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Abstract

We investigate analytical properties of free stable distributions and discover many
connections with their classical counterparts. Our main result is an explicit formula
for the Mellin transform, which leads to explicit series representations for the charac-
teristic function and for the density of a free stable distribution. All of these formulas
bear close resemblance to the corresponding expressions for classical stable distri-
butions. As further applications of our results, we give an alternative proof of the
duality law due to Biane and a new factorization of a classical stable random variable
into an independent (in the classical sense) product of a free stable random variable
and a power of a Gamma(2) random variable.
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1 Introduction and main results

The class W∗ of classical (strictly) stable distributions is characterized by the follow-
ing: µ ∈W∗ if and only if for any c1 > 0 and c2 > 0 there exists c3 > 0 such that

Dc1µ ∗Dc2µ = Dc3µ, (1.1)

whereDcµ denotes the dilation by c (in other words, Dcµ(B) = µ(c−1B) for all Borel sets
B in R), and the binary operator “∗” denotes the classical convolution [11]. Similarly,
the class W� of free (strictly) stable distributions is characterized by the scaling prop-
erty (1.1), where the classical convolution “∗” is replaced by the free convolution “�”,
see [3, 9]. The similarities end at this stage, and in all other respects these two fami-
lies of distributions seem to be quite different. For example, the main tool for working
with a classical stable distribution is the characteristic function, whereas the free stable
distributions are described by their Cauchy transforms. Another difference is that the
classical stable distributions have explicit formulas for the Mellin transform and their
densities have explicit series expansions (see Sections 2.4, 2.5 and Theorem 2.6.3 in
[11]), whereas the density of a free stable distribution enjoys a representation as an
inverse of a rather simple explicit function (see Propositions A.1.2-A.1.4 in [3]). The
latter result does not have an analogue in the case of the classical stable distributions.
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On free stable distributions

At the same time, several results in the recent papers by Demni [6] and Haagerup
and Möller [7] have offered glimpses of possible deeper similarities and connections be-
tween these two families of stable distributions. Demni [6] has investigated the appear-
ance of the Kanter random variable both in the classical and free stable distributions,
while the Mellin transform of the positive free stable distributions, which was computed
by Haagerup and Möller in [7], bears close resemblance to the Mellin transform of the
classical stable distributions, see [11, Theorem 2.6.3].

Our main goal in this paper is to investigate analytical properties of the free stable
distributions, and to demonstrate close connections with their classical counterparts.
First, let us introduce several notations and definitions and present a new parameteri-
zation of the free stable distributions.

It is known that (up to a scaling parameter) any strictly stable distribution can be
uniquely characterized by a pair of parameters (α, ρ), which belongs to the set of ad-
missible parameters

A := {α ∈ (0, 1), ρ ∈ [0, 1]} ∪ {α ∈ (1, 2], ρ ∈ [1− α−1, α−1]}. (1.2)

The exceptional case α = 1 corresponds to a Cauchy distribution, and from now on
we exclude this case from consideration. The characteristic function of a distribution
µα,ρ ∈W∗ is given by

gα,ρ(z) :=

∫
R

eizxµα,ρ(dx) = exp
(
−zαeπiα(1/2−ρ)

)
, z > 0. (1.3)

Similarly, a free stable distribution can be parameterized by the pair (α, ρ̃), belong-
ing to the set

B := {α ∈ (0, 1) ∪ (1, 2], ρ̃ ∈ [0, 1]}. (1.4)

A free stable distribution να,ρ̃ ∈W� is characterized by the Voiculescu transform

φα,ρ̃(z) =

{
−eπiαρ̃z−α+1, if α ∈ (0, 1),

eπi(α−2)ρ̃z−α+1, if α ∈ (1, 2],
(1.5)

where Im(z) > 0. In the above formula and everywhere else in this paper we use the
principal branch of the logarithm and of the power function. As in the classical case,
we do not consider the free stable laws with α = 1, as these correspond to the Cauchy
distributions. The Voiculescu transform defines the measure να,ρ̃ in the following way:
The inverse function of the map z 7→ 1/z + φα,ρ̃(1/z) is Gα,ρ(z), which is the Cauchy
transform

Gα,ρ̃(z) :=

∫
R

να,ρ̃(dx)

z − x
, Im(z) > 0. (1.6)

The parameterization (α, ρ̃) which is used to define the Voiculescu transform via (1.5)
goes back to the seminal work of Bercovici, Pata and Biane [3] (it also appears implicitly
in [4, Theorem 7.5]). In order to present our formulas in a more compact way and to
highlight close connections with the classical stable distributions, we need to introduce
a new parameterization for the class of free stable distributions. Instead of using the
parameters (α, ρ̃) ∈ B, we will use the pair

(α, ρ) =

{
(α, ρ̃), if α ∈ (0, 1), ρ̃ ∈ [0, 1],

(α, (1− (2− α)ρ̃) /α) , if α ∈ (1, 2], ρ̃ ∈ [0, 1].
(1.7)

Note that the map (α, ρ̃) 7→ (α, ρ) is a bijection between the set B and the set of admissi-
ble parameters A. The benefit of using this new parameterization (α, ρ) ∈ A is that the
Voiculescu transform of a distribution να,ρ ∈W� is given by a single expression

φα,ρ(z) = −eπiαρz−α+1, (1.8)
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On free stable distributions

whereas the original parameterization (1.5) requires two different formulas, depending
on whether α ∈ (0, 1) or α ∈ (1, 2]. Another advantage of our new parameterization is
that the map µα,ρ ∈ W∗ 7→ να,ρ ∈ W� is just the Bercovici-Pata bijection [3] (up to a
scaling parameter); this fact can be easily established using Theorem 4.1 in [2].

For (α, ρ) ∈ A we denote by Xα,ρ (respectively, Yα,ρ) an R-valued random variable
having distribution να,ρ ∈W� (respectively, µα,ρ ∈W∗).

Now we are ready to present our results. Their proofs are provided in the next
section.

Theorem 1.1. Assume that (α, ρ) ∈ A. Then for s ∈ (−1, α)

E
[
(Xα,ρ)

s1{Xα,ρ>0}
]

=
1

π
sin(πρs)

Γ(s)Γ (1− s/α)

Γ (2 + s− s/α)
. (1.9)

The above expression for the Mellin transform of Xα,ρ is remarkably similar to the
corresponding result for the classical stable distributions [11, Theorem 2.6.3]:

E
[
(Yα,ρ)

s1{Yα,ρ>0}
]

=
1

π
sin(πρs)Γ(s)Γ (1− s/α) , for − 1 < s < α. (1.10)

Remark 1.2. Using formula (1.9) it is easy to prove that, for any ρ ∈ [0, 1], the random
variable |Xα,ρ|−α converges weakly as α → 0+ to a uniform random variable on the
interval (0, 1). This limiting behavior is different than in the case of the classical stable
distributions, where |Yα,ρ|−α converge to an exponential random variable as α → 0+

[5]. The limiting distribution of (Xα,1)α as α→ 0+ was investigated in [6]. However, the
expression given in [6, Proposition 3] is incorrect, as the right-hand side of that formula
should be 1/x2, instead of 1/x.

The following corollary follows easily from Theorem 1.1, by taking the limit s → 0 in
(1.9).

Corollary 1.3. Assume that (α, ρ) ∈ A. Then P(Xα,ρ > 0) = ρ.

The above result clearly demonstrates the benefit of our new parameterization (1.7)
for free stable distributions. The parameter ρ (unlike ρ̃) has a very natural interpretation
as the positivity parameter, which is consistent with its definition for the classical stable
random distributions.

Theorem 1.1 can be used to show that a free stable distribution να,ρ is absolutely
continuous, with a smooth density ψα,ρ(x) (this fact was first established in [3]). The
following duality result was obtained by Biane in [3], and in this paper we give a new
derivation of this result as a simple corollary of Theorem 1.1. We would like to empha-
size that the same duality relation also holds for densities of classical stable distribu-
tions.

Corollary 1.4. Assume that α ≥ 1/2 and (α, ρ) ∈ A. Then for x > 0

ψα,ρ(x) = x−α−1ψ1/α, αρ(x
−α). (1.11)

We can also express the above duality law in terms of random variables. If ξ is a
random variable such that P(ξ > 0) > 0, we denote by ξ̂ the cutoff of ξ, which is a
positive random variable, whose distribution is given by

P(ξ̂ ∈ A) = P(ξ ∈ A | ξ > 0),
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for all Borel sets A ⊆ (0,∞). It is easy to see that the identity (1.11) is equivalent to

X̂α,ρ
d
=
(
X̂1/α, αρ

)−1/α
. (1.12)

Another corollary of Theorem 1.1 is the following distributional identity between
stable and free stable laws.

Corollary 1.5. Let Z be a Gamma(2) random variable (that is, a positive random vari-
able having the density pZ(x) = xe−x, for x > 0). For (α, ρ) ∈ A we have

Yα,ρ
d
= Xα,ρ × Z1−1/α, (1.13)

where the random variables Xα,ρ and Z are assumed to be independent.

We recall that the Bercovici-Pata bijection is an equivalence between the set of clas-
sical infinitely divisible laws and the set of free infinitely divisible laws, which identifies
the corresponding generating triplets in the free and classical Lévy-Khintchine repre-
sentations [2, 3]. Our factorization (1.13) provides a remarkably simple realization of
this bijection in the case of stable distributions. Furthermore, this result leads naturally
to the question of whether there exist other classes of infinitely divisible laws, for which
the Bercovici-Pata bijection can be expressed as a similar factorization.

The factorization identity (1.13) is also related to the following recent result by Ariz-
mendi and Pérez-Abreu [1]:

Y
d
= Sθ ×

√
Zθ+2, (1.14)

where Y , Sθ and Zθ+2 are independent random variables having the standard normal
distribution; the power semicircle distribution with the density aθ(1 − x2)θ+1/2, x ∈ R;
and the gamma distribution with the density bθxθ+1e−x/2, x > 0, respectively. It is easy
to see that our identity (1.13) with (α, ρ) = (2, 1/2), coincides with the result in (1.14)
when θ = 0 (up to scaling).

Theorem 1.1 also gives the following corollary.

Corollary 1.6. Assume that (α, ρ1) and (α, ρ2) belong to A. Then

Xα,ρ1

Xα,ρ2

d
=
Xα,ρ2

Xα,ρ1

and
X̂α,ρ1

X̂α,ρ2

d
=
X̂α,ρ2

X̂α,ρ1

, (1.15)

where all random variables are assumed to be independent, and in the second identity
above we also assume that ρ1 and ρ2 are nonzero.

The next theorem is our second main result, where we establish a convergent series
representation for ψα,ρ(x) (we remind the reader that ψα,ρ(x) denotes the density of a
free stable distribution να,ρ).

Theorem 1.7. Assume that α ∈ (0, 1) and ρ ∈ [0, 1] and denote x∗ := α(1 − α)1/α−1.
Then

ψα,ρ(x) =
1

π

∑
n≥1

(−1)n−1
Γ(1 + αn)

n!Γ(2 + (α− 1)n)
sin(nαρπ)x−αn−1, x ≥ x∗, (1.16)

ψα,ρ(x) =
1

π

∑
n≥1

(−1)n−1
Γ (1 + n/α)

n!Γ (2 + (1/α− 1)n)
sin(nρπ)xn−1, 0 ≤ x ≤ x∗. (1.17)

The corresponding series expansions for ψα,ρ(x) when α ∈ (1, 2] and ρ ∈ [1 − 1/α, 1/α]

can be obtained from (1.11), (1.16) and (1.17). The expressions for x < 0 follow from
ψα,ρ(x) = ψα,1−ρ(−x).
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The series expansions (1.16) and (1.17) have direct analogues in the case of classical
stable distributions. The following result can be found in [11, Theorems 2.4.2 and 2.5.1].
Let pα,ρ(x) denote the density of a random variable Yα,ρ. Then for α ∈ (0, 1) and ρ ∈ [0, 1]

we have a convergent series representation

pα,ρ(x) =
1

π

∑
n≥1

(−1)n−1
Γ(1 + αn)

n!
sin(nαρπ)x−αn−1, x > 0, (1.18)

and an asymptotic expansion

pα,ρ(x) ∼ 1

π

∑
n≥1

(−1)n−1
Γ (1 + n/α)

n!
sin(nρπ)xn−1, x→ 0+. (1.19)

When α ∈ (1, 2) the roles of the asymptotic and convergent series in (1.18) and (1.19)
are interchanged. We also note that the densities ψα,ρ and pα,ρ can be represented
as Fox H-functions [8], since their Mellin transforms are ratios of products of Gamma
functions.

Our third main result is the series expansion for the characteristic function of the
free stable distribution, which we denote by

fα,ρ(z) :=

∫
R

eizxνα,ρ(dx). (1.20)

Theorem 1.8. Assume that (α, ρ) ∈ A. Then for z > 0

fα,ρ(z) =
∑
n≥0

(−1)n
eπiα(1/2−ρ)n

n!Γ(2 + (α− 1)n)
zαn. (1.21)

Note that for z ∈ R the value of fα,ρ(z) is just the conjugate of fα,ρ(−z), thus the
series representation for fα,ρ(z) for negative z follows at once from (1.21). In light of
our previous results, it should not be surprising that the infinite series in (1.21) has its
counterpart in the case of the classical stable distributions. Indeed, the characteristic
function of the classical stable distribution µα,ρ is given by

gα,ρ(z) =
∑
n≥0

(−1)n
eπiα(1/2−ρ)n

n!
zαn, z > 0.

The above result follows at once from (1.3).

2 Proofs

We use notation C+ := {z ∈ C : Im(z) > 0} for the upper half-plane, and similarly
C− := {z ∈ C : Im(z) < 0} for the lower half-plane. For s ∈ C lying on the vertical line
Re(s) = 0 we define

Mα,ρ(s) := E
[
(Xα,ρ)

s1{Xα,ρ>0}
]

=

∞∫
0

xsψα,ρ(x)dx. (2.1)

Proof of Theorem 1.1: Our first goal is to establish the identity (1.9) for s ∈ (−1, 0).
Assume that (α, ρ) ∈ A. Let γα,ρ ⊂ C̄− be the the curve given in polar coordinates

γα,ρ := {r(θ)e−iθ : 0 < θ < π} ∪ {0},
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On free stable distributions

where

r(θ) :=
( sin(θ)

sin[(1− αρ)π + (α− 1)θ)]

)1/α
.

As explained in Lemma A1.1 in [3], γα,ρ is a closed simple curve lying in the lower
half-plane. We consider this curve as the boundary of a Jordan domain, denoted by
Ω. As was shown in Lemma A1.1 in [3], the function Gα,ρ(z) is a one-to-one conformal
transformation from C+ onto Ω, which extends continuously to the boundary. Thus Gα,ρ
gives a homeomorphism of C+ ∪R ∪ {∞} with Ω. Let us define

z∗ := exp(−πiρ).

One can check that 1/z∗ + φα,ρ(1/z
∗) = 0. This shows that Gα,ρ(z) (being the inverse of

1/z + φα,ρ(1/z)) maps the positive real line (0,∞) onto the curve

γ+ := {r(θ)e−iθ : 0 ≤ θ ≤ πρ}.

Since Gα,ρ(0) = z∗ and Gα,ρ(+∞) = 0, the curve γ+ is traversed in the direction from
z∗ to 0.

The fact that Gα,ρ(z) is the inverse of 1/z + φα,ρ(1/z) can be expressed in the form

w = Gα,ρ(x)⇐⇒ x = w−1 − eπiαρwα−1. (2.2)

We know that Gα,ρ(x)→ 0 as x→∞, and formula (2.2) shows that

Gα,ρ(x) = w =
(
1− eπiαρwα

)
/x = O(1/x), x→∞. (2.3)

At the same time, since the function 1/z + φα,ρ(1/z) is analytic and has a non-vanishing
derivative at z = z∗, its inverse function Gα,ρ(z) is analytic in the neighborhood of zero.
By the inversion formula for the Cauchy transform we have

ψα,ρ(x) = − 1

π
Im(Gα,ρ(x)), x > 0,

therefore for s ∈ (−1, 0)

Mα,ρ(s) = − 1

π
Im

[∫
(0,∞)

xsGα,ρ(x)dx

]
. (2.4)

The above integral exists for all s ∈ (−1, 0) due to (2.3) and the fact that Gα,ρ(x) is
analytic in the neighborhood of x = 0.

The main step of the proof is to perform a change of variables w = Gα,ρ(x) in the
above integral. From (2.2) we find

dx

dw
= −w−2 − (α− 1)eπiαρwα−2.

Using the above result and the fact that Gα,ρ maps (0,∞) onto γ+, we rewrite the
integral in (2.4) as follows:∫

(0,∞)

xsGα,ρ(x)dx =

∫
γ+

(
w−1 − eπiαρwα−1

)s
w
(
−w−2 − (α− 1)eπiαρwα−2

)
dw (2.5)

= −
∫
γ+

(
1−

( w
z∗

)α)s
w−s−1dw − (α− 1)eπiαρ

∫
γ+

(
1−

( w
z∗

)α)s
w−s+α−1dw.
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Note that both integrals in the right-hand side of (2.5) are finite for s ∈ (−1, 0). Let
us compute the first integral in the right-hand side of (2.5): we make a substitution
w = uz∗ and obtain

I1 :=

∫
γ+

(
1−

( w
z∗

)α)s
w−s−1dw = eπiρs

∫
L

(1− uα)su−s−1du,

where L := γ+/z∗, or, in other words, L is the curve γ+ rotated counterclockwise
by the angle πρ. It is clear that the curve L connects points 0 and 1, it is traversed
in the direction 1 7→ 0, and L ⊂ C+ (except for the two endpoints). The function
w 7→ f(w) = (1 − wα)sw−s−1 extends to C+ analytically, and therefore we can deform
the contour of integration L into the interval [0, 1], and we finally obtain

I1 = eπiρs

∫ 0

1

(1− uα)su−s−1du = − 1

α
eπiρs

∫ 1

0

(1− x)sx−s/α−1dx

= − 1

α
eπiρsΓ(s+ 1)Γ(−s/α)

Γ(1 + s− s/α)
. (2.6)

When computing the above integral, in the second step we made a substitution u = x
1
α

and in the third step we have used the well-known integral representation for the beta
function. We deal with the second integral in the right-hand side of (2.5) in exactly the
same way, and we find that for s ∈ (−1, 0)

I2 :=

∫
γ+

(
1−

( w
z∗

)α)s
w−s+α−1dw = − 1

α
eπiρ(s−α) Γ(s+ 1)Γ(1− s/α)

Γ(2 + s− s/α)
. (2.7)

Combining formulas (2.4), (2.5), (2.6) and (2.7) we obtain

Mα,ρ(s) = − 1

π
Im

[
1

α
eπiρsΓ(s+ 1)Γ(−s/α)

Γ(1 + s− s/α)

− (α− 1)e−πi(1−αρ) 1

α
eπiρ(s−α) Γ(s+ 1)Γ(1− s/α)

Γ(2 + s− s/α)

]
= − 1

πα
sin (πρs)

[
Γ(s+ 1)Γ(−s/α)

Γ(1 + s− s/α)
+ (α− 1)

Γ(s+ 1)Γ(1− s/α)

Γ(2 + s− s/α)

]
= − 1

πα
sin (πρs)

Γ(s)Γ(1− s/α)

Γ(2 + s− s/α)
[−α(1 + s− s/α) + (α− 1)s]

=
1

π
sin (πρs)

Γ(s)Γ(1− s/α)

Γ(2 + s− s/α)
.

This ends the proof of (1.9) for s ∈ (−1, 0). The extension of the result for s ∈ (−1, α)

follows by analytic continuation. ut

The above proof of Theorem 1.1 is similar in spirit to the proof of Lemma 10 in
[7]. One can also give an alternative proof of Theorem 1.1, based on the following four
steps.

(i) The Mellin transform Mα,1(z) for α ∈ (0, 1) is known due to Theorem 3 in [7].

(ii) Assume that α ∈ (0, 1) and ρ ∈ [0, 1]. One can prove that

Xα,ρ
d
= Xα,1 ×Kρ, (2.8)

where the random variable Kρ is independent of Xα,ρ and follows the Cauchy
distribution

P(Kρ ∈ dx) =
1

π
× sin(πρ)

(x+ cos(πρ))2 + sin2(πρ)
dx. (2.9)
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The factorization (2.8) can be established as follows. Let GX(z) denote the Cauchy
transform E[1/(z − X)] of a random variable X. First note the fact GKρ(z) =

1/(z + eπiρ) which can be proved by the residue theorem (this formula and the
Cauchy transform inversion formula give the density (2.9)). Then for z ∈ C+ we
have

GXα,1×Kρ(z) = E

[
1

z −Xα,1 ×Kρ

]
= E

[
1

Xα,1
× 1

z/Xα,1 −Kρ

]
= E

[
1

Xα,1
× 1

z/Xα,1 + eπiρ

]
= E

[
−e−πiρ

−ze−πiρ −Xα,1

]
= −e−πiρGXα,1(−e−πiρz).

(2.10)

Recall the fact that for any random variable X and any a > 0, there exists b > 0

such that GX has the right compositional inverse G−1X defined in

∆a,b = {z ∈ C− | Im z ∈ (−b, 0), a|Re z| ≤ − Im z},

such that
G−1X (z) = 1/z + φX(1/z), z ∈ ∆a,b; (2.11)

see [4]. From (2.10) and (2.11) one has

φXα,1×Kρ(z) = −eiπρφXα,1(−e−iπρz) = φXα,ρ(z)

in a common domain. This shows the factorization (2.8).

(iii) The Mellin transform of the Cauchy distribution is given by

E[(Kρ)
s1{Kρ>0}] =

sinπρs

sinπs
, −1 < s < 1.

(iv) The explicit expression for Mα,ρ(z) for α ∈ (0, 1) and ρ ∈ [0, 1] follows from the

factorization Xα,ρ
d
= Xα,1 ×Kρ. We then use the duality identity (1.11) to obtain

Mα,ρ(z) for α ∈ (1, 2] and ρ ∈ [1− 1/α, 1/α].

Proof of Corollary 1.4: Formula (1.9) implies that for all (α, ρ) ∈ A and −1 < s < α−1

we have the identity Mα,ρ(−αs) = (1/α)×M1/α,αρ(s), which is equivalent to (1.11) and
(1.12). ut

Proof of Corollary 1.5: Assume that s ∈ C and Re(s) = 0. It is easy to see that

E
[
Z(1−1/α)s

]
= Γ (2 + (1− 1/α) s) .

Using the above identity and formulas (1.9) and (1.10) we obtain

E
[
(Yα,ρ)

s
1{Yα,ρ>0}

]
= E

[
Z(1−1/α)s

]
× E

[
(Xα,ρ)

s
1{Xα,ρ>0}

]
.

The above result and the uniqueness of the Mellin transform imply that

P(Yα,ρ ∈ A) = P(Xα,ρ × Z1−1/α ∈ A), (2.12)

for all Borel sets A ⊂ (0,∞). The fact that (2.12) also holds for all Borel sets A ⊂ (−∞, 0)

follows by using the symmetry condition −Xα,ρ
d
= Xα,1−ρ and −Yα,ρ

d
= Yα,1−ρ. This ends

the proof of (1.13). ut
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Lemma 2.1. Assume that X,Y, Z and W are independent random variables, which

satisfy the following four conditions: (i) X > 0 and Y > 0 a.s., (ii) X
d
= Y , (iii) X × Z d

=

Y × W and (iv) there exists ε > 0 such that E[|Z|s] < ∞ and E[|W |s] < ∞ for all

s ∈ (−ε, ε). Then Z
d
= W .

Proof. Recall that we denote by ξ̂ the cutoff of a random variable ξ. Assume that P(Z >

0) > 0. Condition (iii) implies that P(Z > 0) = P(W > 0) and X × Ẑ d
= Y × Ŵ . For t ∈ R

we denote f(t) = E[X it] = E[Y it] and obtain

f(t)× E[Ẑ it] = E[(XẐ)it] = E[(Y Ŵ )it] = f(t)× E[Ŵ it].

Since f(t) is continuous (as a characteristic function of ln(X)) and f(0) = 1 we conclude
that for some δ small enough, the function f(t) is non-zero for t ∈ (−δ, δ). Therefore,
we can divide both sides of the above identity by f(t) and conclude that E[Ẑ it] = E[Ŵ it]

for t ∈ (−δ, δ). Condition (iv) implies that both functions E[Ẑ it] and E[Ŵ it] are analytic
in the strip Im(t) ∈ (−ε, ε), and since they are equal on the set t ∈ (−δ, δ), they must be

equal for all t in the strip Im(t) ∈ (−ε, ε), which implies Ẑ
d
= Ŵ .

In the case if P(Z < 0) > 0 we can apply the same argument as above and show that
the cutoff of −Z has the same distribution as the cutoff of −W . ut

Proof of Corollary 1.6: This result follows at once from Corollary 1.5, Lemma 2.1, and
the following fact: the identity (1.15) is true for classical stable random variables Yα,ρ
and their cutoffs Ŷα,ρ (see formulas (3.2.3) and (3.2.5) in [11]). ut

Proof of Theorem 1.7: First of all, let us check that the series in (1.16) and (1.17)
converge for x = x∗. We recall Stirling’s asymptotic formula for the gamma function:
For every ε > 0

ln(Γ(z)) =
(
z − 1

2

)
ln(z)− z + 1

2 ln(2π) +Oε(z
−1), (2.13)

as |z| → ∞, uniformly in the sector | arg(z)| < π − ε Using (2.13) and the reflection
formula for the gamma function we check that

Γ(1 + αn)

n!Γ(2 + (α− 1)n)
=

1

π

Γ(1 + αn)

n!
sin(π(α− 1)n)Γ(−1 + (1− α)n) = O

(
n−3/2(x∗)αn

)
,

as n → +∞, which shows that the series in (1.16) converges for x = x∗ (therefore, it
converges uniformly on x ∈ [x∗,∞)). In the same way we check that

Γ (1 + n/α)

n!Γ (2 + (1/α− 1)n)
= O

(
n−3/2(x∗)−n

)
, n→ +∞,

therefore the series in (1.17) converges for x = x∗ (and it converges uniformly for
x ∈ [−x∗, x∗]).

Let us prove identity (1.16). We recall that Mα,ρ(s) is defined by (2.1), and we have
already established that it is equal to the function in the right-hand side of (1.9). It is
clear that Mα,ρ(s) has simple poles at points

sn := αn, n ≥ 1 and ŝm := −m, m ≥ 1.

The poles at sn {respectively, ŝm} come from the factor Γ(1− s/α) {respectively, Γ(s)}
in (1.9). The corresponding residues are given by

Res(Mα,ρ(s) : s = sn) =
1

π
(−1)n

Γ(1 + αn)

n!Γ(2 + (α− 1)n)
sin(nαρπ), (2.14)

Res(Mα,ρ(s) : s = ŝm) =
1

π
(−1)m−1

Γ (1 +m/α)

m!Γ (2 + (1/α− 1)m)
sin(mρπ). (2.15)
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Using the reflection formula for the Gamma function we check that Mα,ρ(s) ≡ f1(s) ×
f2(s), where we have defined

f1(s) := − 1

π

sin(πρs) sin (π (1/α− 1) s)

sin (πs/α)
, f2(s) :=

Γ(s)Γ (−1− s+ s/α)

Γ (s/α)
.

Let us denote Br(w) := {z ∈ C | |z − w| < r} and δ := α/4. The function f1(s)

has poles at points s = nα, n ∈ Z, and it satisfies f1(s) = O(exp(−π(1 − ρ)| Im(s)|)) as
Im(s)→∞. This implies that for some C1 > 0 we have

|f1(s)| ≤ C1, s /∈
∞⋃
n=0

Bδ(nα), Re(s) ≥ 0. (2.16)

From Stirling’s formula (2.13) we find that there exist C2 > 0 and C3 > 0 such that

|f2(s)| < C2|s|−3/2(x∗)Re(s), |s| > C3, Re(s) > 0. (2.17)

Formulas (2.16) and (2.17) show that Mα,ρ(s) is absolutely integrable on the vertical
line iR, therefore we may use the Mellin transform inversion formula

ψα,ρ(x) =
x−1

2πi

∫
iR
Mα,ρ(s)x

−sds.

Let us define bk := α(2k + 1)/2. Shifting the contour of integration iR 7→ bk + iR we
obtain

ψα,ρ(x) = −
k∑

n=1

Res(Mα,ρ(s) : s = sn)× x−sn−1 +
x−1

2πi

∫
bk+iR

Mα,ρ(s)x
−sds. (2.18)

Let us denote the integral in the right-hand side of (2.18) by Ik(x). Changing the vari-
able of integration s = bk + iu we find

|Ik(x)| =
∣∣∣∣i∫

R

Mα,ρ(bk + iu)x−bk−iudu

∣∣∣∣ ≤ x−bk ∫
R

|f1(bk + iu)| × |f2(bk + iu)|du. (2.19)

Note that due to our choice of bk, the vertical line bk+iR does not intersect the collection
of circles

⋃∞
n=0Bδ(nα), thus the estimate (2.16) holds true for all s ∈ bk + iR. Estimates

(2.16), (2.17) and (2.19) show that for all bk > C3 we have

|Ik(x)| ≤ C1C2

(
x∗

x

)bk ∫
R

(b2k + u2)−3/4du,

which implies that Ik(x) → 0 as k → +∞, provided that x ≥ x∗. Combining this state-
ment with formulas (2.14) and (2.18) gives us the desired series expansion (1.16).

The proof of (1.17) can be obtained in exactly the same way, except that now we
should shift the contour of integration in the opposite direction, while taking into ac-
count the contribution from the simple poles at points ŝm. The details of the proof are
left to the reader. ut

Lemma 2.2. Assume that (α, ρ) ∈ A. For s > 0 we have∫ ∞
0

fα,ρ(z)z
s−1dz =

1

α
eπis(ρ−1/2) Γ (s/α)

Γ (2− s+ s/α)
. (2.20)
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Proof. We use the following result (see Lemma 1 in [10]): Let s ∈ (0, 1) and assume that
X is a random variable such that E[|X|−s] <∞. Then∫ ∞

0

zs−1E[cos(zX)]dz = Γ(s) cos (πs/2)E[|X|−s],∫ ∞
0

zs−1E[sin(zX)]dz = Γ(s) sin (πs/2)E[|X|−ssign(X)].

Combining the above two identities we obtain the following result: for s ∈ (0, 1)∫ ∞
0

fα,ρ(z)z
s−1dy = Γ(s) cos (πs/2) [Mα,ρ(−s) +Mα,1−ρ(−s)]

+ iΓ(s) sin (πs/2) [Mα,ρ(−s)−Mα,1−ρ(−s)] ,

where Mα,ρ(s) is defined by (2.1). The required result (2.20) follows from the above
identity, formula (1.9) and the following elementary trigonometric identity

cos (πs/2) [sin(πρs) + sin(π(1− ρ)s)] + i sin (πs/2) [sin(πρs)− sin(π(1− ρ)s)]

= sin(πs)eπis(ρ−1/2).

Extension of (2.20) for all s > 0 is achieved by analytic continuation, since the right-
hand side of (2.20) is analytic in the half-plane Re(s) > 0. ut

Proof of Theorem 1.8: The proof uses the Mellin transform inversion technique, and
it is very similar to the proof of Theorem 1.7. Therefore, we only sketch the main steps
of the proof and we leave all the details to the reader.

Let us denote the function in the right-hand side of (2.20) by mα,ρ(s). Assume that
α ∈ (0, 1) and ρ ∈ (0, 1). Using the reflection formula for the Gamma function we find
that mα,ρ(s) = f1(s)× f2(s), where we have defined

f1(s) := eπis(ρ−1/2) sin((1/α− 1)πs)

sin(πs/α)
, f2(s) :=

Γ(−1− (1/α− 1)s)

Γ(1− s/α)
.

Using Stirling’s asymptotic formula (2.13) we check that the function u ∈ R 7→ mα,ρ(iu)

converges to zero exponentially fast as u → ∞, thus we can express fα,ρ(x) as the
inverse Mellin transform

fα,ρ(z) =
1

2πi

∫
1+iR

mα,ρ(s)z
−sds. (2.21)

We define bk := α(2k + 1)/2 and shift the contour of integration in (2.21) 1 + iR 7→
−bk + iR. Taking into account the residues of the integrand at points s = −αn (coming
from the factor Γ(s/α) in (2.20)), we obtain

fα,ρ(z) =
∑

0≤n≤k

(−1)n
eπiα(1/2−ρ)n

n!Γ(2 + (α− 1)n)
zαn +

1

2πi

∫
−bk+iR

mα,ρ(s)x
−sds. (2.22)

It is easy to see that for some C1 > 0 we have

|f1(−bk + iu)| < C1 exp (−π(1− |ρ− 1/2|)|u|) ,

for all k ≥ 0 and u ∈ R. Stirling’s asymptotic formula (2.13) shows that there exist
constants C2 ∈ R and C3 > 0 such that

ln(f2(s)) = s ln(−s) + C2s+O(1)

ECP 19 (2014), paper 56.
Page 11/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3443
http://ecp.ejpecp.org/


On free stable distributions

as s → ∞, uniformly in the half-plane Re(s) < −C3. The above two estimates can be
used to show that the integral in the right-hand side of (2.22) converges to zero as
k → +∞, which ends the proof of (1.21) for α ∈ (0, 1) and ρ ∈ (0, 1). The extension of
the result in the case ρ ∈ {0, 1} follows by considering the limit of (1.21) as ρ → 0+ or
ρ→ 1−. The proof in the case α ∈ (1, 2] can be obtained along the same lines. ut
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