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Abstract
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1 Introduction and notations

Let (Ω,F , µ) be a probability space and (S, d) a separable metric space. We say that
the sequence of random variables (Xn)n∈Z from Ω to S is strictly stationary if for all in-
teger d and all integer k, the d- uple (X1, . . . , Xd) has the same law as (Xk+1, . . . , Xk+d).

Rosenblatt introduced in [18] the measure of dependence between two
sub-σ-algebras A and B:

α(A,B) := sup {|µ(A ∩B)− µ(A)µ(B)| , A ∈ A, B ∈ B} .

Another one is β-mixing, which is defined by

β(A,B) :=
1

2
sup

I∑
i=1

J∑
j=1

|µ(Ai ∩Bj)− µ(Ai)µ(Bj)| ,

where the supremum is taken over the finite partitions {A1, . . . , AI} and {B1, . . . , BJ} of
Ω, which consist respectively of elements of A and B. It was introduced by Volkonskii
and Rozanov in [21].

In order to measure dependence of a sequence of random variables, say X :=

(Xj)j∈Z (assumed strictly stationary for simplicity), we define Fnm as the σ-algebra gen-
erated by the Xj for m 6 j 6 n, where −∞ 6 m 6 n 6 +∞.

Then mixing coefficients are defined by

αX (n) := α
(
F0
−∞,F+∞

n

)
(1.1)
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A mixing counter-example to the central limit theorem in Hilbert spaces

βX (n) := β
(
F0
−∞,F+∞

n

)
, (1.2)

which will be simply writen α(n) (respectively β(n)) when there is no ambiguity.
We say that the strictly stationary sequence (Xj)j is α-mixing (respectively β-mixing)

if limn→∞ α(n) = 0 (respectively limn→∞ β(n) = 0). Sequences which are α-mixing are
also called strong-mixing. Notice that the inequality 2α(A,B) 6 β(A,B) for any two
sub-σ-algebras A and B implies that each β-mixing sequence is strong mixing. We refer
the reader to Bradley’s book [4] for further information about mixing conditions.

Let (V, ‖·‖) be a separable normed space. We can represent a strictly stationary
sequence (Xj)j by Xj = f ◦T j , where T : Ω→ Ω is measurable and measure preserving,

that is, µ(T−1(S)) = µ(S) for all S ∈ F (see [8], p.456, second paragraph).

Given an integer N , we define SN (f) :=

N−1∑
j=0

f ◦ T j and (σN (f))2 := E
[
‖SN (f)‖2

]
.

When V = Rd, d ∈ N∗ it is well-known that if
(
f ◦ T j

)
j>0

satisfies the following
assumptions:

1. limN→+∞ σN (f) = +∞;

2.
∫
fdµ = 0:

3. limn→+∞ α(n) = 0;

4. the family
{
‖SN (f)‖2
(σN (f))2 , N > 1

}
is uniformly integrable,

then
(

1
σN (f)SN (f)

)
N>1

converges in distribution to a Gaussian law. It was established

for d = 1 by Denker [7], Mori and Yoshihara [14] using a blocking argument. Volný [22]
gave a proof for d arbitrary based on approximation by an array of independent random
variables.

A natural question would be: what if we replace Rd by another normed space?

First, we restrict ourselves to separable normed spaces in order to avoid measurabil-
ity issues of sums of random variables. Corollary 10.9. in [11] asserts that a separable
Banach space B with norm ‖·‖B is isomorphic to a Hilbert space if and only if for all

random variables X with values in B, the conditions E [X] = 0 and E
[
‖X‖2B

]
< ∞ are

necessary and sufficient for X to satisfy the central limit theorem. By "X satisfies the
CLT", we mean that if (Xj)j>1 is a sequence of independent random variables, with the

same law as X, the sequence
(
n−1/2

∑n
j=1 Xj

)
n>1

weakly converges in B. Hence we

cannot expect a generalization in a class larger than separable Hilbert spaces. Such a
space is necessarily isomorphic to H := `2(R), the space of square sumable sequences
(xn)n>1 endowed with the inner product 〈x, y〉H :=

∑+∞
n=1 xnyn. We shall denote by en

the sequence whose all terms are 0, except the n-th which is 1. Bold letters denote both
randoms variables taking their values in H and elements of this space.

General considerations about probability measures and central limit theorem in Ba-
nach spaces are contained in Araujo and Giné’s book [2].

Notation 1. If (an)n>1, (bn)n>1 are sequences of non- negative real numbers, an . bn
means that an 6 Cbn, where C does not depend on n. In an analogous way, we define
an & bn. When an . bn . an, we simply write an � bn.

Our main results are
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A mixing counter-example to the central limit theorem in Hilbert spaces

Theorem A. There exists a probability space (Ω,F , µ) such that given 0 < q < 1, we
can construct a strictly stationary sequence X = (f ◦T k) = (Xk)k∈N defined on Ω, taking
its values in H, such that:

a) E [f ] = 0, E [‖f‖pH] is finite for each p;

b) the limit limN→∞ σN (f) is infinite;

c) the process (Xk)k∈N is β-mixing, more precisely, βX(j) = O
(

1
jq

)
;

d) the family
{
‖SN (f)‖2H
σ2
N (f)

, N > 1
}

is uniformly integrable;

e) if I ⊂ N is infinite, the family
{
SN (f)
σN (f) , N ∈ I

}
is not tight in H; furthermore, given

a sequence (cN )N>1 of real numbers going to infinity, we have either

• limN→+∞
σN (f)
cN

= 0, hence
(
SN (f)
cN

)
N>1

converges to 0H in distribution, or

• lim supN→+∞
σN (f)
cN

> 0, and in this case the collection
{
SN (f)
cN

, N > 1
}

is not

tight.

Theorem A’. Let (bN )N>1 and (hN )N>1 be sequences of positive real numbers, with
limN→∞ bN = 0 and limN→∞ hN = ∞. Then there exists a strictly stationary sequence
X := (f ◦ T k)k∈N = (Xk)k∈N of random variables with values in H such that A, A, A of
Theorem A and the following two properties hold:

b’) we have σ2
N (f) . N · hN and σ2

N (f)
N →∞;

c’) the process (Xk)k∈N is β-mixing, and there is an increasing sequence (nk)k>1 of
integers such that for each k, βX(nk) 6 bnk .

Remark 2. Theorem A shows that Denker’s result does not remain valid in its full gen-
erality in the context of Hilbert space valued random variables.

Furthermore, a careful analysis of the proof of Proposition 6 shows that for the
construction given in Theorem A, we have σ2

N (f) = N · h(N) with h slowly varying in
the strong sense. Theorem 1 of [12] does not remain valid in the Hilbert space setting.
Indeed, the arguments given in pages 654-655 show that the conditions of Denker’s
theorem together with the assumption that σ2

N = N · h(N) with h slowly varying in the
strong sense imply those of Theorem 1. These arguments are still true in the Hilbert
space setting.

Remark 3. Theorem A’ gives a control of the mixing coefficients on a subsequence.
When bN := N−2 for example, the construction gives a better estimation for the consid-
ered subsequence than what we get by Theorem A.

Tone has established in [20] a central limit theorem for strictly stationary random
fields with values in H under ρ′-mixing conditions. For sequences, these coefficients
are defined by

ρ′(n) := sup

{
|E [〈f ,g〉H]− 〈E [f ] ,E [g]〉H|

‖f‖L2(H) ‖g‖L2(H)

}
,

where the supremum is taken over all the non-zero functions f and g such that f and g

are respectively σ(Xj , j ∈ S1) and σ(Xj , j ∈ S2)-measurable, where S1 and S2 are such
that mins∈S1,t∈S2 |s− t| > n, while L2(H) denote the collection of equivalence classes of
random variables X : Ω→ H such that ‖X‖2H is integrable.

So "interlaced index sets" can be considered, which is not the case for α and β-
mixing coefficient. Taking f and g as characteristic functions of elements of F0

−∞ and
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F+∞
n respectively, one can see that α(n) 6 ρ′(n), hence ρ′-mixing condition is more

restrictive than α-mixing condition.
A partial generalization of the finite dimensional result was proved by Politis and Ro-

mano [15], namely, the conditions E ‖X1‖2+δH finite for some positive δ and
∑
j αX(j)

δ
2+δ

guarantees the convergence of n−1/2
∑n
j=1 Xj to a Gaussian random variable N , whose

covariance operator S satisfies

E
[
〈N , h〉2

]
= 〈Sh, h〉H = Var(〈X1, h〉) + 2

+∞∑
i=1

Cov (〈X1, h〉, 〈X1+i, h〉) .

Similar results were obtained by Dehling [6].
Rio’s inequality [16] asserts that given two real valued random variables X and Y

with finite two order moments,

|E [XY ]− E [X]E [Y ]| 6 2

∫ α(σ(X),σ(Y ))

0

QX(u)QY (u)du.

It was extented by Merlevède et al. [13], namely, if X and Y are two random variables
with values in H, with respective quantile function Q‖X‖H and Q‖Y‖H , then

|E [〈X,Y〉H]− 〈E [X] ,E [Y]〉H| 6 18

∫ α

0

Q‖X‖HQ‖Y‖Hdu,

where α := α(σ(X), σ(Y)).
From this inequality, they deduce a central limit theorem for a stationary sequence

(Xj)j∈Z of H-valued zero-mean random variables satisfying∫ 1

0

α−1(u)Q2
‖X0‖H

(u)du <∞, (1.3)

where α−1 is the inverse function of x 7→ αX(bxc).
Discussion after Corollary 1.2 in [17] proves that the later result implies Politis’ one.
Relative optimality of condition (1.3) (cf. [9]) can give a finite-dimensional counter-

example to the central limit theorem when this condition is not satisfied. Here, the
condition of uniform integrability prevents such counter-examples.

Defining α2,X(n) := supi>j>n α(F0
−∞, σ(Xi,Xj)) and QX0

the right-continuous in-
verse of the function t 7→ µ {‖X0‖H > t} (that is,

QX0(u) := inf {t ∈ R, µ {‖X0‖H > t} 6 u}), Dedecker and Merlevède have shown in
[5] that under the assumption

+∞∑
k=1

∫ α2,X(k)

0

Q2
X0

(u)du <∞,

we can find a sequence (Zi)i∈N of Gaussian random variables with values inH such that
almost surely, ∥∥∥∥∥Sn −

n∑
i=1

Zi

∥∥∥∥∥
H

= o
(√

n log log n
)
.

2 The proof

2.1 Construction of f

In order to construct a counter-example, we shall need the following lemma, which
will be proved later.

We will denote U the Koopman operator associated to T , which acts on measurable
functions by U(f)(x) := f(T (x)).
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Lemma 4. Let (uk)k>1 ⊂ (0, 1) be a sequence of numbers. Then there exists a dynami-
cal system (Ω,F , µ, T ) and a sequence of random variables (ξk)k>1 such that

1. for each k > 1, µ(ξk = 1) = µ(ξk = −1) = uk
2 and µ(ξk = 0) = 1− uk;

2. the random variables (U iξk, k > 1, i ∈ Z) are mutually independent.

Recall that ek is the k-th element of the canonical orthonormal system of H = `2(R).
We define

fk :=

nk−1∑
i=0

U−iξk and f :=

+∞∑
k=1

fkek, (2.1)

where the ξi’s are constructed using to Lemma 4 taking uk := n−2k . Conditions on the
increasing sequence of integers (nk)k>1 will be specified latter.

Then Xk := f ◦ T k is a strictly stationary sequence. Note that ‖f‖2H is an integrable
random variable whenever

∑
k

1
nk

is convergent. In the sequel, the choice of nk will
guarantee this condition.

2.2 Preliminary results

We express SN (fk) as a linear combination of independent random variables. By
direct computations, we get

fk = nkξk + (I − U)

−1∑
i=1−nk

(nk + i)U iξk, (2.2)

hence

SN (fk) = nk

N−1∑
j=0

U jξk +

−1∑
i=1−nk

(nk + i)U iξk −
N−1∑

i=N−nk+1

(nk + i−N)U iξk.

This formula can be simplified if we distinguish the cases N > nk and nk < N (we break
the third sum at the index i = 0 if necessary). This gives

SN (fk) =

N−1∑
j=0

(N − j)U jξk +

N−nk∑
j=1−nk

(nk + j)U jξk

+N

−1∑
j=1+N−nk

U jξk, if N < nk, (2.3)

SN (fk) = nk

N−nk∑
j=0

U jξk +

N−1∑
j=N−nk+1

(N − j)U jξk

+

−1∑
j=1−nk

(nk + j)U jξk, if N > nk. (2.4)

The computation of the expectation of the square of partial sums gives

σ2
N (fk) =


1
n2
k

2

N∑
j=1

j2 + (nk −N − 1)N2

 if N < nk,

1
n2
k

n2k(N − nk + 1) + 2

nk−1∑
j=1

j2

 if N > nk.

(2.5)
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Notation 5. If N is a positive integer and (nk)k>1 is an increasing sequence of integers,
denote by i(N) the unique integer for which ni(N) 6 N < ni(N)+1.

Proposition 6. Assume that (nk)k>1 satisfies the condition

there is p > 1 such that for each k, nk+1 > npk. (C)

Then σ2
N (f) � N · i(N).

Proof. Using (2.5), the fact that M3 �
∑M
j=1 j

2 and σ2
N (f) =

∑
k>1 σ

2
N (fk), we have

σ2
N (f) >

i(N)∑
k=1

σ2
N (fk) � N

i(N)∑
j=1

1 = N · i(N). (2.6)

From (2.5) in the case nk > N , we deduce

∑
k>i(N)+1

σ2
N (fk) .

∑
k>i(N)+1

N2

nk
6

N2

ni(N)+1
+

∑
k>i(N)+1

N2

nk

1

np−1k

. (2.7)

Since ni(N)+1 > N and the series
∑
k>1 n

1−p
k is convergent (by the ratio test), we obtain

∑
k>i(N)+1

σ2
N (fk) . N +N

∑
k>i(N)+1

1

np−1k

. N. (2.8)

Combining (2.6) and (2.8), we get

N · i(N) . σ2
N (f) .

i(N)∑
k=1

σ2
N (fk) +

∑
k>i(N)+1

σ2
N (fk) . N · i(N) +N . N · i(N). (2.9)

Proposition 7. Assume that
∑
k n
−a
k is convergent for any positive real number a. Then

for each integer p, ‖f‖H has a finite moment of order p.

Proof. We shall use Rosenthal’s inequality (Theorem 3, [19]): there exists a constant C
depending only on q such that if M is an integer, Y1, . . . , YM are independent real valued
zero mean random variables for which E |Yi|q <∞ for each i, then

E

∣∣∣∣∣∣
M∑
j=1

Yj

∣∣∣∣∣∣
q

6 C

 M∑
j=1

E |Yj |q +

 M∑
j=1

E
[
Y 2
j

]q/2
 . (2.10)

If q = 2p is given then we have

E |fk|2p . n−1k + n−pk . n−1k . (2.11)

We provide a sufficient condition for the uniform integrability of the family S :={
‖SN (f)‖2H
σ2
N (f)

, N > 1
}

.

Proposition 8. If (nk)k>1 satisfies (C), then S is uniformly integrable.
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Proof. For N > 1, we have:

‖SN (f)‖2H
σ2
N (f)

=

i(N)−1∑
j=1

|SN (fj)|2

σ2
N (f)

+

∣∣SN (fi(N))
∣∣2

σ2
N (f)

+

∣∣SN (fi(N)+1)
∣∣2

σ2
N (f)

+
∑

j>i(N)+2

|SN (fj)|2

σ2
N (f)

,

hence it is enough to prove that the families

S1 :=


i(N)−1∑
k=1

|SN (fk)|2

σ2
N (f)

, N > 1

 ,

S2 :=

{∣∣SN (fi(N))
∣∣2

σ2
N (f)

, N > 1

}
=: {uN , N > 1} ,

S3 :=

{∣∣SN (fi(N)+1)
∣∣2

σ2
N (f)

, N > 1

}
=: {vN , N > 1} , and

S4 :=

 ∑
k>i(N)+2

|SN (fk)|2

σ2
N (f)

, N > 1


are uniformly integrable. For S1 and S4, we shall show that these families are bounded
in Lp for p ∈ (1, 2] as in (C).

• for S1: using the expression in (2.4) and (2.10) with q := 2p > 2, we have

E
[
|SN (fk)|2p

]
6 C

2

nk∑
j=1

j2p

n2k
+
n2pk (N − nk)

n2k

+ C

2

nk∑
j=1

j2

n2k
+

(N − nk)n2k
n2k

p

.
1

n2k

(
n2p+1
k + (N − nk)n2pk

)
+

1

n2pk

(
n3k + (N − nk)n2k

)p
=
Nn2pk
n2k

+
Npn2pk
n2pk

= Nn
2(p−1)
k +Np

hence ∥∥SN (fk)2
∥∥
p
. N1/pn

2 p−1
p

k +N,

which gives ∥∥∥∥∥∥
i(N)−1∑
k=1

|SN (fk)|2

σ2
N (f)

∥∥∥∥∥∥
p

.

∑i(N)−1
k=1 (N1/pn

2 p−1
p

k +N)

σ2
N (f)

.
i(N)n

2 p−1
p

i(N)−1 +Ni(N)

σ2
N (f)

.

From (2.6), we get∥∥∥∥∥∥
i(N)−1∑
k=1

|SN (fk)|2

σ2
N (f)

∥∥∥∥∥∥
p

.
n
2 p−1

p

i(N)

ni(N)
+ 1 = n

p−2
p

i(N) + 1.

Since p− 2 6 0, we obtain that S1 is bounded in Lp hence uniformly integrable.
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• for S2: using (2.4) in the case nk 6 N and Proposition 6, we get

‖uN‖1 .
N

σ2
N (f)

.
1

i(N)
. (2.12)

Since ‖uN‖1 → 0 and uN ∈ L1 for each N , the family S2 is uniformly integrable.

• for S3: using (2.3) in the case nk > N and Proposition 6, we get

‖vN‖1 .
N2

ni(N)+1σ
2
N (f)

.
N

N · i(N)
. (2.13)

Since ‖vN‖1 → 0 and vN ∈ L1 for each N , the family S3 is uniformly integrable.

• for S4: as for S1, we shall show that this family is bounded in Lp with p ∈ (1, 2]. We
have, using (2.3) and (2.10)

E
[
|SN (fk)|2p

]
.

1

n2k
(N2p+1 +N2p(nk −N)) +

1

n2pk
(N3 + (nk −N)N2)p

=
N2p

nk
+
N2p

npk

.
N2p

nk

as N 6 nk. We thus get that∥∥∥∥∥∥
∑

k>i(N)+2

|SN (fk)|2
∥∥∥∥∥∥
p

. N2
∑

k>i(N)+2

1

n
1/p
k

.

Also, using (2.5), we have

σ2
N (f) & N2

∑
k>i(N)+1

1

nk
.

The condition nk+1 > npk gives boundedness in Lp of S4.

This concludes the proof of A.

Proposition 9. Assume that (nk)k>1 is such that S is uniformly integrable and
∑
k n
−1
k

is convergent. Then for each I ⊂ N infinite, the collection
{
SN (f)
σN (f) , N ∈ I

}
is not tight in

H. Its finite-dimensional distributions converge to 0 in probability.
Furthermore, if (cN )N>0 is a sequence of positive numbers going to infinity, we have

either

• limN→+∞
σN (f)
cN

= 0, hence
(
SN (f)
cN

)
N>1

converges to 0H in distribution, or

• lim supN→+∞
σN (f)
cN

> 0, and in this case the sequence
{
SN (f)
cN

, N > 1
}

is not tight.

Proof. We first prove that the finite dimensional distributions of SN (f)
σN (f) converge weakly

to 0.
For each d ∈ N, we have 〈SN (f),ed〉H

σN (f) → 0 in distribution. Indeed, we have by (2.2)

that 〈SN (f), ed〉H = nd
∑N−1
i=0 U iξd+(I−UN )

∑−1
i=1−nd(nd+ i)U iξd. We conclude noticing

that σN (f)−1(I − UN )
∑−1
i=1−nd(nd + i)U iξd goes to 0 in probability as N goes to infinity,

using Proposition 6 and the estimate

E

(
nd

N−1∑
i=0

U iξd

)2

= N .
σ2
N (f)

i(N)
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This can be extended replacing ed by any v ∈ H by an application of Theorem 4.2.
in [3]. By Proposition 4.15 in [2], the only possible limit is the Dirac measure at 0H.

Assume that the sequence
{
SN (f)
σN (f) , N > 1

}
is tight. The sequence

(
‖SN (f)‖2H
σ2
N (f)

)
N>1

is

a uniformly integrable sequence of random variables of mean 1. A weakly convergent
subsequence would go to 0H. According to Theorem 5.4 in [3], we should have that
the limit random variable has expectation 1. This contradiction gives the result when
I = N \ {0}. Applying this reasonning to subsequences, one can see that for any infinite

subset I of N \ {0}, the family
{
SN (f)
σN (f) , N ∈ I

}
is not tight.

Let (cN )N>1 be a sequence of positive real numbers such that limN→+∞ cN = +∞.

• first case: σN (f)
cN

converges to 0. In this case, the sequence
(
‖SN (f)‖2

c2N

)
N>1

con-

verges to 0 in L1, hence the sequence
(
SN (f)
cN

)
N>1

converges in distribution to

0H.

• second case: lim supN→∞
σN (f)
cN

> 0. Hence there is some r > 0 and a sequence of

integers li ↑ ∞ such that for each i,
σli (f)

cli
> 1

r , that is, cli 6 rσli(f).

Assume that the family
{
Sli (f)

cli
, i > 1

}
is tight. This means that given a positive ε,

one can find a compact set K = K(ε) such that for each i, µ
{
Sli (f)

cli
∈ K

}
> 1− ε.

We can assume that this compact set is convex and contains 0 (we consider the
closed convex hull of K ∪ {0}, which is compact by Theorem 5.35 in [1]). Then we
have {

Sli(f)

cli
∈ K

}
=

{
Sli(f)

σli(f)
∈ cli
σli(f)

K

}
⊂
{
Sli(f)

σli(f)
∈ rK

}
,

and we would deduce tightness of
{
Sli (f)

σli (f)
, i > 1

}
, which cannot happen.

Remark 10. In the second case, it may happen that the finite dimensional distributions
does not converge to degenerate ones, for example with cN := N .

2.3 Proof of Theorem A

Notice that if nk+1 > npk for some p > 1 and n1 = 2, then nk > 2p
k

, hence the
condition of Proposition 7 is fulfilled. We get A since each fk has expectation 0.

We denote bxc := sup {k ∈ Z, k 6 x} the integer part of the real number x.

Proposition 11. Let p > 1. With nk := b2pkc (which satisfies (C)), we have for each
positive integer l,

βX(l) .
1

l
1
p

.

Proof. We define βk(n) as the n-th β-mixing coefficient of the sequence (fk ◦ T i)i>0.
By Lemma 5 of [10], we have the estimate βk(0) 6 4n−1k for each k. Using then

Proposition 4 of this paper (cf. [4] for a proof), we get that βX(nk) .
∑
j>k

1
nj

for each

integer k. Since pi > i for i large enough,

∑
j>k

1

nj
=

+∞∑
i=0

1

2pi+k
=

+∞∑
i=0

1

2pipk
.

+∞∑
i=0

1

2i
1

2pk
=

2

2pk
,
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we get

βX(N) 6 βX(ni(N)) .
1

ni(N)
=

1

n
1/p
i(N)+1

6
1

N1/p
.

This proves A. For any p, the choice nk := b2pkc satisfies the condition of Proposi-
tion 8, which proves A. We conclude the proof by Proposition 9.

Remark 12. For each of these choices, σ2
N (f) behaves asymptotically like N log logN .

Theorem A’ shows that we can construct a process which satisfies the same asymptotic
behavior of partial sums and has a variance close to a linear one.

A question would be: can we construct a strictly stationary sequence with all the
properties of Theorem A, except A which is replaced by an assumption of linear vari-
ance?

2.4 Proof of Theorem A’

Let (hN )N>1 be the sequence involved in Theorem A’. We define for an integer u the
quantity h−1(u) := inf {j ∈ N, hj > u}.

If (bk)k>1 is the given sequence (that can be assumed decreasing), we define induc-
tively

nk+1 := max

{
n2k, b

2k

bnk
c, h−1(k)

}
. (2.14)

Let N be an integer. We assume without loss of generality that the growth of the
sequence (hN )N>1 is slow enough in order to guarantee that there exists k such that
N = h−1(k). We then have i(N) 6 k+ 1 6 hN + 1, hence using Proposition 6, we get b’).

We have nk > 22
k

hence by a similar argument as in the proof of Theorem A, A is
satisfied.

By a similar argument as in [10], we get βX(nk) 6 bnk , hence c’) holds.

Remark 13. By (1.3), we cannot expect the relationship βX(·) 6 b· for the whole se-
quence.

Since for each k, nk+1 > n2k, Proposition 8 and 9 apply. This concludes the proof of
Theorem A’.

Proof of Lemma 4. Let Ω := [0, 1]N
∗×Z, where [0, 1] is endowed with Borel σ- algebra

and Lebesgue measure, and Ω with the product structure.
For (k, j) ∈ N∗ × Z and S ⊂ [0, 1], let Pk,j(S) :=

∏
(i1,i2)∈N∗×Z Si1,i2 , where Si1,i2 = S

if (i1, i2) = (k, j) and [0, 1] otherwise. Then we define

A+
k,j := Pk,j([0, 2

−1(uk)−1]),

A−k,j := Pk,j([2
−1(uk)−1, (uk)−1]),

A
(0)
k,j := Pk,j([(uk)−1, 1]),

the map T by T
(

(xk,j)(k,j)∈N∗×Z

)
:= (xk,j+1)(k,j)∈N∗×Z, and

ξk := χA+
k,0
− χA−k,0 .
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