the cards are dropped
from the two hands in such a way that whenever there are A cards remaining in your
right hand and B cards remaining in your left hand, the probability that the next card is
dropped from your right hand is A/(A+B).

An equivalent description of the GSR shuffle is as follows. At each step
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Dealer shuffles and clumpy shuffles

1. generate a uniform random binary sequence of length n;

2. if the binary sequence has k zeros and n− k ones, cut the deck so that the left pile
has k cards and the right pile has n− k cards, and then interleave the two piles by
reading the binary sequence from left to right, and dropping from the left pile with
each zero and from the right pile with each one.

For example, if n = 6 and the binary sequence is 001110, then we first cut the deck into
two equal piles, then interleave the piles by dropping the first two cards from the left
pile, the next three cards from the right pile, and the last card from the left pile again.

Note that according to the GSR model, when you drop from your right hand, you drop
a single card with probability 1/2, a pair of cards with probability 1/4, a triple of cards
with probability 1/8, and so on. However, if one analyzes riffle shuffles of a fresh deck
of cards in practice, one finds that the shuffles are finer. Cards tend to be dropped in a
more alternating fashion, especially with experienced dealers; see Remark (e) and open
problem (i) of [1]. Such shuffles are named dealer riffle shuffles in [3] and we stick with
this term. On the other hand, when the deck has been used for a long time and become
sticky, the opposite tends to occur, namely that cards are dropped in clumps. Hence we
call these shuffles clumpy riffle shuffles.

A model that includes both the dealer and clumpy shuffles as special cases is the
Markovian model, which appears in the “open problems” section of [3]. The Markovian
model is driven by a two-state Markov chain with transition matrix[

p00 p01
p10 p11

]
and the transition rule is as follows. At each step

1. run n steps of the two-state Markov chain in stationarity to generate a binary
sequence of length n;

2. if the binary sequence has k zeros and n− k ones, cut the deck so that the left pile
has k cards and the right pile has n− k cards, and then interleave the two piles by
reading the binary sequence from left to right, and dropping from the left pile with
each zero and from the right pile with each one.

Note that the Markovian model includes the GSR model as a special case. It is natural
to assume a symmetric cut (that is, p01 = p10, so that the left and right piles have the
same expected size) and we shall do this in the present paper. For p ∈ (0, 1) consider the
two-state Markov chain with transition matrix

Kp :=

[
p 1− p

1− p p

]
.

We shall call this Markov chain the two-state chain with parameter p (or simply the
two-state chain) and we define the p-riffle shuffle as the shuffle driven by this chain.
When p < 1

2 we call the shuffle dealer and when p > 1
2 we call the shuffle clumpy. It is

believed that clumpy riffle shuffles and dealer riffle shuffles mix in O(log n) steps, but for
these shuffles rigorous analysis has been challenging. Indeed, to date no polylogarithmic
upper bound is known for clumpy or dealer shuffles. (However for some extremely
clumpy shuffles where p is allowed to grow with n a few facts are known; see [9].) In this
paper we give the first rigorous upper bound for p-riffle shuffles, showing that O(log4 n)

shuffles suffices to mix the deck.
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Dealer shuffles and clumpy shuffles

2 The time-reversed shuffle and mixing time

Recall that the mixing time of an (aperiodic irreducible) Markov chain is defined
in terms of the total variation distance between the distribution at a given time and
the stationary distribution: if Xt is the state of the Markov chain at time t and π is the
stationary distribution, then the total variation distance is given by

‖P(Xt ∈ ·)− π‖TV := max
A⊆S

(P(Xt ∈ A)− π(A))

=
1

2

∑
s∈S
|P(Xt = s)− π(s)|,

where S is the state space and P is the underlying probability measure. The mixing time
is then defined by

τmix := min{t : ‖P(Xt ∈ ·)− π‖TV ≤
1

4
}.

As with the GSR shuffle before it, it turns out that the analysis of the p-riffle shuffle is
more conveniently carried out for the time-reversed shuffle. Since the GSR shuffle and
p-riffle shuffle are random walks on groups (see [8]) each has the same mixing time as
its time reversal.

For the GSR shuffle, the time reversal can be described as follows. First give each
card an independent 0 or 1 mark, each with probability 1/2. Then put all cards marked 0

above the cards marked 1, without changing the internal order among cards with the
same mark. If we repeat this process and keep track of all the markings that have been
given to each card, then after k shuffles each card has an independent iid sequence
of 0/1 marks of length k. A moment’s thought reveals that the first time, τ , when all
the cards have distinct mark sequences is a strong uniform time, i.e., Xτ is uniformly
distributed and independent of τ . Since τ is highly concentrated around 2 log2 n, this
implies a O(log n) upper bound for the mixing time. This argument, which first appeared
in [1], relies heavily on the independence between the marks for different cards. The
same goes for the more detailed analysis in [2].

For the p-riffle shuffle, the time reversal has the following transition rule. First,
generate marks by running n steps of the two state Markov chain in stationarity. That
is, the first card is given a mark according to a fair coin flip, and subsequent cards are
given the same mark as the previous card with probability p and the opposite mark
with probability 1− p. Then put all cards marked 0 above the cards marked 1, without
changing the internal order among cards with the same mark.

Our main result is:

Theorem 2.1. Fix p ∈ (0, 1). The mixing time τmix for the p-riffle shuffle satisfies

τmix = O(log4 n).

Remark. Other models for finer riffle shuffles have been proposed. The most
prominent is perhaps the Thorp shuffle, for which the best known upper bound to date
is of order log4 n and due to Morris [5]. In the special case n = 2d, there is an upper
bound of O(log3 n), also due to Morris [6]. Both of these papers rely on the same entropy
technique from [5] as we do here.

3 Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the entropy technique introduced in [5], so let us
first review the parts needed. For two probability measures ν and π on a finite space S,
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Dealer shuffles and clumpy shuffles

the relative entropy of ν with respect to π is given by

ENT(ν‖π) =
∑
s∈S

ν(s) log
ν(s)

π(s)
.

Here we will only be concerned with the case when π is uniform. In that case one just
speaks of the relative entropy of ν and drops π from the notation, so that

ENT(ν) =
∑
s∈S

ν(s) log(|S|ν(s)).

For a random variable X, we write ENT(X) for ENT(L(X)), where L(X) is the law of
X. The notation ENT(X|Y = y) then of course stands for the entropy of the conditional
law of X given Y = y and ENT(X|Y ) is the random variable that equals ENT(X|Y = y)

when Y = y. The following lemma relates relative entropy to total variation. It can be
proved by using Schwarz inequality and solving a standard optimization problem.

Lemma 3.1. Let π be the uniform measure on S. Then

‖ν − π‖TV ≤
√

1

2
ENT(ν).

Next, recall the chain rule for relative entropies:

ENT(X,Y ) = ENT(X) + E[ENT(X,Y |X)],

which generalizes to

ENT(X1, X2, . . . , Xn) = E[ENT(X1, . . . , Xn|Xi, . . . , Xn)]

+

n∑
k=i

E[ENT(Xk|Xk+1, . . . , Xn)]

for each i ∈ [n]. Note that the last term in the sum is just ENT(Xn). We will be
concerned with the case when X is a random permutation of n cards. We will write
X(j) for the position of card j (i.e. the card that started in position j) after applying
X. Consequently X−1(j) is the initial position of the card in position j after applying
X. Writing Ej := E[ENT(X−1(j)|Fj+1)], where Fj := σ(X−1(j), X−1(j +1), . . . , X−1(n)),
the chain rule takes on the form

ENT(X) = E[ENT(X|Fi)] +
n∑
k=i

Ek.

In particular

ENT(X) =

n∑
k=1

Ek.

The key result of [5] states that applying random permutations that involve collisions
decreases relative entropy by a certain factor. For a, b ∈ [n], we write c(a, b) for the
random permutation that equals id with probability 1/2 and (a, b) with probability 1/2

and refer to this random permutation as a collision of positions a and b. For permutations
X and Y we write XY for Y ◦X. Let Y be a random permutation that can be written as

Y = c(a1, b1)c(a2, b2) . . . c(ak, bk)Z

where Z is a random or fixed permutation, the ai’s and bi’s all distinct and the c(ai, bi)’s
mutually independent given Z. (However, the identities of the ai’s and bi’s and the
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number of collisions typically depend on Z.) Let Y1, Y2, . . . be independent copies of Y
and write Y(t) = Y1Y2 . . . Yt for t = 1, 2, . . . . We say that the cards x and y collide at time t
if there are two positions i and j, such that Y −1(t−1)(i) = x, Y −1(t−1)(j) = y and Yt contains

the collision c(i, j). Fix t and let T ∈ [t] be a random time independent of the Yi’s. For a
given card x, let b(x) = y if y is the first card that x collides with in [T, t]. If also b(y) = x,
then let m(x) = y (in which case we will also have m(y) = x). Otherwise set m(x) = x.
For the present paper it suffices to note that if x and y collide at time T then m(x) = y.

For each x, let
Ax = max{c : ∀y < x : P(m(x) = y) ≥ c/x}.

Theorem 3.2. ([5]) Let X be a random permutation independent of Y1, . . . , Yt. Then

ENT(X)− ENT(XY(t)) ≥
C

log n

n∑
k=1

AkEk

where C is a universal constant.

We will actually use Theorem 3.2 to analyze the time reversed p-riffle shuffle. In
order to do this we need to generate a step of the shuffle using collisions, and for this
we need the following key fact. For binary sequences M = (M1, . . . ,Mn), let

p(M) = 1
2Kp(M1,M2)Kp(M2,M3) · · ·Kp(Mn−1,Mn)

be the probability of generating M as a trajectory of the two-state chain. If we divide M
into bM4 c blocks of length 4, plus possibly one additional smaller block, then reversing
any block of the form ab(1 − b)a (e.g., 1011) does not change p(M). Furthermore, the
effect of such a change in markings is to interchange the final positions of the middle
two cards in the reversed block.

Let M be the random binary sequence generated for a step of the shuffle. We say
that positions j and j + 1 interact if

1. j is congruent to 2 modulo 4,

2. Mj 6=Mj+1,

3. Mj−1 =Mj+2.

Let C = {j : j interacts with j + 1}. Note that if Z is the permutation generated from M ,
then the permutation Y defined by

Y :=
[∏
j∈C

c(j, j + 1)
]
Z

has the same distribution as Z, so we can define a step of the shuffle to be the permutation
Y .

Now partition the positions in the deck as

Il = {2l−1, 2l−1 + 1, . . . , 2l − 1} ∩ [n],

l = 1, 2, . . . , dlog2(n + 1)e. For each l, let T = Tl be the random time for which P(T =

1) = 2−l+1 and P(T = l + 1 − r) = 2−r, r = 1, . . . , l − 1, so that l + 1 − T is a truncated
geometric(1/2) random variable. Now let t = dlog2 ne and let Y1, Y2, . . . be independent
copies of Y . The following lemma ensures that we can apply Theorem 3.2.

Lemma 3.3. In the above notation, with l fixed and T = Tl, there is a constant c > 0

independent of l and n such that

P(m(x) = y) ≥ c

x

for all x ∈ Il and all y < x.
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The proof of Lemma 3.3 is deferred to Section 4.

Proof of Theorem 2.1 assuming Lemma 3.3. Let X be a random permutation indepen-
dent of the Yi’s. Use the chain rule to write

ENT(X) =

n∑
i=1

Ei =

dlog2(n+1)e∑
l=1

∑
i∈Il

Ei.

Since there are at most log2 n+ 1 ≤ 2 log2 n of the Im’s, we must have that∑
i∈Il∗

Ei ≥
1

2 log2 n
ENT(X)

where l∗ is the l that maximizes the inner sum. Recall that for each x we define

Ax = max{ĉ : ∀y < x : P(m(x) = y) ≥ ĉ/x}.

Applying Lemma 3.3 with l = l∗ shows that there is a constant c > 0 that depends
only on p such that Ai ≥ c for i ∈ Il∗ . Thus Theorem 3.2 gives

ENT(XY(t)) ≤ ENT(X)− C

log n

n∑
k=1

AkEk

≤ ENT(X)− C

log n

∑
i∈Il∗

AiEi

≤
(
1− Cc

2 log2 n

)
ENT(X).

Now iterating this for X = id, X = Y(t), X = Y(2t), . . . and taking γ = Cc/2 shows that
for K ≥ 1 we have

ENT(Y(dK log3 net)) ≤
(
1− γ

log2 n

)K log3 n

ENT(id)

≤ n−Kγ log(n!) ≤ n1−Kγ log n ≤ 1

8

as soon as, say, Kγ ≥ 2. Then, by Lemma 3.1, we have

‖P(Y(dK log3 net) ∈ ·)− π‖TV ≤
√

1

2
ENT(Y(dK log3 net)) ≤

1

4
.

Since t = dlog ne we get
τmix = O(log4 n).

4 The thinning process and the proof of Lemma 3.3

Recall that the time reversal of the p-riffle shuffle has the following transition rule.
First, generate marks by running n steps of the two state Markov chain in stationarity.
Then put all cards marked 0 above the cards marked 1, without changing the internal
order among cards with the same mark.

Fix two cards x and y with x < y. Note that if x and y are given the same marks then
their distance will typically decrease by a factor of roughly one half after the shuffle.
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Dealer shuffles and clumpy shuffles

Suppose we associate to each card from x to y a 1 (respectively, 0) if the card is given
the same mark as card x, generating a binary sequence of length y − x+ 1. Call this the
agreement sequence. If x and y are given the same mark, then we continue and define
the agreement sequence for the next shuffle, and so on.

Call a binary sequence successful if it ends in a one, and if V is a binary sequence,
let |V | denote the Hamming weight of V (that is, the number of ones in V ).

The following Markov chain, which we call the thinning process, models the process
of agreement sequences up until the time when x and y get a different mark. The state
space is the set of binary sequences, and the transition rule is as follows. If the current
state Vk = V , the next state Vk+1 is defined as follows.

1. if V is not successful, then Vk+1 = V ; else

2. let Vk+1 be the binary sequence of length |V | generated by running the two-state
chain starting from a one for |V | − 1 steps.

Note that the unsuccessful states are absorbing. For t ≥ 1 let Gt be the event that Vt
is successful. In order to prove Lemma 3.3, we will need the following technical lemma
about the thinning process.

Lemma A. Let V0, V1, . . . be the thinning process and for t ≥ 0 define Lt = |Vt|. There
exists a universal constant γ > 0 and positive integers l̃ and C, which depend only on p,
such that if L0 = l0 and t = blog2 l0 − l̃c then

P(Gt ∩ {0 < Lt < C}) ≥ γ

l0
.

Proof. First we give an alternate construction of the thinning process. Note that the
trajectory of the two-state chain, starting from a 1, can be generated as follows. In
the dealer case (respectively, clumpy case), start with a sequence of the form 10101 . . .

(respectively, 111 . . . ) whose length T is a geometric random variable of parameter
1− |1− 2p| (that is, P(T > i) = |1− 2p|i for i = 0, 1, . . . ). Then in the next step, flip a fair
coin to generate the next state and continue with the usual transition rule after that.
(Note that from this construction it is clear that for all m the expected number of ones
among the first m states is at least m/2.) We shall call the time T when the fair coin is
used to generate the next state the forget time.

Suppose that the current state of the thinning process is V , where V is successful,
and define L = |V |. Let Z0, Z1, . . . be the two-state Markov chain constructed using the
alternate method described above. We write Z for the sequence (Z0, . . . , ZL−1). Let Z̃ be
the sequence obtained from Z by reversing every state from time T onward, with Z̃ = Z

if T ≥ L. Note that Z̃ has the same distribution as Z. Define the sequence W by

W :=

{
Z if ZL−1 = 1;

Z̃ otherwise.

Note that WL−1 = 1 unless T ≥ L. Let W̃ be the sequence obtained from W by reversing
every state from time T onward,

Now flip a fair coin, which we shall call the deciding coin. The next state V ′ of the
thinning process is

V ′ =

{
W if the deciding coin lands heads;

W̃ if the deciding coin lands tails.

Note that V ′ is successful whenever the deciding coin lands heads, unless the forget
time T is as least L. (Roughly speaking, the deciding coin “decides” whether the next
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Dealer shuffles and clumpy shuffles

state will be successful or not.) We call W the good sequence in the construction of V ′

from V .
The main idea of the proof is to use the second moment method to show that, under

the assumptions of the Lemma, if we condition on the event that the deciding coin
repeatedly lands heads (that is, the good sequence W is chosen repeatedly instead of
W̃ ) then with probability bounded away from zero we have 0 < Lt < C.

Fix a state V of the thinning process, let L = |V |, and let W be the good sequence in
the contruction of the next state V ′ from V . The key step of the proof is to bound the
mean and second moment of S := |W |. We claim that

E(S) ≥ L/2, (4.1)

and

E(S2) ≤ L2

4
+ cL, (4.2)

for a constant c that depends only on p.
First, we verify (4.1). Since

• the sequence W0, . . . ,WT−1 has at least as many ones as zeros;

• given T = k where k ≤ L− 1, the value of
∑L−1
i=k Wi has the same distribution as

the number of ones in the first L− k states of the two-state chain starting from 1;

equation (4.1) follows. Next we verify (4.2). Note that

E(S2) ≤
L−1∑
i=0

E(Wi) + 2
∑

0≤i<j<L

(
E(WiWj ;T ≤ i) + P(T > i)

)
. (4.3)

The first sum can be trivially bounded above by L. For the second sum, note that if T ≤ i
then Wi =Wj = 1 only if Zi = Zj = ZL−1, which occurs with probability[1

2
+

1

2
(p− q)j−i

][1
2
+

1

2
(p− q)L−1−j

]
,

where q = 1− p. (Recall that the probability that a coin of bias q has an even number of
heads after m flips is 1

2 +
1
2 (p−q)

m.) Combining this with the fact that P(T > i) = |1−2p|i
shows that the terms of the second sum in (4.3) are at most

1

4

(
1 + (p− q)j−i + (p− q)L−j + (p− q)L−i + (p− q)i

)
+ |1− 2p|i. (4.4)

Summing this over i and j with 0 ≤ i < j < L gives at most L2

4 + c′L, for a constant c′

that depends only on p. This verifies (4.2).
Now let V0, V1, . . . be a thinning process constructed using deciding coins and let E

be the event that the deciding coin lands heads for each step up to time t. We write P̂

and Ê for the conditional probability and expectation, respectively, given E. If we define
f : [0,∞) 7→ R by f(x) = x

4 + c
√
x, then (4.2) implies that

Ê(L2
k+1 |L2

k = y) ≤ f(y). (4.5)

Hence, induction and the fact that f is concave imply that

Ê(L2
k) ≤ fk(l20), (4.6)

where fk is the kth iterate of f . Another straightforward calculation and induction imply
that

fk(x) ≤ h
( x
4k

)
, (4.7)
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where h(x) = x + B
√
x for a sufficiently large constant B ≥ c (e.g. B = 3c2 suffices),

provided that x/4k ≥ 1. It follows that

Ê(L2
k) ≤ fk(l20) (4.8)

≤ h
( l20
4k

)
, (4.9)

since l0/2k ≥ 1 as k ≤ t < log2 l0. Finally, note that combining (4.1) with induction gives

Ê(Lk) ≥
l0
2k
. (4.10)

Combining this with (4.9) and the definition of h gives

V̂ar(Lk) = Ê(L2
k)− Ê(Lk)

2 (4.11)

≤ BÊ(Lk). (4.12)

Let Tk be the forget time in the construction of Vk+1 from Vk. Recall that on the event E,
the step is successful unless Tk ≥ Lk. Hence, on E, the step is unsuccessful only if Bk
occurs, where

Bk =
{
Tk >

ak
2

}
∪
{
Lk ≤

ak
2

}
, (4.13)

where we write ak for l0
2k

. Combining this with the fact that Lt = 0 only if Bt occurs, we

get that P̂(Gct ∪ {Lt = 0}) is at most

t∑
k=0

[
P̂(Tk >

ak
2
) + P̂(Lk ≤

ak
2
)
]
. (4.14)

Since Tk is a geometric random variable with parameter α := 1− |1− 2p|, we have

P̂(Tk >
ak
2
) ≤ αbak/2c (4.15)

≤ D/ak, (4.16)

for a constant D. Furthermore, by (4.10) and Chebyshev’s inequality, we have

P̂(Lk ≤
ak
2
) ≤ 4V̂ar(Lk)

a2k
(4.17)

≤ 4B/ak, (4.18)

by (4.12). Thus, the quantity (4.14) is at most

t∑
k=0

D + 4B

ak
. (4.19)

Recall that t = blog2 l0 − l̃c. Thus if l̃ is large enough so that

2l̃ > 4(D + 4B)

then by (4.10) we have at−k > 4(D + 4B)2−k for all k with 0 ≤ k ≤ t, and hence the
quantity (4.19) is at most 1

2 . Hence

P̂(Gct ∪ {Lt = 0}) ≤ 1

2
(4.20)
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Finally, note that (4.9) implies that Ê(L2
t ) ≤ β for a constant β that depends only on p.

Choosing C > 2β1/2 gives

P̂(Lt ≥ C) = P̂(L2
t ≥ C2) (4.21)

≤ 1

4
(4.22)

by Markov’s inequality. Combining this with (4.20) gives

P̂
(
Gct ∪ {Lt = 0} ∪ {Lt ≥ C}

)
≤ 3

4

and hence the unconditional probability

P(Gt ∩ {0 < Lt < C}) ≥ 1

4

(1
2

)t
(4.23)

≥ γ

l0
, (4.24)

for a universal constant γ > 0.

Finally, we use Lemma A to prove Lemma 3.3.

Proof of Lemma 3.3. Suppose x ∈ Il and y < x and define d = x − y + 1. It suffices to
find a lower bound for the probability that x and y collide at time T , since this implies
that m(x) = y. For k = 0, 1, . . . , let Sk be the set of cards in the set consisting of y, x
and the cards in between them after k shuffles have been performed. Note that we
can couple {Sk : k ≥ 0} with a thinning process {Vk : k ≥ 0} in such a way that if Vk
is successful then |Sk| = |Vk|. It follows that if l̃ and C are the constants appearing
in the statement of Lemma A, then Lemma A implies that the probability that x and
y are within a distance C from each other after blog2 dc − l̃) steps is at least γ

d for a
universal constant γ. Furthermore, if x and y are within distance C of each other, there
is probability bounded away from 0 that in the next step all the cards in between them
with be removed and that x and y will collide in the step following that. Since

P(Tl − 2 = blog2 dc − l̃) = 2blog2 dc−l̃−l+1,

it follows that the probability that x and y collide at time Tl is at least

2blog2 dc−l̃−l−3
(γ′
d

)
,

for a universal constant γ′ > 0. This expression is at least c
x for a constant c that depends

only on p.
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