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Abstract

This paper examines an optimal investment problem in a continuous-time (essen-
tially) complete financial market with a finite horizon. We deal with an investor who
behaves consistently with principles of Cumulative Prospect Theory, and whose utility
function on gains is bounded above. The well-posedness of the optimisation problem
is trivial, and a necessary condition for the existence of an optimal trading strategy
is derived. This condition requires that the investor’s probability distortion function
on losses does not tend to 0 near 0 faster than a given rate, which is determined by
the utility function. Under additional assumptions, we show that this condition is in-
deed the borderline for attainability, in the sense that for slower convergence of the
distortion function there does exist an optimal portfolio.
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1 Introduction and Summary

The optimal investment problem is a classical one in financial mathematics, and it
has been widely studied in the framework of Expected Utility Theory (EUT, for short),
formulated by von Neumann and Morgenstern [23]. This theory presumes that any
rational investor’s preferences can be numerically represented by a so-called utility
function, usually assumed concave and increasing.

Over the years, as some of EUT’s fundamental principles have been questioned by
empirical studies, several alternative theories have emerged, amongst which the Cu-
mulative Prospect Theory (CPT) proposed by Kahneman and Tversky [9] and Tversky
and Kahneman [22]. Within this framework, the utility function, which is still assumed
to be strictly increasing with wealth, is no longer globally concave. This is because
investors, whilst generally risk averse on gains, were found to become risk seeking
when undergoing losses. The existence of a reference point defining gains and losses
is also presumed, a feature that is absent in EUT. Lastly, according to CPT, economic
agents find it hard to assess probabilities rationally and objectively. Instead, they are
subjective and systematically miscalculate probabilities (for example, events of small
probability tend to be overweighted), which is modelled with functions distorting the
probability measure.
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Portfolio optimisation for a behavioural investor with bounded utility on gains

As a consequence, the behavioural agent’s objective functional to be maximised in-
volves a nonlinear Choquet integral. This raises new, mathematically complex chal-
lenges, and the most common approaches to solving the EUT portfolio problem, such as
dynamic programming or the use of convex duality methods, are not suitable anymore.

The literature on cumulative prospect theory in continuous-time models is scarce.
Berkelaar, Kouwenberg and Post [4], Carlier and Dana [5], and Reichlin [18] consider
utilities defined on the positive real axis (and we remark further that, in the first paper,
no probability distortions are considered, which considerably simplifies the problem).
The only studies about the whole real line case are Jin and Zhou [8] and Rásonyi and
Rodrigues [16]. Jin and Zhou [8] find explicit solutions in certain cases, but under
hypotheses (see Assumption 4.1 therein) which are neither easily verifiable nor eco-
nomically interpretable. Existence of optimisers for the case of power-like distortion
and utility functions has been shown in Rásonyi and Rodrigues [16], with necessary and
sufficient conditions on the parameters. However, the case of utilities growing slower
than a power function remained open. We address this problem in the present paper, in
the setting of bounded above utility functions.

As it is widely stated in the literature, the paper by Menger [12] (whose English
translation can be found in [13]) appears to have been the first to assert the necessity
of a boundedness assumption on the utility function in order to avoid a St. Petersburg-
type paradox. This has lead to a considerable amount of debate, and several authors
have since made further arguments for and against bounded utilities (see e.g. Arrow
[1, 2, 3], Savage [21], Markowitz [11], Ryan [19], Samuelson [20] and Muraviev and
Rogers [14], to cite only a few). In this paper we restrict ourselves to the case where
the utility is bounded above. As Remark 3.3 below shows, we cannot impose that the
utility is bounded below, as this would contradict the existence of an optimiser.

In Section 2, the model is presented, the principles of CPT are formalised, and
the optimisation problem is rigorously stated. Section 3 deals with the issues of well-
posedness and existence, Section 4 concludes. For the sake of a simple exposition, all
auxiliary results and proofs are compiled in Appendix A.

2 Notation and Set-Up

2.1 The Market

Let us consider a continuous-time and frictionless financial market with trading in-
terval [0, T ], where T ∈ (0,+∞) is a fixed nonrandom horizon. As usual, we start with a
complete probability space (Ω,F ,P). We suppose further that the evolution of informa-
tion through time is modelled by a filtration, F = {Ft; 0 ≤ t ≤ T}, satisfying the usual
conditions of right-continuity and saturatedness. Finally, we assume for convenience
that the σ-algebra F0 is P-trivial, and also that F = FT .

Next, we fix an arbitrary d ∈ N, and introduce a d-dimensional càdlàg, adapted
process S = {St; 0 ≤ t ≤ T}. For each i ∈ {1, . . . , d}, Sit represents the price of a certain
risky asset i at time t. In addition to these d risky securities, we shall assume that
the market contains a riskless asset S0

t ≡ 1 for any t ∈ [0, T ]. Therefore, we shall
work directly with discounted prices. Let us make the following technical assumptions
throughout.

Assumption 2.1. There exists a measure Q on (Ω,F ), equivalent to P (we write
Q ∼ P), such that the (discounted) price process S is a Q-local martingale.1 Further-
more, setting ρ , dQ/dP (the Radon-Nikodym derivative of Q with respect to P), the

1In particular, S is a semi-martingale.
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cumulative distribution function (CDF) of ρ under P, denoted by FPρ , is continuous.2

Assumption 2.2. The essential supremum of ρ with respect to P, ess supP ρ, is infinite.

Assumption 2.3. Both ρ and 1/ρ belong to W , where W is defined as the family of all
real-valued random variables Y satisfying EP[|Y |p] < +∞ for all p > 0.

We recall that a portfolio (or trading strategy) over the time interval [0, T ] is an
S-integrable, Rd-valued stochastic process {φt; 0 ≤ t ≤ T}. For every i ∈ {1, . . . , d},
φit represents the position in the i-th asset at time t. We assume that trading is self-
financing, so the (discounted) value Πφ

t of the portfolio at t, for all t ∈ [0, T ], is given
by Πφ

t = x0 +
∫ t

0
φs dSs, where x0 is the investor’s initial capital. The set of portfolios is

denoted by Φ(x0).
In order to preclude arbitrage opportunities, we must restrict ourselves to a subset

Ψ(x0) ⊆ Φ(x0) of admissible strategies. Amongst several possible admissibility crite-
ria, one which is often adopted in the literature is that the portfolio’s wealth process
should be uniformly bounded below by some constant (possibly depending on the port-
folio). However, in the present paper, as in Rásonyi and Rodrigues [16] and for the rea-
sons given therein, we assume that admissible strategies are those whose (discounted)
wealth process is a martingale under Q (and not only a local martingale).

Finally, we fix a scalar-valued random variable B satisfying EQ[|B|] < +∞, repre-
senting a benchmark. Hereafter, we shall also assume, essentially, that the market is
complete.

Assumption 2.4. The random variable B and all σ(ρ)-measurable random variables in
L1(Q) (i.e., integrable with respect to the measure Q) are replicable, that is, each of
them is equal to the terminal value of some admissible portfolio φ ∈ Ψ(x0).

2.2 The Investor

We consider a small CPT investor with a given initial capital x0 ∈ R.
Firstly, the agent is assumed to have a reference point, represented by the replicable

claim B introduced above, with respect to which payoffs are evaluated. Thus, given a
payoff X at the terminal time T and a scenario ω ∈ Ω, the investor is said to make a
gain (respectively, a loss) if X(ω) > B(ω) (respectively, X(ω) < B(ω)).

Secondly, the agent’s preferences towards risk are described by a non-concave util-
ity function u : R→ R, given by

u(x) , u+

(
x+
)
1[ 0,+∞) (x)− u−

(
x−
)
1(−∞,0)(x) , x ∈ R, 3 (2.1)

where the strictly increasing, continuous functions u± : [ 0,+∞) → [ 0,+∞) , satisfy
u±(0) = 0. Note that no assumptions are made concerning the differentiability or the
concavity of the functions. Moreover, it is clear that the functions u± have (possibly
infinite) limits as x→ +∞. In what follows, the notation u±(+∞) , limx→+∞ u±(x) will
be used.

Assumption 2.5 (Bounded utility on gains). The utility on gains is bounded above,
i.e., M , u+(+∞) < +∞.

Example 2.6. (i) The exponential utility with parameter α > 0 is the function given
by u(x) , 1− e−αx for all x ≥ 0.

2We recall that the cumulative distribution function of ρ, with respect to the probability measure P, is
given by FPρ (x) = P(ρ ≤ x), for every real number x. We note further that FQρ is also continuous by Q ∼ P.

3Here, x+ , max{x, 0} and x− , −min{x, 0}, for any real number x.
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(ii) The power utility with parameter α ∈ R\{0} is the function u : [ 0,+∞) → [ 0,+∞)

defined as u(x) , xα for α > 0 and u(x) , 1− (1 + x)α for α < 0. It is trivial that u
is bounded above if and only if α < 0.

(iii) The logarithmic utility is the function defined by u(x) , log(1 + x) for every x ≥ 0.

The third and most prominent feature of CPT is that the investor has a distorted
perception of the actual probabilities, which is modelled by the two strictly increasing,
continuous probability distortion functions w± : [0, 1] → [0, 1] (on gains and on losses,
respectively), with w±(0) = 0 and w±(1) = 1. The economic agent is said to over-
weight (respectively, underweight) small-probability losses if, for all x in some right-
neighbourhood of zero, we have w−(x) ≥ x (respectively, w−(x) ≤ x). An entirely
analogous definition can be given for small-probability gains.

Example 2.7. (i) The power distortion with parameter β > 0 is the function given
by w(x) , xβ for every x ∈ [0, 1].

(ii) The distortion defined as w(x) , exp{−β [− log(x)]
$}1 (0,1 ](x) for all x ∈ [0, 1], with

parameters $ ∈ (0, 1) and β > 0, was first proposed by Prelec [15].

2.3 The Optimal Investment Problem

The continuous-time portfolio selection problem for a behavioural investor with CPT
preferences consists of choosing an optimal investment strategy, that is, one that max-
imises a certain expected distorted payoff functional.

Definition 2.8 (Behavioural optimal investment problem). The mathematical for-
mulation of the behavioural optimal portfolio problem is:

maximise

{
V
(

Πφ
T −B

)
= V+

([
Πφ
T −B

]+)
− V−

([
Πφ
T −B

]−)}
4 (2.2)

over φ ∈ Ψ(x0), where

V±

([
Πφ
T −B

]±)
,
∫ +∞

0

w±

(
P

{
u±

([
Πφ
T −B

]±)
> y

})
dy. (2.3)

Setting V ∗(x0) , sup
{
V
(

Πφ
T −B

)
: φ ∈ Ψ(x0)

}
, we say that φ∗ ∈ Ψ(x0) is an optimal

strategy if V
(

Πφ∗

T −B
)

= V ∗(x0).

Remark 2.9. One may wonder why the existence of an optimal φ∗ is relevant when the
existence of ε-optimal strategies φε (i.e., ones that are ε-close to the supremum over all
strategies) is automatic, for all ε > 0. There are at least two, closely related reasons for
this.

Firstly, non-existence of φ∗ usually means that an optimiser sequence
{
φ1/n; n ∈ N

}
shows wild, extreme behaviour (e.g., they converge to infinity, see Example 7.3 of Rá-
sonyi and Stettner [17]). Such strategies are both practically infeasible and economi-
cally counter-intuitive.

Secondly, existence of φ∗ normally goes together with some compactness property
(tightness of laws in the present paper). Such a property seems necessary for the
convergence of any potential numerical procedure to find an optimal (or at least an
ε-optimal) strategy.

Henceforward, we shall assume for simplicity that B = 0. We may do this without
loss of generality since B is replicable by Assumption 2.4.

4Note that V
(

ΠφT −B
)

may well be −∞ for certain φ ∈ Ψ(x0).
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3 Well-Posedness and Attainability

Well-posedness is trivial in our current setting.

Proposition 3.1. Under Assumption 2.5, V ∗(x0) ≤ u+(+∞) < +∞.

It may still be the case that an optimal solution does not exist. We must now study
whether or not this finite supremum V ∗(x0) is indeed a maximum, that is, whether or
not the optimisation problem is attainable. A first and important answer is given by the
following result.

Theorem 3.2 (Necessary condition I). Under Assumptions 2.1, 2.2, 2.4 and 2.5, there
exists an optimal portfolio for problem (2.2) only if

lim inf
x→0+

w−(x)u−

(
1

x

)
> 0. (3.1)

Remark 3.3. (i) In particular, Theorem 3.2 implies that, if we have u−(+∞) < +∞
as well, then the optimisation problem is not attainable. Although many authors
argue in favour of such u−, see e.g. Muraviev and Rogers [14], for the remainder
of this section, we shall only consider the case where u− is not bounded.

(ii) Considering the specific case where both u− and w− are power functions, respec-
tively with parameters α > 0 and β > 0, there is an optimal strategy only if α ≥ β,
so we obtain the analogue of Proposition 3.7 in Rásonyi and Rodrigues [16]. More-
over, trivial modifications in the proof of Theorem 3.2 show that, when α = β, and
thus limx→0+ w−(x)u−(1/x) = 1, existence of an optimal portfolio still does not
hold.

(iii) Another interesting conclusion which can be drawn from the above result is that,
under additional conditions on the growth of u−,5 the investor must distort the
probability of losses, otherwise there is no optimal portfolio. This complements
Theorem 3.2 of Jin and Zhou [8] (which states that a probability distortion on
losses is a necessary condition for the well-posedness of (2.2) when u+(+∞) =

+∞), but for a bounded utility on gains.

For example, an investor with a logarithmic utility and a Prelec distortion on losses
does not admit an optimal trading strategy. Existence of an optimal strategy requires
that w−(x) cannot decrease to zero too fast, but must approach zero more slowly than
[u−(1/x)]

−1, as x→ 0+. Motivated by Theorem 3.2, we introduce the following concept.

Definition 3.4 (Associated distortion). Given a real number δ > 0 and a utility
function u− : [ 0,+∞) → [ 0,+∞) with u−(+∞) = +∞, let us define the function
wδ : [0, 1]→ [0, 1] in the following way,

wδ(x) , uδ−(1) [u−(1/x)]
−δ
1 (0,1 ](x) , x ∈ [0, 1] . (3.2)

We call wδ the distortion associated with u− with parameter δ.

Example 3.5. Let α > 0 and $ ∈ (0, 1), and consider u− : [ 0,+∞) → [ 0,+∞) given
by u−(x) , exp {α sgn(x− 1) |log(x)|$}1(0,+∞)(x) for any x ≥ 0. Clearly, this utility
function satisfies u−(+∞) = +∞ and, for every δ > 0, its associated distortion is the
Prelec distortion with parameters δα > 0 and $ ∈ (0, 1).

5E.g., there exist γ ∈ [ 0, 1) , C1 > 0 and C2 ≥ 0 such that u−(x) ≤ C1 xγ + C2 for sufficiently large x.
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The following corollary to Theorem 3.2 is now immediate and tells us that, in the
particular case where the distortion on losses is the distortion associated with u− for
some parameter δ > 0, a necessary condition for attainability is that δ ≤ 1.

Corollary 3.6 (Necessary condition II). Let u−(+∞) = +∞ and δ > 0. Suppose that
the investor’s probability weighting on losses is w− = wδ. Then, under Assumptions 2.1,
2.2, 2.4 and 2.5, the optimal portfolio problem (2.2) is attainable only if δ ≤ 1.

Therefore, when the parameter δ is strictly greater than 1, by the preceding result
we know that the supremum in (2.2) is never attained. The same conclusion also holds
with δ = 1 for some fairly typical utility functions (see Remark 3.3 above).

The remainder of this section will be devoted to arguing that the condition δ < 1

is not only “almost necessary”, but also sufficient to ensure that an optimal trading
strategy does in fact exist, under an additional hypothesis on u− below.

Assumption 3.7. For every δ ∈ (0, 1), there is some ξ > 1 such that

lim
x→+∞

[
u−
(
xξ
)]δ

u−(x)
= 0. (3.3)

As an almost reciprocal of Corollary 3.6, we have the following.

Theorem 3.8 (Sufficient condition). Suppose u− and wδ are as in the statement of
Corollary 3.6, and w−(x) ≥ wδ(x) for all x ∈ [0, 1]. Under Assumptions 2.1, 2.3 to 2.5
and 3.7, if δ ∈ (0, 1), then there exists an optimal strategy.

Hence, Corollary 3.6 and Theorem 3.8 show that [u−(1/x)]
−1 can be regarded as the

threshold for the distortion function as far as the existence of an optimal portfolio is
concerned. Below this, in the sense of δ < 1, attainability holds. Above this, when δ > 1

(or, for some cases, also when δ = 1), it does not. Finally, we present a result which
allows us to associate Assumption 3.7 to the renowned concept of asymptotic elasticity
(first introduced in the financial mathematics literature by Cvitanić and Karatzas [6]
and Kramkov and Schachermayer [10]).

Lemma 3.9. Suppose u−(+∞) = +∞, and let z− : [ 0,+∞) → [ 0,+∞) be the transform
of u− given by z−(x) , log(u−(ex)), for all x ≥ 0. If there exist γ > 0 and x > 0 such that

z−(λx) ≤ λγz−(x) for all λ ≥ 1 and x ≥ x, (3.4)

then Assumption 3.7 is satisfied.

Remark 3.10. Suppose further that the function z− is continuously differentiable on
(x0,+∞), for some x0 ≥ 0. It can be easily verified that, in this case, condition (3.4) is
equivalent to

AE+(z−) , lim sup
x→+∞

x (z−)
′
(x)

z−(x)
< +∞,

where AE+(z−) is the asymptotic elasticity of z− at +∞. We refer to Lemma 6.3 in
Kramkov and Schachermayer [10], while drawing attention to the fact that the proof
there only uses the continuity, the monotonicity and the continuous differentiability of
z−, not its concavity.

Example 3.11. (i) Suppose u− is continuously differentiable and AE+(u−) < +∞.
If, in addition, there exist constants C > 0, γ > 0 so that u−(x) ≥ C xγ holds true
for all x sufficiently large, then u− satisfies Assumption 3.7. Indeed,

x (z−)
′
(x)

z−(x)
≤ x (z−)

′
(x)

log(C) + γx
=

(z−)
′
(x)

(log(C) /x) + γ
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for every sufficiently large x, therefore AE+(z−) ≤ 1
γ lim supx→+∞ (z−)

′
(x). But,

as noted in Kramkov and Schachermayer [10, p. 946], it is trivial to check that
lim supx→+∞ (z−)

′
(x) = AE+(u−), which is finite by hypothesis, hence Lemma 3.9

gives us the claimed result.

In particular, this implies that the power utility function with parameter α > 0

(not necessarily less than one), having asymptotic elasticity equal to α, verifies
Assumption 3.7.

(ii) Let u1 be the utility of Example 3.5 with parameters α > 0 and $ ∈ (0, 1), u2 the
logarithmic utility, and u3 the log-log utility defined as u3(x) , log(1 + log(1 + x))

for all x ≥ 0. Their transforms, z1, z2 and z3, respectively, equal

z1(x) = αx$,

z2(x) = log(log(1 + ex)) ,

z3(x) = log(log(1 + log(1 + ex))) ,

for all x ≥ 0. It can be checked that these functions are strictly concave, hence
AE+(zi) ≤ 1 for all i ∈ {1, 2, 3} (see, e.g., Kramkov and Schachermayer [10, Lem-
ma 6.1]).

(iii) Assume u−(+∞) = +∞, and also that (u−)
′ exists and tends to 0 fast enough as

x → +∞, i.e., (u−)
′
(x) ≤ C/ [x log(x)] for some C > 0 and for x large enough.

Then Assumption 3.7 is fulfilled. Indeed,

x (z−)
′
(x)

z−(x)
=

x ex (u−)
′
(ex)

u−(ex) log(u−(ex))
≤ C

u−(ex) log(u−(ex))
−−−−−→
x→+∞

0.

4 Conclusions and Further Work

In this work, we analysed the CPT optimal portfolio problem in a continuous-time
complete financial market. We focused solely on the case where the investor’s utility
on gains is bounded above and we found a necessary condition for the existence of
an optimal solution. As expected, the obtained condition involves both the utility and
the distortion on losses, whereas gains do not matter. A sufficient condition for attain-
ability was derived too, showing that our necessary condition forms the threshold for
existence.

With regard to our Assumption 3.7, which may appear to be somewhat artificial at
first, it was shown to be related to such widely known a concept as asymptotic elasticity.
Moreover, it is satisfied by a large class of functions, including some of the most popular
ones in the literature. Extending these results for unbounded u+ is the object of further
research.

A Proofs and Auxiliary Results

We may and will assume that u−(1) = 1. Indeed, let y > 0 be the (unique) value such
that u−(y) = 1. Define ū±(x) , u±(xy). Notice that Assumptions 2.5 and 3.7 continue
to hold for ū± and that V ∗u−(x0) = V ∗ū−(x0/y), so all the results below extend from the
case u−(1) = 1 to the general case.

Lemma A.1. Under Assumption 2.5, there exists an optimal portfolio for problem (2.2)
only if

sup
{
V
(

Πφ
T

)
: φ ∈ Ψ(x0)

}
< u+(+∞) . (A.1)

Proof. Omitted.
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Proof of Theorem 3.2. By contraposition. Let us suppose lim infx→0+ w−(x)u−(1/x) = 0.
Then, using Assumptions 2.1 and 2.2, it is possible to find two sequences of strictly
positive real numbers {an; n ∈ N} and {bn; n ∈ N}, respectively strictly decreasing and
strictly increasing, with limn→+∞ an = 0 and limn→+∞ bn = +∞, whose terms satisfy
both w−(an)u−(1/an) < 1/n and P{ρ ≤ bn} = 1− an.

Now, for every n ∈ N, we define the event An , {ρ ≤ bn}, as well as the positive
and σ(ρ)-measurable random variable Xn , bn

2Q(An)1An . It is straightforward to see that

limn→+∞Q(An) = limn→+∞P(An) = 1 and so

V+(Xn) = u+

(
bn

2Q(An)

)
w+(P(An)) −−−−−→

n→+∞
u+(+∞) .

Next, let Yn , bn−2x0

2Q(Acn)1Acn (note that Q(Acn) > 0 for all n ∈ N), which is also σ(ρ)-
measurable. Since limn→+∞ bn = +∞, there is an integer n0 such that bn > 2x0 for any
n ≥ n0. Furthermore, given that limn→+∞

bn−2x0

2bn
= 1/2, there must be some n1 ∈ N

so that bn−2x0

2bn
< 1 for all n ≥ n1. Combining these facts with the inequality Q(Acn) =

EQ
[
ρ1Acn

]
≥ bnP(Acn) and with the monotonicity of u− yields, for every n ≥ max {n0, n1},

V−(Yn) = u−

(
bn − 2x0

2Q(Acn)

)
w−(P(Acn)) ≤ u−

(
1

P(Acn)

)
w−(P(Acn)) <

1

n
.

Hence, setting Zn = Xn − Yn, n ∈ N, it is obvious that Zn is σ(ρ)-measurable, and
also that EQ[Zn] = x0 by construction. Besides, for every n ≥ n0, we have V−(Z−n ) =

V−(Yn) < +∞ and EQ[|Zn|] = bn − x0 < +∞, therefore Zn is replicable from initial
capital x0. Finally, we get that lim infn→+∞ V (Zn) ≥ u+(+∞) − 0, so by Lemma A.1 we
can conclude.

Lemma A.2. The following three statements are equivalent,

(i) Assumption 3.7 holds true,

(ii) For each δ ∈ (0, 1), there exist a real number ζ > 1 and a decreasing function
G : (0,+∞)→ [ 1,+∞) such that, for every λ > 0,

u−
(
xζ
)
≤ [λu−(x)]

1/δ
, (A.2)

for all x ≥ G(λ), and

(iii) For every δ ∈ (0, 1), there is ς > 1 for which limx→+∞ [z−(x)− δ z−(ςx)] = +∞,
where z− is the transform of u− defined in Lemma 3.9.

Proof. (i)⇒ (ii) is trivial, so we prove the reverse implication. Let δ ∈ (0, 1) be fixed,

and consider λ > 0 arbitrary. Since, by hypothesis, limx→+∞
[u−(xξ)]

δ

u−(x) = 0, there exists

some L , L(λ) ≥ 1 such that u−
(
xξ
)
< [λu−(x)]

1/δ for all x ≥ L. Next define, for each
λ > 0, the nonempty set

Sλ ,
{
L ≥ 1: u−

(
xξ
)
< [λu−(x)]

1/δ for all x ≥ L
}
,

which is bounded below by 1, so it admits an infimum. Then let G : (0,+∞) → R be
the function given by G(λ) , inf Sλ, for any λ > 0. Clearly, by construction, G ≥ 1.
Furthermore, it can be easily checked that, for every λ > 0 and for all x ≥ G(λ), the

inequality u−
(
xξ
)
≤ [λu−(x)]

1/δ holds true. Finally, it remains to show that G is indeed
a decreasing function of λ. To see this, let 0 < λ1 ≤ λ2. Then, for all x ≥ G(λ1) ≥ 1, we

have u−(xa) ≤ [λ1u−(x)]
1/δ ≤ [λ2u−(x)]

1/δ, hence G(λ1) belongs to Sλ2
. Consequently,

we must have, by the definition of the infimum, that G(λ1) ≥ G(λ2).
The proof of (i)⇔ (iii) is straightforward.
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Lemma A.3. Suppose u−(+∞) = +∞, and let f : [ 0,+∞) → [ 0,+∞) be a continuous,
strictly increasing function satisfying both f(0) = 0 and f(+∞) = +∞. Then

w−(P{f(X) > t}) ≤ 1

u−(f−1(t))

∫ +∞

0

w−(P{u−(X) > y}) dy (A.3)

for any t > 0 and for any positive random variable X.

Proof. The proof is similar to that of Lemma 3.12 in Rásonyi and Rodrigues [16], with
trivial modifications.

Corollary A.4. Suppose u−(+∞) = +∞, and let δ ∈ (0, 1) be arbitrary. If wδ is the
distortion associated with the utility u− (with parameter δ), then for any s > 0 we have

P{Xs > t} ≤

(u−)
−1

[ u−
(
t1/s

)∫ +∞
0

wδ(P{u−(X) > y}) dy

]1/δ
−1

(A.4)

for all t > 0 and for all positive random variables X.

Lemma A.5. Suppose u−(+∞) = +∞ and δ ∈ (0, 1). Let Assumption 3.7 be satisfied,
and let the real number ζ > 1 and the decreasing function G : (0,+∞) → [ 1,+∞) be
those given by Lemma A.2. Then, for every η ∈ (1, ζ), there exists a constant C > 0 such
that, for all positive random variables X, we have

EP[Xη] ≤ C +

[
G
(

[Vδ(X)]
−1
)]η

(u−)
−1
(

[Vδ(X)]
−1/δ

) , (A.5)

with Vδ(X) ,
∫ +∞

0
wδ(P{u−(X) > y}) dy.

Proof. Fix δ ∈ (0, 1) and η ∈ (1, ζ), and let X be any positive random variable. If X = 0

P-a.s., then EP[Xη] = 0 and Vδ(X) = 0, hence the inequality (A.5) is satisfied trivially
for any C > 0. So suppose now that P{X > 0} > 0, which implies Vδ(X) > 0. Using
Corollary A.4,

EP[Xη] =

∫ ∞
0

P{Xη > t} dt ≤ 1 +

∫ +∞

1

(u−)
−1

[u−(t1/η)
Vδ(X)

]1/δ
−1

dt. (A.6)

We apply Lemma A.2 with λ , 1/Vδ(X) > 0 to obtain, for all x ≥ G(1/Vδ(X)),

(u−)
−1

([
u−(x)

Vδ(X)

]1/δ
)
≥ xζ ,

where we have also made use of the fact that (u−)
−1 is strictly increasing. On the other

hand, it follows again from the monotonicity of both u− and (u−)
−1 that

(u−)
−1

[u−(t1/η)
Vδ(X)

]1/δ
 ≥ (u−)

−1

([
1

Vδ(X)

]1/δ
)
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for all t ≥ 1. Thus, the preceding facts and the change of variables x = t1/η yield

∫ +∞

1

(u−)
−1

[u−(t1/η)
Vδ(X)

]1/δ
−1

dt

≤
∫ [G(1/Vδ(X))]η

1

[
(u−)

−1

([
1

Vδ(X)

]1/δ
)]−1

dt+ η

∫ +∞

G(1/Vδ(X))

[
(u−)

−1

([
u−(x)
Vδ(X)

]1/δ)]−1

x1−η dx

≤

[
G
(

[Vδ(X)]
−1
)]η
− 1

(u−)
−1
(

[Vδ(X)]
−1/δ

) + η

∫ +∞

1

1

x1+ζ−η dx, (A.7)

and we note that the second integral is finite because ζ − η > 0.
Hence, plugging (A.7) into (A.6), setting C , 1 + η

∫ +∞
1

1
x1+ζ−η dx ∈ (1,+∞) and

noting that
[
G
(

[Vδ(X)]
−1
)]η
− 1 ≤

[
G
(

[Vδ(X)]
−1
)]η

allows us to finally deduce the

claimed inequality.

Proof of Theorem 3.8. Essentially, we shall follow the proof of Theorem 4.7 in Rásonyi
and Rodrigues [16], while borrowing some key ideas from Reichlin [18].

We begin by taking a maximising sequence
{
φ(n); n ∈ N

}
⊆ Ψ(x0), that is, a se-

quence of admissible trading strategies φ(n) such that

lim
n→+∞

V
(

Πφ(n)

T

)
= V ∗(x0) .

We shall henceforth denote by Xn the terminal wealth of the n-th portfolio φ(n). We
clearly have infn∈N V (Xn) > −∞. Moreover, we get supn∈N V+(X+

n ) < +∞ from Propo-
sition 3.1, hence also

sup
n∈N

V−
(
X−n
)
≤ sup
n∈N

V+

(
X+
n

)
− inf
n∈N

V (Xn) < +∞.

Noting that w− ≥ wδ implies[
G
(

[Vδ(X)]
−1
)]η

(u−)
−1
(

[Vδ(X)]
−1/δ

) ≤
[
G
(

[V−(X)]
−1
)]η

(u−)
−1
(

[V−(X)]
−1/δ

) ,
so it follows from Lemma A.5 that supn∈NEP

[
(X−n )

η]
< +∞, for some η > 1.

Next, EQ[X+
n ] = x0 + EQ [X−n ], Assumption 2.3 and Hölder’s inequality allow us to

obtain that supn∈NEP[|Xn|τ ] < +∞ for every τ ∈ (0, 1) (see the proof of Theorem 4.7
in Rásonyi and Rodrigues [16] for details). From this, it is now immediate to conclude
that the family {PXn ; n ∈ N}, where PXn denotes the law of the random variable Xn

with respect to P, is tight. Thus, by Prokhorov’s theorem we can extract a weakly
convergent subsequence PXnk

w−→ ν for some probability measure ν.

Now let qPρ denote the quantile function of ρ with respect to P, which is unique up
to a set of Lebesgue measure zero.6 Then, by our Assumption 2.1, the σ(ρ)-measurable

6We recall that the unique (up to a set of Lebesgue measure zero) quantile function of the random variable
ρ with respect to the probability measure P, qPρ : (0, 1) → R, is a generalised inverse of FPρ , i.e., it is such
that

FPρ

(
qPρ (p)−

)
≤ p ≤ FPρ

(
qPρ (p)

)
for any level p ∈ (0, 1) ,

where FPρ (x−) , lims↑x F
P
ρ (s) = P{ρ < x}. Analogously, given a probability law ν on the Borel σ-

algebra B(R), its quantile function qν is the generalised inverse of the distribution function given by
Fν(x) , ν( (−∞, x ]) for any x ∈ R. The reader is referred to Föllmer and Schied [7, Appendix A.3] for
a thorough study of quantile functions, their properties and related results.
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random variable U , FPρ (ρ) follows under P a uniform distribution on the interval (0, 1),
and moreover ρ = qPρ (U) P-a.s..

So let us set X∗ , qν(1− U), which is clearly a σ(ρ)-measurable random variable. In
addition, because 1− U is uniformly distributed on (0, 1) under P, we conclude that X∗

has probability law ν, hence Xnk
D−→ X∗.

Since supn∈N V±(X±n ) < +∞, it can be shown, exactly as in part (i) of the proof of
Theorem 4.7 in Rásonyi and Rodrigues [16], that V±(X±∗ ) < +∞.

Trivially, for all k ∈ N and for every y ≥ 0, we have 0 ≤ w+

(
P
{
u+

(
X+
nk

)
> y
})
≤

1[0,M ](y), so the Fatou lemma implies V (X∗) ≥ V ∗(x0).
It remains to check that EQ[X∗] ≤ x0. This will be done using an argument of Reich-

lin [18, Proof of Proposition 4.1, p. 16]. We remark, however, that some modifications
are required to account for the fact that, in our paper, wealth is allowed to become
negative.

It is immediate to get that EQ[X∗] equals

EP[ρX∗] = EP
[
qPρ (U) qν(1− U)

]
=

∫ 1

0

qPρ (x) qν(1− x) dx.

Furthermore, qPρ is positive a.e. on (0, 1) because ρ > 0 a.s., and the fact that the fam-
ily {Xnk ; k ∈ N} converges in distribution to X∗ implies that the sequence of quantile

functions
{
qPXnk

; k ∈ N
}

converges to qν a.e. on (0, 1).

Thus, since the positive part function is increasing and continuous, we can combine
Fatou’s lemma with one of the Hardy-Littlewood inequalities (we refer for instance to
Föllmer and Schied [7, Theorem A.24]) to obtain∫ 1

0

qPρ (x) [qν(1− x)]
+
dx ≤ lim inf

k→+∞

∫ 1

0

qPρ (x)
[
qPXnk

(1− x)
]+

dx

= lim inf
k→+∞

∫ 1

0

qPρ (x) qP
X+
nk

(1− x) dx ≤ lim inf
k→+∞

EP
[
ρX+

nk

]
,

where the equality is a trivial consequence of
[
qPXnk

(x)
]+

= qP
X+
nk

(x) for a.e. x ∈ (0, 1).

On the other hand, it follows from the second Hardy-Littlewood inequality that

EP
[
ρX−nk

]
≤
∫ 1

0

qPρ (x) qP
X−nk

(x) dx,

for every k ∈ N.

But the family of a.e. positive functions
{
qPρ q

P

X−nk
; k ∈ N

}
is uniformly integrable on

(0, 1). Indeed, we can choose some η′ > 1 such that η′ < η, and so Hölder’s inequality
with η/η′ > 1 yields, for all k ∈ N,∫ 1

0

[
qPρ (x) qP

X−nk
(x)
]η′

dx ≤ EP
[(
qPρ (U)

) η η′
η−η′

] 1
η′−

1
η

EP

[(
qP
X−nk

(U)
)η] η′η

= C EP
[(
X−nk

)η] η′η ≤ C (sup
n∈N

EP
[(
X−n
)η]) η′

η

< +∞,

for some C > 0, where we use that each random variable qP
X−nk

(U) has the same distri-

bution as X−nk , and we invoke Assumption 2.3. Hence, by de la Vallée-Poussin’s lemma,
the claim follows.

The negative part function is also decreasing, so
[
qPXnk

(x)
]−

= qP
X−nk

(1− x) for a.e.

x ∈ (0, 1) and for any k ∈ N. Moreover, it is a continuous function as well, thus
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limk q
P

X−nk
(x) = [qν(1− x)]

− for a.e. x ∈ (0, 1). Therefore, these facts combined with

uniform integrability give that

lim
k→+∞

∫ 1

0

qPρ (x) qP
X−nk

(x) dx =

∫ 1

0

qPρ (x) [qν(1− x)]
−
dx.

Consequently, it follows from the admissibility of each Xnk , from the super-additivity
of the lim inf, and from the preceding inequalities that

x0 = lim inf
k→+∞

EP[ρXnk ] ≥ lim inf
k→+∞

EP
[
ρX+

nk

]
− lim sup

k→+∞
EP
[
ρX−nk

]
≥
∫ 1

0

qPρ (x) [qν(1− x)]
+
dx− lim

k→+∞

∫ 1

0

qPρ (x) qP
X−nk

(x) dx

=

∫ 1

0

qPρ (x) [qν(1− x)]
+
dx−

∫ 1

0

qPρ (x) [qν(1− x)]
−
dx = EQ[X∗] ,

as intended. Finally, it is also straightforward to check that X∗ belongs to L1(Q), since

EQ[|X∗|] = EQ[X∗] + 2EQ
[
X−∗
]
≤ x0 + 2 lim

k∈N

∫ 1

0

qPρ (x) qP
X−nk

(x) dx < +∞,

hence, by Assumption 2.4, X∗ admits a replicating portfolio φ∗ from initial capital
EQ[X∗] ≤ x0. A fortiori, with initial capital x0 one also has V (Πφ∗

T ) ≥ V ∗(x0), so φ∗

is an optimal strategy.

Proof of Lemma 3.9. Fix δ ∈ (0, 1) arbitrary and choose ς ∈
(
1, δ−1/γ

)
. Then, for every

x ≥ x, we have z(x) − δ z(ςx) ≥ z(x) [1− δ ςγ ]. Since z(+∞) = +∞ and δ ςγ < 1, we
obtain that lim infx→+∞ [z(x)− δ z(ςx)] = +∞, and finally we use Lemma A.2 to infer
that Assumption 3.7 holds true.
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