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Abstract

In the case of neutral populations of fixed sizes in equilibrium whose genealogies are
described by the Kingman N -coalescent back from time t consider the associated
processes of total tree length as t increases. We show that the (càdlàg) process to
which the sequence of compensated tree length processes converges as N tends to
infinity is a process of infinite quadratic variation; therefore this process cannot be a
semimartingale. This answers a question posed in Pfaffelhuber et al. (2011).
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1 Introduction and main result

The Kingman coalescent is a classical model in mathematical population genetics
used for describing the genealogies for a wide class of population models (see e.g [21]).
The population models in question are neutral, exchangeable and with an offspring
distribution of finite variation. One particular example is the Moran model ([15]). This
is a stationary continuous-time model for populations of fixed size N in which the
reproduction takes place according to the following rule: starting with a population
of size N , after an exponential time of parameter

(
N
2

)
a pair of individuals is picked

uniformly at random from the population, out of which one individual dies and the other
one gives birth to one child.

The ancestry of a Moran population of size N started at time −∞ is at any time
t ∈ R described by the Kingman N -coalescent. This is a process with values in the set of
partitions of {1, . . . , N} which starts in the partition in singletons and has the following
dynamics (backwards in time): given the process is in state πk, it jumps at rate

(
k
2

)
to

a state πk−1 which is obtained by merging two randomly chosen elements of πk. The
process can be represented graphically as a binary rooted tree which, when traced back
from its N leaves (and correspondingly N external branches), exhibits a binary merger
at rate

(
k
2

)
while there are k branches left.

One particular feature of coalescent trees that has been intensively investigated in
the literature, due to its relevance in statistical studies of genetic data, is their total
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length (the sum of the lengths of all the branches of the tree). In the case of the Kingman
coalescent tree started with N leaves the total length is in expectation equal to twice the
harmonic number hN−1 =

∑N−1
i=1

1
i and when N tends to infinity (half of) the total length

compensated by logN converges in law to a Gumbel distributed random variable. In the
case of coalescent processes with multiple mergers the total length has been studied in
various papers, for instance [1], [2], [3], [8], [10], [11], [14].

As time t increases the Moran population evolves and its genealogy changes, giving
rise to a tree-valued process RN = (RNt )t∈R, the evolving Kingman N -coalescent. The
associated process of total tree length was investigated in [17]. (See also the more
recent papers [12] and [20] on the evolution of the total length in the multiple merger
case.) Let `(RNt ) denote the length of the tree RNt and call

LN =
(
LNt

)
t∈R

:=
(
`(RNt )− 2 logN

)
t∈R

the compensated tree length process. Pfaffelhuber et al. [17] investigated the asymptotic
behaviour of this process as the population size N →∞ and showed that there exists
a process L = (Lt)t∈R with sample paths in D, the space of càdlàg functions equipped
with the Skorokhod topology, such that

LN → L in law as N →∞. (1.1)

The process L is the Kingman tree length process.
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Figure 1: A realization of the compensated tree length process LN for N = 30 (courtesy
of Peter Pfaffelhuber)

The weak convergence (1.1) can be lifted to convergence in probability, provided a
representation for Moran populations on the same probability space for all population
sizes N ∈ N is considered. Such a representation is given by the look-down construction
of Donnelly and Kurtz ([5], [6]) which encodes the evolving coalescent in a path-wise
consistent way for increasing N . If Lld,Nt denotes the compensated length of the tree at
time t in the look-down representation, and Lld,N := (Lld,Nt )t∈R, then, as shown in [17]
Proposition 3.2, there exists a process Lld, having the same distribution as L, such that

dSk(Lld,N ,Lld) −→ 0

holds in probability as N →∞, where dSk denotes the Skorokhod metric. The proof of
Proposition 3.2 in [17] is based on the equality in law of the processes Lld,N and LN . In
Sec. 2 below we include an argument why this equality in law is valid.
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The question that we address in this paper is one formulated in [17], namely whether
L is a semimartingale (i.e. whether it can be written as a sum of a local martingale
and a process of locally finite variation that are both adapted to the same filtration),
and thus would be an instance for the classical tools of stochastic analysis. A necessary
condition for a càdlàg process to be a semimartingale is that its quadratic variation is
a.s. finite, see e.g. [18] Theorem II.22. In [17] it was proved that the process L has
“infinite infinitesimal variance”, more precisely, 1

ε| log ε|E[(Lε − L0)2]→ 4 as ε→ 0. This

implies that the squared increments (Lt+ε − Lt)2 are for small ε (at least in expectation)
of a larger order than ε, which suggests that L should not have finite quadratic variation.
We will show that indeed L has a.s. infinite quadratic variation (and hence cannot be a
semimartingale). This will be achieved by investigating the jumps of the process Lld.

Let us now give a brief description of the look-down construction and explain heuris-
tically our approach. A formal description of the look-down graph will then be given
in the next section. The main idea behind the look-down representation is to label the
individuals in the population according to the persistence (or longevity) of their offspring:
label 1 for the individual with the most persistent progeny, 2 for the second and so on.
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Figure 2: Detail of one realization of the infinite look-down graph. The line G marked
in red is born at time s0 at level 3 and is pushed up one level whenever an arrow is
shot towards a level lower than the current level of the line (at times s1, s2, . . . ). In the
N -look-down graph with N = 5 the line dies at time s3, whereas in the infinite look-down
graph it dies at time s when it reaches level ∞. The life-length of the line is equal to
s− s0 and its life-length up to N is s3 − s0. The tree length process Lld,5 has jumps at
the times lines exit level 5. The sizes of these jumps are equal to the lengths of the
corresponding lines.

We consider a system of countably many particles describing the sample genealogies
ordered by persistence. At any time, each level 1,2,. . . is occupied by precisely one
particle, and the system evolves as follows: for every pair i < k at rate 1 the particle
currently at level i shoots an arrow towards level k, independently of everything else.
At this time the particle at level i gives birth to a new particle which is placed at level
k, while for each j ≥ k the particle located at level j changes its level from j to j + 1.
To each birth event we associate a line which records the time evolution of the levels
occupied by the new-born particle (see the graphical representation in Figure 2). This
line is pushed up to the next level each time a birth event happens on a level to the left of
the current level of the line. We say that the line ends (dies) at the time it reaches level
∞. The countable system of all the lines (including the immortal line that sits at level 1)
makes up the look-down graph with infinitely many levels (or infinite look-down graph for
short); the corresponding representation for a particle system of finite size N is obtained
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by projecting the infinite look-down graph onto the first N levels. When considering the
system with N particles only, we say that a line dies when it is pushed out of level N .
Like in the case of the Moran model, the realizations of the sample genealogy can be
read off from the look-down graph.

For a line G in the infinite look-down graph we denote by TG its life-length, i.e. the
time span between the birth and the death time of G. If we restrict the graph to its
first N levels, then TG,N , the life-length of the line up to N will denote the time span
the line needs until it exits level N . In terms of trees, the life-length of a line that dies
at some time t in the look-down graph with N levels corresponds to the length of the
external branch that falls off the genealogical tree at time t. Therefore, the jumps of the
(compensated) tree length process Lld,N happen at the times lines exist level N in the
N -look-down graph and they have sizes equal to the life-lengths up to N of these lines.
Hence for s < t we can write

Lld,Nt − Lld,Ns = N(t− s)−
∑
G

TG,N ,

where the sum is taken over all lines G that exit level N in the time interval (s, t]. It was
proved in [17] (see Proposition 3.1 and the proof of Proposition 6.1 therein) that for any
fixed times s < t

Lld,Nt − Lld,Ns −→ Lldt − Llds (1.2)

holds in L2, and therefore almost surely along a subsequence (Nk)k∈N.
Let us now consider the lines in the infinite look-down graph that die in the time

interval (s, t]. For every such line there exists an N such that for all N ′ ≥ N this line
exits from level N ′ in the time interval (s, t]. Conversely, for any line that exits at level∞
in the complement of the time interval (s, t] there exists an N such for all N ′ ≥ N that
this line does not exit from level N ′ in the time interval (s, t]. Therefore, with probability
one, it is the life-lengths up to Nk of precisely those lines that reach level ∞ in (s, t],
which appear as summands on the right-hand side of (1.2) for large enough k, and thus
contribute to the limit Lld,Nk

t − Lld,Nk
s as Nk →∞.

Therefore, in order to understand the jumps of the limiting process Lld that occur
in (s, t] one key issue is to understand the behaviour of the life-lengths of the lines that
die in the infinite look-down graph in this time interval. The following theorem on the
squared life-lengths of these lines is the central ingredient for proving our main result,
which is stated in Theorem 2 below.

Theorem 1. For any s < t the sum of the squared life-lengths of the lines that die in the
time interval (s, t] in the infinite look-down graph is almost surely infinite.

Theorem 2. The Kingman tree length process L has a.s. infinite quadratic variation.

That is to say, for any s < t and each sequence (Pn)n∈N =
(

(ρ
(n)
j )j=0,...,l(n)

)
n∈N

of

partitions of [s, t] with mesh size tending to zero as n→∞ one has

lim
n→∞

l(n)∑
j=1

(
L
ρ
(n)
j
− L

ρ
(n)
j−1

)2
=∞ almost surely.

We will prove Theorem 2 for Lld in place of L. This is sufficient, since Lld and L are equal
in law.

A key ingredient in the proof of Theorem 1 is the proposition stated below. This result
is also of interest in its own right since it sheds light on the overall structure of the
look-down graph and the large amount of independence which is built into it. From the
brief description of the look-down graph given above (and from the formal definition
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provided in the next section) it is immediate that the birth times of lines on some level
k ≥ 2 in the look-down graph form a Poisson process with rate k− 1. It turns out that the
death times of these lines are also points of a Poisson process with the same rate. For
the particular case k = 2 two different proofs of this result were given in [7] and [16].

Proposition 1. In the infinite look-down graph, for every k ∈ N, k ≥ 2 consider the
process ηk of time points at which the lines that were born at level k reach level∞. The
processes ηk are mutually independent Poisson with rate k − 1.

For each k = 2, 3, . . . the process Lld has a jump in each of the points of ηk. The size h
of this jump is equal to the life-length TG of the line G that dies at this time point (see
the proof of Theorem 2). Let us emphasize that even though the jump times of Lld are
independent, Lld is not a Lévy process, because there are dependencies in the jump
sizes. Moreover, the integrability condition

∫
[0,1]

h2ν(dh) <∞, which must be satisfied by

a Lévy measure, is violated by the jump intensity measure of Lld. Indeed, the expectation
of the life-length TG of a line born at level k is 2/k (see (2.1) below) and for large k the
distribution of TG is concentrated around 2/k (see the proof of Theorem 1, which uses a
result of [4]). Since the points of ηk come at rate k− 1, the jump intensity measure of Lld

has (for large k) mass k − 1 concentrated around 2/k. As a matter of fact, part of the
strategy of the proof of our main result reflects in the simple fact that

∑
(k− 1)( 2

k )2 =∞.

2 The look-down process

The look-down construction of Donnelly and Kurtz ([5], [6]) is an alternative way
of representing the evolution of Moran (and more general exchangeable) populations,
which proves to be a very powerful instrument in investigating population dynamics.
As already mentioned in the introduction, this representation of populations of sizes
N is done on one and the same probability space for all N ∈ N in such a way that the
path-wise consistency of the genealogies is ensured as N →∞.

The main idea of the look-down representation is the labeling of the individuals
according to the persistence of their offspring in the population. In the first paper [5]
the persistence of the offspring is taken to hold in probability, whereas in the "modified"
look-down construction introduced in [6], this holds almost surely. We will use this
second version of the model which we describe below following [16].

We consider a population of infinite size and denote by V the set R×N. An element
(s, i) in V denotes the individual that occupies level i at time s. The levels represent
indices given to the individuals in the population according to the persistence of their
offspring in the following way: the offspring of the individual that lives at time s at level
i almost surely outlives the offspring of any other individual alive at time s on a level
k > i. The process evolves as follows: to every pair of levels i, k ∈ N with i < k we attach
a (rate one) Poisson point process on R which we denote by Cik. All these Poisson point
processes are independent. Each time the clock Cik rings, level k looks down to level i,
that is, the current individual at level i reproduces and its offspring is placed at level k.
For k ≥ 2 and s0 ∈

⋃
i<k Cik we associate with the individual born at time s0 at level k

the set of points

G =
⋃
j∈N0

[sj , sj+1)× {k + j},

where sj := inf
{
s > sj−1 : s ∈ ⋃l<m<k+j Clm} for j ∈ N. We call G the line born at

time s0 at level k and say that at time sj the line is pushed from level k + j − 1 to level
k + j. Note that a line is pushed one level upwards every time one of the Poisson point
processes associated with levels smaller than or equal to the current level of the line
experiences an event. Lines are born on a level k > 1 at the times of a Poisson point
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process with rate (k−1) and a line at level k is pushed up with rate
(
k
2

)
because there are(

k
2

)
independent (rate one) Poisson point processes which trigger the look-down between

the levels that are smaller than or equal to k.
We say that a line dies when it reaches level infinity and denote the death time of line

G by
dG := lim

j→∞
sj .

Since the rate at which a line is born at a level bigger than or equal to 2 is pushed up is
quadratical, we conclude that the time it takes for a line to die is finite almost surely.
Level 1 is never hit by arrows and therefore the offspring of the individuals living on this
level persist forever in the population. We call the line R× {1} the immortal line.

The set of all the lines is countable and it forms a partition of V. The random graph
obtained in this way is called the look-down graph (with infinitely many levels). This
graph records the evolution of a population of infinite size. Embedded in the look-down
process are all the N -particle look-down processes corresponding to populations of sizes
N ∈ N. The N -particle look-down process is constructed in a similar way, but the graph
has only N levels and we say that a line dies when it exits level N . Any N -particle
look-down process can be recovered as the projection of the infinite look-down process
on the first N levels.

The ordering by persistence (corresponding to the direction of the arrows from left
to right in Figure 2) induces an asymmetry in the look-down graph: the offspring size of
an individual with a lower level tends to be larger than that of an individual with a larger
level. Nevertheless, the ancestral process back from a fixed time t that is induced by the
random look-down graph is the Kingman coalescent. In order to see this, consider two
lines G and G′. For (s, l) ∈ G and (t, i) ∈ G′ with s ≤ t we say that (s, l) is the ancestor of
(t, i) and we write

As(t, i) = l,

if either the two lines are the same or there are some lines G1, . . . , Gm such that G1

descends from G, Gk descends from Gk−1, for k = 2, . . . ,m and G′ descends from
Gm. Two individuals (t, i) and (t, j) living at time t have the same ancestor at time s if
As(t, i) = As(t, j) and we write i

u∼ j with u = t− s. The random equivalence relation
u∼

defines the ancestral process of the population alive at time t, Rldt = (Rldt (u))u∈R. It is
not difficult to check that for each t the restriction Rld,Nt of Rldt to {1, . . . , N} is equal
in law to the N -Kingman coalescent RNt , when both are viewed as metric trees. The
consistency property then implies that the genealogy Rldt of the infinite population has
the distribution of the Kingman coalescent Rt.

The trees Rld,Nt and RNt come with a labeling of their leaves by 1, . . . , N , which in the
case of Rld,Nt corresponds to the levels. It is important to note that, for N ∈ N, the tree
length processes Lld,N and LN have the same distribution, even though for N ≥ 3 the
distributions of the leaf-labeled metric tree-valued processes Rld,N and RN are different.
As already stated above, for any fixed time t, the distribution of Rld,Nt equals that of RNt .
Moreover, this distribution is exchangeable, i.e. invariant under a permutation of the
labels. If one considers instead of the leaf-labeled trees the unlabeled trees (i.e. the
equivalence classes of leaf-labeled trees under all permutations of the labeling), then
it is clear how the Moran dynamics acts on these unlabeled trees: after an exponential
time with parameter

(
N
2

)
(at time τ , say) a pair of leaves is chosen completely at random,

one of them to die, which results in the removal of the external branch that is below the
leaf that dies at time τ , and the other to be parental, which results in two leaves having
distance 0 at time τ . (A formal description of this so-called tree-valued Moran dynamics
of population size N is given in [9], Def. 2.18.) With the look-down dynamics acting on
the trees whose leaves are labeled by the levels, it is always the leaf at level N that dies,
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and compared to the Moran dynamics there is a bias towards the lower levels in the
choice of the parental leaf. However, because the distribution of Rld,Nτ− (like that of Rld,Nt )

is invariant under permutations of the labels, the choice from the labeled leaves of Rld,Nτ−
(in spite of its bias) amounts to a uniform choice of a pair of leaves from the unlabeled
tree that corresponds to Rld,Nτ− . (More formally, for a leaf-labeled tree x, denote the
unlabeled tree obtained from x by Φ(x), and write P (x, .) for the look-down transition
probability in one reproduction step starting from x. Also, for an unlabeled tree y, denote
by Λ(y, .) the uniform distribution on the n! leaf-labeled trees in the equivalence class
described by y, and write Q(y, .) for the Moran transition probability on the unlabeled
trees in one reproduction step starting from x. What we have just explained amounts
to the relation ΛP = QΛ, which is one of the two criteria in Theorem 2 of [19]. The
other criterion in this theorem (requiring that ΛΦ = I) is clearly satisfied. Hence, this
theorem yields (first for the chains embedded at the reproduction times and then also for
the processes in continuous time) that Φ(Rld,N ) is a Markov process whose transitions
are given by Q.) Altogether, this shows that the lookdown dynamics yields the same
Markovian projection on the unlabeled trees as the Moran dynamics. Since the tree
length is a functional of the unlabeled tree, this shows that Lld,N and LN have the same
distribution.

With a view towards the jumps of Lld, in the look-down graph with infinitely many
levels let us consider a line G born at level lG ≥ 2. The time this line needs in order to
reach level infinity is

TG =

∞∑
j=lG

XG
j , (2.1)

where the time XG
j spent by the line at level j is an exponentially distributed random

variable with parameter
(
j
2

)
and the Xj ’s are independent from one another for different

j’s. We call TG the life-length of the line G. In terms of trees, the life-length of a line
that dies at some time t represents the length of the external branch that falls off the
genealogical tree at time t. When restricting to the first N levels in the graph, we define

TG,N :=

N∑
j=lG

XG
j , (2.2)

to be the life-length up to level N of the line G.

3 Proof of Theorem 1

Before we embark on proving Theorem 1 let us provide the proof of Proposition 1
which is a key ingredient in the proof of this theorem.

Proof of Proposition 1
For every n ≥ 2 and 2 ≤ k ≤ n let us write ηnk for the process of arrival times at level

n of lines born at level k. For k = n, the process ηnn equals the process of time points
were new lines are born at level n. Since for each 1 ≤ m ≤ n− 1 new lines at level n are
born via birth events triggered from level m at rate 1, independently of everything else,
it is clear that for every n ≥ 2, ηnn is a Poisson process with rate n− 1 that is independent
of (ηn2 , . . . , η

n
n−1).

It is thus sufficient to prove the following claim:

(∗) for every n ≥ 2 the processes ηnk , 2 ≤ k ≤ n − 1, are Poisson processes of
rate k − 1 and they are independent from one another for n fixed and different values of
k.
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Assuming this claim holds, remember that for a line

G =
⋃
j∈N0

[sGj , s
G
j+1)× {k + j}

born at level k, the time point sGj is the time the line reaches level k + j and that its
death time

dG = lim
j→∞

sGj

is finite almost surely. Now, denoting by Gk the set of all the lines in the look-down graph
which are born at level k, it follows that the time points {sGj }G∈Gk are the points of the

process ηk+jk , whereas the points {dG}G∈Gk are the points of the process ηk. Thus, the
assertion of the proposition follows from the claim.

We now prove the claim (∗) by an induction argument.
For the basic step of the induction let n = 3. At level 2, lines are born at the times of

the Poisson process η22 and every time a line is born, the line that occupied the level 2 is
pushed up to level 3. Therefore, a line born at level 2 arrives at level 3 at the next time
point of η22 after the line’s birth time. It follows that the set of points of η22 is equal to the
set of points of η32 and hence η32 is a Poisson process with rate 1. Moreover, η32 and η33 are
independent.

We assume now that the claim holds for n and prove
it for n + 1. From the induction assumption and the last
sentence in the first paragraph of this proof it follows that the
processes ηnk , k = 2, . . . , n, are independent Poisson processes
of rate k − 1. A fortiori, the process ηn2,...,n of arrival times at
level n, obtained by superposing the independent processes
ηn2 , . . . , η

n
n is Poisson with rate

(
n
2

)
. A line currently at level

n is pushed to level n + 1 at the next point of ηn2,...,n after
the line’s arrival at level n. Therefore, there is a bijective
function φ from the collection of points of the process ηn2,...,n
into itself which maps the time a line arrives at level n onto
the time it is pushed up (and arrives at level n+1) (see Figure 3). n + 1n

a

Figure 3

To each point of ηn2,...,n we associate a label which records the level at which the
line arriving at this point was born. By the induction assumption these labels are
independent and take value k with probability (k − 1)/

(
n
2

)
. The birth level of a line

arriving at time t at level n+ 1 is the birth level of the line arriving at time φ−1(t) at level
n, and hence it is the label of the point φ−1(t). The induction step is now completed by
the following elementary observation: Consider an independent labeling of a stationary
Poisson process η = (τi)i∈Z, . . . < τ−1 < τ0 < τ1 < . . ., on R and perform an "upward
shift" of this labeling, by assigning to each point τi as its new label the label of τi−1. Then
the new labeling has the same distribution as the old one. �

Proof of Theorem 1.
Let s < t ∈ R be fixed. For every k ≥ 2 we consider the sequence of lines born at level

k that die after time s, indexed by their death times (ti)i≥1, with s < t1 < t2 < . . .. For
i ∈ N let Tik be the length of life of the i-th of these lines and let Mk denote the number
of these lines which die before time t. According to Proposition 1 the numbers Mk are
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Poisson distributed with parameter (k − 1)(t− s) and independent from one another for
different k’s. We show that

Ss,t :=

∞∑
k=2

Mk∑
i=1

T 2
ik

is infinite almost surely.

To this end we first observe that for each k ≥ 2 and i ≥ 1 the random variable Tik
has the same distribution as Tk := the sum of independent Exp

(
j
2

)
-distributed random

variables, where j ranges from k to∞.

For each k ≥ 2 we have

P
(
Mk /∈

[1

2
(k − 1)(t− s), 2(k − 1)(t− s)

]
or{

Mk ∈
[1

2
(k − 1)(t− s), 2(k − 1)(t− s)

]
and Tik /∈

[1

k
,

3

k

]
for some i = 1, . . . ,Mk

})
≤ P

(
Mk /∈

[1

2
(k − 1)(t− s), 2(k − 1)(t− s)

])
+ P

(
Tik /∈

[1

k
,

3

k

]
for some i = 1, . . . , d2(k − 1)(t− s)e

})
≤ P

(
Mk /∈

[1

2
(k − 1)(t− s), 2(k − 1)(t− s)

])
+ d2(k − 1)(t− s)eP

(
Tk /∈

[1

k
,

3

k

])
. (3.1)

Cramér’s theorem guarantees that P
(
Mk /∈

[
1
2 (k − 1)(t − s), 2(k − 1)(t − s)

])
decays

exponentially in k and hence the first term on the right-hand side is summable. For
the second term we use Theorem 1 of [4] which says that the sequence (kTk)k≥2 (that
converges a.s. to 2 as k → ∞) satisfies a large deviation principle with scale k and a
good rate function. Since

P
(
Tk /∈

[1

k
,

3

k

])
= P

(∣∣∣Tk − 2

k

∣∣∣ > 1

k

)
,

it follows that the second term on the right-hand side of (3.1) is also summable. By the
Borel-Cantelli lemma we obtain that there exists an N-valued random variable K1 ≥ 2

such that for all k ≥ K1

Mk ∈
[1

2
(k − 1)(t− s), 2(k − 1)(t− s)

]
and Tik ∈

[1

k
,

3

k

]
for all i = 1, . . . ,Mk

almost surely and in particular

Mk ≥
1

2
(k − 1)(t− s) and Tik ≥

1

k
for all i = 1, . . . ,Mk almost surely.

Therefore,
∞∑

k=K1

Mk∑
i=1

T 2
ik ≥

∞∑
k=K1

⌈1

2
(k − 1)(t− s)

⌉
· 1

k2

holds almost surely. Now since K1 is almost surely finite, it follows that the sum on the
right-hand side is infinite almost surely and that

Ss,t =∞ almost surely,

which gives the claim. �
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4 Proof of Theorem 2

In order to prove Theorem 2 we first recall that Proposition 3.2 of [17] ensures the
existence of a process Lld having the same distribution as the Kingman tree length
process L and such that dSk(Lld,N ,Lld)→ 0 as N →∞ in probability. It thus suffices to
prove Theorem 2 for Lld instead of L.

The following lemma is elementary; we include its proof for the sake of completeness.

Lemma 1. Let (yk)k≥1, yk : R → R be a sequence of càdlàg functions satisfying that
there exist two sequences (τk)k≥1 and (γk)k≥1 in R such that yk has a jump of size γk
at time τk for all k ≥ 1. Moreover, suppose that the sequence (yk)k≥1 converges in the
Skorohod topology to a càdlàg function y and that the sequences (τk)k≥1 and (γk)k≥1 are
convergent. Let τ := limk→∞ τk and γ := limk→∞ γk and assume that γ 6= 0. Then the
function y has a jump of size γ at time τ .

Proof. Let Λ be the set of all strictly increasing and continuous functions λ : [0,∞] →
[0,∞]. Together with the stated assumptions, the convergence dSk(yk, y)→ 0 implies the
existence of a sequence (λk)k≥1 of functions in Λ such that

ρk := λk(τk)→ τ and ∆y(ρk) := y(ρk)− y(ρk−)→ γ as k →∞.

If ρk were different from τ for infinitely many k, then this would contradict the fact that
large jumps of a càdlàg function are isolated. Consequently, ρk = τ for all but finitely
many k (see also [13] Proposition VI.2.1 b) with αk = α = y, tk = t = τ , t′k = ρk). Hence,
∆y(τ) = γ.

Proposition 2. The sum of the squared jump sizes of the process Lld occurring in any
interval of positive length is infinite almost surely.

Proof. Consider the look-down graph and recall that for every N ∈ N the N -look-down
graph can be recovered as the projection of the infinite graph onto its first N levels.

Let G denote the set of all the lines in the infinite look-down graph and for a line
G =

⋃
j∈N0

[sGj , s
G
j+1)× {lG + j} born at level lG let us set

dG,N :=

{
sGN−lG+1 , if N ≥ lG

−∞ , otherwise,

the exit time from level N of the line G.
We are interested in the times and the sizes of the jumps of the processes Lld,N .

Jumps occur at the times {dG,N}G∈G when lines die in the N -look-down process (i.e. they
exit level N ). Since for a fixed G ∈ G the sequences {dG,N}N∈N and {sGN−lG+1}N∈N are
identical for N large enough, it follows that

lim
N→∞

dG,N = dG, (4.1)

where dG is the death time of line G. The jump size of the process Lld,N at time dG,N has
size equal to the life-length TG,N of the line G up to level N defined in (2.2). Note that
the exponential times XG

j do not depend on N . Therefore, we have that

lim
N→∞

TG,N = lim
N→∞

N∑
j=lG

XG
j =

∞∑
j=lG

XG
j = TG (4.2)

almost surely, where TG defined in (2.1) is the life length of line G in the infinite
look-down graph.
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In the following we fix an increasing sequence (Nk)k∈N in N with dSk(Lld,Nk ,Lld)→ 0

almost surely as k →∞. In view of (4.1) and (4.2) we now apply for every G ∈ G Lemma 1
to the paths of (Lld,Nk)k≥1, the sequence of times (dG,Nk)k≥1 and the sequence of jump
sizes (TG,Nk)k≥1. Consequently, for each G ∈ G, the limiting process Lld has a jump of
size TG at time dG.

Thus, for the sum of the squared jump sizes of Lld occurring in an interval [0, t], t > 0,∑
0≤s≤t

(∆Llds )2 ≥
∑
G∈G:

dG∈[0,t]

(
TG
)2

holds and since, according to Theorem 1, the right-hand side is infinite almost surely,
the Proposition is proved.

Proof of Theorem 2
It remains to show that for every t > 0 any càdlàg path X with

∑
0≤s≤t(∆Xs)

2 =∞
has the property

lim
n→∞

l(n)∑
j=1

(
X
ρ
(n)
j
−X

ρ
(n)
j−1

)2
=∞ (4.3)

for each sequence (Pn)n∈N =
(

(ρ
(n)
j )j=0,...,l(n)

)
n∈N

of partitions of [0, t] with mesh size

tending to zero as n → ∞. For this purpose we order the jump sizes of X that occur
in (0, t) according to their sizes and denote by (ti)i≥1 the corresponding jump times, i.e.
|∆Xt1 | ≥ |∆Xt2 | ≥ . . . holds. Then, for every (fixed but arbitrary) k ∈ R there exists an
m(k) such that

m(k)∑
i=1

(∆Xti)
2 ≥ k.

For any jump time ti and every partition Pn let σi,n be the largest point in the partition
smaller than ti and τi,n be the smallest point in the partition larger than or equal to ti.
Then, for n large enough, there is at most one of the t1, . . . , tm(k) between any two points
of the partition Pn and thus

l(n)∑
j=1

(
X
ρ
(n)
j
−X

ρ
(n)
j−1

)2
≥
m(k)∑
i=1

(
Xτi,n −Xσi,n

)2
holds for n large enough. Using the càdlàg property of X we obtain that

lim
n→∞

m(k)∑
i=1

(
Xτi,n −Xσi,n

)2
≥
m(k)∑
i=1

(∆Xti)
2.

Since k was arbitrary, (4.3) follows from the last three inequalities.
From this together with Proposition 2 and Lemma 1, Theorem 2 is immediate. �
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