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Abstract

Let {Xn}n≥1 be a sequence of i.i.d. standard Gaussian random variables, let Sn =∑n
i=1 Xi be the Gaussian random walk, and let Tn =

∑n
i=1 Si be the integrated (or

iterated) Gaussian random walk. In this paper we derive the following upper and
lower bounds for the conditional persistence:

P

{
max

1≤k≤n
Tk ≤ 0

∣∣∣ Tn = 0, Sn = 0

}
. n−1/2,

P

{
max

1≤k≤2n
Tk ≤ 0

∣∣∣ T2n = 0, S2n = 0

}
&

n−1/2

logn
,

for n→∞, which partially proves a conjecture by Caravenna and Deuschel [3].
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1 Introduction

Suppose that Xn, n ≥ 1, are i.i.d. random variables with mean zero and finite posi-
tive variance. Denote Sn = X1 + X2 + · · · + Xn and Tn = S1 + S2 + · · · + Sn, n ≥ 1. In
this paper, we study the following conjecture of Caravenna and Deuschel [3] which is
motivated from their study of sticky particles in a random polymer:

Conjecture: P
{

max1≤k≤n Tk ≤ 0
∣∣∣ Tn = 0, Sn = 0

}
� n−1/2.

Here and throughout this paper, the following symbols are used for positive se-
quences α(n) and β(n): α(n) . β(n) if lim supn→∞ α(n)/β(n) ≤ c1 < ∞; α(n) & β(n)

if lim infn→∞ α(n)/β(n) ≥ c2 > 0, where c1 and c2 are two positive constants. Fur-
thermore, we denote α(n) � β(n) if α(n) . β(n) and α(n) & β(n). We refer to [3] for
the significance of the conjecture and its application in wetting and pinning models.
Here we remark that the question is indeed quite natural, by presenting a practical
example. Suppose that a person holds n units of shares of a certain stock, of which
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Conditional persistence of Gaussian random walks

the price is assumed to be a general symmetric random walk. The person has two
options to sell the stock: either he sells all the n units of shares to get cash now, or
he sells one unit of share per period for n periods. If the average rate of increase of
the stock price during the n periods is the same as the constant simple interest rate
r, and these two options make no difference at the end, then what is the probability
that the person never regrets during the n periods after choosing the first option? By
the assumptions, the stock price in the period k is Pk = P0 + Sk + kr, where P0 is the
current stock price and Sk = X1 + X2 + . . . + Xk is the random price after k periods
with {Xn}n≥1 being i.i.d. symmetric random variables. The person would not regret in
the period k if P1 + P2 + . . . + Pk ≤ (P0 + kr) + (P0 + (k − 1)r) + . . . + (P0 + r), that is
Tk := S1 + S2 + . . .+ Sk ≤ 0. Since there is no difference between the two options after
n periods, we have S1 + S2 + . . .+ Sn = 0. Furthermore, the average rate of increase of
the stock price during the n periods is the same as the constant simple interest rate r,
therefore Sn = 0. Thus, the conditional probability that the person never regrets during
the n periods can be expressed exactly as P {max1≤k≤n Tk ≤ 0 | Tn = 0, Sn = 0} .

The conjecture is quite challenging. In their original paper [3], Caravenna and
Deuschel showed that n−11/2 . P {max1≤k≤n Tk ≤ 0 | Tn = 0, Sn = 0} . (log n)−α for
some positive α under a mild assumption on {Xn}. Recently Aurzuda, Dereich and Lif-
shits [1] proved that the conjecture holds for the case when {Xn} are i.i.d. Bernoulli
random variables. Then, Denisov and Wachtel [6] announced an extension of the main
result in [1], whose formal proof was not given but claimed to follow from the argu-
ments in [5]. While we believe that the methods proposed in [1] and in [6] for discrete
random variables {Xn} may be adapted with some appropriate modifications to handle
continuous random variables, in this paper we use a more elementary method to study
this conjecture for the case when {Xn} are i.i.d. standard Gaussian random variables.
More precisely, we will prove the following:

Theorem 1.1. If {Xn}n≥1 are i.i.d. standard Gaussian random variables, Sn =
∑n
i=1Xi

and Tn =
∑n
i=1 Si, then the following estimates hold

P

{
max

1≤k≤n
Tk ≤ 0

∣∣∣ Tn = 0, Sn = 0

}
. n−1/2,

P

{
max

1≤k≤2n
Tk ≤ 0

∣∣∣ T2n = 0, S2n = 0

}
&
n−1/2

log n

as n→∞.
The main idea of our approach is to write the conditional probability as a ratio of

two expectations. For the proof of the upper bound, we write the conditional probabil-
ity as a ratio of expectations by singling out the middle two random variables Xbn/2c
and Xbn/2c+1, and then reduce the problem to the product of two unconditional persis-

tence probabilities P
{

max1≤k≤bn/4c Tk ≤ 0
}

and P
{

maxb3n/4c≤k≤n T̃k ≤ 0
}

(where T̃ is

defined similarly as T using random variables {Xk}k≥b3n/4c instead of {Xk}1≤k≤bn/4c).
Since both unconditional persistence probabilities are of order n−1/4 (cf. [4]; see also
[8], [2] and reference therein for other related persistence), the original conditional
persistence is of order n−1/2. This method works for any continuous random variables
{Xn} satisfying the corresponding inequality (3.4). For the proof of the lower bound,
we rewrite the conditional probability as a ratio of expectations using the last two ran-
dom variables X2n−1 and X2n. Then by the symmetry between the first n − 1 random
variables X1, . . . , Xn−1 and the last n − 1 random variables Xn, . . . , X2n−2, we arrive at
n−1/2/ log n. This proof can be also extended to some other random variables (such as
exponential random variables) by using central limit theorem. However, a new method
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Conditional persistence of Gaussian random walks

seems to be needed to remove the log n factor.

2 Preparation

For convenience, we introduce some notations. We set

Sk,m =

{
Xk +Xk+1 + . . .+Xm if k ≤ m
Xk +Xk−1 + . . .+Xm if k > m

.

Similarly, we denote

Tk,m =

{
Xm + 2Xm−1 + . . .+ (m− k + 1)Xk if k ≤ m
Xm + 2Xm+1 + . . .+ (k −m+ 1)Xk if k > m

.

Thus, S1,m = Sm and T1,m = Tm. With these notations, we now can write for n ≥ 4 and
k + 3 < n,

S1,n = S1,k +Xk+1 +Xk+2 + Sn,k+3,

T1,n = T1,k + (n− k)S1,n − Tn,k+2.

Therefore, under the conditions T1,n = 0 and S1,n = 0, we have

S1,k +Xk+1 +Xk+2 + Sn,k+3 = 0,

T1,k − Tn,k+2 = 0.

Together with the fact that Tn,k+2 = Tn,k+3 + Sn,k+3 +Xk+2, we obtain

Xk+1 = Tn,k+3 − T1,k − S1,k := Yn−k−2,k,

Xk+2 = T1,k − Tn,k+3 − Sn,k+3 := Zn−k−2,k.

Furthermore, under the conditions T1,n = 0 and S1,n = 0,{
max

1≤i≤n
T1,i ≤ 0

}
=

{
max

1≤i≤k
T1,i ≤ 0

}
∩
{

max
k+3≤i≤n

Tn,i ≤ 0

}
.

If we denote Am = {max1≤i≤m T1,i ≤ 0} and Bm = {maxn−m+1≤i≤n Tn,i ≤ 0} , then it is
straightforward to deduce that{

max
1≤i≤n

T1,i ≤ 0, S1,n = 0, T1,n = 0

}
=

{
max

1≤i≤k
T1,i ≤ 0, max

k+3≤i≤n
Tn,i ≤ 0, Xk+1 = Yn−k−2,k, Xk+2 = Zn−k−2,k

}
= Ak ∩Bn−k−2 ∩ {Xk+1 = Yn−k−2,k, Xk+2 = Zn−k−2,k}.

From the fact that {S1,n = 0, T1,n = 0} = {Xk+1 = Yn−k−2,k, Xk+2 = Zn−k−2,k}, it follows

P

{
max

1≤i≤n
T1,i ≤ 0

∣∣∣ T1,n = 0, S1,n = 0

}
= P

{
Ak ∩Bn−k−2

∣∣∣ Xk+1 = Yn−k−2,k, Xk+2 = Zn−k−2,k

}
.

If the density function of X1 is denoted as f(x) = (2π)−1/2e−x
2/2, then we claim that

qn := P

{
max

1≤i≤n
T1,i ≤ 0

∣∣∣ T1,n = 0, S1,n = 0

}
=
Ef(Yn−k−2,k)f(Zn−k−2,k)1Ak1Bn−k−2

Ef(Yn−k−2,k)f(Zn−k−2,k)
.

(2.1)
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Conditional persistence of Gaussian random walks

Proof of (2.1). Before the formal proof of (2.1), let us first show an equality which gives
a good motivation of (2.1). Suppose that two random variables X and Y are standard
Gaussian random variables, and h is a differentiable function, then we will show

P
{
X ∈ A

∣∣∣ Y = h(X)
}

=

∫
A
f(x)f(h(x))dx∫

R
f(x)f(h(x))dx

=
Ef(h(X))1{X∈A}

Ef(h(X))
(2.2)

where f is the density function of a standard Gaussian random variable. We can regard
(2.2) as the simplest case of (2.1), and these two proofs are essentially the same. The
second equality in (2.2) is trivial, so we now prove the first equality in (2.2). A version
of the conditional probability can be written as (cf. Section 2.13 in [7])

P
{
X ∈ A

∣∣∣ Y = h(X)
}

= P
{
X ∈ A

∣∣∣ Y − h(X) = 0
}

=

∫
A
fX,Y−h(X)(x, 0)dx∫

R
fX,Y−h(X)(x, 0)dx

where fX,Y−h(X)(·, ·) denotes the joint density function of the two-dimensional random
variable (X,Y − h(X)). For notational simplicity, if we let Z = Y − h(X), then the joint
density fX,Z(x, z) can be obtained by change of variables from (X,Y ) to (X,Z). More
precisely, the Jacobian determinant is equal to 1 and fX,Z(x, z) = fX,Y (x, z + h(x)) =

f(x)f(z + h(x)). Therefore fX,Y−h(X)(x, 0) = f(x)f(h(x)), which proves (2.2).

Now we come to the proof of (2.1). If we denote W = (X1, . . . , Xk, Xk+3, . . . , Xn),
then, we can write Yn−k−2,k = u(W ) and Zn−k−2,k = v(W ) where u, v are functions
on Rn−2. Let g be the density function of W . Because W and Xk+1 and Xk+2 are
independent, the joint density of W,Xk+1 and Xk+2 is g(w)f(xk+1)f(xk+2). Thus, as in
(2.2), the conditional density of (W | Xk+1 = u(W ), Xk+2 = v(W )) could be given as

g(w)f(u(w))f(v(w))∫
Rn−2 g(w)f(u(w))f(v(w))dw

.

Since u(W ) = Yn−k−2,k and v(W ) = Zn−k−2,k, the denominator can be written as∫
Rn−2

g(w)f(u(w))f(v(w))dw = Ef(u(W ))f(v(W )) = Ef(Yn−k−2,k)f(Zn−k−2,k).

Therefore,

qn = P
{
Ak ∩Bn−k−2

∣∣∣ Xk+1 = Yn−k−2,k, Xk+2 = Zn−k−2,k

}
=

∫
ak∩bn−k−2

g(w)f(u(w))f(v(w))

Ef(Yn−k−2,k)f(Zn−k−2,k)
dw

=
Ef(u(W ))f(v(W ))1Ak∩Bn−k−2

Ef(Yn−k−2,k)f(Zn−k−2,k)

=
Ef(Yn−k−2,k)f(Zn−k−2,k)1Ak1Bn−k−2

Ef(Yn−k−2,k)f(Zn−k−2,k)
,

where am = {max1≤i≤m t1,i ≤ 0} , bm = {maxn−m+1≤i≤n tn,i ≤ 0} , sk,m and tk,m are de-
fined similarly as Sk,m and Tk,m with {Xi} replaced by {xi}.

3 Upper Bound

To prove the upper bound, we choose k = bn/2c−1 andm = bk/2c. Because Ak ⊆ Am
and Bn−k−2 ⊆ Bm, it follows from (2.1) that

qn ≤
Ef(Yn−k−2,k)f(Zn−k−2,k)1Am1Bm

Ef(Yn−k−2,k)f(Zn−k−2,k)
. (3.1)
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Conditional persistence of Gaussian random walks

We now take a closer look at Yn−k−2,k and Zn−k−2,k. For k + 3 +m < n, we can write

Yn−k−2,k =Tn,k+3 − T1,k − S1,k

=[Tn,k+3+m +mSn,k+3+m − T1,k−m − (m+ 1)S1,m]

+ [Tk+2+m,k+3 − Tk−m+1,k − Sk−m+1,k]

:=a+ U,

and

Zn−k−2,k =T1,k − Tn,k+3 − Sn,k+3

=[T1,k−m +mS1,k−m − Tk,k+3+m − (m+ 1)Sn,k+3+m]

+ [Tk−m+1,k − Tk+2+m,k+3 − Sk+2+m,k+3]

:=b+ V.

With these notations, (3.1) can be rewritten as

qn ≤
Ef(a+ U)f(b+ V )1Am1Bm
Ef(Yn−k−2,k)f(Zn−k−2,k)

. (3.2)

Note that a, b, 1Am and 1Bm only depend on X1, ..., Xk−m, Xk+m+3, ..., Xn, while U and
V only depend on Xk−m+1, ..., Xk, Xk+3, ..., Xk+m+2. Therefore, a, b, 1Am and 1Bm are
independent of (U, V ). If we can show that there exists a constant C > 0 such that for
all real numbers α and β,

Ef(α+ U)f(β + V ) ≤ C · Ef(Yn−k−2,k)f(Zn−k−2,k), (3.3)

then by conditioning on the variables X1, ..., Xk−m, Xk+m+3, ..., Xn, we can bound the
numerator on the right-hand side of (3.2) by C · Ef(Yn−k−2,k)f(Zn−k−2,k) · E(1Am1Bm).
Thus, we immediately obtain qn ≤ C · P{Am ∩ Bm}. By the unconditional persistence
estimate obtained in [4], we have P{Am} = P{Bm} ≤ C ′m−1/4. Thus qn ≤ C ′′n−1/2.

Note that (U, V ) has the same distribution as (Ym,m, Zm,m). Thus (3.3) is equivalent
to the following claim: there exists a constant C such that for all real number α and β,

Ef(α+ Ym,m)f(β + Zm,m) ≤ C · Ef(Yn−k−2,k)f(Zn−k−2,k) (3.4)

for n ≥ 4, k = bn/2c − 1 and m = bk/2c.

It remains to show the claim. To this end, we prove the following lemma.

Lemma 3.1. If U and V are two centered Gaussian random variables, then for any
α, β ∈ R,

Ee−
1
2 (U+α)2e−

1
2 (V+β)2 =

1

σ
exp

{
− (1 + EV 2)α2 + (1 + EU2)β2 − 2αβEUV

2σ2

}
where σ2 = (1 + EU2)(1 + EV 2)− (EUV )2.

Proof. Without loss of generality, we can assume U = σUX, and V = σV (ρX+
√

1− ρ2Y ),
where X and Y are independent N(0, 1) random variables, and ρ = corr(U, V ). Condi-
tioning on X and using the identity

Ee−
1
2 (cY+t)2 =

1√
1 + c2

e
− t2

2(1+c2) (3.5)
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which holds for all c, t ∈ R, we obtain

E
[
e−

1
2 (U+α)2e−

1
2 (V+β)2 | X

]
=

1√
1 + σ2

V (1− ρ2)
e
− 1

2 (σUX+α)2− 1
2

(σV ρX+β)2

1+σ2
V

(1−ρ2)

:=
1√

1 + σ2
V (1− ρ2)

e−
1
2 (AX+B)2− 1

2C ,

where

A =

√
σ2
U +

σ2
V ρ

2

1 + σ2
V (1− ρ2)

,

B =
1

A

(
σUα+

σV ρβ

1 + σ2
V (1− ρ2)

)
,

C = α2 +
β2

1 + σ2
V (1− ρ2)

−B2.

Taking expectation and using (3.5) again, we obtain

Ee−
1
2 (U+α)2e−

1
2 (V+β)2 =

1√
[1 + σ2

V (1− ρ2)](1 +A2)
e
− B2

2(1+A2)
−C2 ,

which proves the lemma after simplification.

Note that for all α, β ∈ R,

exp

{
− (1 + EV 2)α2 + (1 + EU2)β2 − 2αβEUV

2σ2

}
≤ e−

α2+β2

2σ2 .

The lemma above applied twice implies the following inequality:

Ee−(α+U)2/2e−(β+V )2/2 ≤ e−
α2+β2

2σ2 Ee−U
2/2e−V

2/2. (3.6)

With a, b, Ym,m and Zm,m defined between (3.1) and (3.4), by applying (3.6) followed by
Lemma 3.1 for α = β = 0, we obtain

Ee−(a+Y 2
m,m)/2e−(b+Z2

m,m)/2 ≤ Ee−Y
2
m,m/2e−Z

2
m,m/2

= [(1 + E|Ym,m|2)(1 + E|Zm,m|2)− (EYm,mZm,m)2]−1/2

=

√
3

(m+ 1)
√

(2m+ 1)(2m+ 3)
.

Similarly, for k = bn/2c − 1 defined above, if n is even, then n = 2k + 2, we have

Ee−
1
2Y

2
n−k−2,k− 1

2Z
2
n−k−2,k =

√
3

(k + 1)
√

(2k + 1)(2k + 3)
;

if n is odd, we have n = 2k + 3, and

Ee−
1
2Y

2
n−k−2,k− 1

2Z
2
n−k−2,k =

√
6

2
√

(k + 1)(k + 2)(2k + 3)
.

In either case, since m = bk/2c, we immediately obtain (3.4) for C ≈
√

8. This finishes
the proof of the upper bound.
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4 Lower Bound

The idea of the proof of the lower bound is similar to that of the upper bound. We
first introduce a few more notations. For a fixed large n, we define two functions F1 and
F2 as

F1(y1, . . . , yn) = f(y1)f(−2y1 + y2)f(y1 − 2y2 + y3) . . . f(yn−2 − 2yn−1 + yn),

F2(yn+3, . . . , y2n+2) = f(yn+3 − 2yn+4 + yn+5) . . . f(y2n − 2y2n+1 + y2n+2)

· f(y2n+1 − 2y2n+2)f(y2n+2),

and four sets

Ω+ =

{
(y1, . . . , y2n+2) ∈ R2n+2 : min

1≤k≤2n+2
yk ≥ 0

}
,

Ω+
1 =

{
(y1, . . . , yn) ∈ Rn : min

1≤k≤n
yk ≥ 0

}
,

Ω+
2 =

{
(yn+3, . . . , y2n+2) ∈ Rn : min

n+3≤k≤2n+2
yk ≥ 0

}
,

Ω+
3 = {yn+1 ≥ 0, yn+2 ≥ 0} .

For notational simplicity, we will derive a lower bound for q2n+4 instead of q2n. This of
course makes no essential difference. Note that

q2n+4 = P

{
max

1≤k≤2n+4
Tk ≤ 0

∣∣∣ T2n+4 = 0, S2n+4 = 0

}
= P

{
min

1≤k≤2n+4
Tk ≥ 0

∣∣∣ T2n+4 = 0, S2n+4 = 0

}

=
E
[
e−T

2
2n+2/2e−(T2n+2+S2n+2)2/21{min1≤k≤2n+2 Tk≥0}

]
E
[
e−T

2
2n+2/2e−(T2n+2+S2n+2)2/2

] .

(4.1)

The denominator can be directly computed using Lemma 3.1:

E
[
e−T

2
2n+2/2e−(T2n+2+S2n+2)2/2

]
=

1

(2n+ 4)
√

(2n+3)(2n+5)
12

� n−2.

We thus focus on the numerator

E
[
e−T

2
2n+2/2e−(T2n+2+S2n+2)2/21{min1≤k≤2n+2 Tk≥0}

]
,

which can be expressed as a multiple integral with respect to the joint distribution
of {X1, . . . , X2n+2}. But here we choose a multiple integral with respect to the joint
distribution of {T1, . . . , T2n+2}. We do the following change of variables

X1 = T1, X2 = T2 − 2T1, X3 = T3 − 2T2 + T1, . . . , X2n+2 = T2n+2 − 2T2n+1 + T2n.

It is then straightforward to check that the Jacobian determinant is 1. Thus, the numer-
ator becomes

E
[
e−T

2
2n+2/2e−(T2n+2+S2n+2)2/21{min1≤k≤2n+2 Tk≥0}

]
=

∫
R2n+2

1(√
2π
)2n+2 exp

{
−y

2
1

2
− (−2y1 + y2)2

2
− (y1 − 2y2 + y3)2

2
− . . .
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− (y2n − 2y2n+1 + y2n+2)2

2
− (y2n+1 − 2y2n+2)2

2
−
y2

2n+2

2

}
· 1{min1≤k≤2n+2 yk≥0}dy1 . . . dy2n+2

= 2π

∫
Ω+

F1(y1, . . . , yn)f(yn−1 − 2yn + yn+1)f(yn − 2yn+1 + yn+2)

f(yn+1 − 2yn+2 + yn+3)f(yn+2 − 2yn+3 + yn+4)F2(yn+3, . . . , y2n+2)dy1 . . . dy2n+2

= 2π

∫
Ω+

3

{∫
Ω+

1

F1(y1, . . . , yn)f(yn−1 − 2yn + yn+1)f(yn − 2yn+1 + yn+2)dy1 . . . dyn

∫
Ω+

2

f(yn+1 − 2yn+2 + yn+3)f(yn+2 − 2yn+3 + yn+4)F2(yn+3, . . . , y2n+2)dyn+3 . . . dy2n+2

}
dyn+1dyn+2

:= 2π

∫
Ω+

3

G1(yn+1, yn+2)G2(yn+1, yn+2)dyn+1dyn+2

= 2π

∫
Ω+

3

G2
1(yn+1, yn+2)dyn+1dyn+2

where the last equality comes from the symmetry of {Fi}i=1,2 and f.

In order to estimate the last integral, we consider a subset D of Ω+
3 defined as

D =
{

(yn+1, yn+2) ∈ R2 : yn+1 ≥ 0, yn+2 ≥ 0, and

yn+1 < n3/2(log n)1/2, |yn+1 − yn+2| <
√
n(log n)1/2

}
.

The area |D| of the region D is |D| � n2 log n. By applying Hölder’s inequality, we obtain∫
Ω+

3

G2
1(yn+1, yn+2)dyn+1dyn+2

≥ 1

|D|

(∫
D

G1(yn+1, yn+2)dyn+1dyn+2

)2

=
1

|D|

(∫
Ω+

3

G1(yn+1, yn+2)dyn+1dyn+2 −
∫

Ω+
3 \D

G1(yn+1, yn+2)dyn+1dyn+2

)2

.

(4.2)

By definition and using the unconditional persistence probability of [4], the first integral
can be estimated as∫

Ω+
3

G1(yn+1, yn+2)dyn+1dyn+2 = P

{
min

1≤k≤n+2
Tk ≥ 0

}
� n−1/4. (4.3)

The second integral over Ω+
3 \D can be estimated as follows. From definition,∫

Ω+
3 \D

G1(yn+1, yn+2)dyn+1dyn+2

= P

{
min

1≤k≤n+2
Tk ≥ 0 ∩

(
|Tn+1| > n3/2(log n)1/2 ∪ |Tn+1 − Tn+2| >

√
n(log n)1/2

)}
≤ P

{
|Tn+1| > n3/2(log n)1/2

}
+ P

{
|Tn+1 − Tn+2| >

√
n(log n)1/2

}
.

Since Tn+1 is a Gaussian random variable with mean zero and variance n3/3+n2/2+n/6,

P
{
|Tn+1| > n3/2(log n)1/2

}
≤ const.

(log n)1/2
exp

{
− log n

2

}
. n−1/2.
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Similarly, we deduce that P
{
|Tn+1 − Tn+2| >

√
n(log n)1/2

}
. n−1/2. Therefore,∫

Ω+
3 \D

G1(yn+1, yn+2)dyn+1dyn+2 . n−1/2.

Combining this with (4.3), we conclude from (4.2) that∫
Ω+

3

G2
1(yn+1, yn+2)dyn+1dyn+2

≥ 1

|D|

(∫
Ω+

3

G1(yn+1, yn+2)dyn+1dyn+2 −
∫

Ω+
3 \D

G1(yn+1, yn+2)dyn+1dyn+2

)2

� 1

|D|
· n−1/2 � n−5/2(log n)−1.

This, together with the estimate of the denominator in (4.1), yields

q2n+4 &
1

n1/2 log n
,

which completes the proof of the lower bound.
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