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Abstract

We consider a model recently proposed by Chatterjee and Durrett [1] as an “annealed
approximation” of boolean networks, which are a class of cellular automata on a
random graph, as defined by S. Kauffman [5]. The starting point is a random directed
graph on n vertices; each vertex has r input vertices pointing to it. For the model
of [1], a discrete time threshold contact process is then considered on this graph: at
each instant, each vertex has probability q of choosing to receive input; if it does, and
if at least one of its input vertices were in state 1 at the previous instant, then it is
labelled with a 1; in all other cases, it is labelled with a 0. r and q are kept fixed and
n is taken to infinity. Improving one of the results of [1], we show that if qr > 1, then
the time of persistence of activity of the dynamics is exponential in n.
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1 Introduction

Random boolean networks were introduced by Stuart Kauffman in 1969 [5] as mod-
els of gene regulatory networks. A gene regulatory network is a set of genes in a cell
that iteratively communicate with each other, using their RNA transcripts as messages,
and this communication affects each gene’s activity. They are thus information net-
works and control systems for the activity of the cell.

Let us define Kauffman’s model. The following definition depends on three param-
eters: n, r ∈ N with r < n and p ∈ (0, 1) (though Kauffman only considered the case
p = 1/2). The letters a, b will denote two possible states of a gene. Let Vn = {x1, . . . , xn}
be the set of genes. For each x ∈ Vn, we independently choose:

• a set y(x) = {y1(x), . . . , yr(x)} ⊂ Vn − {x}. The choice is made uniformly among all
possibilities. y(x) is called the influence set of x. We define the set of directed edges
En by En = {(yi(x), x) : x ∈ Vn, 1 ≤ i ≤ r}.

• a function fx : {a, b}r → {a, b}. The values {fx(ω) : ω ∈ {a, b}y(x)} are chosen indepen-
dently, with probability p to be equal to a and 1− p to be equal to b.

Having made all these random choices, we define Φ : {a, b}Vn → {a, b}Vn by

[Φ(η)](x) = fx
(
η(y1(x)), . . . , η(yr(x))

)
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Annealed approximation of Boolean networks

and, given an initial configuration η0 ∈ {a, b}Vn , we define a deterministic, discrete time
dynamics (ηt)t=0,1,... by putting ηt+1 = Φ(ηt), t ≥ 0. The dynamics is explained in words
as follows: at each instant, and for each vertex x, we inspect the previous states in the
influence set of x and from these, determine the state of x using the function fx.

A set Γ ⊂ {a, b}Vn such that Φ(Γ) = Γ and Φ(Γ′) 6= Γ′ for any proper subset Γ′ of Γ

is called a periodic orbit of Φ. Since the state space is finite, every initial configuration
η0 is in the domain of attraction of a periodic orbit Γ (meaning that, for some t0, {ηt :

t ≥ t0} = Γ). Typical aspects of interest in random boolean networks are the number of
these orbits, their stability, periods and the time to reach them. As thoroughly explained
in [6], simulations of the model suggested the existence of two regimes, depending on
the choice of parameters, in which drastically different behaviours arise. Among other
important differences, in the ordered (or subcritical) regime, the lengths of the orbits
grow slowly with n, whereas in the chaotic (or supercritical) regime, they grow rapidly
with n.

In [2], Derrida and Pomeau proposed an “annealed approximation” of random boolean
networks; in it, the random aspects of the network (namely, the underlying graph and
the rules of evolution) are updated at each time step instead of remaining fixed. The
process thus obtained is a Markov chain. The simplification destroys important corre-
lations in the system, but allowed the authors to identify (through a not fully rigorous
analysis of the transition kernel) a phase transition given by a curve that agrees with
simulations, 2rp(1− p) = 1 (the ordered regime corresponding to 2rp(1− p) < 1).

In [1], Chatterjee and Durrett proposed a model which was an approximation to
the activity of Boolean networks. The activity process associated to (ηt) is the process
(η̄t)t=0,1,... with state space {0, 1}Vn and given by

η̄0 ≡ 1, η̄t+1(x) = I{ηt+1(x) 6=ηt(x)}, x ∈ Vn, t ≥ 0,

where I is the indicator function. The idea in considering (η̄t) rather than (ηt) is the
possibility of identifying the phase transition in a process that is in some respects easier
to study than the original process. Indeed, (ξt), the proposed approximation to (η̄t) to
be defined below, has the more tractable dynamics of a threshold contact process on
a random graph (in particular, the graph is sampled only once, and not re-sampled as
the dynamics advances). For (ξt), Chatterjee and Durrett proved the phase transition
and identified the same critical curve as the one mentioned above, 2rp(1− p) = 1. Their
work allows for insight into this phase transition by an analogy between the flow of
information in random boolean networks and the evolution of branching processes.

Let us now define the model of [1]. We start with parameters n, r ∈ N with r < n

and q ∈ (0, 1). Define the oriented random graph Gn = (Vn, En) exactly as before. We
will now define a discrete time Markov chain (ξt)t≥0 with state space {0, 1}Vn and initial
configuration ξ0 ≡ 1. Its transition kernel is given by

p(ξ, ξ′) =

 ∏
x∈Vn:

∑
i ξ(yi(x))=0

I{ξ′(x)=0}

 ∏
x∈Vn:

∑
i ξ(yi(x))>0

(
q · I{ξ′(x)=1} + (1− q) · I{ξ′(x)=0}

) ,

where ξ, ξ′ ∈ {0, 1}Vn . It will be useful to construct this Markov chain with a set of aux-
iliary Bernoulli random variables. Let {Bxt : x ∈ Vn, t ≥ 1} be a family of independent
Bernoulli random variables with parameter q; given ξt ∈ {0, 1}Vn , we put

ξt+1(x) =

{
1 if Bxt+1 = 1 and

∑r
i=1 ξt(yi(x)) > 0;

0 otherwise.

When Bxt = 1, we say that x receives input at time t; therefore, a vertex is set to 1 if and
only if it receives input at that time and at least one of its input vertices y1(x), . . . , yr(x)
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Annealed approximation of Boolean networks

was set to 1 at the previous time. We sometimes abuse notation and associate ξ ∈
{0, 1}Vn with {x ∈ Vn : ξ(x) = 1}.

In the comparison with boolean networks, q plays the role of 2p(1− p), which is the
probability that two independent random variables with distribution p ·δ{a}+(1−p) ·δ{b}
are different. See [1] for a more detailed explanation of the relationship between (ξt)

and (η̄t).
It is readily seen that the identically zero configuration is absorbing for the chain

(ξt) and that it is eventually reached with probability 1. In [1], the authors study the
time τn it takes for this to occur and the typical proportion of sites that are in state
1 at times before τn. By a simple comparison between the time dual of the model (as
defined below) and a subcritical branching process, it is easy to show that, if qr < 1,
then τn behaves as log n, and this is associated to the ordered regime of random boolean
networks. In [1], the following result is shown, characterizing the chaotic regime. Let
ρ = ρ(q, r) denote the probability of survival for a branching process in which individuals
have probability q of having r children and probability 1 − q of having none. Let |A|
denote the cardinality of the set A. Finally, let Pn denote a probability measure both
for the choice of Gn and for the family {Bxt } (they are of course taken independently).

Theorem. [1] If q(r−1) > 1, then for every ε > 0 there exists c > 0 such that, as n→∞,

inf
0≤t≤ecn

Pn

(
|ξt|
n
≥ ρ− ε

)
n→∞
−−−−→ 1.

Under the more general hypothesis qr > 1, only a weaker result was obtained: the
function ecn in the above infimum had to be replaced by a function of the form ecn

b

, for
b, c > 0. The proof of this weaker result was established through a different method
than that of the proof of the above theorem. In this paper we give a unified proof that
establishes the stronger result

Theorem 1.1. If qr > 1, then there exists c > 0 such that, for any ε > 0 and any
sequence (tn) with tn →∞ and tn ≤ ecn,

inf
tn≤t≤ecn

Pn

(
ρ− ε < |ξt|

n
< ρ+ ε

)
n→∞
−−−−→ 1.

To explain why this is to be expected and, in particular, the link with the mentioned
branching process, we introduce the time dual of the process. Fix a realization of
Gn = (Vn, En) and {Bxt : x ∈ Vn, t ≥ 1}, define Ên as the set of directed edges obtained
by inverting the edges of En and Ĝn = (Vn, Ên). Note that

{yi(x) : 1 ≤ i ≤ r} = {z : (x, z) ∈ Ên};

that is, in Ĝn each vertex “points to” r vertices. Fix T > 0 and put B̂x,Tt = BxT−t for

0 ≤ t < T . Given A ⊂ Vn, define ξ̂A,T0 = IA and, for 0 ≤ t < T ,

ξ̂A,Tt+1 (z) =

{
1 if for some x, i, we have yi(x) = z, ξ̂A,Tt (x) = 1 and B̂x,Tt = 1;

0 otherwise.
(1.1)

When ξ̂A,Tt (x) = 1 and B̂x,Tt = 1, we say that x gives birth at time t. Let us describe the
dual dynamics in words. Given the configuration ξ̂t, we go over every vertex that is in
state 1 and determine which of them give birth at time t – for each vertex, this happens
with probability q and independently. For each vertex x that gives birth at time t, we
set the vertices y1(x), . . . , yr(x) to 1 at time t + 1. Vertices that are not set to 1 by this
procedure are then set to 0. We then have the duality equation

{ξT ∩A 6= ∅} =
{
ξ̂A,TT 6= ∅

}
ECP 18 (2013), paper 32.
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(recall that we take ξ0 ≡ 1). The above equality holds since both events are equal to

{∃x1, . . . , xT ∈ Vn : x1 ∈ y(x2), . . . , xT−1 ∈ y(xT ) and Bx1
1 = Bx2

2 = · · · = BxTT = 1}.

By taking A = {x} for each x ∈ Vn in the duality equation, we see that, under Pn, |ξT |
and |{x : ξ̂

{x},T
T 6= ∅}| have the same distribution.

Since we will mostly work with the dual process, we drop the superscript T and
assume that ξ̂At is defined for all t ≥ 0 with the evolution rule explained above. We also

write ξ̂xt instead of ξ̂{x}t . The convergence in Theorem 1.1 can be re-stated as

inf
tn≤t≤ecn

Pn

(
ρ− ε < |{x : ξ̂xt 6= ∅}|

n
< ρ+ ε

)
n→∞
−−−−→ 1. (1.2)

Now, assume that n is very large with respect to r. If g is another integer that is
much larger than r and much smaller than n, then with high probability, the subgraph
of Ĝn with vertex set

{z ∈ Vn : for some k ≤ g and z1, . . . , zk ∈ Vn, we have x→ z1 → · · · → zk → z in Ĝn}

and edge set equal to the set of edges of Ên that start and end at vertices in the above
set will simply be a directed tree of degree r rooted in x. Conditioning on the event that
this subgraph is indeed a tree, the evolution of |ξ̂xt | up to time g will be exactly that of
the branching process mentioned before Theorem 1.1. In addition, it is not difficult to
see that, without any conditioning, |ξ̂xt | is stochastically dominated by such a process.
These remarks clarify why the model exhibits two phases in exact correspondence with
the branching process. If the expected offspring size qr < 1, then ξ̂xt dies out faster than
the corresponding subcritical branching process, and the primal ξt rapidly reaches the
zero state. On the other hand, if qr > 1, the above theorem states that the system
survives for a time that is exponentially large in n, characterizing the supercritical
regime.

The structure of our proof is similar to that of [1]. First, using the comparison with
the branching process and a second moment argument, we show that with probability
tending to 1 as n → ∞, the set of vertices S = {x : |ξ̂xsn | > kn}, where kn = (log n)2 and
sn = (log log n)2, has size close to ρ · n (see Proposition 2.1). Second, in Proposition 2.2,
we show that with probability tending to 1 as n → ∞, the graph Ĝn is “fertile” in the
following sense. For any choice of A ⊂ Vn with |A| ≥ (log n)2, the process ξ̂At defined on
Ĝn has probability larger than 1/n2 of remaining active up to time ecn, for some fixed
constant c. We can then use a simple union bound to argue that with high probability,
for every x in S, (ξ̂xt ) remains active until time ecn.

Our main contribution is Proposition 2.2; let us briefly explain the ideas that go
into its proof. Given A ⊂ Vn, suppose we reveal, one by one, the elements of the set
A1 = {yi(x) : 1 ≤ i ≤ r, x ∈ A}, then A2 = {yi(x) : 1 ≤ i ≤ r, x ∈ A1}, until Ag, for some
fixed g ∈ N. Let B(A, g) be the subgraph of Ĝn with vertex set A∪A1∪· · ·∪Ag and edge
set equal to the edges of Ên which start and end at vertices in this set. For most choices
of A, B(A, g) is just a disjoint union of |A| directed trees, so that {|ξ̂At |}0≤t≤g is exactly a
branching process. However, for some choices of A, when revealing A1, · · · , Ag, we will
see some “collisions”, that is, some vertices will be found more than once. We say that
A is expansive if the number of collisions is not too large, so that {|ξ̂At |}0≤t≤g is not too
far from the branching process and consequently, |ξ̂Ag | is very likely to be larger than |A|
(see Lemma 2.4). We then show that, with high probability, for some c > 0, there is no
set A ⊂ Vn with (log n)2 ≤ |A| ≤ cn that is not expansive (Lemma 2.5). It is then quite
easy to put Lemmas 2.4 and 2.5 together to obtain Proposition 2.2.
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2 Proof of Theorem 1.1

In this section, we will exclusively work with the dual process. Let us present the
notation we will use. For fixed n, Pn is a probability measure under which the random
graph Ĝn is defined; as explained in the Introduction, Ĝn is a directed graph in which
each vertex x “points to” r distinct vertices y1(x), . . . , yr(x). Ĝn will denote the (finite)
set of possible realizations of Ĝn. For a fixed realization of the graph Ĝn, PĜn is a

probability measure under which independent Bernoulli(q) variables {B̂xt : t ≥ 0, x ∈
Vn} are defined, and thus the family of processes {(ξ̂At )t≥0 : A ⊂ Vn} are all defined by
the rule (1.1). Finally, Pn is the annealed probability measure: underPn, we first sample
the graph Ĝn (with the probability measure Pn) and then the processes {(ξ̂At ) : A ⊂ Vn}
on Ĝn (with the probability measure PĜn).

In all results and proofs that follow, we assume that qr > 1. We start with two
propositions that together will yield Theorem 1.1. Proposition 2.1 is proved essentially
by a repetition of arguments in [1]; we include a proof for completeness.

Proposition 2.1. Let (an) and (bn) be two sequences of integers satisfying

an, bn ≥ 0 ∀n, an
n→∞
−−−−→∞, an

log n

n→∞
−−−−→ 0 and

bn
(qr)an

n→∞
−−−−→ 0.

For any ε > 0, we have

lim
n→∞

Pn

ρ− ε <
∣∣∣{x ∈ Vn : |ξ̂xan | > bn

}∣∣∣
n

< ρ+ ε

 = 1.

Proof. Let (Zt)t=0,1,... be the branching process with Z0 = 1 and the offspring distribu-
tion that gives mass q to r and 1 − q to 0. Also let H = {Zt 6= 0 ∀t}, ρ = P(H) and
Mt = Zt

(qr)t . By Theorem 5.3.9 and Exercise 5.3.12 in [3], our assumption that qr > 1

implies ρ > 0 and the fact that Mt almost surely converges to a limit M , which is strictly
positive on H and identically zero on Hc. Let ρn = P(Zan > bn) = P (Man > bn/(qr)

an).
Since lim

n→∞
bn/(qr)

an = 0, we almost surely have lim
n→∞

I{Man>
bn

(qr)an } = I{M>0} = IH . In-

deed, for almost every ω ∈ H we have lim
n→∞

Man(ω) = M(ω) > 0 and for almost every

ω ∈ Hc, Man(ω) = 0 for n large enough. Consequently, by the dominated convergence
theorem,

ρn → ρ. (2.1)

For a set of vertices A in the graph Ĝn, let y(0)(A) = A, y(1)(A) = y(A) = {yi(x) :

x ∈ A, 1 ≤ i ≤ r} and y(k+1)(A) = y(y(k)(A)) for k ≥ 0. Given a vertex x and R ∈ N,
we define the ball B(x,R) as the subgraph of Ĝn with vertices ∪Rk=0 y

(k)(x) and all the
edges of Ên that start and end at these vertices. Let F (x,R) denote the event that
B(x,R) has no cycles and F (x, y,R) the event that B(x,R) and B(y,R) have no cycles
and are disjoint. We claim that

lim
n→∞

Pn(F (x1, an)) = lim
n→∞

Pn(F (x1, x2, an)) = 1. (2.2)

We will prove only that the first limit is 1, and it should be clear that a similar proof
works for the second. We explore the ball B(x1, an) level by level: we reveal the ver-
tices of y(x1) one by one (in any order we desire), then the vertices of y(2)(x1) one by
one, and so on, and say that a collision occurs if at some point before having revealed
all vertices in B(x1, an), we reveal a vertex that had already been revealed at an earlier
step; the exploration is then stopped and said to have been unsuccessful. The explo-
ration is thus successful if and only if F (x1, an) occurs. Note that the maximum number
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of vertices revealed in the whole exploration is
∑dane
i=0 ri ≤ ran+2. Also, at any point in

the exploration, there are at least n−r choices for the next vertex (since for any x ∈ Vn,
y1(x), . . . , yr(x) are necessarily all distinct and different from x), so the probability that
the next vertex results in a collision (and thus an unsuccessful exploration) is less than
ran+2/(n − r). The probability that the exploration is unsuccessful is thus less than
(ran+2)2/(n− r), which tends to 0 as n→∞ since an/ log n→ 0.

For n ≥ 1 and i ∈ {1, . . . , n}, let Xn,i = I{|ξ̂xian |>bn}. Note that, by symmetry,

Xn,1, . . . , Xn,n are identically distributed under Pn. (2.3)

If F (x1, an) occurs, then (|ξ̂x1
t |)0≤t≤an has the same distribution as (Zt)0≤t≤an , so that,

by (2.1) and (2.2),

En[Xn,1] = Pn(F (x1, an)) · ρn + En[Xn,1 · IF (x1,an)c ]
n→∞
−−−−→ ρ. (2.4)

Likewise, if F (x1, x2, an) occurs, then (|ξ̂x1
t |)0≤t≤an , (|ξ̂x2

t |)0≤t≤an are distributed as two
independent copies of (Zt)0≤t≤an , so that

En[Xn,1 ·Xn,2] = Pn(F (x1, x2, an)) · (ρn)2 + En[Xn,1 ·Xn,2 · IF (x1,x2,an)]
n→∞
−−−−→ ρ2. (2.5)

By (2.4) and (2.5) we get

Cov(Xn,1, Xn,2)
n→∞
−−−−→ 0. (2.6)

Now, (2.3), (2.4), (2.6) and Chebyshev’s inequality imply that 1
n

∑n
i=1Xn,i converges to

ρ in probability, as desired.

We will write

kn = (log n)2, sn = (log log n)2.

For t > 0, let us say that a graph Ĝn ∈ Gn is t-fertile if

for every A ⊂ Vn with |A| ≥ kn, PĜn
(
ξ̂At = ∅

)
< n−2. (2.7)

Let Hn(t) denote the set of graphs in Ĝn that are t-fertile.

Proposition 2.2. There exists c̄ > 0 such that lim
n→∞

Pn
(
Hn(ec̄n)

)
= 1.

Proving this result takes most of our effort. We postpone the proof and first show
how the two propositions are used to establish the main theorem.

Proof of Theorem 1.1. We will use the fact that

if t′ < t′′, then
{
x ∈ Vn : ξ̂xt′′ 6= ∅

}
⊂
{
x ∈ Vn : ξ̂xt′ 6= ∅

}
. (2.8)

Let c̄ be the constant of Proposition 2.2. Fix ε > 0 and a sequence (tn) as in the
statement of the theorem. If t ≤ ec̄n, by (2.8) we have

Pn

(
|{x ∈ Vn : ξ̂xt 6= ∅}|

n
≤ ρ− ε

)
≤ Pn

(
|{x ∈ Vn : ξ̂xec̄n 6= ∅}|

n
≤ ρ− ε

)

≤ Pn

(
|{x ∈ Vn : |ξ̂xsn | > kn}|

n
≤ ρ− ε

)
+ Pn

(
∃x ∈ Vn : |ξ̂xsn | > kn, ξ̂

x
ec̄n = ∅

)
.(2.9)
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The first term vanishes as n→∞ by Proposition 2.1. The second term is less than

Pn((Hn(ec̄n))c) +
∑

Ĝ∈Hn(ec̄n)

Pn(Ĝ) ·
∑
x∈Vn

∑
A⊂Vn:
|A|≥kn

PĜ

(
ξ̂xsn = A

)
· PĜ

(
ξ̂Aec̄n−sn = ∅

)

≤ Pn((Hn(ec̄n))c) + n−2
∑

Ĝ∈Hn(ec̄n)

Pn(Ĝ) ·
∑
x∈Vn

PĜn

(
|ξ̂xsn | ≥ kn

)

≤ Pn((Hn(ec̄n))c) + n−1 · Pn(Hn(ec̄n))
n→∞
−−−−→ 0.

This shows that

inf
t≤ec̄n

Pn

(
|{x ∈ Vn : ξ̂xt 6= ∅}|

n
> ρ− ε

)
n→∞
−−−−→ 1. (2.10)

Now let us consider the reverse inequality. If t ≥ tn, by (2.8) we have

Pn

(
|{x ∈ Vn : ξ̂xt 6= ∅}|

n
≥ ρ+ ε

)
≤ Pn

(
|{x ∈ Vn : ξ̂xmin(tn,sn) 6= ∅}|

n
≥ ρ+ ε

)
.

We can now apply Proposition 2.1 with an = min(tn, sn) and bn ≡ 0; the right-hand side
thus vanishes as n→∞. Thus,

inf
t≥tn

Pn

(
|{x ∈ Vn : ξ̂xt 6= ∅}|

n
< ρ+ ε

)
n→∞
−−−−→ 1. (2.11)

(2.10) and (2.11) together yield (1.2).

We now need to prove Proposition 2.2; three preliminary results will be needed:
Lemmas 2.3, 2.4 and 2.5.

Once and for all, fix q̃ < q, δ > 0 and g ∈ N so that

q̃r > 1, δ < min ((q̃r − 1), 1) and (q̃r − 1− δ)(q̃r)g−1 > 1 + δ.

We now give some definitions and notations.
Given m ∈ N, let

T 0
m = {1, . . . ,m},
T im = {1, . . . ,m} × {1, . . . r}i, 1 ≤ i ≤ g,
Tm = ∪gi=0 T

i
m.

For σ = (σ0, . . . , σi), σ
′ = (σ′0, σ

′
1, . . . , σ

′
j) ∈ Tm, we say σ ≺ σ′ either if i < j or if i = j

and σ is less than σ′ in lexicographic order. With this order, we can take an increasing
enumeration

Tm = {σ1, . . . , σ(1+r+...+rg)m} (2.12)

Then, T 0
m = {σ1, . . . , σm} and, for i ≥ 1, T im = {σ(1+r+...+ri−1)m+1, . . . , σ(1+r+...+ri)m}.

Next, we endow Tm with directed edges by setting

σ → σ′ if and only if σ = (σ0, . . . , σi), σ
′ = (σ0, . . . , σi, σ

′
i+1) for some i.

Tm is thus the disjoint union of m rooted, directed trees, each with g generations above
the root. If we can go from σ to σ′ by following a path of oriented edges of the tree, we
say that σ is an ancestor of σ′ and that σ′ is a descendant of σ.
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The set {0, 1}Tm will be called the space of configurations. Given vertex σ ∈ Tm and
configuration ψ ∈ {0, 1}Tm , ψ(σ) ∈ {0, 1} will denote the value of ψ at σ.

Now assume Ĝn = (Vn, Ên) is given and A ⊂ Vn with |A| = m. We can enumerate
A = {xj1 , . . . xjm} in the order of the indices of Vn. Given σ = (σ0, . . . , σi) ∈ Tm with
i > 0, let zσ = yσi(yσi−1

(· · · (yσ1
(xjσ0

)) · · · )). Finally, define

Aσ = {zσ
′
∈ Tm : σ′ ≺ σ}.

We now present an algorithm to construct a configuration ψ = ψ(A) ∈ {0, 1}Tm from A.
The index j in the algorithm follows the enumeration given in (2.12).

for j = 1 to m

| set ψ(σj) = 0;

for j = m+ 1 to (1 + r + . . .+ rg)m∣∣∣∣∣∣∣
if
[
ψ(σ) = 1 for some σ ancestor of σj

]
or
[
zσ

j

/∈ Aσj
]

then set ψ(σj) = 0

else set ψ(σj) = 1

In words, vertices are inspected in order; the roots are all set to 0 and the other
vertices are set to 0 either if one of their ancestors has already been marked with a 1
or if their image under the map σ 7→ zσ has never been seen before; otherwise they are
set to 1. Figure 1 presents an example of the effect of the algorithm.

As will become clear in the proof of Lemma 2.4, an essential property of this con-
struction is the fact that σ 7→ zσ injectively maps the set

{σ ∈ Tm : ψ(σ) = 0 and ψ(σ′) = 0 for every ancestor σ′ of σ}

onto the vertex set of B(A, g). Note that this property does not depend on the value of
ψ at any vertex σ′ such that ψ(σ) = 1 for some ancestor σ of σ′. On the other hand, we
will want to argue that with high probability there are few vertices of Tm where ψ is
equal to 1. This is why we set the algorithm to “artificially” set ψ to 0 at all vertices that
descend from a vertex σ such that ψ(σ) = 1; these should be understood as “dummy”
0’s, that is, they have no counterpart in the geometry of B(A, g).

1

2
1

2

1 2

1

1 1

1
1

2
2

2

22

Figure 1: Example of the algorithm. Here r = 2, g = 2. The numbers in the arrows in
the left diagram serve to distinguish y1(x) and y2(x) for each vertex x
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Lemma 2.3. Given A ⊂ Vn with |A| = m and σi1 , . . . , σik ∈ Tm,

Pn
(

[ψ(A)](σi1) = . . . = [ψ(A)](σik) = 1
)
≤
(
m+ rm+ . . .+ rgm

n− r

)k
.

Proof. There is no loss of generality in assuming that σia ≺ σib when a < b. We then
have

Pn
(

[ψ(A)](σik) = 1
∣∣ [ψ(A)](σi1) = . . . = [ψ(A)](σik−1) = 1

)
≤ m+ rm+ . . .+ rgm

n− r
.

Indeed, let Θik denote the event that none of the ancestors of σik in Tm is marked with
a 1 in ψ(A). First note that {[ψ(A)](σik) = 1} ⊂ Θik , because the algorithm fills all
positions above a 1 with 0’s. Next, fix am+1, am+2, . . . , aik−1 ∈ Vn such that

{zσ
m+1

= am+1, . . . , z
σik−1

= aik−1} ⊂ Θik ∩ { [ψ(A)](σi1) = . . . = [ψ(A)](σik−1) = 1 }

(we start at m + 1 because zσ
1

, . . . , zσ
m

are always equal to the points of A). Then,
conditioned on {zσm+1

= am+1, . . . , z
σik−1

= aik−1}, there are at least n− r + 1 possible
positions for zσ

ik , and [ψ(A)](zσ
ik ) = 1 precisely when zσ

ik ∈ Aσik , a set of size less
than m+ rm+ . . .+ rgm.

Given A ⊂ Vn with |A| = m, let

di(A) = |{σ ∈ T im : [ψ(A)](σ) = 1}|, d(A) =

g∑
i=1

di.

We say that A is expansive if d(A) ≤ (1 + δ)m. The next lemma shows the motivation for
this definition; see (2.15) in the proof.

Lemma 2.4. There exists c1 > 0 such that, if A ⊂ Vn is expansive, then

PĜn

(
|ξ̂Ag | < (1 + δ)|A|

)
≤ e−c1|A|.

Proof. Let m = |A|. If i < g and B ⊂ T im, we will write

J(B) = {σ′ ∈ Tm : σ → σ′ for some σ ∈ B} ⊂ T i+1
m .

Consider the process (ξ̂At )0≤t≤g; define the sets

B0 = {σ ∈ T 0
m : zσ gives birth at time 0};

Bi = {σ ∈ J(Bi−1) ∩ {ψ(A) = 0} : zσ gives birth at time i}, 1 ≤ i < g

The definition of B0 implies that ξ̂A1 ⊃ {zσ : σ ∈ J(B0)}. From the construction of ψ(A)

we see that σ 7→ zσ is injective on J(B0)∩{ψ(A) = 0}, so we have |ξ̂A1 | ≥ |J(B0)∩{ψ(A) =

0}|. Iterating this argument we get

|ξ̂Ai | ≥ |J(Bi−1) ∩ {ψ(A) = 0}|, 1 ≤ i ≤ g. (2.13)

Define the events

F0 = {|B0| < q̃m},
Fi = {|Bi| < q̃ · |J(Bi−1) ∩ {ψ(A) = 0}|}, 1 ≤ i < g.

We now claim that (
g−1
∪
i=0

Fi

)c
⊂
{
|ξ̂Ag | ≥ (1 + δ)|A|

}
. (2.14)
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Indeed, if none of the Fi occurs, we have

|B0| ≥ q̃m;

|J(B0) ∩ {ψ(A) = 0}| ≥ r · |B0| − d1 ≥ q̃rm− d1;

|B1| ≥ q̃ · |J(B0) ∩ {ψ(A) = 0}| ≥ q̃2rm− q̃d1;

|J(B1) ∩ {ψ(A) = 0}| ≥ r · |B1| − d2 ≥ (q̃r)2m− q̃rd1 − d2;

· · ·
|J(Bi−1) ∩ {ψ(A) = 0}| ≥ (q̃r)im− (q̃r)i−1d1 − (q̃r)i−2d2 − · · · − q̃rdi−1 − di

for i ≤ g. In particular, using q̃r > 1 and the definition of expansiveness, for 0 < i ≤ g

we have

|J(Bi−1) ∩ {ψ(A) = 0}| ≥ (q̃r)im− (q̃r)i−1d ≥ (q̃r)i−1(q̃r − 1− δ)m. (2.15)

By the choice of g, this gives

|J(Bg−1) ∩ {ψ(A) = 0}| ≥ (1 + δ)m.

Together with (2.13), this proves (2.14).
The proof of the lemma will thus be complete if we show that, for some c1 > 0,

PĜn

(
g−1
∪
i=0

Fi

)
≤ e−c1m. (2.16)

We start by writing

PĜn

(
g−1
∪
i=0

Fi

)
≤ PĜn(F0) +

g−1∑
i=1

PĜn

(
Fi

∣∣∣∣ i−1
∩
j=0

F cj

)
.

In order to bound the terms of this sum, we will need the estimate

P(Bin(k, p) ≤ xkp) ≤ exp{−γ(x)kp} for all x ∈ (0, 1),

where γ(x) = x log x− x+ 1. This follows from Markov’s inequality; see Lemma 2.3.3 in
[4]. We then have

PĜn (F0) = P(Bin(m, q) < q̃m) ≤ exp{−γ(q̃/q)qm}

Also, on the event ∩i−1
j=0F

c
j , by (2.15) we have |J(Bi−1) ∩ {ψ(A) = 0}| > (q̃r − 1 −

δ)(q̃r)i−1m > (q̃r − 1− δ)m, so

PĜn

(
Fi

∣∣∣∣ i−1
∩
j=0

F cj

)
≤ exp{−γ(q̃/q)q(q̃r − 1− δ)m}.

The proof of (2.16) is now complete.

Lemma 2.5. There exists κ > 0 such that, putting Kn = κ · n,

Pn (∃A ⊂ Vn : kn ≤ |A| ≤ Kn, ψ(A) is not expansive)
n→∞
−−−−→ 0.

Proof. For fixed m we have

Pn (∃A ⊂ Vn : |A| = m, ψ(A) is not expansive) ≤
∑

A:|A|=m

Pn(ψ(A) is not expansive)

≤
∑

A:|A|=m

(1+r+···+rg)m∑
d=d(1+δ)me

∑
D⊂Tm:|D|=d

Pn ([ψ(A)](σ) = 1 ∀σ ∈ D) .
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We now bound |{D ⊂ Tm : |D| = d}| by 2|Tm| and use Lemma 2.3 to bound the probabil-
ity; the above is less than(

n

m

)
(1 + r + · · ·+ rg) m 2(1+r+···+rg)m

(
(1 + r + · · ·+ rg)m

n− r

)(1+δ)m

(2.17)

Now we use the bound
(
n
m

)
≤ nm/m! ≤ (ne/m)m (since em =

∑∞
i=0m

i/i! ≥ mm/m!);
(2.17) is less than(ne

m

)m
Cm

(m
n

)(1+δ)m
(

n

n− r

)(1+δ)m

≤
(
C
(m
n

)δ)m
;

here C is a constant that only depends on r, g and δ, and whose value has changed in
the last inequality. Now choose κ such that Cκδ < 1/e. The probability in the statement
of the lemma is then less than

Kn∑
i=kn

e−i ≤ κne−(logn)2 n→∞
−−−−→ 0.

Proof of Proposition 2.2. Assume that n is large enough that δkn > 1 and that Ĝn satis-
fies

for every A ⊂ Vn with kn ≤ |A| ≤ Kn, ψ(A) is expansive. (2.18)

Let c̄ = c1κ
2 , where c1 and κ are the constants of the two previous lemmas. We will prove

that Ĝn is ec̄n-fertile, that is, we will verify that (2.7) holds with t = ec̄n. Together with
Lemma 2.5, this will imply the result we need.

We start noting that, if |A| ≥ kn, then

PĜn

(
|ξ̂Ag | < min (|A|+ 1,Kn)

)
< e−c1 min(|A|,Kn). (2.19)

Indeed, if |A| < Kn, this follows directly from Lemma 2.4 and (1 + δ)|A| > |A| + δkn >

|A|+ 1. If |A| ≥ Kn, we can take a subset A′ ⊂ A with |A′| = bKnc and use the previous
argument for A′ together with the fact that ξ̂A

′

g ⊂ ξ̂Ag .
Using (2.19), we have

PĜn

(
|ξ̂Aj·g| ≥ min(|A|+ j,Kn) for 1 ≤ j ≤ ec̄n

)
≥ 1−

ec̄n∑
j=0

e−c1 min(|A|+j,Kn)

≥ 1−
bKn−knc∑
j=0

e−c1(kn+j) −
ec̄n∑

j=bKn−knc+1

e−c1Kn

≥ 1−Kn · e−c1kn − ec̄n · e−c1Kn

≥ 1− κne−c1(logn)2

− e−
c1κn

2 > 1− n−2

when n is large enough, proving (2.7).
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